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Abstract

In this paper, we propose a recursive method for structural learning of directed acyclic graphs
(DAGS), in which a problem of structural learning for a large DAG is first decomposed into two
problems of structural learning for two small vertex subsets, each of which is then decomposed
recursively into two problems of smaller subsets until none subset can be decomposed further. In
our approach, search for separators of a pair of variables in a large DAG is localized to small subsets,
and thus the approach can improve the efficiency of searches and the power of statistical tests
for structural learning. We show how the recent advances in the learning of undirected graphical
models can be employed to facilitate the decomposition. Simulations are given to demonstrate the
performance of the proposed method.

Keywords: Bayesian network, conditional independence, decomposition, directed acyclic graph,
structural learning

1. Introduction

Directed acyclic graphs (DAGSs), also known as Bayesian networks, are frequently used to represent
independencies, conditional independencies and causal relationships in a complex system with a
large number of random variables (Lauritzen, 1996; Cowell et al., 1999; Pearl, 2000; Spirtes et al.,
2000). Structural learning of DAGs from data is very important in applications to various fields,
such as medicine, artificial intelligence and bioinformatics (Jordan, 2004; Engelhardt et al., 2006).

There have been two primary methods for learning the structures of DAGs from data. The
search-and-score method defines a score for each possible structure based on the goodness-of-fit of
the structure to data and the complexity of the structure, and then it tries to search the best structure
over all possible structures (Cooper and Herskovits, 1992; Heckerman et al., 1995; Chickering,
2002; Friedman and Koller, 2003). The constraint-based method evaluates the presence or absence
of an edge by testing conditional independencies among variables from data. The tests are usually
done by using statistical or information-theoretic measures (Pearl, 2000; Spirtes et al., 2000; Cheng
et al., 2002). There have also been hybrid methods. For example, Tsamardinos et al. (2006) takes
advantage of both approaches. In a constraint-based method, search for separators of vertex pairs is a
key issue for orientation of edges and for recovering DAG structures and causal relationships among
variables. To recover structures of DAGs, Verma and Pearl (1990) presented the inductive causation
(I1C) algorithm which searches for a separator S of two variables, say u and v, from all possible
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variable subsets such that u and v are independent conditionally on S. A systematic way of searching
for separators in increasing order of cardinality was proposed by Spirtes and Glymour (1991). The
PC algorithm limits possible separators to vertices that are adjacent to u and v (Pearl, 2000; Spirtes et
al., 2000). Kalisch and Biihimann (2007) showed that the PC algorithm is asymptotically consistent
even when the number of vertices in a DAG grows at a certain rate as the sample size increases.

In this paper, we propose a recursive algorithm in which a problem of structural learning for
a large DAG is split recursively into problems of structural learning for small vertex subsets. Our
algorithm can be depicted as a binary tree whose top node is the full set of all vertices or variables
and whose other nodes are proper subsets of the vertex set at its parent node. The algorithm mainly
consists of two steps: the top-down step and the bottom-up step. First at the top-down step, the full
set of all variables at the top is decomposed into two small subsets, each of which is decomposed
recursively into two smaller subsets until each node cannot be decomposed further at the bottom
of the tree. At each step, the decomposition is achieved by learning an undirected graph known as
independence graph for a variable subset. Next at the bottom-up step, subgraphs (called skeletons)
of leaf nodes are first constructed, and then a pair of child subgraphs are combined together into
a large subgraph at their parent node until the entire graph is constructed at the top of the tree.
In the algorithm, search for separators in a large graph is localized to small subgraphs. Statistical
test is used to determine a skeleton as in the IC algorithm (Merma and Pearl, 1990) and the PC
algorithm (Spirtes, 2000). By recursively decomposing the full variable set into small subsets, this
algorithm can improve the efficiency of search for separators in structural learning, and it can also
make statistical tests more powerful. We also discuss that several methods of learning undirected
graphical models (Castelo and Roverato, 2006; Schmidt et al., 2007) can be used to facilitate the
decomposition. Finally, we provide simulation results to show the performance of our method.

Section 2 gives notation and definitions. In Section 3, we first present the main theoretical
results and then discuss the realization of the algorithm in detail, and we also introduce how the
recent advances in various related fields can be used to improve the proposed method. In Section
4, we first use an example to illustrate our approach for learning the equivalence class of a DAG in
detail, then we give numerical evaluations of its performance for several networks, and finally we
discuss the computational complexity of our recursive algorithm. Conclusion is given in Section 5.
The proofs of our main results are presented in Appendix.

2. Notation and Definitions

Let Gy = (V,Ey) denote a DAG where V = {X1,..., Xy} is the vertex set and Ey the set of directed
edges. A directed edge from a vertex u to a vertex v is denoted by (u,v). We assume that there is
no directed loop in Gy. We say that u is a parent of v and v is a child of u if there is a directed
edge (u,v), and denote the set of all parents of a vertex v by pa(v) and the set of all children of
v by ch(v). We say that two vertices u and v are adjacent in Gy if there is an edge connecting
them. A path | between two distinct vertices u and v is a sequence of distinct vertices in which
the first vertex is u, the last one is v and two consecutive vertices are connected by an edge, that
is, | = (co=u,c1,...,Cm-1,Cm = V) Where (Ci_1,Cj) or (Ci,Ci_1) is contained in Ey fori=1,...,m
(m > 1), and c; # c;j for all i # j. We say that u is an ancestor of v and v is a descendant of u if
there is a path between u and v in Gy and all edges on this path point at the direction toward v. The
set of ancestors of v is denoted as an(v), and we define An(v) = an(v) U {v}. A path | is said to be
d-separated by a set of vertices Z if

460



RECURSIVE METHOD FOR LEARNING DAGS

(1) I contains a “chain”: u — v — w or a “fork” u «— v — wwherevisin Z, or

(2) | contains a “collider” u — v «— w where v is not in Z and no descendant of v is in Z.

Two disjoint sets X and Y of vertices are d-separated by a set Z if Z d-separates every path from any
vertex in X to any vertex in Y; We call Z a d-separator of X and Y. In Gy, a collider u — v« w is
called a v-structure if u and w are non-adjacent in GV.

Let Gy = (V, EV) denote an undirected graph where Ev is a set of undirected edges. An undi-
rected edge between two vertices u and v is denoted by (u,v). An undirected graph is called com-
plete if any pair of vertices is connected by an edge. Define a moral graph G{}! for a DAG Gy to
be an undirected graph G = (V,Ey) whose vertex set is V and whose edge set is constructed by
marrying parents and dropping directions, that is, Ey = {(u,v) : (u,v) or (v,u) € Ey}U{(u,v) :
(u,w,v) forms a v-structure} (Lauritzen, 1996). An undirected edge added for marrying parents is
called a moral edge.

For an undirected graph, we say that vertices u and v are separated by a set of vertices Z if each
path between u and v passes through Z. We say that two disjoint vertex sets X and Y are separated
by Z if Z separates every pair of vertices u and v forany u € X and veY. We call (A,B,C) a
decomposition of Gy if

(1) AuBUC =V, and

(2) C separates A and B in Gy.

Note that the above decomposition does not require that the separator C is complete, which is
required for weak decomposition defined by Lauritzen (1996).

