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Abstract
We consider a hierarchy of queries about causal relationships in graphical models, where each level
in the hierarchy requires more detailed information than the one below. The hierarchy consists of
three levels: associative relationships, derived from a joint distribution over the observable vari-
ables; cause-effect relationships, derived from distributions resulting from external interventions;
and counterfactuals, derived from distributions that span multiple “parallel worlds” and resulting
from simultaneous, possibly conflicting observations and interventions. We completely character-
ize cases where a given causal query can be computed from information lower in the hierarchy, and
provide algorithms that accomplish this computation. Specifically, we show when effects of in-
terventions can be computed from observational studies, and when probabilities of counterfactuals
can be computed from experimental studies. We also provide a graphical characterization of those
queries which cannot be computed (by any method) from queries at a lower layer of the hierarchy.
Keywords: causality, graphical causal models, identification

1. Introduction

The human mind sees the world in terms of causes and effects. Understanding and mastering our en-
vironment hinges on answering questions about cause-effect relationships. In this paper we consider
three distinct classes of causal questions forming a hierarchy.

The first class of questions involves associative relationships in domains with uncertainty, for
example, “I took an aspirin after dinner, will I wake up with a headache?” The tools needed to
formalize and answer such questions are the subject of probability theory and statistics, for they
require computing or estimating some aspects of a joint probability distribution. In our aspirin
example, this requires estimating the conditional probability P(headache|aspirin) in a population
that resembles the subject in question, that is, sharing age, sex, eating habits and any other traits
that can be measured. Associational relationships, as is well known, are insufficient for establishing
causation. We nevertheless place associative questions at the base of our causal hierarchy, because
the probabilistic tools developed in studying such questions are instrumental for computing more
informative causal queries, and serve therefore as an easily available starting point from which such
computations can begin.

The second class of questions involves responses of outcomes of interest to outside interven-
tions, for instance, “if I take an aspirin now, will I wake up with a headache?” Questions of this type
are normally referred to as causal effects, sometimes written as P(headache|do(aspirin)). They
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differ, of course from the associational counterpart
P(headache|aspirin), because all mechanisms which normally determine aspirin taking behavior,
for example, taste of aspirin, family advice, time pressure, etc. are irrelevant in evaluating the effect
of a new decision.

To estimate effects, scientists normally perform randomized experiments where a sample of
units drawn from the population of interest is subjected to the specified manipulation directly. In
our aspirin example, this might involve treating a group of subjects with aspirin and comparing their
response to untreated subjects, both groups being selected at random from a population resembling
the decision maker in question. In many cases, however, such a direct approach is not possible due
to expense or ethical considerations. Instead, investigators have to rely on observational studies
to infer effects. A fundamental question in causal analysis is to determine when effects can be
inferred from statistical information, encoded as a joint probability distribution, obtained under
normal, intervention-free behavior. A key point here is that in order to make causal inferences
from statistics, additional causal assumptions are needed. This is because without any assumptions
it is possible to construct multiple “causal stories” which can disagree wildly on what effect a
given intervention can have, but agree precisely on all observables. For instance, smoking may be
highly correlated with lung cancer either because it causes lung cancer, or because people who are
genetically predisposed to smoke may also have a gene responsible for a higher cancer incidence
rate. In the latter case there will be no effect of smoking on cancer. Distinguishing between such
causal stories requires additional, non-statistical language. In this paper, the language that we use
for this purpose is the language of graphs, and our causal assumptions will be encoded by a special
directed graph called a causal diagram.

The use of directed graphs to represent causality is a natural idea that arose multiple times in-
dependently: in genetics (Wright, 1921), econometrics (Haavelmo, 1943), and artificial intelligence
(Pearl, 1988; Spirtes et al., 1993; Pearl, 2000). A causal diagram encodes variables of interest as
nodes, and possible direct causal influences between two variables as arrows. Associated with each
node in a causal diagram is a stable causal mechanism which determines its value in terms of the
values of its parents. Unlike Bayesian networks (Pearl, 1988), the relationships between variables
are assumed to be deterministic and uncertainty arises due to the presence of unobserved variables
which have influence on our domain.

The first question we consider is under what conditions the effect of a given intervention can be
computed from just the joint distribution over observable variables, which is obtainable by statis-
tical means, and the causal diagram, which is either provided by a human expert, or inferred from
experimental studies. This identification problem has received consideration attention in the statis-
tics, epidemiology, and causal inference communities (Pearl, 1993a; Spirtes et al., 1993; Pearl and
Robins, 1995; Pearl, 1995; Kuroki and Miyakawa, 1999; Pearl, 2000). In the subsequent sections,
we solve the identification problem for causal effects by providing a graphical characterization for
all non-identifiable effects, and an algorithm for computing all identifiable effects. Note that this
identification problem actually involves two “worlds:” the original world where no interventions
took place furnishes us with a probability distribution from which to make inferences about the sec-
ond, post-intervention world. The crucial feature of causal effect queries which distinguishes them
from more complex questions in our hierarchy is that they are restricted to the post-intervention
world alone.

The third and final class of queries we consider are counterfactual or “what-if” questions which
arise when we simultaneously ask about multiple hypothetical worlds, with potentially conflicting
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interventions or observations. An example of such a question would be “I took an aspirin, and my
headache is gone; would I have had a headache had I not taken that aspirin?” Unlike questions
involving interventions, counterfactuals contain conflicting information: in one world aspirin was
taken, in another it was not. It is unclear therefore how to set up an effective experimental procedure
for evaluating counterfactuals, let alone how to compute counterfactuals from observations alone.
If everything about our causal domain is known, in other words if we have knowledge of both
the causal mechanisms and the distributions over unobservable variables, it is possible to compute
counterfactual questions directly (Balke and Pearl, 1994b). However, knowledge of precise causal
mechanisms is not generally available, and the very nature of unobserved variables means their
stochastic behavior cannot be estimated directly. We therefore consider the more practical question
of how to compute counterfactual questions from both experimental studies and the structure of the
causal diagram.

It may seem strange, in light of what we said earlier about the difficulty of conducting experi-
mental studies, that we take such studies as given. It is nevertheless important that we understand
when it is that “what-if” questions involving multiple worlds can be inferred from quantities com-
putable in one world. Our hierarchical approach to identification allows us to cleanly separate
difficulties that arise due to multiplicity of worlds from those involved in the identification of causal
effects. We provide a complete solution to this version of the identification problem by giving algo-
rithms which compute identifiable counterfactuals from experimental studies, and provide graphical
conditions for the class of non-identifiable counterfactuals, where our algorithms fail. Our results
can, of course, be combined to give conditions where counterfactuals can be computed from obser-
vational studies.

The paper is organized as follows. Section 2 introduces the notation and mathematical machin-
ery needed for causal analysis. Section 3 considers the problem of identifying causal effects from
observational studies. Section 4 considers identification of counterfactual queries, while Section 5
summarizes the conclusions. Most of the proofs are deferred to the appendix. This paper consoli-
dates and expands previous results (Shpitser and Pearl, 2006a,b, 2007). Some of the results found
in this paper were also derived independently elsewhere (Huang and Valtorta, 2006b,a).

2. Notation and Definitions

The primary object of causal inquiry is a probabilistic causal model. We will denote variables by
uppercase letters, and their values by lowercase letters. Similarly, sets of variables will be denoted
by bold uppercase, and sets of values by bold lowercase.

Definition 1 A probabilistic causal model (PCM) is a tuple M = 〈U,V,F,P(u)〉, where

• U is a set of background or exogenous variables, which cannot be observed or experimented
on, but which affect the rest of the model.

• V is a set {V1, ...,Vn} of observable or endogenous variables. These variables are functionally
dependent on some subset of U∪V.

• F is a set of functions { f1, ..., fn} such that each fi is a mapping from a subset of U∪V\{Vi}
to Vi, and such that

S

F is a function from U to V.

• P(u) is a joint probability distribution over U.
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The set of functions F in this definition corresponds to the causal mechanisms, while U rep-
resents the background context that influences the observable domain of discourse V, yet remains
outside it. Our ignorance of the background context is represented by a distribution P(u). This
distribution, together with the mechanisms in F, induces a distribution P(v) over the observable do-
main. The causal diagram, our vehicle for expressing causal assumptions, is defined by the causal
model as follows. Each observable variable Vi ∈ V corresponds to a vertex in the graph. Any two
variables Vi ∈U∪V, V j ∈V such that Vi appears in the description of f j are connected by a directed
arrow from Vi to Vj. Furthermore, we make two additional assumptions in this paper. The first is that
P(u) = ∏ui∈u P(ui), and each Ui ∈ U is used in at most two functions in F .1 The second is that all
induced graphs must be acyclic. Models in which these two assumptions hold are called recursive
semi-Markovian. A graph defined as above from a causal model M is said to be a causal diagram
induced by M. Graphs induced by semi-Markovian models are themselves called semi-Markovian.
Fig. 1 and Fig. 2 show some examples of causal diagrams of recursive semi-Markovian models.

The functions in F are assumed to be modular in a sense that changes to one function do not
affect any other. This assumption allows us to model how a PCM would react to changes imposed
from the outside. The simplest change that is possible for causal mechanisms of a variable set X
would be one that removes the mechanisms entirely and sets X to a specific value x. This change,
denoted by do(x) (Pearl, 2000), is called an intervention. An intervention do(x) applied to a model
M results in a submodel Mx. The effects of interventions will be formulated in several ways. For any
given u, the effect of do(x) on a set of variables Y will be represented by counterfactual variables
Yx(u), where Y ∈ Y. As U varies, the counterfactuals Yx(u) will vary as well, and their interven-
tional distribution, denoted by P(y|do(x)) or Px(y) will be used to define the effect of x on Y. We
will denote the event “variable Y attains value y in Mx” by the shorthand yx.

Interventional distributions are a mathematical formalization of an intuitive notion of effect of
action. We now define joint probabilities on counterfactuals, in multiple worlds, which will serve
as the formalization of counterfactual queries. Consider a conjunction of events γ = y1

x1 ∧ ...∧ yk
xk .

