
Journal of Machine Learning Research 9 (2008) 2455-2487 Submitted 9/07; Revised 5/08; Published 11/08

Minimal Nonlinear Distortion Principle for Nonlinear Independent
Component Analysis

Kun Zhang KZHANG@CSE.CUHK.EDU.HK

Laiwan Chan LWCHAN@CSE.CUHK.EDU.HK

Department of Computer Science and Engineering
The Chinese University of Hongkong
Hong Kong

Editor: Aapo Hyvärinen

Abstract
It is well known that solutions to the nonlinear independent component analysis (ICA) problem are
highly non-unique. In this paper we propose the “minimal nonlinear distortion” (MND) principle
for tackling the ill-posedness of nonlinear ICA problems. MND prefers the nonlinear ICA solution
with the estimated mixing procedure as close as possible to linear, among all possible solutions.
It also helps to avoid local optima in the solutions. To achieve MND, we exploit a regularization
term to minimize the mean square error between the nonlinear mixing mapping and the best-fitting
linear one. The effect of MND on the inherent trivial and non-trivial indeterminacies in nonlinear
ICA solutions is investigated. Moreover, we show that local MND is closely related to the smooth-
ness regularizer penalizing large curvature, which provides another useful regularization condition
for nonlinear ICA. Experiments on synthetic data show the usefulness of the MND principle for
separating various nonlinear mixtures. Finally, as an application, we use nonlinear ICA with MND
to separate daily returns of a set of stocks in Hong Kong, and the linear causal relations among
them are successfully discovered. The resulting causal relations give some interesting insights into
the stock market. Such a result can not be achieved by linear ICA. Simulation studies also verify
that when doing causality discovery, sometimes one should not ignore the nonlinear distortion in
the data generation procedure, even if it is weak.

Keywords: nonlinear ICA, regularization, minimal nonlinear distortion, mean square error, best
linear reconstruction

1. Introduction

Independent component analysis (ICA) is a popular statistical technique aiming to recover indepen-
dent sources from their observed mixtures, without knowing the mixing procedure or any specific
knowledge of the sources (Hyvärinen et al., 2001; Cardoso, 1998; Cichocki and Amari, 2003). In
the case that the observed mixtures are a linear transformation of the sources, under weak assump-
tions, ICA can recover the original sources with the trivial permutation and scaling indeterminacies.
Linear ICA is currently a popular method for blind source separation (BSS) of linear mixtures.

However, nonlinear ICA does not necessarily lead to nonlinear BSS. In Hyvärinen and Pa-
junen (1999), it was shown that solutions to nonlinear ICA always exist and that they are highly
non-unique. Actually, one can easily construct a nonlinear transformation of some non-Gaussian
independent variables to produce independent outputs. Below are a few examples. Let y1, ...,yn be
some independent variables. Their component-wise nonlinear functions are still mutually indepen-
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dent. If we use Gaussianization (Chen and Gopinath, 2001) to transform yi into Gaussian variables
ui, any component-wise nonlinear function of U ·u, where u = (u1, ...,un)

T and U is an orthogonal
matrix, still has mutually independent components. Taleb and Jutten (1999) also gave an example in
which nonlinear mixtures of independent variables are still independent. One can see that nonlinear
BSS is impossible without additional prior knowledge on the mixing model, since the independence
assumption is not strong enough in the general nonlinear mixing case (Jutten and Taleb, 2000; Taleb,
2002).

If we constrain the nonlinear mixing mapping to have some specific forms, the indeterminacies
in the results of nonlinear ICA can be reduced dramatically, and as a consequence, nonlinear ICA
may lead to nonlinear BSS. For example, in Burel (1992), a parametric form of the mixing trans-
formation is assumed known and one just needs to adjust the unknown parameters. The learning
algorithms were improved in Yang et al. (1998). By exploiting the extensions of the Darmois-
Skitovich theorem (Kagan et al., 1973) to nonlinear functions, a particular class of nonlinear mixing
mappings, which satisfy an addition theorem in the sense of the theory of functional equations,
were considered in Eriksson and Koivunen (2002). In particular, the post-nonlinear (PNL) mixing
model (Taleb and Jutten, 1999), which assumes that the mixing mapping is a linear transformation
followed by a component-wise nonlinear one, has drawn much attention.

In practice, the exact form of the nonlinear mixing procedure is probably unknown. Conse-
quently, in order to model arbitrary nonlinear mappings, one may need to resort to a flexible non-
linear function approximator, such as the multi-layer perceptron (MLP) or the radial basis function
(RBF) network, to represent the nonlinear separation system. Almeida (2003) uses the MLP to
model the separation system and trains the MLP by information-maximization (Infomax). More-
over, the smoothness constraint,1 which is implicitly provided by MLP’s with small initial weights
and with a relatively small number of hidden units, was believed to be a suitable regularization
condition to achieve nonlinear BSS. In Tan et al. (2001), a RBF network is adopted to represent
the separation system, and partial moments of the outputs of the separation system are used for
regularization. The matching between the relevant moments of the outputs and those of the original
sources was expected to guarantee a unique solution. But the moments of the original sources may
be unknown. In addition, if the transformation from the original sources to the recovered sources is
non-trivial,2 this regularization could not help to recover the original sources. Variational Bayesian
nonlinear ICA (Lappalainen and Honkela, 2000; Valpola, 2000) uses the MLP to model the non-
linear mixing transformation. By resorting to the variational Bayesian inference technique, this
method can do model selection and avoid overfitting. If we can have some additional knowledge
about the nonlinear mixing transformation and incorporate it efficiently, the results of nonlinear ICA
will be much more meaningful and reliable.

Although we may not know the form of the nonlinearity in the data generation procedure, for-
tunately, in many cases the nonlinearity for generating natural signals we deal with is not strong.
Hence, provided that the nonlinear ICA outputs are mutually independent, we would prefer the so-
lution with the estimated data generation procedure of minimal nonlinear distortion (MND). This

1. Following Tikhonov and Arsenin (1977), here we use the term “smoothness” in a very general sense. Often it means
that that the function does not change abruptly and/or that it does not oscillate too much.

2. For the definition of a trivial transformation, one may see Jutten and Taleb (2000). A one-to-one mapping H is
trivial if and only if it satisfies Hi(y1,y2, ...,yn) = hi(yσ(i)), i = 1,2, ...,n, where hi are arbitrary functions and σ is any
permutation over {1, .2, ...,n}. That is, a trivial mapping of y is a permutation of yi followed by a component-wise
transformation.
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information can help to reduce the indeterminacies in nonlinear ICA greatly, and moreover, to avoid
local optima in the solutions to nonlinear ICA. The minimal nonlinear distortion of the mixing sys-
tem is achieved by the technique of regularization. The objective function of nonlinear ICA with
MND is the mutual information between outputs penalized by some terms measuring the level of
“closeness to linear” of the mixing system. The mean square error (MSE) between the nonlinear
mixing system and its best-fitting linear one provides such a regularization term. To ensure that
nonlinear ICA results in nonlinear BSS, one may also need to enforce the local MND of the non-
linear mapping averaged at every point, which turns out to be the smoothness regularizer exploiting
second-order partial derivatives.

MND, as well as the smoothness regularizer, can be incorporated in various nonlinear ICA
methods to improve the results. Here we consider two nonlinear ICA methods. The first one is the
MISEP method (Almeida, 2003), where the MLP is used to represent the separation system. As
regularization is powerful for complexity control in neural networks (Bishop, 1995), the structure
of the MLP is not optimized during the learning process, that is, it is fixed. The second one is non-
linear ICA based on kernels (Zhang and Chan, 2007a), in which the nonlinear separation system is
modeled using some kernel methods. We then explain why MND helps to alleviate the ill-posedness
in nonlinear ICA solutions, by investigating the effect of MND on trivial and non-trivial indetermi-
nacies in nonlinear ICA solutions systematically. Next, we conduct experiments using synthetic
data to compare the performance of several nonlinear ICA methods. The results confirm the effec-
tiveness of the proposed MND principle to avoid unwanted solutions and to improve the separation
performance. Finally, nonlinear ICA with MND is used to discover linear causal relations in the
Hong Kong stock market and give encouraging results. We also give experimental results on syn-
thetic data, which illustrate that when performing ICA-based causality discovery on the data whose
generation procedure involves nonlinear distortion, one should take into account the nonlinear effect
in the ICA separation system, even if it is mild.3

2. Nonlinear ICA with Minimal Nonlinear Distortion

In this section we first briefly review the general nonlinear ICA problem, and then propose the
minimal nonlinear distortion (MND) principle for regularization of nonlinear ICA.

2.1 Nonlinear ICA

In the nonlinear ICA model, the observed data x = (x1, ...,xn)
T are assumed to be generated from a

vector of independent variables s = (s1, ...,sn)
T by a nonlinear transformation:

x = F (s), (1)

where F is an unknown real-valued n-component mixing function. Here for simplicity, we have
assumed that the number of observed variables equals that of the original independent variables.
The general nonlinear ICA problem is to find a mapping G : R

n → R
n such that

y = G(x)

has statistically independent components. As mentioned in Section 1, the results of nonlinear ICA
are highly non-unique. In order to achieve nonlinear BSS, which aims at recovering the original
sources si, we should resort to additional prior information or suitable regularization constraints.

3. Some preliminary results of this paper were presented at ICML2007 (Zhang and Chan, 2007b).
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2.2 With Minimum Nonlinear Distortion

We now propose the MND principle to restrict the space of nonlinear ICA solutions. As a conse-
quence, the ill-posedness of the nonlinear ICA problem is alleviated. Under the condition that the
separation outputs yi are mutually independent, this principle prefers the solution with the estimated
mixing transformation F̂ as close as possible to linear.