For a set K CV, we say that an undirected graph Gk is an undirected independence graph
for a DAG Gy if that a set Z separates X and Y in Gk implies that Z d-separates X and Y in
Gy. An undirected independence graph is minimal if the proper subgraph obtained by deleting
any edge is no longer an undirected independence graph. The moral graph Gy} is the minimal
undirected independence graph for Gy with K =V (Lauritzen, 1996). It can also be obtained by
connecting each vertex u with all vertices in its Markov blanket Mb(u), which is the minimal set
by which u are d-separated from the remaining set in V (that is, V \ [Mb(u) U {u}]). For a subset
K CV, the Markov blanket for a vertex u € K can be defined similarly, that is, it is the mini-
mum set that is contained in K and d-separates u from the remaining set in K. When K =V,
it is easy to verify Mb(u) = pa(u) Uch(u) U pa(ch(u)). Define the local skeleton for a variable
set K C V with respect to Gy as an undirected graph Lk (K,E) where K is the vertex set and
E = {(u,v) : nosubsetS of K d-separates uand vin Gy} is the edge set. Note that though both
minimal undirected independence graphs and local skeletons are undirected graphs and defined on
the same vertex subset, they may be different. According to the definition of a minimal undirected
independence graph, the absence or presence of an edge between u and v in the minimal undirected
independence graph over K C V depends on whether its two vertices are d-separated by the re-
maining set K \ {u,v} in Gy, while an edge between u and v in the local skeleton is determined
by whether there exists a subset of K that can d-separate u and v in Gy. Thus the edge set of the
minimal undirected independence graph contains the edge set of the local skeleton.

The global skeleton is an undirected graph obtained by dropping the directions of the edges
in a DAG, which coincides the local skeleton for K =V. Two DAGSs over the same variable set

461



XIE AND GENG

Ny b o
e
c e+—eg o g
a ‘ a n
Fooh f
d d
() The DAG Gy (b) The moral graph G
b
e
g
a C C a C
h ;
: f
d d d
(c) One decomposition based on é{? (d) A local skeleton

Figure 1: A directed graph, a moral graph, a decomposition and a local skeleton.

are called Markov equivalent if they induce the same conditional independence restrictions. Two
DAGs are Markov equivalent if and only if they have the same global skeleton and the same set of
v-structures (Verma and Pearl, 1990). An equivalence class of DAGs consists of all DAGs which are
Markov equivalent, and it is represented as a partially directed graph (PDAG) where the directed
edges represent arrows that are common to every DAG in the Markov equivalence class, while
an undirected edge represents that the edge is oriented one way in some member of the Markov
equivalence class, and is oriented the other way in some other member. Therefore the goal of
structural learning is to construct a PDAG to represent the equivalence class.

Example 1. Consider the DAG in Figure 1 (a). b —-e«c¢, b—e«—g,c—f«—d, c—e«
g and f — h < g are v-structures. A path | = (c,a,d) is d-separated by vertex a, while the
path I’ = (c, f,h,g) is d-separated by an empty set. We have an(e) = {a,b,c,g} and An(e) =
{a,b,c,g,e}. The Markov blanket of ¢ is Mb(c) = {a,b,d,e, f,g}, which d-separates ¢ and the
remaining set {h}. The moral graph G{}' is given in Figure 1 (b), where edges (b,c), (b,g), (c,9),
(c,d) and (f,g) are moral edges. Note that the set {c,d} separates {a} and {b,e, f,g,h} in G7},
thus ({a},{b.e, f,g,h},{c,d}) forms a decomposition of the undirected graph G}, the decomposed
undirected independence subgraphs for {a,c,d} and {b,c,d,e, f,g,h} are shown in Figure 1 (c).
The graph in Figure 1 (d) is the local skeleton Lk (K,E) for K = {a,c,d} because we have c and d
are d-separated by {a} in Gy. Note that the minimal undirected independence graph for {a,c,d}
in Figure 1(c) coincides with its local skeleton in Figure 1 (d), which does not hold in general. For
example, the local skeleton for K = {c,e,g} does not have the edge (c,g), while the corresponding
minimal undirected independence graph is complete.

Given a DAG Gy, a joint distribution or density of variables Xu, ..., Xy is

N

P(x,---,Xn) = _UP(Xi!Pai),
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where P(x;|pa;) is the conditional probability or density of X; given pa(X;) = pa;. The DAG Gy
and the joint distribution P are said to be compatible (Pearl, 2000) and P obeys the global directed
Markov property of Gy (Lauritzen, 1996). Let X 11Y denote the independence of X and Y, and
X 1LY |Z the conditional independence of X and Y given Z. In this paper, we assume that all inde-
pendencies of a probability distribution of variables in V can be checked by d-separations of Gy,
called the faithfulness assumption (Spirtes et al., 2000), which means that all independencies and
conditional independencies among variables can be represented by Gy. As a consequence, we also
use 1l to denote the d-separation in DAGS.

3. A Recursive Method for Structural Learning of a DAG

In this section, we first present theoretical results in this paper and then we apply these results to
structural learning of a DAG and show how the problem of searching for d-separators over the
full set of all vertices can be recursively split into the problems of searching for d-separators over
smaller subsets of vertices. We also discuss how to learn from data the undirected independence
graphs which are used to achieve the recursive decomposition at each recursive step.

3.1 Theoretical Results and Recursive Algorithm for Structural Learning

Below we first give two theorems based on which we propose the recursive algorithm for structural
learning of DAGs.

Theorem 1. Suppose that ALIB|C in a DAG Gy. Letuc Aand ve AUC. Then uand v are
d-separated by a subset of AUBUC if and only if they are d-separated by a subset of AUC.

According to Theorem 1, we can see that all edges falling in A or crossing A and C in the local
skeleton L(K,E) with K = AUC UB can be validly recovered from the marginal distribution of
variables in AUC. Note that such a local skeleton over K can be used to recover the entire DAG
over V even if there may not exist a marginalized DAG over K (Richardson and Spirtes, 2002).
Theorem 2. Suppose that ALIB|C in a DAG Gy. Let u and v be two vertices both of which are
contained in the separator C. Then u and v are d-separated by a subset of AUBUC if and only if
they are d-separated by a subset of AUC or by a subset of BUC.

According to Theorem 2, the existence of an edge falling into the separator C in the local skele-
ton L(K,E) with K = AUCUB can be determined from the marginal distribution of AUC or the
marginal distribution of BUC.