If all the subscripts xi are the same and equal to x, γ is simply a set of assignments of values to
variables in Mx, and P(γ) = Px(y1, ...,yk). However, if the actions do(xi) are not the same, and
potentially contradictory, a single submodel is no longer sufficient. Instead, γ is really invoking
multiple causal worlds, each represented by a submodel Mxi . We assume each submodel shares
the same set of exogenous variables U, corresponding to the shared causal context or background
history of the hypothetical worlds. Because the submodels are linked by common context, they can
really be considered as one large causal model, with its own induced graph, and joint distribution
over observable variables. P(γ) can then be defined as a marginal distribution in this causal model.
Formally, P(γ) = ∑{u|u|=γ}P(u), where u |= γ is taken to mean that each variable assignment in
γ holds true in the corresponding submodel of M when the exogenous variables U assume values
u. In this way, P(u) induces a distribution on all possible counterfactual variables in M. In this
paper, we will represent counterfactual utterances by joint distributions such as P(γ) or conditional
distributions such as P(γ|δ), where γ and δ are conjunctions of counterfactual events. Pearl (2000)
discusses counterfactuals, and their probabilistic representation used in this paper in greater depth.

1. Our results are generalizable to other P(u) distributions which may not have such a simple form, but which can be
represented by a set of bidirected arcs in such a way that whenever two sets of U variables are d-separated from each
other, they are marginally independent. However, the exact conditions under which this graphical representation is
valid are beyond the scope of this paper.
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A fundamental question in causal inference is whether a given causal question, either inter-
ventional or counterfactual in nature, can be uniquely specified by the assumptions embodied in
the causal diagram, and easily available information, usually statistical, associated with the causal
model. To get a handle on this question, we introduce an important notion of identifiability (Pearl,
2000).

Definition 2 (identifiability) Consider a class of models M with a description T , and objects φ and
θ computable from each model. We say that φ is θ-identified in T if φ is uniquely computable from
θ in any M ∈M. In this case all models in M which agree on θ will also agree on φ.

If φ is θ-identifiable in T , we write T,θ `id φ. Otherwise, we write T,θ 6`id φ. The above
definition leads immediately to the following corollary which we will use to prove non-identifiability
results.

Corollary 3 Let T be a description of a class of models M. Assume there exist M1,M2 ∈M that
share objects θ, while φ in M1 is different from φ in M2. Then T,θ 6`id φ.

In our context, the objects φ,θ are probability distributions derived from the PCM, where θ
represents available information, while φ represents the quantity of interest. The description T is a
specification of the properties shared all causal models under consideration, or, in other words, the
set of assumptions we wish to impose on those models. Since we chose causal graphs as a language
for specifying assumptions, T corresponds to a given graph.

Graphs earn their ubiquity as a specification language because they reflect in many ways the
way people store experiential knowledge, especially cause-effect relationships. The ease with which
people embrace graphical metaphors for causal and probabilistic notions—ancestry, neighborhood,
flow, and so on—are proof of this affinity, and help ensure that the assumptions specified are mean-
ingful and reliable. A consequence of this is that probabilistic dependencies among variables can be
verified by checking if the flow of influence is blocked along paths linking the variables. By a path
we mean a sequence of distinct nodes where each node is connected to the next in the sequence by
an edge. The precise way in which the flow of dependence can be blocked is defined by the notion
of d-separation (Pearl, 1986; Verma, 1986; Pearl, 1988). Here we generalize d-separation somewhat
to account for the presence of bidirected arcs in causal diagrams.

Definition 4 (d-separation) A path p in G is said to be d-separated by a set Z if and only if either

1 p contains one of the following three patterns of edges: I→M→ J, I↔M→ J, or I←M→
J, such that M ∈ Z, or

2 p contains one of the following three patterns of edges: I→M← J, I↔M← J, I↔M↔ J,
such that De(M)G∩Z = /0.

Two sets X,Y are said to be d-separated given Z in G if all paths from X to Y in G are d-
separated by Z. Paths or sets which are not d-separated are said to be d-connected. What allows
us to connect this notion of blocking of paths in a causal diagram to the notion of probabilistic
independence among variables is that the probability distribution over V and U in a causal model
can be represented as a product of factors, such that each observable node has a factor corresponding
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Figure 1: Causal graphs where P(y|do(x)) is not identifiable

to its conditional distribution given the values of its parents in the graph. In other words, P(v,u) =

∏i P(xi|pa(xi)G).
Whenever the above factor decomposition holds for a distribution P(v,u) and a graph G, we

say G is an I-map of P(v,u). The following theorem links d-separation of vertex sets in an I-map G
with the independence of corresponding variable sets in P.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given Z in every
P for which G is an I-map. Furthermore, the causal diagram induced by any semi-Markovian PCM
M is an I-map of the distribution P(v,u) induced by M.

Note that it’s easy to rephrase the above theorem in terms of ordinary directed acyclic graphs,
since each semi-Markovian graph is really an abbreviation where each bidirected arc stands for
two directed arcs emanating from a hidden common cause. We will abbreviate this statement of
d-separation, and corresponding independence by (X ⊥⊥ Y|Z)G, following the notation of Dawid
(1979). For example in the graph shown in Fig. 6 (a), X 6⊥⊥ Y and X ⊥⊥ Y |Z, while in Fig. 6 (b),
X ⊥⊥ Y and X 6⊥⊥ Y |Z.

Finally we consider the axioms and inference rules we will need. Since PCMs contain proba-
bility distributions, the inference rules we would use to compute queries in PCMs would certainly
include the standard axioms of probability. They also include a set of axioms which govern the be-
havior of counterfactuals, such as Effectiveness, Composition, etc. (Galles and Pearl, 1998; Halpern,
2000; Pearl, 2000). However, in this paper, we will concentrate on a set of three identities applicable
to interventional distributions known as do-calculus (Pearl, 1993b, 2000):

• Rule 1: Px(y|z,w) = Px(y|w) if (Y⊥⊥ Z|X,W)Gx

• Rule 2: Px,z(y|w) = Px(y|z,w) if (Y⊥⊥ Z|X,W)Gx,z
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• Rule 3: Px,z(y|w) = Px(y|w) if (Y⊥⊥ Z|X,W)G
x,z(w)

where Z(W) = Z \An(W)GX
, and Gx,y stands for a directed graph obtained from G by removing

all incoming arrows to X and all outgoing arrows from Y. The rules of do-calculus provide a way
of linking ordinary statistical distributions with distributions resulting from various manipulations.

In the remainder of this section we will introduce relevant graphs and graph-theoretic terminol-
ogy which we will use in the rest of the paper. First, having defined causal diagrams induced by
natural causal models, we consider the graphs induced by models derived from interventional and
counterfactual queries. We note that in a given submodel Mx, the mechanisms determining X no
longer make use of the parents of X to determine their values, but instead set them independently to
constant values x. This means that the induced graph of Mx derived from a model M inducing graph
G can be obtained from G by removing all arrows incoming to X, in other words Mx induces Gx.
A counterfactual γ = y1

x1 ∧ ...∧ yk
xk , as we already discussed invokes multiple hypothetical causal

worlds, each represented by a submodel, where all worlds share the same background context U. A
naive way to graphically represent these worlds would be to consider all the graphs G

X i and have
them share the U nodes. It turns out this representation suffers from certain problems. In Section
4 we discuss this issue in more detail and suggest a more appropriate graphical representation of
counterfactual situations.

We denote Pa(.)G,Ch(.)G,An(.)G,De(.)G as the sets of parents, children, ancestors, and descen-
dants of a given set in G. We denote GX to be the subgraph of G containing all vertices in X, and
edges between these vertices, while the set of vertices in a given graph G is given by ver(G). As
a shorthand, we denote Gver(G)\ver(G′) as G\G′ or G\X, if X = ver(G′), and G′ is a subgraph of
G. We will call the set {X ∈ G|De(X)G = /0} the root set of G. A path connecting X and Y which
begins with an arrow pointing to X is called a back-door path from X , while a path beginning with
an arrow pointing away from X is called a front-door path from X .

The goal of this paper is a complete characterization of causal graphs which permit the answer-
ing of causal queries of a given type. This characterization requires the introduction of certain key
graph structures.

Definition 6 (tree) A graph G such that each vertex has at most one child, and only one vertex
(called the root) has no children is called a tree.

Note that this definition reverses the usual direction of arrows in trees as they are generally
understood in graph theory. If we ignore bidirected arcs, graphs in Fig. 1 (a), (b), (d), (e), (f), (g),
and (h) are trees.

Definition 7 (forest) A graph G such that each vertex has at most one child is called a forest.

Note that the above two definitions reverse the arrow directionality usual for these structures.

Definition 8 (confounded path) A path where all directed arrowheads point at observable nodes,
and never away from observable nodes is called a confounded path.

The graph in Fig. 1 (g) contains a confounded path from Z1 to Z2.

Definition 9 (c-component) A graph G where any pair of observable nodes is connected by a con-
founded path is called a c-component (confounded component).
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Figure 2: Causal graphs admitting identifiable effect P(y|do(x))

Graphs in Fig. 1 (a), (d), (e), (f), and (h) are c-components. Some graphs contain multiple c-
components, for example the graph in Fig. 1 (b) has two maximal c-components: {Y}, and {X ,Z}.
We will denote the set of maximal c-components of a given graph G by C(G). The importance of
c-components stems from the fact that that the observational distribution P(v) can be expressed as
a product of factors Pv\s(s), where each s is a set of nodes forming a c-component. This impor-
tant property is known as c-component factorization, and we will this property extensively in the
remainder of the manuscript to decompose identification problems into smaller subproblems.

In the following sections, we will show how the graph structures we defined in this section are
key for characterizing cases when Px(y) and P(γ) can be identified from available information.

3. Identification of Causal Effects

Like probabilistic dependence, the notion of causal effect of X on Y has an interpretation in terms
of flow. Intuitively, X has an effect on Y if changing X causes Y to change. Since intervening on X
cuts off X from the normal causal influences of its parents in the graph, we can interpret the causal
effect of X on Y as the flow of dependence which leaves X via outgoing arrows only.

Recall that our ultimate goal is to express distributions of the form P(y|do(x)) in terms of the
joint distribution P(v). The interpretation of effect as downward dependence immediately suggests
a set of graphs where this is possible. Specifically, whenever all d-connected paths from X to Y are
front-door from X, the causal effect P(y|do(x)) is equal to P(y|x). In graphs shown in Fig. 2 (a)
and (b) causal effect P(y|do(x)) has this property.

In general, we don’t expect acting on X to produce the same effect as observing X due to the
presence of back-door paths between X and Y. However, d-separation gives us a way to block
undesirable paths by conditioning. If we can find a set Z that blocks all back-door paths from X
to Y, we obtain the following: P(y|do(x)) = ∑z P(y|z,do(x))P(z|do(x)). The term P(y|z,do(x))
is reduced to P(y|z,x) since the influence flow from X to Y is blocked by Z. However, the act of
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adjusting for Z introduced a new effect we must compute, corresponding to the term P(z|do(x)). If
it so happens that no variable in Z is a descendant of X, we can reduce this term to P(z) using the
intuitive argument that acting on effects should not influence causes, or a more formal appeal to rule
3 of do-calculus. Computing effects in this way is always possible if we can find a set Z blocking
all back-door paths which contains no descendants of X. This is known as the back-door criterion
(Pearl, 1993a, 2000). Figs. 2 (c) and (d) show some graphs where the node z satisfies the back-door
criterion with respect to P(y|do(x)), which means P(y|do(x)) is identifiable.