Now we need a measure of “closeness to linear” of a mapping. Given a nonlinear mapping F̂ ,
its deviation from the affine mapping A∗, which fits F̂ best among all affine mappings A, is an
indicator of its “closeness to linear”, or the level of its nonlinear distortion. The deviation can be
measured in various ways. The MSE is adopted here, as it greatly facilitates subsequent analysis.
Consequently, the “closeness to linear” of F̂ = G−1 can be measured by the MSE between G−1

and A∗. We denote this measure by RMSE(θ), where θ denotes the set of unknown parameters in the
nonlinear ICA system. Let x∗ = (x∗1, · · · ,x∗n)T be the output of the affine transformation from y by
A∗. Let ỹ = [y;1]. RMSE(θ) can then be written as the MSE between xi and x∗i :

RMSE(θ) = E{(x−x∗)T (x−x∗)} , where (2)

x∗ = A∗ỹ, and A∗ = argA minE{(x−Ay)T (x−Ay)}.

Here A∗ is a n× (n+1) matrix.4 Figure 1 shows the separation system G together with the genera-
tion process of RMSE .
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Figure 1: The separation system G (solid line) and the generation of the regularization term RMSE

(dashed line). RMSE = ∑n
i=1 v2

i , where vi = xi − x∗i .

With RMSE measuring the level of nonlinear distortion, nonlinear ICA with MND can be formu-
lated as the following constrained optimization problem. It aims to minimize the mutual information
between outputs, that is, I(y), subject to RMSE(θ) ≤ t, where t is a pre-assigned parameter. The La-
grangian for this optimization problem is L(θ,λ) = I(y)+λ[RMSE(θ)− t] with λ ≥ 0. To find θ, we
need to minimize

J = I(y)+λRMSE(θ). (3)

The non-negative constant λ depends on the pre-assigned parameter t.
Another advantage of the MND principle is that it tends to make the mapping G invertible. In

the general nonlinear ICA problem, it is assumed that both F and G are invertible. But in practice

4. If E(y) = E(x) = 0, x∗ can be obtained as x∗ = A∗y instead, and here A∗ is a n×n matrix.
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it is not easy to guarantee the invertibility of the mapping provided by a flexible nonlinear function
approximator, like the MLP. MND pushes G to be close to a linear invertible transformation. Hence
when nonlinearity in F is not too strong, MND helps to guarantee the invertibility of the nonlinear
ICA separation system G .

2.2.1 SIMPLIFICATION OF RMSE

RMSE , given in Eq. 2, can be further simplified. According to Eq. 2, the derivative of RMSE w.r.t.
A∗ is ∂RMSE

∂A∗ = −2E{(x−A∗ỹ)ỹT}. Setting the derivative to 0 gives E{(x−A∗ỹ)ỹT} = 0, which
implies

A∗ = E{xỹT}[E{ỹỹT}]−1. (4)

We can see that due to the adoption of the MSE, A∗ can be obtained in closed form. This greatly
simplifies the derivation of learning rules.

Due to Eq. 4, we have E{A∗ỹỹT A∗T} = E{xỹT}A∗T ,and RMSE then becomes

RMSE = Tr
(
E{(x−A∗ỹ)(x−A∗ỹ)T}

)

= Tr
(
E{xxT −A∗ỹxT −xỹT A∗T +A∗ỹỹT A∗T}

)

= Tr
(
E{xxT −A∗ỹxT −xỹT A∗T +xỹT A∗T}

)

= −Tr
(
E{A∗ỹxT}

)
+Tr

(
E{xxT}

)

= −Tr
(
E{xỹT}[E{ỹỹT}]−1E{ỹxT}

)
+ const. (5)

Since yi are independent from each other, they are uncorrelated. We can also easily make yi zero-
mean. Consequently, E{ỹỹT} = diag{E(y2

1),E(y2
2), ...,E(y2

n),1}, and RMSE becomes

RMSE = −Tr
(
E{xỹT} · [diag{E(y2

1), ...,E(y2
n),1}]−1 ·E{ỹxT}

)
+ const

= −
n

∑
j=1

n

∑
i=1

E2(x jyi)

E(y2
i )

+ const. (6)

RMSE depends only on the inputs and the outputs of the nonlinear ICA system G(θ). Given a form
for G , the learning rule for nonlinear ICA with MND is derived by minimizing Eq. 3. Note that
RMSE , given in Eq. 2, is inconsistent with certain scaling properties of the observations x. To avoid
this, one needs to normalize the variance of the observations xi through preprocessing, if necessary.

2.2.2 DETERMINATION OF THE REGULARIZATION PARAMETER λ

We suggest initializing λ with a large value λ0 at the beginning of training and decreasing it to a
small constant λc during the learning process. A large value for λ at the beginning reduces the pos-
sibility of getting into unwanted solutions, which may be non-trivial transformations of the original
sources si or local optima. As training goes on, the influence of the regularization term is relaxed,
and G gains more freedom. Hopefully, nonlinearity will be introduced, if necessary. The choice of
λc depends on the level of nonlinear distortion in the mixing procedure. If the nonlinear distortion
is considerable, we should use a very small value for λc to give the G network enough flexibility. In
our experiments, we found that the separation performance of nonlinear ICA with MND is robust to
the value of λc in a certain range. If the variance of the observations xi is normalized, typical values
used in our experiments are λ0 = 5 and λc = 0.01.
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2.3 Relation to Previous Works

The MISEP method has been reported to solve some nonlinear BSS problems successfully, includ-
ing separating a real-life nonlinear image mixture (Almeida, 2005, 2003). Almeida (2003) claimed
that the MLP itself may provide suitable regularization for nonlinear ICA. Some means were also
used for regularization in the experiments there. For example, first, direct connections between in-
puts and output units were incorporated in the G network. Direct connections can quickly adapt
the linear part of the mapping G . Second, in Almeida (2005), the G network was initialized with
an identity mapping, and during the first 100 epochs, it was constrained to be linear (by keeping
the output weights of the hidden layer equal to zero). After that, the G network began learning
the nonlinear distortion. G is therefore expected to be not far from linear, and MND is achieved
to some extent. Accordingly, nice experimental results reported there could support the usefulness
of the MND principle. We should mention that the MND principle formulated here, as well as the
corresponding regularizer, provides a way to control the nonlinearity of the mixing mapping. It
can be incorporated by any nonlinear ICA method, including MISEP. Later, we will investigate the
effect of MND on nonlinear ICA solutions theoretically, and compare various related nonlinear ICA
methods empirically.

In the kernel-based nonlinear BSS method (Harmeling et al., 2003), the data are first mapped
to a high-dimensional kernel feature space. Next, a BSS method based on second order temporal
decorrelation is performed. In this way a large number of components are extracted. When the
nonlinearity in data generation is not too strong, the MND principle provides a way to select a
subset of output components corresponding to the original sources. Assume that the outputs yi are
made zero-mean and of unit variance. From Eq. 6 we can see that one can select yi with large

∑n
j=1

E2(x jyi)

E(y2
i )

= ∑n
j=1 E2(x jyi) = ∑n

j=1 var(x j) · corr2(x j,yi).

It is worth mention that the principle of least mean square error reconstruction has been used for
training a class of neural networks and gives some interesting results (Xu, 1993). For one-layer net-
works with linear/nonlinear units, this principle leads to principal component analysis (PCA)/ICA.
We should address that the reconstruction in their work is quite different from that discussed in
Section 2.2 in this paper. In their work, the forward process and the reconstruction process share
the same weights; in this paper, reconstructed signals are an affine mapping of the outputs, and
parameters in the affine mapping are determined by minimizing the reconstruction error.

Smoothness provides a constraint to prevent a neural network from overfitting noisy data. It
is also useful to ensure nonlinear ICA to result in nonlinear BSS (Almeida, 2003). In fact, the
smoothness regularizer exploiting second-order derivatives (Tikhonov and Arsenin, 1977; Poggio
et al., 1985) is also related to the MND principle, as shown below.

2.4 Local Minimal Nonlinear Distortion: Smoothness

RMSE , given in Eq. 2, indicates the deviation of the mapping F̂ from the affine mapping which fits
F̂ globally best. In contrast, one may enforce the local MND of the nonlinear mapping averaged at
every point. We will show that this regularization actually leads to the smoothness regularizer ex-
ploiting second-order partial derivatives (Tikhonov and Arsenin, 1977; Poggio et al., 1985; Bishop,
1993).
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For a one-dimensional sufficiently smooth function g(x), we can use the second-order Taylor
expansion to approximate its function value in the vicinity of x in terms of g(x):

g(x+ ε) ≈ g(x)+
(∂g

∂x

)T
· ε+

1
2

εT Hxε,

where ε is a small variation of x and Hx denotes the Hessian matrix of g. Let 5i j = ∂2g
∂xi∂x j

. If we use

the first-order Taylor expansion of g, which is a linear function, to approximate g(x+ ε), the square
error is

∣∣∣
∣∣∣g(x+ ε)−g(x)−

(∂g
∂x

)T
· ε

∣∣∣
∣∣∣
2
≈ 1

4

∣∣∣∣εT Hxε
∣∣∣∣2

=
1
4

( n

∑
i, j=1

5i jεiε j

)2

≤ 1
4

( n

∑
i, j=1

52
i j

)( n

∑
i, j=1

ε2
i ε2

j

)
=

1
4

( n

∑
i, j=1

52
i j

)( n

∑
i=1

ε2
i

)2
=

1
4
||ε||4 ·

n

∑
i, j=1

52
i j.