Note that the union set K = AUBUC in Theorems 1 and 2 may be a subset of the full set V
(that is, K C V), and they are more general results than Theorem 1 presented in Xie et al. (2006),
which requires that the union set K equals V (that is, K =AUBUC =V). These two theorems
can guarantee that, for any partition (A,B,C) of a vertex set K C V that satisfies A1LB|C, two non-
adjacent vertices u and v in K are d-separated by a subset S of K in Gy if and only if they are
d-separated by a subset S’ of either AUC or BUC in Gy. Therefore, we have the following result.
Theorem 3.  Suppose that ALIB|C in a DAG Gy. Then the local skeleton L = (K,Ex) can
be constructed by combining local skeletons Lac = (AUC,Eac) and Lg.c = (BUC,Eg.c) as
follows:

(1) the vertex setK = AUCUB and

(2) the edge set Ex = (Eauc UEBuc) \ {(u,V) :u,veCand (u,v) &€ Ea,cNEguc}-
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Based on these theorems, we propose a recursive algorithm for learning the structure of a DAG.
Our algorithm has a series of operations on a binary tree. The top node of the tree is the full set
of all variables, the leaves of the tree are subsets of variables which cannot be decomposed, and
the variable set of each parent node in the binary tree is decomposed into two variable sets of its
two children. Our algorithm consists of two steps: the top-down step for decomposing the full
set of all variables into subsets as small as possible, and the bottom-up step for combining local
skeletons into the global skeleton. At the top-down step, a variable set is decomposed into two
subsets whenever a conditional independence ALIB|C is found, and this decomposition is repeated
until no new decomposition can be found. The decomposition at each step is done by learning an
undirected independence graph over the vertex subset at the tree node, which will be discussed in
Subsection 3.3. At the bottom-up step, two small skeletons are combined together to construct a
larger skeleton, and the combination is repeated until the global skeleton is obtained. The entire
process is formally described in the following algorithm.

Main Algorithm (The recursive decomposition for structural learning of DAGS)

1. Input: a target variable set V; observed data D.
2. Call DecompRecovery (V, Ly) to get the global skeleton Ly and a separator list ..

3. For each d-separator Sy in the separator list §, orient the local skeleton u —w —v as a v-
structure u — w « v if u—w —v (Note no edge between u and v) appears in the global
skeleton and w is not contained in the separator Sy

4. Apply Meek’s rule (Meek, 1995) to obtain a DAG in the Markov equivalence class: we orient
other edges if each opposite of them creates either a directed cycle or a new v-structure. The
Markov equivalence class can be obtained by collecting all possible DAGs.

5. Output: the equivalence class of DAGs.
PROCEDURE DecompRecovery (K, L)

1. Construct an undirected independence graph Gk;

2. If Gk has a decomposition (A,B,C)
Then

e For each pair (u,v) of ue Aand v € B, save (u,v,S, = C) to the d-separator list S;
e DecompRecovery (AUC, Lac);

e DecompRecovery (BUC, Lg c);

e Set Lx = CombineSubgraphs (Lac, Le.c)

Else

e Construct the local skeleton Lk directly (such as using the IC algorithm):
Start with a complete undirected graph over K.

For any vertex pair (u,Vv) in the set K, if there exists a subset Sy, of K\ {u, v} such that
ullv|Syy, then delete the edge (u,v) and save (u,V,Syy) to the d-separator list .S.
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3. RETURN (Lk).
FUNCTION CombineSubgraphs (Ly, Lv)

1. Combine Ly = (U,Ey) and Ly = (V,Ey) into an undirected graph Lyoy = (U UV,Eyuy)
where
Euwv = (EUUEY) \ {(u,v) :u,veUnV and (u,v) Ey NEy };

2. Return (Lyuy).

As shown in the main algorithm, the equivalence class of Gy can be constructed by first calling
DecompRecovery (V, Ly) to get the skeleton, then recover all v-structures using the d-separator list
S to orient the edges in Ly, and finally orient other edges as much as possible using the rule in Meek
(1995). Since a decomposition (A,B,C) of the undirected independence graph Gk implies A11BJC,
it is obvious by Theorems 1 and 2 that our algorithm is correct.

A binary decomposition tree is used in DecompRecovery to describe our algorithm simply and
clearly. In our implementation, we use a junction tree to decompose a graph into several subgraphs
simultaneously and to find the corresponding separators. It is known that the junction tree may
not be unique, and thus we may have multiple decompositions. In theory, we prefer to use the
junction tree with the minimum tree width. However, this is known to be an NP hard problem
(Arnborg et al., 1987); therefore, we may use some sub-optimal method to consruct a junction tree
for an undirected graph (Jensen and Jensen, 1994; Becker and Geiger, 2001). For example, two
most well-known algorithms are the lexicographic search (Rose et al., 1976) and the maximum
cardinality search (Tarjan and Yannakakis, 1984), whose computational expenses are O(ne) and
O(n +e) respectively, where e is the number of edges in the graph. Especially, the latter method
is used in our implementation. According to our experiences, the junction tree obtained by either
method usually leads to very efficient decompositions.

In the recursive algorithm, statistical tests are used only at the top-down step but not at the
bottom-up step. Thus the data sets used for statistical tests can be reduced into marginal data sets
with decomposition of graphs. In this way, we only need to pass through small marginal data sets
for statistical tests of subgraphs and need not pass through the full data set for every statistical test.
Other algorithms (such as the PC algorithm) can be used to replace the IC algorithm to improve the
performance of constructing the local skeleton Lk in DecompRecovery.

3.2 Testsof Conditional Independence

Conditional independence test of two variables u and v given a set C of variables is required at Step 1
and the “Else’ part of Step 2 of Procedure DecompRecovery to construct an undirected independence
graph and a local skeleton respectively. Null hypothesis Ho is ullv|C and alternative Hj is that Ho
may not hold. Generally we can use the likelihood ratio test statistic

sup{L(6|D) under Ho}

2 e
"= ~2log sup{L(8|D) under Hy}’

where L(8|D) is the likelihood function of parameter 8 with observed data D. Under Ho, the statis-
tic G2 asymptotically follows the x? distribution with df degrees of freedom being equal to the
difference of the dimensions of parameters for the alternative and null hypothesis (Wilks, 1938).
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Let Xk be a vector of variables and N be the sample size. For the case of a Gaussian distribution,
the test statistic for testing X;_LLX;|Xy can be simplified to
G® = —Nxlog(1—corr®(Xi,X;|Xk))
det(Z (1114 )Aet(Z (1 1)
det(Z{iJ’k}{Lj’k})det(Zk,k)

= Nxlog

which has an asymptotic x? distribution with d f = 1. Actually, the exact null distribution or a better
approximate distribution of G2 can be obtained based on Bartlett decomposition, see Whittaker
(1990) for more detailed discussion on this.

For the discrete case, let N{" be the observed frequency in a cell of Xs = m where s is an index
set of variables and m is a category of variables Xs. For example, Nfﬁc denotes the frequency of

Xi=a, Xj=band Xx=c. The G2 statistic for testing XilLXj| X is then given by

NC

=25 N¥Clog I X Ni
i bc’
% NIiCN]k

which is asymptotically distributed as a x? distribution under Ho with degree of freedom

df = (#(X) — D) (#(X)) = 1) [] #(X),
X eXk

where #(X) is the number of categories of variable X.

For discrete data, the size of conditional variable sets cannot be so large that independence tests
become inefficient. Thus the algorithm restricts the cardinality of conditioning sets. There are many
methods that can be used to find a small conditioning set, such as a forward selection of variables.
With the recursive decomposition, independence tests are localized to smaller and smaller subsets
of variables, and thus the recursive algorithm has higher power for statistical tests.