The back-door criterion can fail—a common way involves a confounder that is unobserved,
which prevents adjusting for it. Surprisingly, it is sometimes possible to identify the effect of X on
Y even in the presence of such a confounder. To do so, we want to find a set Z located downstream
of X but upstream of Y, such that the downward flow of the effect of X on Y can be decomposed
into the flow from X to Z, and the flow from Z to Y. Clearly, in order for this to happen Z must
d-separate all front-door paths from X to Y. However, in order to make sure that the component
effects P(z|do(x)) and P(y|do(z)) are themselves identifiable, and combine appropriately to form
P(y|do(x)), we need two additional assumptions: there are no back-door paths from X to Z, and
all back-door paths from Z to Y are blocked by X. It turns out that these three conditions imply
that P(y|do(x)) = ∑z P(y|do(z))P(z|do(x)), and the latter two conditions further imply that the first
term is identifiable by the back-door criterion and equal to ∑z P(y|z,x)P(x), while the second term
is equal to P(z|x). Whenever these three conditions hold, the effect of X on Y is identifiable. This
is known as the front-door criterion (Pearl, 1995, 2000). The front-door criterion holds in the graph
shown in Fig. 2 (e).

Unfortunately, in some graphs neither the front-door, nor the back-door criterion holds. The
simplest such graph, known as the bow arc graph due to its shape, is shown in Fig. 1 (a). The
back-door criterion fails since the confounder node is unobservable, while the front-door criterion
fails since no intermediate variables between X and Y exist in the graph. While the failure of these
two criteria does not imply non-identification, in fact the effect P(y|do(x)) is identifiable in Fig. 2
(f), (g) despite this failure, a simple argument shows that P(y|do(x)) is not identifiable in the bow
arc graph.

Theorem 10 P(v),G 6`id P(y|do(x)) in G shown in Fig. 1 (a).

Since we are interested in completely characterizing graphs where a given causal effect P(y|do(x))
is identifiable, it would be desirable to list difficult graphs like the bow arc graph which prevent iden-
tification of causal effects, in the hope of eventually making such a list complete and finding a way
to identify effects in all graphs not on the list. We start constructing this list by considering graphs
which generalize the bow arc graph since they can contain more than two nodes, but which also
inherit its difficult structure. We call such graphs C-trees.

Definition 11 (C-tree) A graph G which is both a C-component and a tree is called a C-tree.

We call a C-tree with a root node Y Y -rooted. The graphs in Fig. 1 (a), (d), (e), (f), and (h) are
Y -rooted C-trees. It turns out that in any Y -rooted C-tree, the effect of any subset of nodes, other
than Y , on the root Y is not identifiable.

Theorem 12 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes in G which does
not contain Y . Then P(v),G 6`id P(y|do(x)).
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C-trees play a prominent role in the identification of direct effects. Intuitively, the direct effect
of X on Y exists if there is an arrow from X to Y in the graph, and corresponds to the flow of
influence along this arrow. However, simply considering changes in Y after fixing X is insufficient
for isolating direct effect, since X can influence Y along other, longer front-door paths than the
direct arrow. In order to disregard such influences, we also fix all other parents of Y (which as noted
earlier removes all arrows incoming to these parents and thus to Y ). The expression corresponding
to the direct effect of X on Y is then P(y|do(pa(y))). The following theorem links C-trees and direct
effects.

Theorem 13 P(v),G 6`id P(y|do(pa(y))) if and only if there exists a subgraph of G which is a Y -
rooted C-tree.

This theorem might suggest that C-trees might play an equally strong role in identifying arbitrary
effects on a single variable, not just direct effects. Unfortunately, this turns out not to be the case,
due to the following lemma.

Lemma 14 (downward extension lemma) Let V be the set of observable nodes in G, and P(v) the
observable distribution of models inducing G. Assume P(v),G 6`id P(y|do(x)). Let G′ contain all
the nodes and edges of G, and an additional node Z which is a child of all nodes in Y. Then if P(v,z)
is the observable distribution of models inducing G′, then P(v,z),G′ 6`id P(z|do(x)).

Proof Let |Z| = ∏Yi∈Y |Yi| = n. By construction, P(z|do(x)) = ∑y P(z|y)P(y|do(x)). Due to the
way we set the arity of Z, P(Z|Y) is an n by n matrix which acts as a linear map which transforms
P(y|do(x)) into P(z|do(x)). Since we can arrange this linear map to be one to one, any proof of non-
identifiability of P(y|do(x)) immediately extends to the proof of non-identifiability of P(z|do(x)).

What this lemma shows is that identification of effects on a singleton is not any simpler than
the general problem of identification of effect on a set. To find difficult graphs which prevent
identification of effects on sets, we consider a multi-root generalization of C-trees.

Definition 15 (c-forest) A graph G which is both a C-component and a forest is called a C-forest.

If a given C-forest has a set of root nodes R, we call it R-rooted. Graphs in Fig. 3 (a), (b) are
{Y 1,Y 2}-rooted C-forests. A naive way to generalize Theorem 12 would be to state that if G is an
R-rooted C-forest, then the effect of any set X that does not intersect R is not identifiable. However,
as we later show, this is not true. Specifically, we later prove that P(y1,y2|do(x)) in the graph in
Fig. 3 (a) is identifiable. To formulate the correct generalization of Theorem 12, we must understand
what made C-trees difficult for the purposes of identifying effects on the root Y . It turned out that
for particular function choices, the effects of ancestors of Y on Y precisely cancelled themselves out
so even though Y itself was dependent on its parents, it was observationally indistinguishable from
a constant function. To get the same canceling of effects with C-forests, we must define a more
complex graphical structure.

Definition 16 (hedge) Let X,Y be sets of variables in G. Let F,F ′ be R-rooted C-forests in G such
that F ′ is a subgraph of F, X only occur in F, and R ∈ An(Y)Gx . Then F and F ′ form a hedge for
P(y|do(x)).

1950



COMPLETE IDENTIFICATION METHODS FOR THE CAUSAL HIERARCHY

(a) (b)
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W2 Y2
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Figure 3: (a) A graph hedge-less for P(y|do(x)). (b) A graph containing a hedge for P(y|do(x)).

The graph in Fig. 3 (b) contains a hedge for P(y1,y2|do(x)). The mental picture for a hedge is
as follows. We start with a C-forest F ′. Then, F ′ grows new branches, while retaining the same root
set, and becomes F . Finally, we “trim the hedge,” by performing the action do(x) which has the
effect of removing some incoming arrows in F \F ′ (the subgraph of F consisting of vertices not a
part of F ′). Note that any Y -rooted C-tree and its root node Y form a hedge. The right generalization
of Theorem 12 can be stated on hedges.

Theorem 17 Let F,F ′ be subgraphs of G which form a hedge for P(y|do(x)). Then P(v),G 6`id

P(y|do(x)).

Proof outline As before, assume binary variables. We let the causal mechanisms of one of the mod-
els consists entirely of bit parity functions. The second model also computes bit parity for every
mechanism, except those nodes in F ′ which have parents in F ignore the values of those parents. It
turns out that these two models are observationally indistinguishable. Furthermore, any intervention
in F \F ′ will break the bit parity circuits of the models. This break will be felt at the root set R of
the first model, but not of the second, by construction.

Unlike the bow arc graph, and C-trees, hedges prevent identification of effects on multiple
variables at once. Certainly a complete list of all possible difficult graphs must contain structures
like hedges. But are there other kinds of structures that present problems? It turns out that the
answer is “no,” any time an effect is not identifiable in a causal model (if we make no restrictions
on the type of function that can appear), there is a hedge structure involved. To prove that this is so,
we need an algorithm which can identify any causal effect lacking a hedge. This algorithm, which
we call ID, and which can be viewed as a simplified version of the identification algorithm due to
Tian (2002), appears in Fig. 4.

We will explain why each line of ID makes sense, and conclude by showing the operation of
the algorithm on an example. The formal proof of soundness of ID can be found in the appendix.
The first line merely asserts that if no action has been taken, the effect on Y is just the marginal
of the observational distribution P(v) on Y. The second line states that if we are interested in the
effect on Y, it is sufficient to restrict our attention on the parts of the model ancestral to Y. One
intuitive argument for this is that descendants of Y can be viewed as ’noisy versions’ of Y and so
any information they may impart which may be helpful for identification is already present in Y. On
the other hand, variables which are neither ancestors nor descendants of Y lie outside the relevant
causal chain entirely, and have no useful information to contribute.

Line 3 forces an action on any node where such an action would have no effect on Y—assuming
we already acted on X. Since actions remove incoming arrows, we can view line 3 as simplifying
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function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution, G a
causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = /0 return ∑v\y P(v).

2 if V\An(Y)G 6= /0
return ID(y,x∩An(Y)G,∑v\An(Y)G

P,GAn(Y)).

3 let W = (V\X)\An(Y)Gx .
if W 6= /0, return ID(y,x∪w,P,G).

4 if C(G\X) = {S1, ...,Sk}
return ∑v\(y∪x) ∏i ID(si,v\ si,P,G).

if C(G\X) = {S}

5 if C(G) = {G}, throw FAIL(G,G∩S).

6 if S ∈C(G) return ∑s\y ∏{i|Vi∈S}P(vi|v
(i−1)
π ).

7 if (∃S′)S⊂ S′ ∈C(G) return ID(y,x∩S′,

∏{i|Vi∈S′}P(Vi|V
(i−1)
π ∩S′,v(i−1)

π \S′),GS′).

Figure 4: A complete identification algorithm. FAIL propagates through recursive calls like an
exception, and returns the hedge which witnesses non-identifiability. V (i−1)

π is the set of
nodes preceding Vi in some topological ordering π in G.

the causal graph we consider by removing certain arcs from the graph, without affecting the overall
answer. Line 4 is the key line of the algorithm, it decomposes the problem into a set of smaller
problems using the key property of c-component factorization of causal models. If the entire graph
is a single C-component already, further problem decomposition is impossible, and we must provide
base cases. ID has three base cases. Line 5 fails because it finds two C-components, the graph G
itself, and a subgraph S that does not contain any X nodes. But that is exactly one of the properties of
C-forests that make up a hedge. In fact, it turns out that it is always possible to recover a hedge from
these two c-components. Line 6 asserts that if there are no bidirected arcs from X to the other nodes
in the current subproblem under consideration, then we can replace acting on X by conditioning,
and thus solve the subproblem. Line 7 is the most complex case where X is partitioned into two
sets, W which contain bidirected arcs into other nodes in the subproblem, and Z which do not.
In this situation, identifying P(y|do(x)) from P(v) is equivalent to identifying P(y|do(w)) from
P(V|do(z)), since P(y|do(x)) = P(y|do(w),do(z)). But the term P(V|do(z)) is identifiable using
the previous base case, so we can consider the subproblem of identifying P(y|do(w)).