The above inequality holds due to the Cauchy’s inequality. Now we can see that in order to achieve
the local MND of g averaged in the domain of x, we just need to minimize the following

Z

Dx

n

∑
i, j=1

52
i jdx =

Z

Dx

( n

∑
i=1

52
ii +2

n

∑
i, j=1,

i< j

52
i j

)
dx. (7)

This regularizer has been used for achieving the smoothness constraint (see, e.g., Grimson 1982 for
its application in computer vision). When the mapping is vector-valued, we need to apply the above
regularizer to each component of the mapping.

Originally we intended to do regularization on the mixing mapping F̂ , but it is difficult to
do since it is hard to evaluate ∂2xl

∂yi∂y j
. Instead, we do regularization on G , the inverse of F̂ . The

regularization term in Eq. 3 then becomes

Rlocal(θ) =
Z

Dx

n

∑
l=1

n

∑
i=1

n

∑
j=1

( ∂2yl

∂xi∂x j

)2
dx =

Z

Dx

n

∑
i=1

n

∑
j=1

Pi jdx, (8)

where Pi j , ∑n
l=1

(
∂2yl

∂xi∂x j

)2
. Nonlinear ICA with a smooth de-mixing mapping can be achieved by

minimizing the mutual information between yi, with Rlocal , given by Eq. 8, as the regularization

term. There are totally n2(n+1)
2 different terms

(
∂2yl

∂xi∂x j

)2
in the integrand of Rlocal . For simplic-

ity and computational reasons, sometimes one may drop the cross derivatives in Eq. 8, that is,(
∂2yl

∂xi∂x j

)2
with i 6= j, and consequently obtain the curvature-driven smoothing regularizer proposed

in Bishop (1993), with the number of different terms in the integrand being n2.

3. Incorporation of MND in Different Nonlinear ICA Methods

Now we should choose a model for the nonlinear ICA separation system G(θ) and give the learning
rule for nonlinear ICA with MND as well as nonlinear ICA with the smoothness constraint for G .
Two nonlinear ICA methods are considered here. They are MISEP (Almeida, 2003) and nonlinear
ICA based on kernels (Zhang and Chan, 2007a).
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3.1 MISEP with MND

Before incorporating MND into the MISEP method (Almeida, 2003) for nonlinear ICA, we give an
overview of this method.

3.1.1 MISEP FOR NONLINEAR ICA

MISEP adopts the MLP to model the separation function G in the nonlinear ICA problem. Figure 2
shows the structure used in this method. This method extends the original Infomax method for
linear ICA (Bell and Sejnowski, 1995) in two aspects. First, the separation system is a nonlinear
transformation, which is modeled by the MLP. Second, the nonlinearities ψi are not fixed in advance,
but tuned by the Infomax principle, together with G .

ψ1

ψn

x1

xn

y1

yn

u1

un

.

.

.

.

.

.

.

.

.

Figure 2: The network structure used in Infomax and MISEP. G is the separation system, and ψi

are the nonlinearities applied to the separated signals. In MISEP, G is a nonlinear trans-
formation, and both G and ψi are learned by the Infomax principle.

With the Infomax principle, parameters in G and ψi are learned by maximizing the joint entropy
of the outputs of the structure in Figure 2, which can be written as H(u) = H(x)+ E{log |detJ|},
where J = ∂u

∂x is the Jacobian of the nonlinear transformation from x to u. As H(x) does not de-
pend on the parameters in G and ψi, it can be considered as a constant. Maximizing H(u) is thus
equivalent to minimizing

J1(θ) = −E{log |detJ|}, (9)

where θ denotes the set of unknown parameters. The learning rules for θ were derived by Almeida
(2003), in a manner similar to the back-propagation algorithm.

The MLP adopted in this paper has linear output units and a single hidden layer. For the hidden
units, the activation function l(·) may be the logistic sigmoid function, the arctan function, etc.
Direct connections between the inputs and output units are also allowed. Let a = [a1, ...,aM]T be
the inputs to the hidden units, z = [z1, ...,zM]T be the output of the hidden units, and W and b
denote the weights and biases, respectively. We use superscripts to distinguish the locations of these
parameters: W(d) denotes the weights from the inputs to output units, W(1) those from the inputs
to the hidden layer, and W(2) those from the hidden layer to the output units. b(1) and b(2) are the
bias vectors in the hidden layer and in the output units, respectively. The output of the G network
represented by this MLP takes the form:

y = W(2) · z+W(d)x+b(2), where (10)

zi = l(ai), and a = W(1)x+b(1).
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3.1.2 MISEP WITH MND

For MISEP with MND, the objective function to be minimized is Eq. 9 regularized by RMSE given
in Eq. 6. The learning rule for θ to minimize Eq. 9 has been considered in Almeida (2003). Hence
here we only give the gradient of RMSE w.r.t. θ.

Using the chain rule, also noting Eq. 10, the gradient of RMSE(θ) w.r.t. W(2) can be obtained:

∂RMSE

∂W(2)
= E

{ n

∑
i=1

2
[E2(x jyi)

E2(y2
i )

yi −
E(x jyi)

E(y2
i )

xi

]
· ∂yi

∂W(2)

}
= E{K · zT}, (11)

where K , [K1, ...,Kn]
T with its i-th element being Ki = 2∑ j

[
E2(x jyi)

E2(y2
i )

yi − E(x jyi)

E(y2
i )

x j

]
, and z = [z1,z2,

...,zM]T is the output of the hidden layer of the MLP. For the gradient of RMSE w.r.t. W(1), W(d),
b(2), and b(1), see Appendix A.

3.1.3 MISEP WITH SMOOTHNESS CONSTRAINT ON G

The mapping provided by a MLP may not be smooth enough to make nonlinear ICA result in
nonlinear BSS. So here we also implement MISEP with the smoothness constraint on G . The
objective function to be minimized becomes Eq. 9 regularized by Rlocal given in Eq. 8. Pi j appears
in the expression of Rlocal . We first derive its gradient w.r.t. θ in a way analogous to that in Bishop
(1993); see Appendix B.

In calculation of ∂Rlocal
∂θ , the integral in Eq. 8 is difficult to evaluate. Below are two ways to tackle

this problem. A very simple way to approximate Eq. 7 is to use the average of the integrand over all
observations instead of the integral (ignoring a constant scaling factor), just as Bishop (1993) does:

R(1)
local(θ) = E

{ n

∑
i=1

n

∑
j=1

Pi j

}
. (12)

This approximation actually assumes that the distribution of x is close to uniform, as seen from
below. Eq. 8 can be rewritten as

Rlocal(θ) =
Z

Dx

p(x) · 1
p(x)

n

∑
i=1

n

∑
j=1

Pi jdx = E
{ 1

p(x)

n

∑
i=1

n

∑
j=1

Pi j

}
. (13)

If p(x) is a constant in the domain Dx, Eq. 12 is equivalent to Eq. 13; otherwise, the approximation
using Eq. 12 may result in large error, and we may need another way to approximate the integral in
Eq. 8.

When the nonlinear ICA algorithm has run for a certain number of epochs, u, the output of
the system in Figure 2, has approximately independent components and is approximately uni-
formly distributed in [0,1]n. This means that p(u) is approximately 1. As p(x) = p(u) · |detJ|,
one can see that p(x) is approximately equal to |detJ|. Consequently Eq. 13 becomes Rlocal(θ) ≈
E

{
1

|detJ| ∑n
i=1 ∑n

j=1 Pi j

}
. The gradient of Rlocal(θ) is

∂Rlocal(θ)

∂θ
≈ E

{ 1
|detJ|

n

∑
i=1

n

∑
j=1

∂Pi j

∂θ

}
. (14)

As J = ∂u
∂x can be easily calculated according to the network structure in Figure 2, Eq. 14 is also

easy to evaluate, using Eq. 20 of Appendix B.
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3.2 MND for Nonlinear ICA Based on Kernels

Nonlinear ICA based on kernels (Zhang and Chan, 2007a) exploits kernel methods to construct the
separation system G , and unknown parameters are adjusted by minimizing the mutual information
between outputs yi.5 We have applied the MND principle and the smoothness regularizer to nonlin-
ear ICA based on kernels; for details, see Zhang and Chan (2007a). Note that unlike the mapping
provided by a MLP, which is comparatively smooth, the mapping constructed by kernel methods
may not be smooth. So it is quite necessary to explicitly enforce the smoothness constraint for
nonlinear ICA based on kernels.

4. Investigation of the Effect of MND

In this section we intend to explain why the MND principle, including the smoothness regulariza-
tion, helps to alleviate the ill-posedness of nonlinear ICA from a mathematical viewpoint. There
are two types of indeterminacies in solutions to nonlinear ICA, namely trivial indeterminacies and
non-trivial indeterminacies. Trivial indeterminacies mean that the estimate of s j produced by non-
linear ICA may be any nonlinear function of s j; non-trivial indeterminacies mean that the outputs
of nonlinear ICA, although mutually independent, are still a mixing of the original sources. Let us
begin with the effect of MND on trivial indeterminacies.

4.1 For Trivial Indeterminacies

Let us assume in this section that, in the solutions of nonlinear ICA, each component depends only
on one of the sources. Before presenting the main result, let us first give the following lemma.

Lemma 1 Suppose that we are given the random vector d = (d1,d2, · · · ,dn)
T . Let Ry be the mean

square error of reconstructing d from the variable y with the best-fitting linear transformation, that
is, Ry = mina E{||d−a ·y||2}, where a = (a1,a2, · · · ,an)

T . The variable y which gives the minimum
Ry is the first non-centered principal component of d multiplied by a constant, and if y is constrained
to be zero-mean, it is the first principal component of d multiplied by a constant.

