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Abstract
Loog (2007) provided a complete characterization of the family of solutions to a generalized Fisher
criterion. We show that this characterization is essentially equivalent to the original characterization
proposed in Ye (2005). The computational advantage of the original characterization over the new
one is discussed, which justifies its practical use.
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1. Generalized Fisher Criterion

For a given data set consisting of n data points {ai}
n
i=1 in IRd , a linear transformation G ∈ IRd×`

(` < d) maps each ai for 1 ≤ i ≤ n in the d-dimensional space to a vector ãi in the `-dimensional
space as follows:

G : ai ∈ IRd → ãi = GT ai ∈ IR`.

Assume that there are k classes in the data set. The within-class scatter matrix Sw, the between-
class scatter matrix Sb, and the total scatter matrix St involved in linear discriminant analysis are
defined as follows (Fukunaga, 1990):

Sw =
k

∑
i=1

(Ai − cie
T )(Ai − cie

T )T ,

Sb =
k

∑
i=1

ni(ci − c)(ci − c)T ,

St =
k

∑
i=1

(Ai − ceT )(Ai − ceT )T ,

where Ai denotes the data matrix of the i-th class, ci = Aie/ni is the centroid of the i-th class, ni is
the sample size of the i-th class, c = Ae/n is the global centroid, and e is the vector of all ones with
an appropriate length. It is easy to verify that St = Sb +Sw.

In Ye (2005), the optimal transformation G is computed by maximizing a generalized Fisher
criterion as follows:

G = arg max
G∈IRm×`

trace
(

(

GT StG
)+

GT SbG
)

, (1)
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where M+ denotes the pseudo-inverse (Golub and Van Loan, 1996) of M and it is introduced to
overcome the singularity problem when dealing with high-dimensional low-sample-size data.

1.1 Equivalent Transformation

Two linear transformations G1 and G2 can be considered equivalent if there is a vector v such that
GT

1 (ai−v) = GT
2 (ai−v), for i = 1, · · · ,n. Indeed, in this case, the difference between the projections

by G1 and G2 is a mere shift.

Definition 1.1 For a given data set {a1, · · · ,an}, two transformations G1 and G2 are equivalent, if
there is a vector v such that

GT
1 (ai − v) = GT

2 (ai − v), for i = 1, · · · ,n.

2. Characterization of Solutions to the Generalized Fisher Criterion

Let St = UΣUT be the orthogonal eigendecomposition of St (note that St is symmetric and positive
semi-definite), where U ∈ IRd×d is orthogonal and Σ ∈ IRd×d is diagonal with nonnegative diagonal
entries sorted in nonincreasing order. Denote Σr as the r-th principal submatrix of Σ, where r =
rank(St). Partition U into two components as U = [U1,U2], where U1 ∈ IRd×r and U2 ∈ IRd×(d−r).
Note that r ≤ n, and for high-dimensional low-sample-size data, U1 is much smaller than U2.

In Loog (2007), a complete family of solutions S to the maximization problem in Eq. (1) is
given as (We correct the error in Loog (2007) by using U instead of U T .)

S =

{

U

(

ΛZ
Y

)

∈ IRd×`

∣

∣

∣

∣

Z ∈ IR`×` is nonsingular , Y ∈ IR(n−r)×`

}

,

where Λ ∈ IRr×` maximizes the following objective function:

F0(X) = trace
(

(

XT ΣrX
)−1

XT (UT
1 SbU1)X

)

.

In Ye (2005), a family of solutions S̃ is given as

S̃ =

{

U

(

ΛZ
0

)

∈ IRd×`

∣

∣

∣

∣

Z ∈ IR`×` is nonsingular

}

.

The only difference between these two characterizations of solutions is the matrix Y in S , which is
replaced by the zero matrix in S̃ . We show in the next section the equivalence relationship between
these two characterizations.

3. Equivalent Solution Characterizations

Consider the following two transformations G1 and G2 from S and S̃ respectively:

G1 = U

(

ΛZ
Y

)

∈ S , G2 = U

(

ΛZ
0

)

∈ S̃ .
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Recall that U = [U1,U2], where the columns of U2 span the null space of St . Hence,

0 = UT
2 StU2 =

n

∑
i=1

UT
2 (ai − c) · (UT

2 (ai − c))T ,

and UT
2 (ai − c) = 0, for i = 1, · · · ,n, where c is the global centroid. It follows that

GT
1 (ai − c) = ZT ΛTUT

1 (ai − c)+Y TUT
2 (ai − c) = ZT ΛTUT

1 (ai − c) = GT
2 (ai − c),

for i = 1, · · · ,n. That is, G1 and G2 are equivalent transformations. Hence, the two solution charac-
terizations S and S̃ are essentially equivalent.

Remark 3.1 The analysis above shows that the additional information contained in S is the null
space, U2, of St , which leads to an equivalent transformation. In S̃ , the null space U2 is removed,
which can be further justified as follows. Since St = Sb +Sw, we have

0 = UT
2 StU2 = UT

2 SbU2 +UT
2 SwU2.

It follows that UT
2 SbU2 = 0, as both Sb and Sw are positive semi-definite. Thus, the null space U2

does not contain any discriminant information. This explains why the null space of St is removed in
most discriminant analysis based algorithms proposed in the past.

4. Efficiency Comparison

In S , the full matrix U is involved, whose computation may be expensive, especially for high-
dimensional data. In contrast, only the first component U1 ∈ IRd×r of U is involved in S̃ , which can
be computed efficiently for high-dimensional low-sample-size problem by directly working on the
Gram matrix instead of the covariance matrix.

In summary, we show that S and S̃ are equivalent characterizations of the solutions to the gen-
eralized Fisher criterion in Eq. (1). However, the latter one is preferred in practice due to its relative
efficiency for high-dimensional low-sample-size data.
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