We give an example of the operation of the algorithm by identifying Px(y1,y2) from P(v) in the
graph shown in in Fig. 3 (a). Since G = GAn({Y1,Y2}),C(G\{X}) = {G}, and W = {W1}, we invoke
line 3 and attempt to identify Px,w(y1,y2). Now C(G\{X ,W}) = {Y1,W2→ Y2}, so we invoke line
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W1
X

Y1

(a) (b)

W1 Y1

Figure 5: Subgraphs of G used for identifying Px(y1,y2).

4. Thus the original problem reduces to identifying ∑w2
Px,w1,w2,y2(y1)Pw,x,y1(w2,y2). Solving for the

second expression, we trigger line 2, noting that we can ignore nodes which are not ancestors of W2

and Y2, which means Pw,x,y1(w2,y2) = P(w2,y2). Solving for the first expression, we first trigger line
2 also, obtaining Px,w1,w2,y2(y1) = Px,w(y1). The corresponding G is shown in Fig. 5 (a). Next, we
trigger line 7, reducing the problem to computing Pw(y1) from P(Y1|X ,W1)P(W1). The correspond-
ing G is shown in Fig. 5 (b). Finally, we trigger line 2, obtaining Pw(y1) = ∑w1

P(y1|x,w1)P(w1).
Putting everything together, we obtain: Px(y1,y2) = ∑w2

P(y1,w2)∑w1
P(y1|x,w1)P(w1).

As mentioned earlier, whenever the algorithm fails at line 5, it is possible to recover a hedge
from the C-components S and G considered for the subproblem where the failure occurs. In fact,
it can be shown that this hedge implies the non-identifiability of the original query with which the
algorithm was invoked, which implies the following result.

Theorem 18 ID is complete.

The completeness of ID implies that hedges can be used to characterize all cases where effects
of the form P(y|do(x)) cannot be identified from the observational distribution P(v).

Theorem 19 (hedge criterion) P(v),G 6`id P(y|do(x)) if and only if G contains a hedge for some
P(y′|do(x′)), where y′ ⊆ y, x′ ⊆ x.

We close this section by considering identification of conditional effects of the form P(y|do(x),z)
which are defined to be equal to P(y,z|do(x))/P(z|do(x)). Such expressions are a formalization of
an intuitive notion of “effect of action in the presence of non-contradictory evidence,” for instance
the effect of smoking on lung cancer incidence rates in a particular age group (as opposed to the
effect of smoking on cancer in the general population). We say that evidence z is non-contradictory
since it is conceivable to consider questions where the evidence z stands in logical contradiction to
the proposed hypothetical action do(x): for instance what is the effect of smoking on cancer among
the non-smokers. Such counterfactual questions will be considered in the next section. Condition-
ing can both help and hinder identifiability. P(y|do(x)) is not identifiable in the graph shown in Fig.
6 (a), while it is identifiable in the graph shown in Fig. 6 (b). Conditioning reverses the situation.
In Fig. 6 (a), conditioning on Z renders Y independent of any changes to X , making Px(y|z) equal to
P(y|z). On the other hand, in Fig. 6 (b), conditioning on Z makes X and Y dependent, resulting in
Px(y|z) becoming non-identifiable.

We would like to reduce the problem of identifying conditional effects to the familiar problem
of identifying causal effects without evidence for which we already have a complete algorithm.
Fortunately, rule 2 of do-calculus provides us with a convenient way of converting the unwanted
evidence z into actions do(x) which we know how to handle. The following convenient lemma
allows us to remove as many evidence variables as possible from a conditional effect.
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(a) (b)

X
X

Z
Z

Y

Y

Figure 6: (a) Causal graph with an identifiable conditional effect P(y|do(x),z). (b) Causal graph
with a non-identifiable conditional effect P(y|do(x),z).

function IDC(y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability distribution, G a
causal diagram (an I-map of P).
OUTPUT: Expression for Px(y|z) in terms of P or FAIL(F,F’).

1 if (∃Z ∈ Z)(Y⊥⊥ Z|X,Z\{Z})Gx,z
,

return IDC(y,x∪{z},z\{z},P,G).

2 else let P′ = ID(y∪ z,x,P,G).
return P′/∑y P′.

Figure 7: A complete identification algorithm for conditional effects.

Theorem 20 For any G and any conditional effect Px(y|w) there exists a unique maximal set Z =
{Z ∈W|Px(y|w) = Px,z(y|w\{z})} such that rule 2 applies to Z in G for Px(y|w). In other words,
Px(y|w) = Px,z(y|w\ z).

Of course Theorem 20 does not guarantee that the entire set z can be handled in this way.
In many cases, even after rule 2 is applied, some set of evidence will remain in the expression.
Fortunately, the following result implies that identification of unconditional causal effects is all we
need.

Theorem 21 Let Z ⊆ W be the maximal set such that Px(y|w) = Px,z(y|w \ z). Then Px(y|w) is
identifiable in G if and only if Px,z(y,w\ z) is identifiable in G.

The previous two theorems suggest a simple addition to ID, which we call IDC, shown in Fig.
7, which handles identification of conditional causal effects.

Theorem 22 IDC is sound and complete.

Proof This follows from Theorems 20 and 21.

We conclude this section by showing that our notion of a causal theory as a set of independencies
embodied by the causal graph, together with rules of probability and do-calculus is complete for
computing causal effects, if we also take statistical data embodied by P(v) as axiomatic.
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(a) (b)

A

H H H*

A=false A*=true

Figure 8: (a) A causal graph for the aspirin/headache domain (b) A corresponding twin network
graph for the query P(H∗a∗=true|A = f alse).

Theorem 23 The rules of do-calculus are complete for identifying effects of the form P(y|do(x),z),
where x,y,z are arbitrary sets.

Proof The proofs of soundness of ID and IDC in the appendix use do-calculus. This implies every
line of the algorithms we presented can be rephrased as a sequence of do-calculus manipulations.
But ID and IDC are also complete, which implies the conclusion.

4. Identification of Counterfactuals

While effects of actions have an intuitive interpretation as downward flow, the interpretation of
counterfactuals, or what-if questions is more complex. An informal counterfactual statement in
natural language such as “would I have a headache had I taken an aspirin” talks about multiple
worlds: the actual world, and other, hypothetical worlds which differ in some small respect from the
actual world (e.g., the aspirin was taken), while in most other respects are the same. In this paper,
we represent the actual world by a causal model in its natural state, devoid of any interventions,
while the alternative worlds are represented by submodels Mx where the action do(x) implements
the hypothetical change from the actual state of affairs considered. People make sense of informal
statements involving multiple, possibly conflicting worlds because they expect not only the causal
rules to be invariant across these worlds (e.g., aspirin helps headaches in all worlds), but the worlds
themselves to be similar enough where evidence in one world has ramifications in another. For
instance, if we find ourselves with a headache, we expect the usual causes of our headache to also
operate in the hypothetical world, interacting there with the preventative influence of aspirin. In
our representation of counterfactuals, we model this interaction between worlds by assuming that
the world histories or background contexts, represented by the unobserved U variables are shared
across all hypothetical worlds.

We illustrate the representation method for counterfactuals we introduced in Section 2 by mod-
eling our example question “would I have a headache had I taken an aspirin?” The actual world
referenced by this query is represented by a causal model containing two variables, headache and
aspirin, with aspirin being a parent of headache, see Fig. 8 (a). In this world, we observe that
aspirin has value false. The hypothetical world is represented by a submodel where the action
do(aspirin = true) has been taken. To distinguish nodes in this world we augment their names
with an asterisk. The two worlds share the background variables U, and so can be represented by a
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single causal model with the graph shown in Fig. 8 (b). Our query is represented by the distribution
P(H∗a∗=true|A = f alse), where H is headache, and A is aspirin. Note that the nodes A∗ = true and
A = f alse in Fig. 8 (b) do not share a bidirected arc. This is because an intervention do(a∗ = true)
removes all incoming arrows to A∗, which removes the bidirected arc between A∗ and A.

The graphs representing two hypothetical worlds invoked by a counterfactual query like the one
shown in Fig. 8 (b) are called twin network graphs, and were first proposed as a way to represent
counterfactuals by Balke and Pearl (1994b) and Balke and Pearl (1994a). In addition, Balke and
Pearl (1994b) proposed a method for evaluating expressions like P(H∗a∗=true|A = f alse) when all
parameters of a causal model are known. This method can be explained as follows. If we forget the
causal and counterfactual meaning behind the twin network graph, and simply view it as a Bayesian
network, the query P(H∗a∗=true|A = f alse) can be evaluated using any of the standard inference
algorithms available, provided we have access to all conditional probability tables generated by F
and U of a causal model which gave rise to the twin network graph. In practice, however, complete
knowledge of the model is too much to ask for; the functional relationships as well as the distribution
P(u) are not known exactly, though some of their aspects can be inferred from the observable
distribution P(v).

Instead, the typical state of knowledge of a causal domain is the statistical behavior of the ob-
servable variables in the domain, summarized by the distribution P(v), together with knowledge of
causal directionality, obtained either from expert judgment (e.g., we know that visiting the doctor
does not make us sick, though disease and doctor visits are highly correlated), or direct experi-
mentation (e.g., it’s easy to imagine an experiment which establishes that wet grass does not cause
sprinklers to turn on). We already used these two sources of knowledge in the previous section as a
basis for computing causal effects. Nevertheless, there are reasons to consider computing counter-
factual quantities from experimental, rather than observational studies. In general, a counterfactual
can posit worlds with features contradictory to what has actually been observed. For instance, ques-
tions resembling the headache/aspirin question we used as an example are actually frequently asked
in epidemiology in the more general form where we are interested in estimating the effect of a treat-
ment x on the outcome variable Y for the patients that were not treated (x′). In our notation, this
is just our familiar expression P(Yx|X = x′). The problem with questions such as these is that no
experimental setup exists in which someone is both given and not given treatment. Therefore, it
makes sense to ask under what circumstances we can evaluate such questions even if we are given
as input every experiment that is possible to perform in principle on a given causal model. In our
framework the set of all experiments is denoted as P∗, and is formally defined as {Px|x is any set of
values of X⊆V}. The question that we ask in this section, then, is whether it is possible to identify
a query P(γ|δ), where γ,δ are conjunctions of counterfactual events (with δ possibly empty), from
the graph G and the set of all experiments P∗. We can pose the problem in this way without loss of
generality since we already developed complete methods for identifying members of P∗ from G and
P(v). This means that if for some reason using P∗ as input is not realistic we can combine the meth-
ods which we will develop in this section with those in the previous section to obtain identification
results for P(γ|δ) from G and P(v).