See Appendix C for a proof. Now let us consider a particular kind of nonlinear mixtures, in
which each observed nonlinear mixture xi is assumed to be generated by

xi = fi1(s1)+ fi2(s2)+ · · ·+ fin(sn), (15)

where fi j are invertible functions. We call such nonlinear mixtures distorted source (DS) mixtures,
since each observation is a linear mixture of nonlinearly distorted sources. For this nonlinear mix-
ing model, we have the following theorem on the effect of MND on trivial indeterminacies in its
nonlinear ICA solutions. Here the following assumptions are made:

A1: In the output of nonlinear ICA, each component depends only on one of the sources and is
zero-mean.

A2: The nonlinear ICA system has enough flexibility to reach the minimum of the MND regular-
ization term RMSE defined by Eq. 2.

5. The difference between nonlinear ICA based on kernels discussed here and the kernel-based nonlinear BSS method
by Harmeling et al. (2003) should be made clear. Both of them use kernels. However, the former produces statistically
independent outputs, while the latter exploits the temporal structure of the sources for separation.
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Theorem 1 Suppose that each observed nonlinear mixture xi is generated according to Eq. 15.
Under assumptions A1 & A2, the estimate of s j produced by nonlinear ICA with MND is the first
principal component of f∗ j(s j) = [ f1 j(s j), · · · , fn j(s j)]

T , multiplied by a constant.

See Appendix D for a proof. The DS mixing model Eq. 15 may be restrictive. Now let us
consider the case where nonlinearity in F is mild such that F can be well approximated by its
Maclaurin expansion of degree 3. Let

Oi, j =
∂xi

∂s j

∣∣∣
s j=0

,Oi, jk =
∂2xi

∂s j∂sk

∣∣∣
s j,sk=0

, and Oi, jkl =
∂3xi

∂s j∂sk∂sl

∣∣∣
s j,sk,sl=0

.

The following theorem discusses the effect of MND on trivial indeterminacies of nonlinear ICA
solutions in this case. In particular, it states that by incorporating MND into the nonlinear ICA
system, trivial indeterminacies in nonlinear ICA solutions are overcome; it shows how the outputs
of the nonlinear ICA system, as the estimate of the sources, are related to the original sources si and
the mixing system F .

Theorem 2 Suppose that each component of the mixing mapping F = ( f1, · · · , fn)
T in Eq. 1 is

generated by the following Maclaurin series of degree 3:

xi = fi(s) = fi(0)+∑
j

Oi, js j +
1
2 ∑

j,k

Oi, jk · s jsk +
1
6 ∑

j,k,l

Oi, jkl · s jsksl ,

where E{s j} = 0 and E{s2
j} = 1, for j = 1, · · · ,n. Let

Di j(s j) ,

(
Oi, j +

1
2 ∑

k 6= j

Oi, jkk

)
· s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j .

And let D̃i j(s j) be the centered version of Di(s j), that is, D̃i j(s j) = Di j(s j)−Ei{Di j(s j)}. Under
assumptions A1 & A2, the estimate of s j produced by nonlinear ICA with MND is the first principal
component of D̃∗ j(s j) = [D̃1 j(s j), · · · , D̃n j(s j), ]

T , multiplied by a constant.

See Appendix E for a proof. Under the condition that nonlinear distortion in the mixing mapping
F is not strong, D̃i j(s j) would not be far from linear. Moreover, if the nonlinear part of D̃i j(s j)
varies for different i, the estimate of s j is expected to be closer to linear than D̃i j(s j), because it is
the first principal component (PC) of D̃∗ j(s j). To summarize, Theorems 1 and 2 show that trivial
indeterminacies in nonlinear ICA solutions can be overcome by the MND principle; and when
the mixing mapping is not strong, the nonlinear distortion in the nonlinear ICA outputs w.r.t. the
original sources is weak.

4.1.1 REMARK

In the proof of Theorems 1 and 2, we have made use of the fact that mutual information is invariant
to any component-wise strictly monotonic nonlinear transformation of the variables. Consequently,
trivial transformations do not affect the first term in Eq. 3, and they can be determined by minimizing
RMSE only, as claimed in the theorems. However, in practical implementations of nonlinear ICA
algorithms, one needs to estimate the densities of yi or their variations. Due to estimation error, the

2465



ZHANG AND CHAN

gradient of the mutual information I(y1, · · · ,yn) may be sensitive to the distribution of yi, or it may
be slightly affected by trivial transformations. This may cause the results of Theorems 1 and 2 to be
violated slightly.

Fortunately, this phenomenon can be avoided easily. To model the trivial transformations, we
apply a separate nonlinear function approximator (such as a MLP) to each output of nonlinear
ICA to generate the final nonlinear ICA result. These nonlinear function approximators are then
learned by minimizing RMSE (Eq. 6). This provides a way to tackle the trivial indeterminacies; after
performing nonlinear ICA with any nonlinear ICA method, if we know that there only exist trivial
indeterminacies, we can adopt the above technique to determine the trivial transformations.

4.2 For Non-Trivial Indeterminacies

Now let us investigate the effect of MND on non-trivial indeterminacies in nonlinear ICA solutions.
Generally speaking, there exist an infinite number of ways in which non-trivial indeterminacies
occur, and it is impossible to formulate all of them. Hyvärinen and Pajunen (1999) gave some
families of non-trivial transformations preserving mutual independence.

4.2.1 A PARTICULAR CLASS OF NON-TRIVIAL INDETERMINACIES

For the convenience of analysis, here we consider the following manner to construct non-trivial
transformations preserving mutual independence. First, using the Gaussianization technique (Chen
and Gopinath, 2001), we transform each of the independent variables si to a standard Gaussian
variable ui with an strictly increasing function qi, that is, ui = qi(si). Clearly ui are mutually inde-
pendent. Second, we can apply an orthogonal transformation U to u = (u1, · · · ,un)

T . The compo-
nents of e = Uu are still jointly Gaussian and mutually independent.6 Finally, let y = r(e), where
r = (r1, · · · ,rn)

T is a component-wise function with each ri strictly increasing. Components of y are
still mutually independent. That is, y is always a solution to nonlinear ICA of the nonlinear mixture
x = F (s). The procedure transforming s to y can be described as r ◦U ◦q, as shown in Figure 3.
When U is a permutation matrix, this transformation is trivial; otherwise it is not.

.

.

.

.

.

.

Figure 3: A non-trivial transformation from s to y preserving independence, that is, r◦U◦q.

4.2.2 EFFECT OF MND

To see the effect of MND on y in Figure 3 (recall that y is a solution to nonlinear ICA of x =
F (s)), we need to find how MND affects U, as well as ri. First, let us consider the case where
the outputs yi are Gaussian, meaning that each component of r̃ is a linear mapping. Without loss
of generality, we further assume that yi are zero-mean and of unit variance, that is, E{yyT} = I.
Consequently, ri are identity mappings and y = e = Uu. Assuming xi are zero-mean, according
to Eq. 5, We have RMSE = −Tr

(
E{xyT}E{yxT}

)
+ const = −Tr

(
E{xuT}UT UE{uxT}

)
+ const =

−Tr
(
E{xuT}E{uxT}

)
+ const. In this case RMSE is not affected by U, and the MND principle

6. U may depend on ||u||. In other words, U may be different for u of different norms.
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could not help to avoid such non-trivial indeterminacies. We have empirically found that in general,
when yi are close to Gaussian, the separation performance tends to be bad. To make sure that
the separation result is reliable, one should check the non-Gaussianity of yi after the algorithm
converges.

Next, suppose that that both sl and y j are non-Gaussian. ri are then nonlinear. Consider the
extreme case that the mixing mapping F is linear; in order to minimize RMSE (Eq. 2), U in Figure 3
must be a permutation matrix. One can then image that if nonlinearity in F is weak enough, U in
Figure 3 should be approximately a permutation matrix, meaning that the original sources s could
be recovered.

However, if nonlinearity in F is strong, U may not be a permutation matrix, and non-trivial
transformations from s to y may occur. This is actually quite natural. Consider the mixing mapping
x = F (s) which can be decomposed as a non-trivial transformation of s shown in Figure 3 (denote
by z its output), followed by a nonlinear transformation x = FL(z) which is close enough to linear. In
this situation, the output of nonlinear ICA with MND would be an estimate of z, and if no additional
knowledge of the mixing mapping is given, it is impossible to recover the original sources si.

Below we give an two-channel example to illustrate the relationship between RMSE and the
orthogonal matrix U when nonlinearity in F is strong. The two independent sources are a uni-
formly distributed signal and a super-Gaussian signal, and their scatter plot is given in Figure 9(a).
The observations xi, whose scatter plot is shown in Figure 4(a), are generated by applying a 2-
3-2 MLP to the source signals. From this figure we can see that nonlinearity in the mixing pro-
cedure is comparatively strong. The orthogonal matrix U in Figure 3 is parameterized as U =
[cos(α),−sin(α); sin(α),cos(α)]. From Eq. 6 and Figure 3, one can see that RMSE depends on α
and ri. For each value of α, ri (i = 1,2) are modelled by a 1-6-1 MLP and they are learned by
minimizing RMSE . Finally, minri RMSE is a function of α, with a period of 90 degrees, as plotted
in Figure 4(b). In this example, α determined by the MND principle is about 11 degrees. It is not
that close to zero, but it is still comparatively small and consequently the sources si are recovered
approximately.
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Figure 4: (a) Nonlinear mixtures of a sinusoid source signal and a super-Gaussian source signal
(whose scatter plot is given in Figure 9.a) generated by a 2-3-2 MLP. x-mark points show
linear mixtures of the sources which fit the nonlinear mixtures best. (b) minri RMSE as a
function of α, whose minimum is achieved at α ≈ 11 degrees.
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5. Simulations

In this section we investigate the performance of the proposed principle for solving nonlinear ICA
using synthetic data. The experiments in Zhang and Chan (2007a) have empirically shown that
both MND and the smoothness constraint are useful to ensure nonlinear ICA based on kernels to
result in nonlinear BSS, when nonlinear distortion in the mixing procedure is not very strong. As
its performance depends somewhat crucially on the choice of the kernel function, nonlinear ICA
based on kernels is not used for comparison here. The following six methods (schemes) were used
to separate various nonlinear mixtures:

1. MISEP: The MISEP method (Almeida, 2003) with parameters θ randomly initialized.7 Note
that in this method, the smoothness constraint has been implicitly incorporated to some extent,
due to the property of the adopted MLP.