3.3 Constructing Undirected I ndependence Graphs

In this subsection, we discuss how to construct undirected independence graphs at Step 1 of Proce-
dure DecompRecovery. At first we call DecompRecovery with the full set V as the input argument,
and construct an undirected independence graph Gy at Step 1. Then at each recursive calling, to
construct a local undirected independence graph Gk with a subset K (say K = AUC) as the input
argument, we shall present a theoretical result based on which we only need to check edges over the
separator C without need of testing conditional independencies between any pair of variables in A
and between any pair of variables crossing Aand C. _

To construct an undirected independence graph Gy, we start with a complete undirected graph,
and then we check an edge between each pair of vertices u and v. The edge (u,Vv) is removed if u
and v are independent conditionally on the set of all other variables. For linear Gaussian models, the
undirected graph can be constructed by removing an edge (u, V) if and only if the corresponding en-
try in the inverse covariance matrix is zero (Dempster, 1972; Whittaker, 1990). After decomposing
a graph Ga_g_c into two subsets AUC and BUC, we need to construct a local undirected indepen-
dence graph Gy (say Gauc) at Step 1 of Procedure DecompRecovery. We show in the following
theoretical result that an initial Gauc can be constructed by using all undirected edges contained
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by AUC in the previous graph Gausuc and then only pairs of vertices contained in C need to be
checked via conditional independence tests.

Theorem 4. Suppose that the distribution of V. = AUBUC is positive and has the conditional
independence A1LB|C. Then for any u in A and any vin AUC, we have that uLLv|[(AUC)\ {u,v}] if
and only if ullv|[(AUBUC)\ {u,V}].

Note that Theorems 1 and 4 are different. The former is used to determine an edge in a DAG,
and the latter is used to determine an edge in an undirected independence graph. According to this
theorem, there exists an edge (u,Vv) in the minimal undirected independence graph Ga_c for uin A
and v in AUC if and only if there exists an edge (u, V) in the minimal undirected independence graph
Gausuc. Thus given an undirected independence graph Ga s c obtained in the preceding step, an
undirected independence graph G c has the same set of edges as Ga guc each of which has at least
one vertex in A, but all of possible edges within the separator C need to be checked for Ga c.

When there is a large number of variables and a small sample size, it is infeasible or statisti-
cally unstable to test an independence between two variables conditionally on all other variables,
and this problem is more serious when variables are discrete. Many current methods for learning
undirected graphical models can also be used in our algorithm. For example, procedures based
on limited-order partial correlations (Wille and Biihimann, 2004; Castelo and Roverato, 2006) are
rather suitable and can be even used in the case where the number of variables is larger than the
number of samples. Another way of learning undirected independence graphs is to apply current
available Markov blanket learning algorithms. By connecting each vertex with those in its Markov
blanket, an independence graph is then obtained. Indeed, it is neither new nor uncommon to learn
the Markov blanket as either an initial step for learning a DAG or as a special problem of interest.
Koller and Sahami (1996) developed a method for feature selection which employs the concept of
Markov blanket. Margaritis and Thrun (1999) proposed a two-phase algorithm to first identify a
Markov blanket for each variable and then obtain a DAG by connecting vertices in a maximally
consistent way. Tsamardinos et al. (2003) proposed a method that can soundly identify all Markov
blankets and scale-up to a graph with thousands of variables.

Another particular method for learning the undirected independence graph may use Lasso-type
estimators (Tibshirani, 1996; Meinshausen and BiihImann, 2006; Zhao and Yu, 2006; Wainwright
etal., 2006). We can apply Lasso method to select a neighborhood set of a vertex which contains the
Markov blanket of the vertex. Schmidt et al. (2007) developed a new method of learning structure
of a DAG. Note that it is not necessary to learn neighborhoods exactly in our algorithm, and there
may be extra edges in our undirected independence graph.

4. Ilustration and Evaluation of the Recursive Algorithm

In this section, we first illustrate the recursive algorithm step by step via a concrete example and
then show simulation results to evaluate its performance.

4.1 Illustration of the Recursive Algorithm

In this subsection, we illustrate our recursive algorithm using a concrete example. We suppose in
the following example that conditional independencies can be implemented correctly, that is, each
conditional independence is checked by using the underlying DAG. Therefore the purpose of the
example is simply to illustrate the overall scheme of the recursive algorithm presented in Section
3.1. The performance of conditional independence tests is discussed in the next subsection. We
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compare the recursive algorithm with the decomposition algorithm proposed in Xie et al. (2006), in
which an entire undirected independence graph is first constructed and then it is decomposed into
many small subgraphs at one step instead of recursive steps. We show that, in our algorithm, search
for separators is localized to smaller vertex subsets than those obtained by using the decomposition
algorithm.

Example 1. (Continued) Consider again the DAG Gy = (V, EV) in Figure 1 (a). We call Procedure
DecompRecovery to construct the global skeleton over V. At the top-down step (that is, at the
“Then’ part of Step 2 in DecompRecovery), we construct the binary tree shown in Figure 2. At the
top of the binary tree, the first decomposition is done by splitting the full vertex setV in G (that
is, the moral graph) into two subsets {a,c,d} and {b,c,...,h} with the separator {c,d}. Next we
learn the undirected independence graphs G, and Gz for the two subsets separately. To construct
the subgraphs G, and Gs, by Theorem 5, we only need to check the edge (c,d) in the separator
{c,d}, and other edges in G, and Gz can be obtained directly from G1. Repeat this procedure until
no further decomposition is possible. Finally we get the entire binary tree T as shown in Figure 2,
where each leaf node is a complete graph and cannot be decomposed further.

G1

| e
a C b g
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Lahi
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Figure 2: The binary tree T obtained at the top-down step (at ‘“Then’ of Step 2).
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> >—*9
Qe——C d
d f h c
Figure 3: The local skeletons obtained at ‘Else’ of Step 2.
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Figure 4: Combinations of local skeletons in Procedure CombineSubgraphs.

Before the bottom-up step (that is, the ‘Else’ part of Step 2 in Procedure DecompRecovery),
for each leaf node K, we construct a local skeleton over K. For each vertex pair (u,v) in K, we
search a separator set S,y in all possible subsets of K \ {u,v} to construct the local skeleton. All
local skeletons of leaf nodes are shown in Figure 3. For example, the vertices ¢ and d are adjacent
in the local skeleton K1 since no vertex set in K1 d-separates them, whereas b and g are non-adjacent
in the local skeleton K5 since an empty set d-separates them in Gy. At the bottom-up step, calling
Function CombineSubgraphs, we combine the local skeletons from the leaf nodes to the root node
to form the global skeleton, as shown in Figure 4. For example, local skeletons L; and L, are
combined to Lg, and then L3 and L4 are combined to Ls, as shown in Figure 4. Similarly, we get
the local skeleton Lg. At the last step, we combine Ls and Lg into the global skeleton. Note that the
edge (c,d) in Ls is deleted at Step 1 of Function CombineSubgraphs since the edge is not contained
in Lg. After all the combinations are done, we get the global skeleton in Figure 5. We can see that
the undirected independence graphs and the local skeletons are different as shown in Figure 2 and
Figure 4 respectively and that the former has more edges than the latter.

At Step 2 of Procedure DecompRecovery, we save all separators to the d-separator list §. At
Step 3 of the main Algorithm, we use separators in the list S to recover all v-structures of the DAG.
For example, there is a d-separator {a} in § which d-separates ¢ and d, and there is a structure
¢ — f —d in the global skeleton Ly where f is not contained in the separator {a}. Thus we can
orient the structure ¢ — f —d as a v-structure ¢ — f « d. Similarly, since an empty set d-separates
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Figure 5: The global skeleton Ly. Figure 6: The recovered equivalence class.

b and g in Gy, we can orientb—e —g as b — e « g. After recovering all v-structures, we apply
the orientation rule in Meek (1995) and get the desired equivalence class of Gy in Figure 6. In
this equivalence class, the undirected edge (a,c) cannot be oriented uniquely because any of its
orientation leads to a Markov equivalent DAG.