Before tackling the problem of identifying counterfactual queries from experiments, we extend
our example in Fig. 8 (b) to a general graphical representation for worlds invoked by a counterfac-
tual query. The twin network graph is a good first attempt at such a representation. It is essentially
a causal diagram for a model encompassing two potential worlds. Nevertheless, the twin network
graph suffers from a number of problems. Firstly, it can easily come to pass that a counterfactual
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Figure 9: Nodes fixed by actions denoted with an overline, signifying that all incoming arrows are
cut. (a) Original causal diagram (b) Parallel worlds graph for P(yx|x′,zd,d) (the two nodes
denoted by U are the same). (c) Counterfactual graph for P(yx|x′,zd,d). (d) Counterfac-
tual graph for P(yx,z|x′).

query of interest would involve three or more worlds. For instance, we might be interested in how
likely the patient would be to have a symptom Y given a certain dose x of drug X , assuming we
know that the patient has taken dose x′ of drug X , dose d of drug D, and we know how an interme-
diate symptom Z responds to treatment d. This would correspond to the query P(yx|x′,zd,d), which
mentions three worlds, the original model M, and the submodels Md,Mx. This problem is easy to
tackle—we simply add more than two submodel graphs, and have them all share the same U nodes.
This simple generalization of the twin network model was considered by Avin et al. (2005), and
was called there the parallel worlds graph. Fig. 9 shows the original causal graph and the parallel
worlds graph for γ = yx∧ x′∧ zd ∧d.

The other problematic feature of the twin network graph, which is inherited by the parallel
worlds graph, is that multiple nodes can sometimes correspond to the same random variable. For
example, in Fig. 9 (b), the variables Z and Zx are represented by distinct nodes, although it’s easy
to show that since Z is not a descendant of X , Z = Zx. These equality constraints among nodes
can make the d-separation criterion misleading if not used carefully. For instance, Yx ⊥⊥ Dx|Z
even though using d-separation in the parallel worlds graph suggests the opposite. This sort of
problem is fairly common in causal models which are not faithful (Spirtes et al., 1993) or stable
(Pearl, 2000), in other words in models where d-separation statements in a causal diagram imply
independence in a distribution, but not vice versa. However, lack of faithfulness usually arises due
to “numeric coincidences” in the observable distribution. In this case, the lack of faithfulness is
“structural,” in a sense that it is possible to refine parallel worlds graphs in such a way that the node
duplication disappears, and the attendant independencies not captured by d-separation are captured
by d-separation in refined graphs.

This refinement has two additional beneficial side effects. The first is that by removing node
duplication, we also determine which syntactically distinct counterfactual variables correspond to
the same random variable. By identifying such equivalence classes of counterfactual variables, we
guarantee that syntactically different variables are in fact different, and this makes it simpler to rea-
son about counterfactuals in order to identify them. For instance, a counterfactual P(yx,y′) may
either be non-identifiable or inconsistent (and so identifiable to equal 0), depending on whether Yx

and Y are the same variable. The second benefit of this refinement is that resulting graphs are gen-

1957



SHPITSER AND PEARL

erally much smaller and less cluttered than parallel worlds graphs, and so are easier to understand.
Compare, for instance, the graphs in Fig. 9 (b) and Fig. 9 (c). To rid ourselves of duplicates, we
need a formal way of determining when variables from different submodels are in fact the same.
The following lemma does this.

Lemma 24 Let M be a model inducing G containing variables α,β with the following properties:

• α and β have the same domain of values.

• There is a bijection f from Pa(α) to Pa(β) such that a parent γ and f (γ) have the same domain
of values.

• The functional mechanisms of α and β are the same (except whenever the function for α uses
the parent γ, the corresponding function for β uses f (γ)).

Assume an observable variable set Z was observed to attain values z in Mx, the submodel obtained
from M by forcing another observable variable set X to attain values x. Assume further that for
each γ ∈ Pa(α), either f (γ) = γ, or γ and f (γ) attain the same values (whether by observation or
intervention). Then α and β are the same random variable in Mx with observations z.

Proof This follows from the fact that variables in a causal model are functionally determined from
their parents.

If two distinct nodes in a causal diagram represent the same random variable, the diagram con-
tains redundant information, and the nodes must be merged. If two nodes, say corresponding to
Yx,Yz, are established to be the same in G, they are merged into a single node which inherits all
the children of the original two. These two nodes either share their parents (by induction) or their
parents attain the same values. If a given parent is shared, it becomes the parent of the new node.
Otherwise, we pick one of the parents arbitrarily to become the parent of the new node. This oper-
ation is summarized by the following lemma.

Lemma 25 Let Mx be a submodel derived from M with set Z observed to attain values z, such that
Lemma 24 holds for α,β. Let M′ be a causal model obtained from M by merging α,β into a new
node ω, which inherits all parents and the functional mechanism of α. All children of α,β in M ′

become children of ω. Then Mx,M′x agree on any distribution consistent with z being observed.

Proof This is a direct consequence of Lemma 24.

The new node ω we obtain from Lemma 25 can be thought of as a new counterfactual variable.
As mentioned in section 2, such variables take the form Yx where Y is the variable in the original
causal model, and x is a subscript specifying the action which distinguishes the counterfactual.
Since we only merge two variables derived from the same original, specifying Y is simple. But
what about the subscript? Intuitively, the subscript of ω contains those fixed variables which are
ancestors of ω in the graph G′ of M′. Formally the subscript is w, where W = An(ω)G′ ∩ sub(γ),
where the sub(γ) corresponds to those nodes in G′ which correspond to subscripts in γ. Since we
replaced α,β by ω, we replace any mention of α,β in our given counterfactual query P(γ) by ω.
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function make-cg(G,γ)
INPUT: G a causal diagram, γ a conjunction of counterfactual events
OUTPUT: A counterfactual graph Gγ, and either a set of events γ′ s.t. P(γ′) = P(γ) or
INCONSISTENT

• Construct a submodel graph Gxi for each action do(xi) mentioned in γ. Construct the parallel
worlds graph G′ by having all such submodel graphs share their corresponding U nodes.

• Let π be a topological ordering of nodes in G′, let γ′ := γ.

• Apply Lemmas 24 and 25, in order π, to each observable node pair α,β derived from the same
variable in G. For each α,β that are the same, do:

– Let G′ be modified as specified in Lemma 25.

– Modify γ′ by renaming all occurrences of β to α.

– If val(α) 6= val(β), return G′,INCONSISTENT.

• return (G′An(γ′),γ
′), where An(γ′) is the set of nodes in G′ ancestral to nodes corresponding to

variables mentioned in γ′.

Figure 10: An algorithm for constructing counterfactual graphs

Note that since α,β are the same, their value assignments must be the same (say equal to y). The
new counterfactual ω inherits this assignment.

We summarize the inductive applications of Lemma 24, and 25 by the make-cg algorithm,
which takes γ and G as arguments, and constructs a version of the parallel worlds graph without
duplicate nodes. We call the resulting structure the counter f actual graph of γ, and denote it by Gγ.
The algorithm is shown in Fig. 10.

There are three additional subtleties in make-cg. The first is that if variables Yx,Yz were judged
to be the same by Lemma 24, but γ assigns them different values, this implies that the original set
of counterfactual events γ is inconsistent, and so P(γ) = 0. The second is that if we are interested
in identifiability of P(γ), we can restrict ourselves to the ancestors of γ in G′. We can justify this
using the same intuitive argument we used in Section 3 to justify Line 2 in ID. The formal proof
for line 2 we provide in the appendix applies with little change to make-cg. Finally, because the
algorithm can make an arbitrary choice picking a parent of ω each time Lemma 25 is applied, both
the counterfactual graph G′, and the corresponding modified counterfactual γ′ are not unique. This
does not present a problem, however, as any such graph is acceptable for our purposes.

We illustrate the operation of make-cg by showing how the graph in Fig. 9 (c) is derived from
the graph in Fig. 9 (b). We start the application of Lemma 24 from the topmost observable nodes,
and conclude that the node pairs Dx,D, and Xd,X have the same functional mechanisms, and the
same parent set (in this case the parents are unobservable nodes Ud for the first pair, and U for the
second). We then use Lemma 25 to obtain the graph shown in Fig. 11 (a). Since the node pairs are
the same, we pick the name of one of the nodes of the pair to serve as the name of the new node. In
our case, we picked D and X . Note that for this graph, and all subsequent intermediate graphs we
generate, we use the convention that if a merge creates a situation where an unobservable variable
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Figure 11: Intermediate graphs obtained by make-cg in constructing the counterfactual graph for
P(yx|x′,zd,d) from Fig. 9 (b).

has a single child, that variable is omitted from the graph. For instance, in Fig. 11 (a), the variable
Ud , and its corresponding arrow to D omitted.

Next, we apply Lemma 24 for the node pair Wd ,W . In this case, the functional mechanisms
are once again the same, while the parents of Wd ,W are X and Uw. We can also apply Lemma 24
twice to conclude that Z,Zx and Zd are in fact the same node, and so can be merged. The functional
mechanisms of these three nodes are the same, and they share the parent Uz. As far as the parents of
this triplet, the Uz parent is shared by all three, while Z,Zx share the parent D, and Zd has a separate
parent d, fixed by intervention. However, in our counterfactual query, which is P(yx|x′,zd,d), the
variable D happens to be observed to attain the value d, the same as the intervention value for the
parent of Zd . This implies that for the purposes of the Z,Zx,Zd triplet, their D-derived parents share
the same value, which allows us to conclude they are the same random variable. The intuition here
is that while intervention and observation are not the same operation, they have the same effect if
the relevant U variables happen to react in the same way to both the given intervention, and the
given observation (this is the essence of the Axiom of Composition discussed by Pearl (2000).) In
our case, U variables react the same way because the parallel worlds share all unobserved variables.