2. Linear init.: The MISEP method with G initialized as a linear mapping. This was achieved by
adopting the regularization term Eq. 2 with λ = 5 (which is very large) in the first 50 epochs.

3. MND: The MISEP method incorporating MND, with RMSE , the mean square error of the best
linear reconstruction, as the regularization term (Section 2.2). The regularization parameter λ
decayed from λ0 = 5 to λc = 0.01 in the first 350 epochs. After that λ was fixed as λc.

4. Smooth (I): The MISEP method with the smoothness regularizer (Section 2.4) explicitly in-
corporated. λ decayed from 1 to 0.004 in the first 350 epochs.

5. Smooth (II): Same as Smooth (I), but λ was fixed to 0.007.

6. VB-NICA: Bayesian variational nonlinear ICA (Lappalainen and Honkela, 2000; Valpola,
2000).8 PCA was used for initialization. After obtaining nonlinear factor analysis solutions
using the package, we applied linear ICA (FastICA by Hyvärinen 1999 was used) to achieve
nonlinear BSS.

In addition, in order to show the necessity of nonlinear ICA methods for separating nonlinear mix-
tures, linear ICA (FastICA was adopted) was also used to separate the nonlinear mixtures.

It was addressed in Section 2.3 that the incorporation of direct connections between inputs and
output units in the MLP representing G implicitly and roughly implements the MND principle. To
check that, in our experiments, the MLP without direct connections and that with direct connections
were both adopted to represent G , for comparison reasons. Like in Almeida (2003), the MLP has
20 arctan hidden units, 10 of which are connected to each of the output units of G .

We use the signal to noise ratio (SNR) of yi relative to si, denoted by SNR(yi), to assess the
separation performance of si. Besides, we apply a flexible nonlinear transformation h to yi to mini-
mize the MSE between h(yi) and si, and use the SNR of h(yi) relative to si as another performance
measure. In this way possible trivial transformations between si and yi are eliminated. In our exper-
iments h was implemented by a two-layer MLP with eight hidden units with the hyperbolic tangent
activation function and a linear output unit. This MLP was trained using the MATLAB neural
network toolbox.

7. Source code is available at http : //www.lx.it.pt/ ∼ lbalmeida/ica/mitoolbox.html.
8. Source code is available at http : //www.cis.hut.fi/projects/bayes/. The following MATLAT commands were used

to produce the ouput y: [nlfa sources, net, params, status, fs] = nlfa(x, ’searchsources’, 2, ’hidneurons’, 15, ’iters’,
2000); y = fastica(nlfa sources.e, ’approach’, ’symm’, ’g’, ’tanh’);
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Three kinds of nonlinear mixtures were investigated. They are distorted source (DS) mixtures,
post-nonlinear (PNL) mixtures, and generic nonlinear (GN) mixtures which are generated by a MLP.
Both super-Gaussian and sub-Gaussian sources were used.

5.1 For Distorted Source Mixtures

We first considered the DS mixtures defined in Eq. 15. Specifically, in the experiments the two-
channel mixtures xi were generated according to x1 = a11s1 + f12(s2), x2 = f21(s1)+ a22s2, where
a11 = a22 = 1, and f12(si) = f21(si) = 3tanh(si/4) + 0.1si. We used two super-Gaussian source
signals, which are generated by si = 3

5 ni +
2
5 n3

i , where ni are independent Gaussian signals. Each
signal has 1000 samples. Figure 5 shows the scatter plot of the sources si and that of the observations
xi. To see the level of nonlinear distortion in the mixing transformation, we also give the scatter plot
of the affine transformation of si which fits xi the best.
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Figure 5: (a) Scatter plot of the sources si generating the DS mixtures. (b) Scatter plot of the DS
mixtures xi. x-mark points are linear mixtures of si which fit xi best.

To reduce the random effect, all methods were repeated for 40 runs, and in each run the MLP
was randomly initialized. We found that the separated results in the two channels have a similar
SNR, so for saving space, here we just give the SNR in the first channel. Figure 6 compares the
boxplot of SNR(y1) and SNR(h(y1)) for different methods. In Figure 6 (a, b), the MLP has no
direct connections between inputs and output units, while in (c, d) the MLP has direct connections.
We can see that in this case the methods MND, Smooth(I), and Smooth(II) give very high SNR,
and at the same time, produce fewest unwanted results. Moreover, the MLP with direct connections
behaves better than that without direct connections. The performance of VB-NICA is not very
good. The reason may be that this method does not take into account the very useful information
that nonlinearity in the mixing mapping is not very strong. It should be noted that VB-NICA may
not exhibit its potential powerfulness in the experiments, since the source number is given and no
noise is considered.
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Figure 6: Boxplot of the SNR of separating the DS mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

5.2 For Post-Nonlinear Mixtures

The second experiment is to separate PNL mixtures. We used two sub-Gaussian source signals,
which are a uniformly distributed white signal and a sinusoid waveform. The sources were first
mixed with the mixing matrix A = [-0.2261, -0.1189; -0.1706, -0.2836], producing linear mixtures
z. The observations were then generated as x1 = z1/2.5+ tanh(3z1) and x2 = z2 + z3

2/1.5. Figure 7
shows the scatter plot of the sources and that of the PNL mixtures (after standardization). Figure 8
gives the separation performance of s1 by various methods.9 In this case, the proposed nonlinear
ICA with MND (labelled by MND) also gives almost the best results; especially for the MLP with-
out direct connections, the result of nonlinear ICA with MND is clearly the best. Again, the MLP
with direct connections produces better results. Moreover, one can see that compared to the DS

9. If we use the PNL mixing model (Taleb and Jutten, 1999) to separate such mixtures, theoretically the sources could
be well recovered. But in this paper we assume that the form of the mixing procedure is unknown, and treat it as a
general nonlinear ICA problem.
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mixtures in Section 5.1, the PNL mixtures considered here are comparatively hard to be separated
by the MLP structure.
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Figure 7: (a) Scatter plot of the sources si generating PNL mixtures. (b) Scatter plot of the PNL
mixtures xi.

5.3 For Generic Nonlinear Mixtures

We used a 2-2-2 MLP to generate nonlinear mixtures from sources. Hidden units have the arctan
activation function. The weights between the input layer and the hidden layer are random numbers
between -1 and 1. They are not large such that the mixing mapping is invertible and the nonlinear
distortion produced by the MLP would not be very strong. The sources used here were the first
source in Experiment 1 (super-Gaussian) and the second one in Experiment 2 (sub-Gaussian). Fig-
ure 9 shows the scatter plot of the sources and that of the GN mixtures. The performance of various
methods for separating such mixtures is given in Figures 10. Apparently nonlinear ICA with MND
gives the best separation results in this case.

Summed over all the three cases discussed above, we can see that MISEP with MND produces
promising results for the general nonlinear ICA problem, provided that nonlinearity in the mixing
mapping is not very strong. Specifically, it gives the fewest unwanted solutions, and its separation
performance is very good. Moreover, the MLP with direct connections usually performs better than
that without direct connections, but we also found that in some cases it got stuck into unwanted
solutions more easily.

5.4 On Trivial Indeterminacies

In Section 4.1 we have discussed the effect of the MND principle on trivial indeterminacies of
nonlinear ICA solutions. In particular, Theorem 1 states that for DS mixtures, if there are only
trivial indeterminacies, each output of nonlinear ICA with MND is the PC of the contributions of
the corresponding source to all mixtures. Now let us illustrate this with the help of the DS mixtures
used in Section 5.1.
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Figure 8: Boxplot of the SNR of separating the PNL mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

Figure 11 shows the relationship between yi obtained by MISEP with MND in one run and the
PC of f∗i(si) = [ f1i(si), f2i(si)]

T . We can see that each yi is actually not very close to the corre-
sponding PC, which may be caused by two reasons. First, there may exist some weak non-trivial
transformation in the solution, as seen from the points close to the origin in Figure 11(b); y2 is not
solely dependent on s2, but also slightly affected by s1. The other reason is the error in estimating
the density of yi or its variation involved in the MISEP method, as explained in Section 4.1.1. We
use the method proposed there to avoid the effect of the estimation error: a 1-8-1 MLP, denoted by
τi, is applied to each yi, and τi(yi) is taken as the final nonlinear ICA output. Each τi is learned by
minimizing RMSE (Eq. 6). The resulting τi(yi) is almost identical to the corresponding PC of f∗i(si),
as seen from Figure 12. This has confirmed Theorem 1 and the validity of the method for tackling
trivial indeterminacies proposed in Section 4.1.1.
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Figure 9: (a) Scatter plot of the sources si. (b) Scatter plot of the GN mixtures xi.