Below we compare the recursive algorithm with the decomposition algorithm proposed in Xie
et al. (2006). We show that theoretically the recursive algorithm can decompose the entire graph
into smaller subgraphs than the decomposition algorithm does because the decomposition in the
decomposition algorithm is done only once, whereas the recursive algorithm tries to re-decompose
undirected independence subgraphs at each recursive step. When there are a lot of v-structures in
a DAG, many moral edges can be deleted in construction of a subgraph, and thus the recursive
algorithm is more efficient than the decomposition algorithm. The following example illustrates the
difference of decompositions obtained by these two algorithms.

Example 2. Consider the DAG in Figure 7. By using the decomposition algorithm proposed in Xie
et al. (2006), a ‘d-separation tree’ is built from an undirected independence graph (that is, the moral
graph in this example), and the full variable set is decomposed into three subsets of variables at one
time, see Figure 8 (a). By using the recursive algorithm proposed in this paper, we can decompose
the graph into four subgraphs in Figure 8 (b), which have smaller subsets of variables. This is
because the undirected independence graph over {a,b,c} in Figure 8 (b) is re-constructed and the
edge (b,c) is deleted for bllc|a.

Figure 7: A DAG.
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(a) The decomposition algorithm. (b) The recursive algorithm.

Figure 8: Comparison of two different algorithms for structural learning.

4.2 Simulation Studies

Below we give numerical examples to evaluate the performance of the recursive algorithm. We first
present simulation results for the ALARM network, which is a medical diagnostic network and is
shown in Figure 9 (Beinlich et al., 1989; Heckerman, 1998). It is a DAG with 37 vertices and 46
edges and it is often used to evaluate performance of learning algorithms. In the following two
subsections, we use the ALARM network to do simulation for the Gaussian case and the discrete
case separately. Next we show simulation results for several other networks in the final subsection.

@)

Figure 9: The ALARM network.

4.2.1 THE GAUSSIAN CASE

In this subsection, for the underlying DAG of the ALARM network, we generate a sample from a
joint Gaussian distribution using a structural equation model of recursive linear regressions, whose
coefficients are randomly generated from the uniform distribution in the interval (—1.5,—0.5)U
(0.5,1.5) and the residual variance is 1 for each linear regression. We apply the recursive algorithm
to the generated sample to construct a DAG, and then we compare the underlying DAG with the
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constructed DAG and record the number of extra edges, the number of missing edges and the struc-
tural hamming distance (SHD), where SHD is defined as the total number of operations to verify the
constructed PDAG to the Markov equivalence class of the underlying DAG, and where the opera-
tions may be: add or delete an undirected edge, and add, remove or reverse an orientation of an edge
(Tsamardinos et al., 2006). The likelihood ratio test introduced in Subsection 3.2 is used to test the
partial correlation coefficient at the significance level a = 0.01. We repeatedly draw n = 1000 sets
of samples and obtain the average numbers of extra edges, missing edges and SHD from n = 1000
simulations. The first 3 simulation results are shown in Table 1 for different sample sizes 1000,
2000, 5000 and 10000. In Table 1, three values in a bracket denote the number of extra edges, the
number of missing edges and SHD respectively. The column ‘Ave’ in Table 1 shows the averages of
n = 1000 simulations. It can be seen that the algorithm performs better as the sample size increases.
From the simulations, we found that most decompositions at the top-down step are correct, and we
also found that when coefficients make the faithfulness assumption close to fail (that is, some of the
edges only reflect weak or nearly zero associations), the learned PDAG from simulation may not be
exactly the same as the underlying PDAG, and most of edge mistakes appear for these edges that
represent rather weak associations.

Sample Size 1 2 3 Ave

1000 (2,2,13) (0,1,6) (2 4,10) (1.20,2.70,12.8)
2000 (0,1,5) (1,0,5) (0,1,8) (0.96,1.77,9.12)
5000 1,2,5) (0,0,2) (1,2,4) (0.85,1.07,6.18)

10000 0,1,2) (0,0,0) (0,2,4) (0.75,0.77, 4.99)

Table 1: Extra edges, missing edges, and SHD for the first 3 simulations and averages from 1000
simulations.

Our implementation is based on the Bayesian network toolbox written by Murphy (2001) and
the simulations run particularly fast. For a single simulation for all sample sizes N = 1000, 2000,
5000, 10000, when conditional independence tests are used to check edges, it costs only around
3 seconds in Matlab 7 on a laptop Intel 1.80GHz Pentium(R)M with 512 MByte RAM running
Windows XP.

We also compare our methods with the PC algorithm (Spirtes and Glymour, 1991) and the Three
Phaze Dependency Analysis (TPDA) algorithm (Cheng et al., 2002), which are readily available in
the Causal Explorer System developed by Aliferis et al. (2003). The simulation is repeated 100
times for each of different network parameters and sample sizes. For each generated data set, the
structure learned from each method is then compared with the true underlying structure. For each
algorithm, we choose two different significance levels, that is, a = 0.01 and 0.05. In the second
row of Table 2, the underlined values in a bracket denote the number of extra edges, the number
of missing edges and SHD respectively, and other rows give values relative to the second row,
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Alg (Level a) N = 1000 N = 2000 N=5000  N=10000 Ave Time
(1.2,2.4,12) (1.0,15,82) (0.9,0.9,58) (0.7,0.6,4.6) 2.55sec
Rec(0.01) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) 1.0
Rec(0.05) (31,10,15) (35 11,17) (4.2,11,22) (47,12,23) 15
PC(0.01) (1.8,45,35) (26,6347 (28,80,60) (4097,72) 212
PC(0.05) (2.9,4.0,35) (4.3,35,47) (6.0,4.0,62) (86,51,7.3)  24.8
TPDA(0.01) (3.9,4.1,35) (4.3,5.7,48) (3.9,756.1) (3.7,856.8)  73.6
TPDA(0.05) (4.4,3.7,35) (4.7,5.1,47) (5.7,43,6.0) (85,48 7.1)  88.3

Table 2: Results relative to the recursive algorithm with a = 0.01 and a = 0.05: extra edges, miss-
ing edges, and SHD

which are obtained by dividing their real values by the underlined values in the second row. A
relative value larger than 1 denotes that its real value is larger than the corresponding value in the
second row. For example, the third row labeled Rec(0.01) with all values equal to 1 shows that our
algorithm with a = 0.01 has the same results as the second row; the seventh row labeled PC(0.01)
shows the relative results for the PC algorithm with a = 0.01, where (1.8,4.5,3.5) means the real
values as (1.8 x 1.2,4.5 x 2.4,3.5 x 12). The last column labeled ‘Ave Time’ denotes average time
cost for one simulation of all 4 sample sizes. In Table 2, all values are larger than 1, which means
our algorithm Rec(0.01) has the least number of extra edges, the least number of missing edges and
the least SHD, and further it costs the least times.