There is one additional subtlety in performing the merge of the triplet Z,Zx,Zd . If we examine
our query P(yx|x′,zd,d), we notice that Zd , or more precisely its value, appears in it. When we
merge nodes, we only use one name out of the original two. It’s possible that some of the old names
appear in the query, which means we must replace all references to the old, pre-merge nodes with
the new post-merge name we picked. Since we picked the name Z for the newly merged node, we
replace the reference to Zd in our query by the reference to Z, so our modified query is P(yx|x′,z,d).
Since the variables were established to be the same, this is a safe syntactic transformation.

After Wd ,W , and the Z,Zx,Zd triplet are merged, we obtain the graph in Fig. 11 (b). Finally,
we apply Lemma 24 one more time to conclude Y and Yd are the same variable, using the same
reasoning as before. After performing this final merge, we obtain the graph in Fig. 11 (c). It’s easy to
see that Lemma 24 no longer applies to any node pair: W and Wx differ in their X-derived parent, and
Y , and Yx differ on their W -derived parent, which was established inductively. The final operation
which make-cg performs is restricting the graph in Fig. 11 (b) to variables actually relevant for
computing the (potentially syntactically modified) query it was given as input, namely P(yx|x′,z,d).
These relevant variables are ancestral to variables in the query in the final intermediate graph we
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function ID*(G,γ)
INPUT: G a causal diagram, γ a conjunction of counterfactual events
OUTPUT: an expression for P(γ) in terms of P∗ or FAIL

1 if γ = /0, return 1

2 if (∃xx′.. ∈ γ), return 0

3 if (∃xx.. ∈ γ), return ID*(G,γ\{xx..})

4 (G′,γ′) = make-cg(G,γ)

5 if γ′ = INCONSISTENT, return 0

6 if C(G′) = {S1, ...,Sk},
return ∑V (G′)\γ′ ∏i ID*(G,si

v(G′)\si)

7 if C(G′) = {S} then,

8 if (∃x,x′) s.t. x 6= x′,x ∈ sub(S),x′ ∈ ev(S),
throw FAIL

9 else, let x =
S

sub(S)
return Px(var(S))

function IDC*(G,γ,δ)
INPUT: G a causal diagram, γ,δ conjunctions of counterfactual events
OUTPUT: an expression for P(γ|δ) in terms of P∗, FAIL, or
UNDEFINED

1 if ID*(G,δ) = 0, return UNDEFINED

2 (G′,γ′∧δ′) = make-cg(G,γ∧δ)

3 if γ′∧δ′ = INCONSISTENT, return 0

4 if (∃yx ∈ δ′) s.t. (Yx ⊥⊥ γ′)G′yx ,

return IDC*(G,γ′yx ,δ′ \{yx})

5 else, let P′ = ID*(G,γ′∧δ′). return P′/P′(δ)

Figure 12: Counterfactual identification algorithms.

obtained. In our case, we remove nodes W and Y (and their adjacent edges) from consideration, to
finally obtain the graph in Fig. 9 (c), which is a counterfactual graph for our query.

Having constructed a graphical representation of worlds mentioned in counterfactual queries,
we can turn to identification. We construct two algorithms for this task, the first is called ID* and
works for unconditional queries, while the second, IDC*, works on queries with counterfactual
evidence and calls the first as a subroutine. These are shown in Fig. 12.
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These algorithms make use of the following notation: sub(.) returns the set of subscripts, var(.)
the set of variables, and ev(.) the set of values (either set or observed) appearing in a given coun-
terfactual conjunction (or set of counterfactual events), while val(.) is the value assigned to a given
counterfactual variable. This notation is used to extract variables and values present in the original
causal model from a counterfactual which refers to parallel worlds. As before, C(G′) is the set of
maximal C-components of G′, except we don’t count nodes in G′ fixed by interventions as part of
any C-component. V (G′) is the set of observable nodes of G′ not fixed by interventions. Follow-
ing Pearl (2000), G′yx is the graph obtained from G′ by removing all outgoing arcs from Yx; γ′yx is

obtained from γ′ by replacing all descendant variables Wz of Yx in γ′ by Wz,y. A counterfactual sr,
where s,r are value assignments to sets of nodes, represents the event “the node set S attains values
s under intervention do(r).” For instance, the term si

v(g′)\si stands for the event “the node set Si

attains values si under the intervention do(v(g′)\ si),” in other words under the intervention where
we fix the values of all observable nodes in G′ except those in Si. Finally, we take xx.. to mean some
counterfactual variable derived from X where x appears in the subscript (the rest of the subscript
can be arbitrary), which also attains value x.

The notation used in these algorithms is somewhat intricate, so we give an intuitive description
of each line. We start with ID*. The first line states that if γ is an empty conjunction, then its prob-
ability is 1, by convention. The second line states that if γ contains a counterfactual which violates
the Axiom of Effectiveness (Pearl, 2000), then γ is inconsistent, and we return probability 0. The
third line states that if a counterfactual contains its own value in the subscript, then it is a tautolog-
ical event, and it can be removed from γ without affecting its probability. Line 4 invokes make-cg
to construct a counterfactual graph G′, and the corresponding relabeled counterfactual γ′. Line 5
returns probability 0 if an inconsistency was found during the construction of the counterfactual
graph, for example, if two variables found to be the same in γ had different value assignments. Line
6 is analogous to Line 4 in the ID algorithm, it decomposes the problem into a set of subproblems,
one for each C-component in the counterfactual graph. In the ID algorithm, the term corresponding
to a given C-component Si of the causal diagram was the effect of all variables not in Si on variables
in Si, in other words Pv\si

(si), and the outermost summation on line 4 was over values of variables
not in Y,X. Here, the term corresponding to a given C-component Si of the counterfactual graph
G′ is the conjunction of counterfactual variables where each variable contains in its subscript all
variables not in the C-component Si, in other words v(G′)\ si, and the outermost summation is over
observable variables not in γ′, that is over v(G′)\γ′, where we interpret γ′ as a set of counterfactuals,
rather than a conjunction. Line 7 is the base case, where our counterfactual graph has a single C-
component. There are two cases, corresponding to line 8 and line 9. Line 8 says that if γ′ contains a
“conflict,” that is an inconsistent value assignment where at least one value is in the subscript, then
we fail. Line 9 says if there are no conflicts, then its safe to take the union of all subscripts in γ′, and
return the effect of the subscripts in γ′ on the variables in γ′.

The IDC*, like its counterpart IDC, is shorter. The first line fails if δ is inconsistent. IDC did
not have an equivalent line, since we can assume P(v) is positive. The problem with counterfactual
distributions is there is no simple way to prevent non-positive distributions spanning multiple worlds
from arising, even if the original P(v) was positive—hence the explicit check. The second line
constructs the counterfactual graph, except since make-cg can only take conjunctions, we provide
it with a joint counterfactual γ∧ δ. Line 3 returns 0 if an inconsistency was detected. Line 4 of
IDC* is the central line of the algorithm and is analogous to line 1 of IDC. In IDC, we moved a
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value assignment Z = z from being observed to being fixed if there were no back-door paths from
Z to the outcome variables Y given the context of the effect of do(x). Here in IDC*, we move a
counterfactual value assignment Yx = y from being observed (that is being a part of δ), to being
fixed (that is appearing in every subscript of γ′) if there are no back-door paths from Yx to the
counterfactual of interest γ′. Finally, line 5 of IDC* is the analogue of line 2 of IDC, we attempt to
identify a joint counterfactual probability, and then obtain a conditional counterfactual probability
from the result.

We illustrate the operation of these algorithms by considering the identification of a query
P(yx|x′,zd,d) we mentioned earlier. Since P(x′,zd,d) is not inconsistent, we proceed to construct
the counterfactual graph on line 2. Suppose we produce the graph in Fig. 9 (c), where the corre-
sponding modified query is P(yx|x′,z,d). Since P(yx,x′,z,d) is not inconsistent we proceed to the
next line, which moves z,d (with d being redundant due to graph structure) to the subscript of yx,
to obtain P(yx,z|x′), and calls IDC* with this query recursively. Note that since the subscripts in
one of the variables of our query changed, the counterfactual graph generated will change as well.
In particular, the invocation of make-cg with the joint distribution from which P(yx,z|x′) is derived,
namely P(yx,z,x′), will result in the graph shown in Fig. 9 (d). Since X ′ has a back-door path to Yx,z

in this graph, we can no longer call IDC* recursively, so we invoke ID* with the query P(yx,z,x′).
The first interesting line in ID* is line 6, which first computes P(yx,z,wx,z,x′) by C-component

factorization, and then computes P(yx,z,x′) from P(yx,z,wx,z,x′) by marginalizing over Wx,z.2 Since
the counterfactual graph for this query (Fig. 9 (d)) has two C-components, {Yx,z,X} and {Wx,z},
P(yx,z,wx,z,x′) = P(yx,z,w,x′w)P(wx,z), which can be simplified by removing redundant subscripts to
P(yz,w,x′)P(wx). Line 6 then recursively calls ID* with P(yx,z,w,x′) and P(wx), multiplies the results
and marginalizes over Wx. The first recursive call reaches line 9 with P(yz,w,x′), which is identifiable
as Pz,w(y,x′) from P∗. The second term is trivially identifiable as Px(w), which means our query is
identifiable as P′ = ∑w Pz,w(y,x′)Px(w), and the conditional query is equal to P′/P′(x′).

The definitions of ID*, and IDC* reveal their close similarity to algorithms ID and IDC in
the previous section. The major differences lie in the failure and success base cases, and slightly
different subscript notation. This is not a coincidence, since a counterfactual graph can be thought
of as a causal graph for a particular large causal model which happens to have some distinct nodes
share the same causal mechanisms. This means that all the theorems and definitions used in the
previous sections for causal diagrams transfer over without change to counterfactual graphs. Using
this fact, we will show that ID*, and IDC* are sound and complete for identifying P(γ), and P(γ|δ)
respectively.

Theorem 26 (soundness) If ID* succeeds, the expression it returns is equal to P(γ) in a given
causal graph. Furthermore, if IDC* does not output FAIL, the expression it returns is equal to
P(γ|δ) in a given causal graph, if that expression is defined, and UNDEFINED otherwise.

Proof outline The first line merely states that the probability of an empty conjunction is 1, which
is true by convention. Lines 2 and 3 follow by the Axiom of Effectiveness (Galles and Pearl, 1998).
The soundness of make-cg has already been established, which implies the soundness of line 4.
Line 6 decomposes the problem using c-component factorization. The soundness proof for this
decomposition, also used in the previous section, is in the appendix. Line 9 asserts that if a set

2. Note that since Wx,z is a counterfactual variable derived from W , it shares its domain with W . Therefore it makes
sense when marginalizing to operate over the values of W , denoted by w in the subscript of the summation.
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of counterfactual events does not contain conflicting value assignments to any variable, obtained
either by observation or intervention, then taking the union of all actions of the events results in a
consistent action. The probability of the set of events can then be computed from a submodel where
this consistent action has taken place. A full proof of this is in the appendix.