6. Application to Causality Discovery in the Hong Kong Stock Market

In this section we give a real-life application of nonlinear ICA with MND. Specifically, we use this
method to discover linear causal relations among the daily returns of a set of stocks. The empirical
results were ever reported in Zhang and Chan (2006), without much detail of the method.

6.1 Introduction

It is well known that financial assets are not independent of each other, and that there may be some
relations among them. Such relations can be described in different ways. In risk management,
correlations are used to describe them and help to construct portfolios. The business group, which
is a collection of firms bound together in some formal and/or informal ways, focuses on ties between
financial assets and has attracted a lot of interest (Khanna and Rivkin, 2006). But these descriptions
cannot tell us the causal relations among the financial assets.

The return of a particular stock may be influenced by those of other stocks, for many reasons,
such as the ownership relations and financial interlinkages (Khanna and Rivkin, 2006). According to
the efficient market hypothesis, such influence should be reflected in the stock returns immediately.
In this part we aim to discover the causal relations among selected stocks by analyzing their daily
returns.10

Traditionally, causality discovery algorithms for continuous variables usually assume that the
dependencies are of a linear form and that the variables are Gaussian distributed (Pearl, 2000).
Under the Gaussianity assumption, only the correlation structure of variables is considered and all
higher-order information is neglected. As a consequence, one obtains some possible causal dia-

10. In other words, here we aim to find the “instantaneous” causality in the stock market. In contrast, Granger causality
(Granger, 1980) analysis has become an important tool to find the “lagged” causality between time series. A time
series x1 “Granger causes” another series x2 if by incorporating the past history of x1 can improve a prediction of x2
over a prediction based only on the history of x2 alone. The efficient market hypothesis implies no significant Granger
causality between stock returns. In fact, we have applied the approach by Reale and Tunnicliffe Wilson (2001) and
partial directed coherence (Baccala and Sameshima, 2001) to find the Granger causality among the selected stocks,
and very few Granger causal relations were found.

2473



ZHANG AND CHAN

(a) (b)

MISEP    Linear init.        MND    Smooth(I)  Smooth(II)    VB−NICA

0

2

4

6

8

10

12

14

16

18

S
N

R
(y

1)

Method

FastICA 

(d
B

 )

MISEP    Linear init.        MND    Smooth(I)  Smooth(II)    VB−NICA
0

2

4

6

8

10

12

14

16

18

20

S
N

R
(h

(y
1))

Method

FastICA 

(d
B

 )

(c) (d)

MISEP    Linear init.        MND    Smooth(I)  Smooth(II)    VB−NICA

2

4

6

8

10

12

14

16

18

S
N

R
(y

1)

Method

FastICA 

(d
B

 )

MISEP    Linear init.        MND    Smooth(I)  Smooth(II)    VB−NICA

2

4

6

8

10

12

14

16

18

S
N

R
(h

(y
1))

Method

FastICA 

(d
B

 )

Figure 10: Boxplot of the SNR of separating the GN mixtures by the MLP without or with direct
connections between inputs and output units. Top: Without direct connections. Bottom:
With direct connections. (a, c) SNR(y1). (b, d) SNR(h(y1)).

grams which are equivalent in their correlation structure, and cannot find the true causal directions.
Recently, it has been shown that the non-Gaussianity distribution of the variables allows us to dis-
tinguish the explanatory variable from the response variable, and consequently, to identify the full
causal model (Dodge and Rousson, 2001; Shimizu et al., 2006).

In particular, in Shimizu et al. (2006) an elegant and efficient method was proposed for identi-
fying the linear, non-Gaussian, acyclic causal model (abbreviated LiNGAM) by exploiting ICA. If
the data are generated according to the LiNGAM model, theoretically, the ICA de-mixing matrix
W can be permuted to lower triangularity. However, in practice, this may not hold, due to the finite
sample effect, the existence of unobserved confounder variables (Pearl, 2000), or mild nonlinear-
ity and noise that are often encountered in the data generation procedure. To tackle possible mild
nonlinearity in the data generation procedure, we use nonlinear ICA with MND, instead of linear
ICA, to separate the observed data. As the nonlinear distortion is mild, it can be neglected and
consequently, linear causal relations among the observed data can be discovered.
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Figure 11: (a) y1 recovered by MISEP with MND versus the PC of the contributions of s1 to the DS
mixtures used in Section 5.1. The SNR of y1 w.r.t. the PC of the contributions of s1 is
13.48dB. The dashed line is the linear function fitting the points best. (b) y2 versus the
PC of the contributions of s2 to the DS mixtures. The SNR is 9.12dB.
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Figure 12: (a) τ1(y1) versus the PC of the contributions of s1 to xi. τ1 is modelled by a 1-8-1 MLP
and is learned by minimizing RMSE (Eq. 6). The SNR is 20.99dB. (b) τ2(y2) versus the
PC of the contributions of s2 to xi. The SNR is 18.64dB.

6.2 Causality Discovery by ICA: Basic Idea

The LiNGAM model assumes that the generation procedure of the observed data follows the follow-
ing properties (Shimizu et al., 2006). 1. It is recursive. This is, the observed variables xi, i = 1, ...,n,
can be arranged in a causal order, such that no later variable causes any earlier variable. This causal
order is denoted by k(i). 2. The value of xi is a linear function of the values assigned to the earlier
variables, plus a disturbance term ei and an optional constant ci: xi = ∑k( j)<k(i) bi jx j + ei + ci. 3.
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ei are independent continuous-valued variables with non-Gaussian distributions (or at most one is
Gaussian).

After centering of the variables, the causal relations among xi can be written in the matrix
form: x = Bx + e, where x = (x1, ...,xn)

T , e = (e1, ...,en)
T , and the matrix B can be permuted (by

simultaneous equal row and column permutations) to strict lower triangularity if one knows the
causal order k(i) of xi. We then have e = Wx, where W = I−B. This is exactly the ICA separation
procedure (Hyvärinen et al., 2001). Therefore, the LiNGAM model can be estimated by ICA. We
can permute the rows of the ICA de-mixing matrix W such that it produces a matrix W̃ without
any zero on its diagonal (or in practice, ∑i |W̃ii| is maximized). Dividing each row of W̃ by the
corresponding diagonal entry gives a new matrix W̃′ with all entries on its diagonal equal to 1.
Finally, by applying equal row and column permutations on B = I− W̃′, we can find the matrix B̃
which is as close as possible to strictly lower triangularity. B̃ contains the causal relations of xi. For
details, see Shimizu et al. (2006).

6.3 With Nonlinear ICA with Minimal Nonlinear Distortion

We now consider a general case of the nonlinear distortion often encountered in the data generation
procedure, provided that the nonlinear distortion is smooth and mild. We use the MLP structure de-
scribed in Section 3.1.1, which is a linear transformation coupled with an ordinary MLP, as shown
in Figure 13, to model the nonlinear transformation from the the observed variables xi to the distur-
bance variables ei.

According to Figure 13, we have e = Wx + h(x), and consequently x = (I−W)x− h(x) +
e, where h(x) denotes the output of the MLP. As it is difficult to analyze the relations among xi

implied by the nonlinear transformation h(x), we expect that h(x) is weak such that its effect can
be neglected. The linear causal relations among xi can then be discovered by analyzing W.

x W
e

MLP h(x)

Figure 13: Structure used to model the transformation from the observed data xi to independent
disturbances ei. h(x) accounts for nonlinear distortion if necessary.

In order to do causality discovery, the separation system in Figure 13 is expected to exhibit the
following properties. 1. The outputs ei are mutually independent, since independence of ei is a
crucial assumption in LiNGAM. This can be achieved since nonlinear ICA always has solutions.
2. The matrix W is sparse enough such that it can be permuted to lower triangularity. This can be
enforced by incorporating the L1 (Hyvärinen and Karthikesh, 2000) or smoothly clipped absolute
deviation (SCAD) penalty (Fan and Li, 2001) on the entries of W. 3. The nonlinear mapping mod-
eled by the MLP is weak enough such that we just care about the linear causal relations indicated
by W. To achieve that, we use MISEP with MND given in Section 3.1. In addition, we initialize the
system with linear ICA results. That is, W is initialized by the linear ICA de-mixing matrix, and
the initial values for weights in the MLP h(x) are very close to 0. The training process is terminated
once the LiNGAM property holds for W. After the algorithm terminates, var(hi(x))

var(ei)
can be used to

measure the level of nonlinear distortion in each channel, if needed.
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6.4 Simulation Study

We examined the performance of the scheme discussed in Section 6.3 for identifying linear causal
relations using simulated data. To make the nonlinear distortion in the data generation procedure
weak, we used the structure in Figure 13 to generate the 8-dimensional observed data xi from some
independent and non-Gaussian variables ei, that is, xi are generated by a linear transformation cou-
pled with a MLP.

The linear transformation in the data generation procedure was generated by A = (I−B)−1. It
satisfies the LiNGAM property since B was made strict lower triangular. The magnitude of non-
zero entries of B is uniformly distributed between 0.05 and 0.5, and the sign is random. To examine
if spurious causal relations would be caused, we also randomly selected 9 entries in the strict lower
triangular part of B and set them to zero. The disturbance variables were obtained by passing
independent Gaussian variables through power non-linearities with the exponent between 1.5 and
2. The variances of ei were randomly chosen between 0.2 and 1. These settings are similar to those
in the simulation studies by Shimizu et al. (2006). The sample size is 1000. The nonlinear part is
a 8-10-8 MLP with the arctan activation function in the hidden layer. The weights from the inputs
to the hidden layer are between -3 and 3, that is, they are comparatively large, while those from
the hidden layer to the outputs are small, such that the nonlinear distortion is weak. The nonlinear
distortion level in the generation procedure is measured by the ratio of the variance of the MLP
output to that of the linear output. We considered two cases where the nonlinear distortion level is
0.01 and 0.03, respectively.