4.2.2 THE DISCRETE CASE

Now we show simulations of the ALARM network for the discrete case where these discrete vari-
ables have two to four levels. For every simulation, the conditional probability distribution of each
variable X; given its parents pa; is draw randomly in the following way: for each fixed configuration
pa; of the parents, we first generate a sequence {r1,...,r_} of random numbers from the uniform
distribution U (0,1), where L is the number of levels of X;; then let P(X; = j|pai) =rj/ Ykl as
the distribution of X; conditional on the fixed configuration pa; of X;’s parents. Note that the joint
distribution generated in this way may be unfaithful, which together with the problem of discrete-
ness makes the learning task harder than that for the Gaussian case. We run 100 simulations for
each sample size N = 1000, 2000, 5000 or 10000, and then we compare our method with several
other algorithms by averages from 100 simulations. In addition to the PC algorithm and the TPDA
algorithm used in the Gaussian case, we also compare our method with the Sparse Candidate (SC)
algorithm (Friedman et al., 1999) and the MMHC algorithm (Tsamardinos et al., 2006). For the PC
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algorithm, we set the parameter max-fan-in (that is, the maximum in-degree) to its true value so that
the PC algorithm can run fast. We use the TPDA and the MMHC algorithms that are implemented
in the Causal Explorer System (Aliferis et al., 2003) with the default setting. For all algorithms
except the SC algorithm, we use two significance levels (a = 0.01, a = 0.05) in the simulations.
For the SC algorithm, the most important parameter to be specified is the number of candidates (the

maximum size of potential parent sets), which are set to 5 and 10 separately.

Alg (Level ) N =1000 N = 2000 N=5000  N=10000 Ave Time
(1.3,10,33)  (1.2,6.6,23) (0.8,4.0,16) (0.7,2.6,11) 27 sec
Rec(0.01) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) 1.0
Rec(0.05) (4.0,0.8,1.1) (3.6,0.8,1.2) (4.8,0.8,1.3) (49,08 14) 13
PC(0.01) (0.2,15,19) (0.1,15,26) (0.2,1.6,33) (0.1,1845) 17
PC(0.05) (0.8,1.2,1.9) (05,1325 (0.7,1.3,32) (0.7,154.4) 1.9
TPDA(0.01)  (10.2,1.2,2.7) (2.7,1.6,3.0) (1.9,2.7,41) (0.9,4.1,58) 0.9
TPDA(0.05)  (0.0,25,2.2) (0.1,3.9,31) (0.1,65,45) (0.1,99,6.6) 0.2
SC(5) (2.0,0.8,0.8) (2.4,08,10) (3.6,09 1.1) (43,09 14) 47
SC(10) (2.2,0.8,08) (2.7,09,10) (38,08 11) (4207,12) 66
MMHC(0.01) (0.3,1.3,1.1) (0.3,1.4,1.1) (04,15 11) (07,1512 1.1
MMHC(0.05) (0.5,1.2,1.0) (0.4,1.3,1.0) (0.5,13,1.0) (10,13, 11) 1.4

Table 3: Results relative to the recursive algorithm with a = 0.01 and a = 0.05: extra edges, miss-
ing edges, and SHD

We summarize the simulation results in Table 3. In terms of SHD, our algorithm, the SC al-
gorithm and the MMHC algorithm perform better than the PC and TPDA algorithms. It can also
be seen that the performance difference between our method and the others becomes larger as the
sample size increases. Although it can be seen from the last column labeled ‘Ave Time’ that the
average CPU time cost for our algorithm is the second least, the fastest algorithm TPDA has the
largest SHD among all algorithms. From the results in Tables 3, we can see that although the recur-
sive algorithm seems to have a better performance in most cases, it is still not quite clear which one
of these algorithms is superior in general. Their performance depends on preference of reducing
the false positive error (including an edge that is not in the true DAG) or the false negative error
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(excluding an edge that is in the true DAG). For example, the PC and MMHC algorithms have a
smaller false positive error; the SC algorithm has a smaller false negative error; and the recursive
algorithm has smaller SHD. We also found that choosing a good parameter is also important to
achieve an optimal performance for each algorithm. The recursive algorithm seems to work better
when we choose a significance level a = 0.01, while for MMHC it is better to choose a = 0.05.

The above comparison is based on results from randomly generated values of parameters of
joint distributions. The results may change when different values of these parameters are used. The
performance of an algorithm also depends on the structures of a network.

4.2.3 SIMULATIONS OF OTHER NETWORKS

In this subsection we show simulation results for other three networks: Insurance with 27 vertices
and 52 edges (Binder et al., 1997), HailFinder with 56 vertices and 66 edges (Abramson et al., 1996)
and Carpo with 61 vertices and 74 edges, all of which can be obtained through the online Bayesian
network repository (http://www.cs.huji.ac.il/labs/compbio/ Repository). We compare the recursive
algorithm with the SC and MMHC algorithms since these two have been extensively compared with
many state-of-art algorithms and shown in general outperforming other algorithms by Tsamardinos
etal. (2006). In our simulations, the parameter values of the joint distributions are set to the original
values from the repository. For each network, 10 data sets are generated, and we give one better
result in Table 4 for each algorithm with two criteria (a = 0.01 and 0.05 for Rec and MMHC, the
number of candidates = 5 and 10 for SC). From the last column ‘Ave Time’ of Table 4, it can be
seen that the recursive algorithm is fastest in average CPU time and it also has a better performance
in most cases for these networks.

4.3 Complexity Analysis

Below we discuss the complexity of the recursive algorithm proposed in this paper. We mainly
focus on the number of conditional independence tests for constructing the equivalence class since
decomposition of graphs is a computationally simple task compared to the conditional independence
tests. In the recursive algorithm DecompRecovery, two steps (Step 1 for constructing an undirected
independence graph Gk and the "Else’ part of Step 2 for constructing a local skeleton Lg) involve
conditional independence tests, where K is the vertex set of the subgraph. At Step 1, an undirected
independence graph can be constructed by testing independence between any pair of variables con-
ditionally on other variables, and thus the complexity is O(|K|2), where |K| denotes the number of
vertices in the set K. As discussed in Section 3.3, an undirected independence graph Ga c can be
constructed from the previous graph Gausuc by checking only all possible edges within the sepa-
rator C. Thus the complexity for constructing an undirected independence graph can be reduced.
At Step 2, we construct a local skeleton over a vertex subset K. Suppose that we use the IC al-
gorithm. Then the complexity for constructing the local skeleton Ly is O(|K|22/XI-2). Below we
consider the total expenses and suppose that the full vertex set V is recursively decomposed into
H subsets {Kg,...,Kn}, where H < nand Kn < n for all h. For each decomposition, we need to
construct an undirected independence graph, and thus the total expenses for all decompositions is
less than O(Hn?). The total expenses for constructing all skeletons is O( ¥y, |Kn|2/%=2), which is
less than O(Hkmax2 m~2), where kmax = max{|K1|,...,|Kn|}. The complexity for the IC algorithm
is known to be O(n?2"~2). Since Kmax Usually is much less than n, the recursive decomposition can
greatly reduce the complexity of the IC algorithm. Of course, when no decomposition is available,
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Alg (Level a) N = 1000 N = 2000 N = 5000 N =10000 Ave Time
Insurance
(2.4,13,43) (1.5,10,40) (1.3,74,32) (1.1,6.7,27)  16sec
Rec(0.01) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) 1.0
SC(5) (1.6,1.0,1.0) (2.3,1.2,1.2) (25,13,1.3) (2.9,14,15) 6.7
MMHC(0.05) (0.6,1.3,1.1) (1.1,1.4,1.2) (1.2,15,1.2) (11,14, 1.2) 8.0
Hailfinder
(5.9,16,53) (7.1,14,47) (8.0,14,43) (7.3,14,41)  62sec
Rec(0.01) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) 1.0
SC(10) (2.0,1.0,1.1) (1.8,1.1,11) (2.0,1.1,1.3) (2.1,08,1.2) 5.6
MMHC(0.05) (1.6,1.2,1.1) (1.6,1.1,1.0) (1.7,1.1,12) (1.0,1.9,12) 174
Carpo
(10,12,49) (9.0,5.0,36) (6.5, 2.6,21) (6.3,1.0,18) 74 sec
Rec(0.01) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) (1.0,1.0,1.0) 1.0
SC(10) (2.3,05,1.2) (2.6,05,1.7) (2.8,0.9,22) (2.3, 1.3, 2.0) 6.6
MMHC(0.05) (2.5,2.4,2.1) (2.6,45,2.6) (3.1,6.0,34) (3.0,12 3.4) 44