To show completeness, we follow the same strategy we used in the previous section. We cata-
logue all difficult counterfactual graphs which arise from queries which cannot be identified from
P∗. We then show these graphs arise whenever ID* and IDC* fail. This, together with the soundness
theorem we already proved, implies that these algorithms are complete.

The simplest difficult counterfactual graph arises from the query P(yx,y′x′) named “probability of
necessity and sufficiency” by Pearl (2000). This graph, shown in Fig. 8 (b) with variable relabeling,
is called the “w-graph” due to its shape (Avin et al., 2005). This query is so named because if
P(yx,y′x′) is high, this implies that if the variable X is forced to x, variable Y is likely to be y, while
if X is forced to some other value, Y is likely to not be y. This means that the action do(x) is likely a
necessary and sufficient cause of Y assuming value y, up to noise. The w-graph starts our catalogue
of bad graphs with good reason, as the following lemma shows.

Lemma 27 Assume X is a parent of Y in G. Then P∗,G 6`id P(yx,y′x′),P(yx,y′) for any value pair
y,y′.

Proof See Avin et al. (2005).

The intuitive explanation for this result is that P(yx,y′x′) is derived from the joint distribution over
the counterfactual variables in the w-graph, while if we restrict ourselves to P∗, we only have access
to marginal distributions—one marginal for each possible world. Because counterfactual variables
Yx and Yx′ share an unobserved parent U , they are dependent, and their joint distribution cannot be
decomposed into a product of marginals. This means that the information encoded in the marginals
is insufficient to uniquely determine the joint we are interested in. This intuitive argument can be
generalized to a counterfactual graph with more than two nodes, the so-called “zig-zag graphs” an
example of which is shown in Fig. 13 (b).

Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W 1, ...,W k on the path. Then P∗,G 6`id P(yx,w1, ...,wk,zx′),
P(yx,w1, ...,wk,z) for any value assignments y,w1, ...,wk,z.

The w-graph in Fig. 8 (b) and the zig-zag graph in Fig. 13 (b) have very special structure, so
we don’t expect our characterization to be complete with just these graphs. In order to continue, we
must provide two lemmas which allow us to transform difficult graphs in various ways by adding
nodes and edges, while retaining the non-identifiability of the underlying counterfactual from P∗.

Lemma 29 (downward extension lemma) Assume P∗,G 6`id P(γ). Let {y1
x1 , ...,yn

xm} be a subset
of counterfactual events in γ. Let G′ be a graph obtained from G by adding a new child W of
Y 1, ...,Y n, and let P′∗ be the set of all interventional distributions in models inducing G′. Let γ′ =
(γ\{y1

x1 , ...,yn
xm})∪{wx1 , ...,wxm}, where w is an arbitrary value of W. Then P′∗,G

′ 6`id P(γ′).
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(a)
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Figure 13: (a) Causal diagram (b) Corresponding counterfactual graph for the non-identifiable
query P(Yx,W 1,W 2,Zx′).

The first result states that non-identification on a set of parents (causes) translates into non-
identification on children (effects). The intuitive explanation for this is that it is possible to construct
a one-to-one function from the space of distributions on causes to the space of distributions on
effects. If a given P(γ) cannot be identified from P∗, this implies that there exist two models which
agree on P∗, but disagree on P(γ), where γ is a set of counterfactual causes. It is then possible to
augment these models using the one-to-one function in question to obtain disagreement on P(δ),
where δ is a set of counterfactual effects of γ. A more detailed argument is found in the appendix.

Lemma 30 (contraction lemma) Assume P∗,G 6`id P(γ). Let G′ be obtained from G by merging
some two nodes X ,Y into a new node Z where Z inherits all the parents and children of X ,Y ,
subject to the following restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W )G, then Y 6∈ An(W )G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = /0.

• If (Yw,Xs ∈ γ), then w and s agree on all variable settings.

Assume |X | × |Y | = |Z| and there’s some isomorphism f assigning value pairs x,y to a value
f (x,y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X ,Y}, and values x,y occur in s, replace them by f (x,y).

• If W 6∈ {X ,Y}, and the value of one of X ,Y occur in s, replace it by some z consistent with the
value of X or Y .

• If X ,Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f (x,y)s\{x}.

• otherwise, replace every variable pair of the form Yr = y,Xs = x by Zr,s = f (x,y).

Then P∗,G′ 6`id P(γ′).
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This lemma has a rather complicated statement, but the basic idea is very simple. If we have
a causal model with a graph G where some counterfactual P(γ) is not identifiable, then a coarser,
more “near-sighted” view of G which merges two distinct variables with their own mechanisms
into a single variable with a single mechanism will not render P(γ) identifiable. This is because
merging nodes in the graph does not alter the model, but only our state of knowledge of the model.
Therefore, whatever model pair was used to prove P(γ) non-identifiable will remain the same in the
new, coarser graph. The complicated statement of the lemma is due to the fact that we cannot allow
arbitrary node merges, we must satisfy certain coherence conditions. For instance, the merge cannot
create directed cycles in the graph.

It turns out that whenever ID* fails on P(γ), the corresponding counterfactual graph contains a
subgraph which can be obtained by a set of applications of the previous two lemmas to the w-graph
and the zig-zag graphs. This allows an argument that shows P(γ) cannot be identified from P∗.

Theorem 31 (completeness) If ID* or IDC* fail, then the corresponding query is not identifiable
from P∗.

Since ID* is complete for P(γ) queries, we can give a graphical characterization of counterfac-
tual graphs where P(γ) cannot be identified from P∗.

Theorem 32 Let Gγ,γ′ be obtained from make-cg(G,γ). Then P∗,G 6`id P(γ) if and only if there
exists a C-component S⊆ An(γ′)Gγ where some X ∈ Pa(S) is set to x while at the same time either X
is also a parent of another node in S and is set to another value x′, or S contains a variable derived
from X which is observed to be x′.

Proof This follows from Theorem 31 and the construction of ID*.

5. Conclusions

This paper considers a hierarchy of queries about relationships among variables in graphical causal
models: associational relationships which can be obtained from observational studies, cause-effect
relationships obtained by experimental studies, and counterfactuals, which are derived from par-
allel worlds resulting from hypothetical actions, possibly conflicting with available evidence. We
consider the identification problem for this hierarchy, the task of computing a query from the given
causal diagram and available information lower in the hierarchy.

We provide sound and complete algorithms for this identification problem, and a graphical char-
acterization of non-identifiable queries where these algorithms must fail. Specifically, we provide
complete algorithms for identifying causal effects and conditional causal effects from observational
studies, and show that a graphical structure called a hedge completely characterizes all cases where
causal effects are non-identifiable. As a corollary, we show that the three rules of do-calculus are
complete for identifying effects. We also provide complete algorithms for identifying counterfac-
tual queries (possibly conditional) from experimental studies. If we view the structure of the causal
graph as experimentally testable, as is often the case in practice, this result can be viewed as giving
a full characterization of testable counterfactuals assuming structural semantics.

These results settle important questions in causal inference, and pave the way for computing
more intricate causal queries which involve nested counterfactuals, such as those defining direct
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and indirect effects (Pearl, 2001), and path-specific effects (Avin et al., 2005). The characterization
of non-identifiable queries we provide defines precisely the situations when such queries cannot
be computed precisely, and must instead by approximated using methods such as bounding (Balke
and Pearl, 1994a), instrumental variables (Pearl, 2000), or additional assumptions, such as linearity,
which can make identification simpler.
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Appendix A.

Here, we augment the intuitive proof outlines we gave in the main body of the paper with more
formal arguments. We start with a set of results which were used to classify graphs with non-
identifiable effects. In the proofs presented here, we will construct the distributions which make
up our set of premises to be positive. This is because non-positive distributions present a number
of technical difficulties, for instance d-separation and independence are not related in a straight-
forward way in such distributions, and conditional distributions may not be defined. We should
mention, however, that distributions which span multiple hypothetical worlds which we discussed
in Section 4 may be non-positive by definition.

Theorem 5 If sets X and Y are d-separated by Z in G, then X is independent of Y given Z in every
P for which G is an I-map. Furthermore, the causal diagram induced by any semi-Markovian PCM
M is a semi-Markovian I-map of the distribution P(v,u) induced by M.

Proof It is not difficult to see that if we restrict d-separation queries to a subset of variables W in
some graph G, the corresponding independencies in P(w) will only hold whenever the d-separation
statements hold. Furthermore, if we replace G by a latent projection L (Pearl, 2000), where we
view variables V\W as hidden, independencies in P(w) will only hold whenever the corresponding
d-separation statement (extended to include bidirected arcs) holds in L.

Theorem 10 P(v),G 6`id P(y|do(x)) in G shown in Fig. 1 (a).

Proof We construct two causal models M1 and M2 such that P1(X ,Y ) = P2(X ,Y ), and P1
x (Y ) 6=

P2
x (Y ). The two models agree on the following: all 3 variables are boolean, U is a fair coin, and

fX(u) = u. Let ⊕ denote the exclusive or (XOR) function. Then the value of Y is determined by
the function u⊕ x in M1, while Y is set to 0 in M2. Then P1(Y = 0) = P2(Y = 0) = 1, P1(X = 0) =
P2(X = 0) = 0.5. Therefore, P1(X ,Y ) = P2(X ,Y ), while P2

x (Y = 0) = 1 6= P1
x (Y = 0) = 0.5. Note

that while P is non-positive, it is straightforward to modify the proof for the positive case by let-
ting fY functions in both models return 1 half the time, and the values outlined above half the time.
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Theorem 12 Let G be a Y -rooted C-tree. Let X be any subset of observable nodes in G which does
not contain Y . Then P(v),G 6`id P(y|do(x)).

Proof We generalize the proof for the bow arc graph. We can assume without loss of generality
that each unobservable U in G has exactly two observable children. We construct two models with
binary nodes. In the first model, the value of all observable nodes is set to the bit parity (sum modulo
2) of the parent values. In the second model, the same is true for all nodes except Y , with the latter
being set to 0 explicitly. All U nodes in both models are fair coins. Since G is a tree, and since every
U ∈ U has exactly two children in G, every U ∈ U has exactly two distinct downward paths to Y in
G. It’s then easy to establish that Y counts the bit parity of every node in U twice in the first model.
But this implies P1(Y = 1) = 0.