We used the scheme detailed in Section 6.3 to identify the linear causal relations among xi. The
SCAD penalty was used, and there are 10 arctan hidden units connected to each output of the MLP.
We repeated the simulation for 100 trials. In each trial the maximum iteration number was set to 800.
The results are given in Table 1 (numbers in parentheses are corresponding standard errors). The
failure rate (the chance that LiNGAM does not hold for W within 800 iterations), the percentages of
correctly identified non-zero edges, correctly identified large edges (with the magnitude larger than
0.2), and spurious edges in the successful cases, and the resulting nonlinear distortion level var(hi(x))

var(ei)
in the separation system are reported. We can see that W almost always satisfies the LiNGAM
property, and that most causal relations (especially large ones) are successfully identified. The
setting λ = 0.12, meaning that MND is explicitly incorporated, gives better results than λ = 0 does,
although the difference is not large. This is not surprising because even with λ = 0, nonlinear ICA
with the separation structure of Figure 13 and with W initialized by linear ICA could achieve MND
to some extent. However, when λ = 0.12, the nonlinear distortion in the separation system is much
weaker, and we found that estimated values of the entries of B are closer to the true ones. The
penalization parameter for SCAD, λSCAD, plays an important role. A larger λSCAD would make W
satisfy the LiNGAM property more easily, but as a price, in the result more causal relations tend to
disappear or be weaker.

For comparison, we also used linear ICA with the de-mixing matrix penalized by SCAD11 for
causality discovery. The result is reported in Table 2. Even when λSCAD is very large, which causes
many causal relations to disappear, as seen from the table, there is still a high probability that
the resulting de-mixing matrix fails to satisfy the LiNGAM property. These results show that for

11. The algorithm can be derived by maximizing the ICA likelihood penalized by the SCAD penalty on each entry of the
de-mixing matrix. We used the natural gradient learning rule, with the score function adaptively estimated from the
data.
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Nonl.
level in F

Settings
(λ,λSCAD)

Fail. in
800 iter.

Edges iden-
tified

Large edges
identified

Spurious
edges

Nonl. level
var(hi(x))

var(ei)

0.01
(0.12,0.06) 3% 88% (11%) 99% (3%) 7% (10%) ∼ 0.03
(0,0.06) 3% 87% (12%) 97% (4%) 7% (9%) ∼ 0.06

0.03
(0.12,0.10) 1% 79% (14%) 92% (7%) 9% (11%) ∼ 0.08
(0,0.10) 1% 76% (12%) 89% (8%) 8% (10%) ∼ 0.13

Table 1: Simulation results of identifying linear causal relations among xi with the nonlinear ICA
structure Figure 13 and the SCAD penalty (100 trials). Numbers in parentheses are corre-
sponding standard errors.

Nonl.
level in F

Settings Fail. rate Edges iden-
tified

Large edges
identified

Spurious
edges

0.01 λSCAD = 0.2 41% 67% (13%) 79% (15%) 4% (5%)
0.03 λSCAD = 0.25 54% 52% (12%) 58% (17%) 4% (7%)

Table 2: Simulation results of identifying linear causal relations among xi by linear ICA with SCAD
penalized de-mixing matrix (100 trials).

the data whose generation procedure has weak nonlinear distortion and approximately satisfies the
LiNGAM property, nonlinear ICA with MND, together with the SCAD penalty, is useful to identify
their linear causal relations.

6.5 Empirical Results

The Hong Kong stock market has some structural features different from the US and UK markets
(Ho et al., 2004). One typical feature is the concentration of market activities and equity ownership
in relatively small group of stocks, which probably makes causal relations in the Hong Kong stock
market more obvious.

6.5.1 DATA

Here we aim at discovering the causality network among 14 stocks selected from the Hong Kong
stock market.12 The selected 14 stocks are constituents of Hang Seng Index (HSI).13 They are
almost the largest companies of the Hong Kong stock market. We used the daily dividend/split
adjusted closing prices from Jan. 4, 2000 to Jun. 17, 2005, obtained from the Yahoo finance
database. For the few days when the stock price is not available, we used simple linear interpolation
to estimate the price. Denoting the closing price of the ith stock on day t by Pit , the corresponding
return is calculated by xit =

Pit−Pi,t−1
Pi,t−1

. The observed data are xt = (x1t , ...,x14,t)
T . Each return series

contains 1331 samples.
Recently ICA has been exploited as a possible way to explain the driving forces for financial

returns (Back, 1997; Kiviluoto and Oja, 1998; Chan and Cha, 2001). We conjecture that nonlinear
ICA would be more suitable than linear ICA to serve this task, since it seems reasonable that the

12. For saving space, they are not listed here; see the legend in Figure 15.
13. The only exception is Hang Lung Development Co. Ltd (0010.hk), which was removed from HSI on Dec. 2, 2002.
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ICA mixing model varies slightly for returns at different levels. So we use nonlinear ICA with MND
to analyze the stock returns and to do causality discovery. However, we should be aware that it is
probably very hard to discover causal relations among the selected stocks, since the financial data
are somewhat non-stationary, the data generation mechanism is not clear, and there may be many
confounder variables.

6.5.2 RESULTS

We first applied a standard ICA algorithm to perform ICA on the data xt . The natural gradient
algorithm (Amari et al., 1996) with the score function adaptively estimated from data was adopted.
We used the LiNGAM software14 to permute W and obtain the matrix B = I−W̃′. B seems unlikely
to be lower-triangular; in fact, the ratio of the sum of squares of its upper-triangular entries to
that of all entries is 0.24, which is very large. We also exploited linear ICA with the de-mixing
matrix penalized by SCAD to do causality discovery. It was found that the learned de-mixing
matrix W does not follow LiNGAM for λSCAD ≤ 0.25. The value 0.25 for λSCAD is so large that
statistical independence between outputs is affected. (In fact, most correlations between outputs
have a magnitude larger than 0.1 when λSCAD = 0.25.) We may conclude that the data do not satisfy
the LiNGAM model.

We then adopted the method proposed in Section 6.3. The SCAD penalty was applied to entries
of W with λSCAD = 0.04. The regularization parameter for nonlinear ICA with MND (Eqs. 11
and 16–19) was λ = 0.14. After 195 epochs, W satisfies the LiNGAM assumption and the training
process is terminated. Figure 14 shows the scatter plot of each output ei and its linear part, from
which we can see that the nonlinear distortion is weak. Based on the learned W, we found the
linear causal relations among these stocks, as shown in Figure 15. This figure was plotted using the
LiNGAM software.
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Figure 14: Scatter plot of each output of the system in Figure 13 and its linear part. The nonlinear
distortion level var(hi(x))

var(ei)
is 0.0485, 0.0145, 0.0287, 0.2075, 0.0180, 0.0753, 0, 0.0001,

0.0193, 0.0652, 0.0146, 0.0419, 0.0544, and 0.0492, respectively, for the 14 outputs e i.

14. It is available at http : //www.cs.helsinki.fi/group/neuroinf/lingam/.
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x1: Cheung Kong (0001.hk)
x2: CLP Hldgs (0002.hk) 
x3: HK & China Gas (0003.hk) 
x4: Wharf (Hldgs) (0004.hk)
x5: HSBC Hldg (0005.hk), 
x6: HK Electric (0006.hk) 
x7: Hang Lung Dev (0010.hk) 
x8: Hang Seng Bank (0011.hk)
x9: Henderson Land (0012.hk)
x10: Hutchison (0013.hk)  
x11: Sun Hung Kai Prop (0016.hk) 
x12: Swire Pacific ’A’ (0019.hk)
x13: Bank of East Asia (0023.hk) 
x14: Cathay Pacific Air (0293.hk)  

Figure 15: Causal diagram of the 14 stocks.

Figure 15 gives some interesting findings. 1. Ownership relations tend to cause causal relations.
If A is a holding company of B, there tends to be a causal relation from B to A. There are two
significant relations x8 → x5 and x10 → x1. In fact, x5 owns some 60% of x8, and x1 holds about
50% of x10. 2. Stocks belonging to the same subindex tend to be connected together. For example,
x2, x3, and x6, which are linked together, are the only three constituents of Hang Seng Utilities Index.
x1, x9, and x11 are constituents of Hang Seng Property Index. 3. Large bank companies are the cause
of many stocks. Here x5 and x8 are the two largest banks in Hong Kong. 4. Returns of stocks in
Hang Seng Property Index tend to depend on many other stocks, while they hardly influence other
stocks. Note that Here x1, x9, and x11 are in Hang Seng Property Index.