Table 4: Results relative to the recursive algorithm for other networks: extra edges, missing edges,
and SHD

the complexity of our algorithm becomes the same as the IC algorithm, which reflects the fact that
structural learning of DAGs is an NP-hard problem (Chickering et al., 2004). Similarly, the recur-
sive decomposition can also be used to improve the performance of the PC algorithm and other
algorithms.
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5. Conclusion

In this paper, we proposed a recursive algorithm for structural learning of DAGs. We first present its
theoretical properties, then show its experimental results and compare it with other algorithms. In
the recursive algorithm, a structural learning for a large DAG is first split recursively into those for
small subgraphs until each subgraph cannot be decomposed further, then we perform local learn-
ing for these subgraphs which cannot be decomposed, finally we gradually combine these locally
learned subgraphs into the entire DAG. The main problem for structural learning of a DAG is the
search for d-separators, which becomes exponentially complicated with the number of vertices in-
creases. In the recursive algorithm, all searches for d-separators are localized into subsets of ver-
tices. Thus the efficiency of structural learning and the power of statistical tests can be improved by
decomposition.

There are several works related to our recursive approach. Friedman et al. (1999) discussed
how the idea of recursive decomposition can be used in accelerating their Sparse Candidate algo-
rithm, Narasimhan and Bilmes (2005) discussed the application of this idea to find a sub-optimal
graphical models by noticing the corresponding decomposition of the Kullback and Leibler diver-
gence (Kullback and Leibler, 1951) with respect to the graph separation. Geng et al. (2005) and
Xie et al. (2006) proposed the decomposition algorithms for structural learning of DAGs. However,
the method proposed in Geng et al. (2005) requires that each separator has a complete undirected
graph. Xie et al. (2006) removed the condition, but their algorithm performs decomposition only
based on the entire undirected independence graph Gy of the full vertex set V and cannot perform
decomposition of undirected independence subgraphs. Theorems 1, 2 and 3 in this paper relax this
requirement, and they do not require the union set K = AUBUC of a decomposition (A,B,C) to
be equal to the full vertex set V. Thus the recursive algorithm can delete more edges in undirected
independence subgraphs and further decompose them, see Example 2. Theorems 1, 2 and 3 are also
useful properties for collapsibility of DAGs.

Now we discuss several potential utilities and further works of the recursive approach. This re-
cursive decomposition approach can also be used to localize a learning problem of interest. Suppose
that V is the full set of all observed variables, but we are interested only in a local structure over
a variable subset A. Using the recursive approach, we can recursively decompose the variable sets
into small sets, only focus on the subtrees that contain variables in A, and ignore other subtrees that
are unrelated to A. In such a way, the local structure over A can be obtained without need of learning
other structures that are unrelated to A. The recursive approach can also use a prior knowledge of
independencies among variables to decompose structural learning.

Acknowledgments

We would like to thank the editor and the three referees for their helpful comments and suggestions
that greatly improved the previous version of this paper. This research was supported by NSFC,
NBRP 2003CB715900, 863 Project of China 2007AA012437 and MSRA. We would also like to
thank Professor Rich Maclin, the publication editor, for his help with the revision.

Appendix A.

We first give some lemmas which will be used in proofs of theorems.
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Lemma 1. A subset S of vertices separates u from v in [GAn({u}U{V}US)]m if and only if ullv|S.
Proof. The result can be obtained directly from Proposition 3.25 of Lauritzen (1996) and Theorem
1.2.4 of Pearl (2000). O

Lemma 2. Let S be a subset of V. Then two vertices u and v in S are d-separated by a subset of

S if and only if they are d-separated by an({u,v})NS.
Proof. Define S’ =an({u,v})NS. The necessity is obvious since S O S’. For sufficiency, suppose
that u and v are not d-separated by S’. Since An({u,v} US’) = An({u,v}), we have from Lemma 1
that there is a path | connecting u and v in [éAn({uN})]m which is not separated by S’ in the moral
graph, that is, the path | does not contain any vertex in S’. Since | is contained in [GAn({um]m and
S’ =an({u,v}) NS, we then have that | does not contain any vertex in S\ {u,v}. Now from the con-
dition, suppose that u and v are d-separated by So C S. Then we also have from an(u,v)NSp C &'
that | does not contain any vertex in an(u,v) NSp. Thus we obtain that | is not separated by S in
[éAn(UMS)]m, which by Lemma 1 implies that u and v are not d-separated by So. However, this con-
tradicts the condition that u and v are d-separated by Sg C S, which concludes the proof for Lemma
2. O

Lemma 3. If four disjoint sets X, Y, Z and W satisfy X LLY UZ|W, then we have X LLY |Z UW.
Proof. This result is obvious. O

Under the faithfulness assumption, a conditional independence is equivalent to the correspond-
ing d-separation, and thus d-separation also has the above property.

Lemma 4. Suppose that | is a path that connects two nonadjacent vertices u and v. If | is not
contained completely in An(u) UAn(v), then | is d-separated by any subset S of an(u) Uan(v).
Proof. Since | is not completely contained in An(u) U An(v), there exists vertices m and n in
| =(u,...,mXx,...,y,n,...,v) such that both m and n are contained in An(u) UAn(v) and no vertices
from x to y are contained in An(u) UAn(v) where x and y, u and m, n and v may be separately the
same vertex. So we have that the arrows must be oriented as (m,x) and (n,y), and then there must
be a collider between mand non|. Let s — w « t be the collider that is closest to m. Then we have
that the sub-path of | from m to w is directed. Notice that m € An(u) UAn(v) and w ¢ An(u) UAn(v).
Thus we obtain that S and its subset do not contain the middle vertex w or its descendants, which
implies that | is d-separated by any subset of S at the collider s — w «t. O

Proof of Theorem 1: The necessity is obvious since (AUBUC) D (AUC). For sufficiency, let
a and d be two vertices in A and AUC respectively that are d-separated by a subset of AUBUC.
DefineW = (an(a) Uan(d)) N (AUBUC). By Lemma 2, a and d must be d-separated by W. Define
§' = (an(a)uan(d)) N (AUC). Then we only need to show that S’ (C AUC) can d-separate every
path | connecting a and d in Gy. We consider the following two cases separately:

(1) a path I is not contained completely in An(a) UAn(d), and

(2) apath | is contained completely in An(a) UANn(d).