7. Conclusion

We have proposed the “minimal nonlinear distortion” principle to overcome the ill-posedness of the
nonlinear ICA problem. With this principle, the nonlinear ICA solution whose estimated mixing
system is close to linear would be preferred. This principle was implemented by a regularization
technique that minimizes the mean square error of the best linear reconstruction of the observed
mixtures. We explained how the proposed principle overcomes trivial and non-trivial indetermina-
cies in nonlinear ICA solutions. Experimental results on synthetic data in various situations showed
that nonlinear ICA with minimal nonlinear distortion behaves very well and confirmed our theo-
retical claims. Since nonlinearity is usually encountered in practice and is not very strong in many
cases, nonlinear ICA with minimal nonlinear distortion is expected to be capable of solving some
real-life problems. Its successful application to causality discovery in the Hong Kong stock mar-
ket illustrated the applicability of the method and the validity of the “minimal nonlinear distortion”
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principle for some real problems. The result also supports the independent factor model in finance to
some extent. Finally, it should be noted that solutions to nonlinear ICA or nonlinear BSS rely heav-
ily on the prior information on the sources or the mixing mappings. “Minimal nonlinear distortion”
is one type of such information for some problems. If more precise prior information, such as the
form of the mixing mapping, the temporal structure of the sources, etc., is available, the separation
result may be more meaningful.
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Appendix A. Gradient of RMSE

Let H = diag{h′(a1),h′(a2), ...,h′(aM)}, and W(2)
j denote the j-th column of W(2). We have

∂RMSE(θ)

∂W(1)
= E

{ n

∑
i=1

Ki ·
∂yi

∂W(1)

}
= E

{ n

∑
i=1

Ki ·
[ M

∑
j=1

∂yi

∂a j
· ∂a j

∂W(1)

]}

= E
{ M

∑
j=1

[( ∂y
∂a j

)T
K

]
· ∂a j

∂W(1)

}
= E

{ M

∑
j=1

[
h′(a j) ·W(2)T

j ·K
]
· ∂a j

∂W(1)

}

= E{H ·W(2)T ·K ·xT}, (16)

∂RMSE(θ)

∂W(d)
= E

{ n

∑
i=1

Ki ·
∂yi

∂W(d)

}

= E{KxT}, (17)
∂RMSE(θ)

∂b(2)
= E{K}, (18)

∂RMSE(θ)

∂b(1)
= E{H ·W(2)T ·K}. (19)
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Appendix B. Gradient of Pi j in Eq. 8

Noting that ∂
∂θ

(
∂2yl

∂xi∂x j

)
= ∂2

∂xi∂x j

(
∂yl
∂θ

)
since θ is independent from xi, we can obtain the following

rule after tedious derivation:

Pi j

∂w(2)
lm

=
∂2yl

∂xi∂x j
· ∂2zm

∂xi∂x j
, (20)

∂Pi j

∂w(1)
mk

= ∆i jm ·
{

h′′(am)[w(1)
mi ·δk j +w(1)

m j ·δik]+h′′′(am) ·w(1)
m j ·w

(1)
mi · xk

}
,

∂Pi j

∂b(1)
m

= ∆i jm ·h′′′(am) ·w(1)
m j ·w

(1)
mi ,

∂Pi j

∂W(d)
= 0,

∂Pi j

b(2)
= 0,

where ∆i jm = ∑n
l=1 w(2)

lm · ∂2yl
∂xi∂x j

, ∂2yl
∂xi∂x j

= ∑M
m=1 w(2)

lm · ∂2zm
∂xi∂x j

, ∂2zm
∂xi∂x j

= h′′(am) ·w(1)
mi ·w

(1)
m j , and δik is the

Kronecker delta function.

Appendix C. Proof of Lemma 1

Proof. The mean square error of reconstructing d from y with the linear transformation a is

E{||d−a · y||2} = E{(d−a · y)T (d−a · y)}
= E{dT ·d−2aT d · y+aT a · y2}

= E
{

aT a ·
(

y− aT d
aT a

)2
− (aT d)2

aT a
+dT d

}

= aT a ·E
{(

y− aT d
aT a

)2}
−E

{(aT d)2

aT a

}
+E{dT d}. (21)

The first term of Eq. 21 is always non-negative. No matter what value a takes, in order to minimize
Eq. 21, we should choose

y = aT d · (aT a)−1 (22)

to make this term vanish, meaning that y is the linear combination of di with the coefficients a ·
(aT a)−1.

Next, when the first term of Eq. 21 vanishes, minimizing this function w.r.t. a is reduced to
maximizing E{(aT d)2 · (aT a)−1} = E{aT ddT a · (aT a)−1}. Letting a′ = a/

√
aT a, this is equivalent

to the constrained optimization problem: max a′T ·E{ddT} · a′, s.t. a′T a′ = 1. Clearly this is the
PCA problem. So a′ is the eigenvector of E{ddT} associated with the largest eigenvalue, and
according to Eq. 22, y is the principal component of d multiplied by a constant.

Now let us consider the case where y is constrained to be zero-mean. Let d = E{d}, and d̃ =

d−d. We have E{||d−a ·y||2}= E{(d̃−a ·y+d)T (d̃−a ·y+d)}= E{(d̃−a ·y)T (d̃−a ·y)}+d
T

d.

d
T

d can be considered as a constant. Using the result above, we can see that when Ry is minimized,
y is the principal component of d̃ multiplied by a constant. (Q.E.D)
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Appendix D. Proof of Theorem 1

Proof: As it has been assumed here that each output of nonlinear ICA depends only on one of the
sources, we can denote by h j(s j) the estimate of s j produced by nonlinear ICA. For the sake of
simplicity, we make both xi and h j(s j) zero-mean, that is, E{xi} = E{h j(s j)} = 0. So the matrix
A∗ in Eq. 2 is n×n. Denote by a∗i j the (i, j)th entry of A∗. RMSE defined by Eq. 2 is

RMSE = ∑
i

E
{

xi −∑
j

a∗i jh j(s j)
}2

= ∑
i

E
{

∑
j

[
fi j(s j)−a∗i jh j(s j)

]}2

= ∑
i

{
∑

j

E
(

fi j(s j)−a∗i jh j(s j)
)2

+ ∑
k 6=l

E
[(

fik(sk)−a∗ikhk(sk)
)
·
(

fil(sl)−a∗ilhl(sl)
)]}

.

As E{hk(sk)hl(sl)} = E{hk(sk) fil(sl)} = 0 for k 6= l, the above equation becomes

RMSE = ∑
i

{
∑

j

E
(

fi j(s j)−a∗i jh j(s j)
)2

+ ∑
k 6=l

E
(

fik(sk) fil(sl)
)}

= ∑
j

{
∑

i

E
(

fi j(s j)−a∗i jh j(s j)
)2

}
+ const.

One can see that minimization of the above function can be achieved by minimizing ∑i E
(

fi j(s j)−
a∗i jh j(s j)

)2
independently for each j. That is, h j(s j) and a∗i j are adjusted to minimize ∑i E

(
fi j(s j)−

a∗i jh j(s j)
)2

. According to Lemma 1, h j(s j) produced by nonlinear ICA with MND is the first
principal component of f∗ j(s j) = [ f1 j(s j), · · · , fn j(s j)]

T , multiplied by a constant. (Q.E.D)

Appendix E. Proof of Theorem 2

Proof. Denote by h j(s j) the estimate of s j produced by nonlinear ICA, and assume that both xi and
h j(s j) zero-mean. Denote by a∗i j the (i, j)th entry of A∗. Note that ∑ j,k,l Oi, jkl · s jsksl = ∑ j Oi, j j j ·
s js js j +3 ·∑ j ∑k 6= j Oi, jkk ·s js2

k +∑ j ∑k 6= j ∑ l 6= j
l 6=k

Oi, jkl ·s jsksl , and that E{s j}= 0 and E{s2
j}= 1. RMSE

defined by Eq. 2 becomes

RMSE = ∑
i

E
{

xi −∑
j

a∗i jh j(s j)
}2

= ∑
i

E
{

fi(0)+∑
j

Oi, j · s j +
1
2 ∑

j,k

Oi, jk · s jsk +
1
6 ∑

j,k,l

Oi, jkl · s jsksl −∑
j

a∗i jh j(s j)
}2

=
n

∑
i=1

E
{

fi(0)+∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j +
3
6 ∑

k 6= j

Oi, jkk · s js
2
k

−a∗i jh j(s j)
]
+

1
2 ∑

j
∑
k 6= j

Oi, jk · s jsk +
1
6 ∑

j
∑
k 6= j

∑
l 6= j
l 6=k

Oi, jkl · s jsksl

}2
. (23)
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Bearing in mind that s j are mutually independent, and also taking all the terms independent of
h j(s j) and a∗i j as constants, we can re-write Eq. 23 as

RMSE

= ∑
i

E
{

∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j +
3
6 ∑

k 6= j

Oi, jkk · s js
2
k −a∗i jh j(s j)

]}2
+ const

= ∑
i

E
{

∑
j

[
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
]
+

1
2 ∑

j
∑
k 6= j

Oi, jkk · s js
2
k

}2
+ const

= ∑
i

E
{[

∑
j

(
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
)]2

−∑
j

(
a∗i jh j(s j) · ∑

k 6= j

Oi, jkk · s js
2
k

)}
+ const

= ∑
i

E
{

∑
j

(
Oi, j · s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
)2

−∑
j

(
a∗i jh j(s j) · ∑

k 6= j

Oi, jkk · s j

}
+ const

= ∑
i

∑
j

E
{(

Oi, j +
1
2 ∑

k 6= j

Oi, jkk

)
· s j +

1
2
Oi, j j · s2

j +
1
6
Oi, j j j · s3

j −a∗i jh j(s j)
}2

+ const

= ∑
j

[
∑

i
E

(
Di j(s j)−a∗i jh j(s j)

)2
]
+ const.

Note that there is no dependence relationship between h j(·), as well as a∗i j, with different j. To
minimize the above function, we just need to adjust h j(s j) and a∗i j to minimize ∑i E

(
Di(s j)−

a∗i jh j(s j)
)2

, independently for each j. According to Lemma 1, h j(s j) is the first principal com-
ponent of D̃∗ j(s j) = [D̃1 j(s j), · · · , D̃n j(s j), ]

T , multiplied by a constant. (Q.E.D)
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