For case (1), we get from Lemma 4 that | must be d-separated by S’ since S’ is a subset of
an(a) Uan(d).

For case (2), we have from condition ALIB|C that [{a} U (S’ N A)]LLb|C for any b € B, which
implies, by Lemma 3, allb|(S'NA)UC. Since ' C (AUC), we get

allb|(S'UC).
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By reduction to absurdity, suppose that there is a path | contained in An(a) UAn(d) connecting a and
d which cannot be d-separated by S’. Because W (2 S') d-separates a and d and thus d-separates |
but S" does not, there must exist at least one vertex on the path | which is contained inW \ §’ (C B).
Let b be such a vertex that is closest to a on the path | and define I’ to be the sub-path of | from
atob. Itis obvious that I’ is d-connected by S’; otherwise | will be d-separated by S’. Since b is
closest to a on | and b € B, any of other vertices on I” is not in B. From I’ C 1 C (An(a) UAn(d))
and 8’ = (an(a) Uan(d)) N (AUC), we have that all vertices of I except a and b are contained in
§'. Since I" is d-connected by S’, I is also d-connected by S’ UC, which contradicts (A.1). Thus we
showed that every path in case (2) is also d-separated by S’, which concludes our proof for Theorem
1. O

The following lemma, which is non-trivial due to the fact that a sequence can contain the same
vertex more than once, indicates that the d-separation for a path can be made equivalent to that for
a sequence.

Lemma 5. Two non-adjacent vertices u and v are d-separated by S in Gy if and only if for any
sequence | = (u,...,v) connecting u and v

1. | contains a “chain” i — m — j or a “fork” i < m — j such that the middle vertex misin S,
or

2. | contains a “collider” i — m « j such that the collision vertex m is not in S and no descendant
of misinS.

When a sequence | = (u,...,Vv) satisfies the above conditions 1 and 2, we also say that the sequence
| is d-separated by S.

Proof. The sufficiency is obvious from definition of d-separation. For necessity, suppose there are
sequences connecting u and v that satisfy neither condition 1 nor 2. Let| = (zo=u,23...,Z_1,2k =
v) be the shortest one of such sequences, it’s easy to show that such a sequence is itself a path which
contradicts with the condition that u and v are d-separated by S in Gy . O

Proof of Theorem 2: The necessity is obvious since (AUBUC) 2 (AUC). We show the sufficiency
in a similar way to proof of Theorem 1. Let ¢ and ¢’ be two vertices in C that are d-separated by a
subset of AUBUC. Thus from Lemma 2 they are also d-separated by S = (an(c)Uan(c’)) N (AUBU
C). Without loss of generality, suppose that c is not an ancestor of ¢’. Define S; = (an(c) Uan(c’)) N
(AUC) and S = (an(c)uan(c’)) N (BUC). To prove that either S; (C AUC) or S (C BUC) can
d-separate ¢ and ¢’ in Gy, it is sufficient to show that there will not exist a path |1 in AUC and a path
I, in BUC such that 1, cannot be d-separated by S; and I, cannot be d-separated by S,. To show
this, we consider the following two cases separately:

(1) a path I; is not completely contained in An(c) UAn(c’), and

(2) both paths I; and I, are contained in An(c) UAn(c’).

For case (1), since both S; and S are subsets of an(c) Uan(c’), we know from Lemma 4 that |
must be d-separated both by S; and by S».

For case (2), by reduction to absurdity, we suppose that there are two paths 11 and I, such that I;
cannot be d-separated by S; for i = 1 and 2. Since every path |; between ¢ and ¢’ is d-separated by
S which equals S1U S, we have that for path I;, there is at least one vertex contained in S\ S;. Let
d1 and da be such vertices that are closest to ¢ on 11 and | respectively. We have d; € (S\ S1) and
thus d1 € B, and similarly d; € (S\ S1) and thus d» € A. Let |7 denote the sub-path from c to d; of
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I; and 15 denote the sub-path from c to d of I,. Since I; cannot be d-separated by S;, we have that I
cannot be d-separated by S;. Connecting 17 and I at c, we get a sequence |’ from d; to d through
c. Note that I’ may have the same vertices and thus it may not be a path. Below we show that I’ is
not d-separated by C, that is, the middle vertex of each collider or its descendant is in C but any of
other vertices on I” is not in C.

For any vertex u which is not the middle vertex of a collider on 17, since u is in an(c) Uan(c’)
and I and I7 is not d-separated by Si, we have that u ¢ S and thus u ¢ C. Similarly, we can show
that C does not contain any vertex u which is not the middle vertex of a collider on I5. Thus we have
shown that C does not contain any vertex which is not a middle vertex of colliders on I” except that
vertex ¢ has not yet been considered. Now we show that vertex c is a middle vertex of a collider
on I’. Let v denote the neighbor of ¢ on I{. Since v is in an(c) Uan(c’) and it cannot be ¢/, v is an
ancestor of ¢ or ¢. If the edge between ¢ and v is oriented as ¢ — v, then v must be an ancestor of
c¢/. This contradicts the supposition that ¢ is not an ancestor of ¢/, and thus the edge between ¢ and
v must be oriented as ¢ < v. Similarly for the neighbor w of ¢ on 1, we can also show that the edge
between ¢ and w must be oriented as ¢ < w, which implies that the sequence (v,c,w) must form a
collider on I’. Thus we have shown that C does not contain any vertex which is not a middle vertex
of colliderson I'.

For any vertex u which is a middle vertex of a collider on I{, u or its descendant must be in §S;,
otherwise I and so |; are d-separated by S;, which contradicts the supposition. Since u is contained
inan(c) Uan(c’), we have that ¢ (¢ C) or ¢’ (€ C) is a descendant of u, and thus u or its descendant
must be in C. For the collider u — ¢ < v on the sequence I’, we also have that c is in C. Thus we
have shown that the middle vertex of each collider on I’ or its descendant is in C.

By the above result and Lemma 5, we have d»/1d; |C, where d; € A and ds € B. This contradicts
AlIBJC. Thus either S; or S, must d-separate ¢ and ¢’ in Gy. O
Proof of Theorem 3: This is an immediate consequence of Theorems 1 and 2. O
Proof of Theorem 4: For necessity, since ALLB|C, we have from the property of conditional inde-
pendence that ullBJAUC\ {u}. This and the condition ullv|]AUC\ {u,v} imply ullvUBJAUC\
{u,v}. Again, from the property of conditional independence, we have ullv|/AUBUC\ {u,v}. For
sufficiency, from A1LB|C, we get ullBJAUC\ {u}. This and the condition ullv/AUBUC\ {u,v}
imply ullBU{v}|JAUC\ {u,v}. Then we obtain ullv|]AUC\ {u,v}, and this completes our proof
for the theorem. O
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