Because bidirected arcs form a spanning tree over observable nodes in G, for any set of nodes
X such that Y 6∈X, there exists U ∈U with one child in An(X)G and one child in G\An(X)G. Thus
P1

x(Y = 1) > 0, but P2
x(Y = 1) = 0. It is straightforward to generalize this proof for the positive P(v)

in the same way as in Theorem 10.

Theorem 13 P(v),G 6`id P(y|do(pa(y))) if and only if there exists a subgraph of G which is a Y -
rooted C-tree.

Proof From Tian (2002), we know that whenever there is no subgraph G′ of G, such that all nodes
in G′ are ancestors of Y , and G′ is a C-component, Ppa(Y )(Y ) is identifiable. From Theorem 12,
we know that if there is a Y -rooted C-tree containing a non-empty subset S of parents of Y , then
Ps(Y ) is not identifiable. But it is always possible to extend the counterexamples which prove non-
identification of Ps(Y ) with additional variables which are independent.

Theorem 17 Let F,F ′ be subgraphs of G which form a hedge for P(y|do(x)). Then P(v),G 6`id

P(y|do(x)).

Proof We first show Px(r) is not identifiable in F . As before, we assume each U has two observable
children. We construct two models with binary nodes. In M1 every variable in F is equal to the bit
parity of its parents. In M2 the same is true, except all nodes in F ′ disregard the parent values in
F \F ′. All U are fair coins in both models.

As was the case with C-trees, for any C-forest F , every U ∈ U∩F has exactly two downward
paths to R. It is now easy to establish that in M1, R counts the bit parity of every node in U1 twice,
while in M2, R counts the bit parity of every node in U2∩F ′ twice. Thus, in both models with no
interventions, the bit parity of R is even.

Next, fix two distinct instantiations of U that differ by values of U∗. Consider the topmost node
W ∈ F with an odd number of parents in U∗ (which exists because bidirected edges in F form a
spanning tree). Then flipping the values of U∗ once will flip the value W once. Thus the function
from U to V induced by a C-forest F in M1 and M2 is one to one.

The above results, coupled with the fact that in a C-forest, |U|+ 1 = |V| implies that any as-
signment where ∑r (mod 2) = 0 is equally likely, and all other node assignments are impossi-
ble in both F and F ′. Since the two models agree on all functions and distributions in F \ F ′,
∑ f ′ P

1 = ∑ f ′ P
2. It follows that the observational distributions are the same in both models.
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As before, we can find U ∈ U with one child in An(X)F , and one child in F \An(X)F , which
implies the probability of odd bit parity of R is 0.5 in M1, and 0 in M2.

Next, we note that the construction so far results in a non-positive distribution P. To rid our
proof of non-positivity, we “soften” our two models with new unobservable binary UR for every
R ∈ R which assumes value 1 with very small probability p. Whenever UR is 1, the node R flips its
value, otherwise it keeps the value as defined above. Note that P(v) will remain the same in both
models because our augmentation is the same, and the previous unsoftened models agreed on P(v).
It’s easy to see that the bit parity of R in both models will be odd only when an odd number of UR

assume values of 1. Because p is arbitrarily small, the probability of an odd parity is far smaller than
the probability of even parity. Now consider what happens after do(x). In M2, the probability of
odd bit parity stays the same. In M1 before the addition of UR, the probability was 0.5. But it’s easy
to see that UR nodes change the bit parity of R in a completely symmetric way, so the probability of
even parity remains 0.5.

This implies Px(r) is not identifiable. Finally, to see that Px(y) is not identifiable, augment our
counterexample by nodes in I = An(Y)∩De(R). Without loss of generality, assume every node in
I has at most one child. Let each node I in I be equal to the bit parity of its parents. Moreover, each
I has an exogenous parent UI independent of the rest of U which, with small probability p causes it
to flip it’s value. Then the bit parity of Y is even if and only if an odd number of UI turn on. More-
over, it’s easy to see P(I|R) is positive by construction. We can now repeat the previous argument.

Next, we provide the proof of soundness of ID and IDC using do-calculus. This both simplifies
the proofs and allows us to infer do-calculus is complete from completeness of our algorithms. We
will invoke do-calculus rules by just using their number, for instance “by rule 2.” First, we prove that
a joint distribution in a causal model can be represented as a product of interventional distributions
corresponding to the set of c-component in the graph induced by the model.

Lemma 33 (c-component factorization) Let M be a causal model with graph G. Let y,x be value
assignments. Let C(G\X) = {S1, ...,Sk}. Then Px(y) = ∑v\(y∪x) ∏i Pv\si

(si).

Proof A proof of this was derived by Tian (2002). Nevertheless, we reprove this result using
do-calculus to help with our subsequent completeness results. Assume X = /0, Y = V, C(G) =
{S1, ...,Sk}, and let Ai = An(Si)G \Si. Then

∏
i

Pv\si
(si) = ∏

i
Pai(si) = ∏

i
∏

V j∈Si

Pai(v j|v
( j−1)
π \ai)

= ∏
i

∏
V j∈Si

P(v j|v
( j−1)
π ) = ∏

i
P(vi|v

(i−1)
π ) = P(v).

The first identity is by rule 3, the second is by chain rule of probability. To prove the third
identity, we consider two cases. If A ∈ Ai \V ( j−1)

π , we can eliminate the intervention on A from the

expression Pai(v j|v
( j−1)
π ) by rule 3, since (V j ⊥⊥ A|V ( j−1)

π )Gai
.

If A ∈ Ai∩V ( j−1)
π , consider any back-door path from Ai to Vj. Any such path with a node not in

V ( j−1)
π will be d-separated because, due to recursiveness, it must contain a blocked collider. Further,

this path must contain bidirected arcs only, since all nodes on this path are conditioned or fixed.
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Because Ai∩Si = /0, all such paths are d-separated. The identity now follows from rule 2. The last
two identities are just grouping of terms, and application of chain rule.

Having proven that c-component factorization holds for P(v), we want to extend the result
to Px(y). First, let’s consider Px(v \ x). This is just the distribution of the submodel Mx. But
Mx is just an ordinary causal model inducing G \X, so we can apply the same reasoning to ob-
tain Px(v \ x) = ∏i Pv\si

(si), where C(G \X) = {S1, ...,Sk}. As a last step, it’s easy to verify that
Px(y) = ∑v\(x∪y) Px(v\x).

Lemma 34 Let X′ = X∩An(Y)G. Then Px(y) obtained from P in G is equal to P′x′(y) obtained from
P′ = P(An(Y)) in An(Y)G.

Proof Let W = V \An(Y)G. Then the submodel Mw induces the graph G \W = An(Y)G, and its
distribution is P′ = Pw(An(Y)) = P(An(Y)) by rule 3. Now Px(y) = Px′(y) = Px′,w(y) = P′x′(y)
by rule 3.

Lemma 35 Let W = (V\X)\An(Y)Gx . Then Px(y) = Px,w(y), where w are arbitrary values of W.

Proof Note that by assumption, Y⊥⊥W|X in Gx,w. The conclusion follows by rule 3.

Lemma 36 When the conditions of line 6 are satisfied, Px(y) = ∑s\y ∏Vi∈S P(vi|v
(i−1)
π ).

Proof If line 6 preconditions are met, then G local to that recursive call is partitioned into S and X,
and there are no bidirected arcs from X to S. The conclusion now follows from the proof of Lemma
33.

Lemma 37 Whenever the conditions of the last recursive call of ID are satisfied, Px obtained from

P in the graph G is equal to P′x∩S′ obtained from P′ = ∏Vi∈S′ P(Vi|V
(i−1)
π ∩S′,v(i−1)

π \S′) in the graph
S′.

Proof It is easy to see that when the last recursive call executes, X and S partition G, and X ⊂
An(S)G. This implies that the submodel Mx\S′ induces the graph G\ (X\S′) = S′. The distribution
Px\S′ of Mx\S′ is equal to P′ by the proof of Lemma 33. It now follows that Px = Px∩S′,x\S′ = P′x∩S′ .

Theorem 38 (soundness) Whenever ID returns an expression for Px(y), it is correct.

Proof If x = /0, the desired effect can be obtained from P by marginalization, thus this base case
is clearly correct. The soundness of all other lines except the failing line 5 has already been estab-
lished.
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Having established soundness, we show that whenever ID fails, we can recover a hedge for an
effect involving a subset of variables involved in the original effect expression P(y|do(x)). This in
turn implies completeness.

Theorem 39 Assume ID fails to identify Px(y) (executes line 5). Then there exist X′ ⊆ X, Y′ ⊆ Y
such that the graph pair G,S returned by the fail condition of ID contain as edge subgraphs C-
forests F,F ′ that form a hedge for Px′(y′).

Proof Consider line 5, and G and y local to that recursive call. Let R be the root set of G. Since G
is a single C-component, it is possible to remove a set of directed arrows from G while preserving
the root set R such that the resulting graph F is an R-rooted C-forest.

Moreover, since F ′ = F ∩S is closed under descendants, and since only single directed arrows
were removed from S to obtain F ′, F ′ is also a C-forest. F ′∩X = /0, and F ∩X 6= /0 by construction.
R⊆ An(Y)Gx by lines 2 and 3 of the algorithm. It’s also clear that y,x local to the recursive call in
question are subsets of the original input.

Theorem 18 ID is complete.

Proof By the previous theorem, if ID fails, then Px′(y′) is not identifiable in a subgraph H =
GAn(Y)∩De(F) of G. Moreover, X∩H = X′, by construction of H. As such, it is easy to extend the
counterexamples in Theorem 39 with variables independent of H, with the resulting models induc-
ing G, and witnessing the non-identifiability of Px(y).

Next, we prove the results necessary to establish completeness of IDC.

Lemma 40 If rule 2 of do-calculus applies to a set Z in G for Px(y|w) then there are no d-connected
paths to Y that pass through Z in neither G1 = G\X given Z,W nor in G2 = G\ (X∪Z) given W.

Proof Clearly, there are no d-connected paths through Z in G2 given W. Consider a d-connected
path through Z ∈ Z to Y in G1, given Z,W. Note that this path must either form a collider at Z or a
collider which is an ancestor of Z. But this must mean there is a back-door path from Z to Y, which
is impossible, since rule 2 is applicable to Z in G for Px(y|w). Contradiction.

Theorem 20 For any G and any conditional effect Px(y|w) there exists a unique maximal set
Z = {Z ∈W|Px(y|w) = Px,z(y|w \ {z})} such that rule 2 applies to Z in G for Px(y|w). In other
words, Px(y|w) = Px,z(y|w\ z).

Proof Fix two maximal sets Z1,Z2 ⊆W such that rule 2 applies to Z1,Z2 in G for Px(y|w). If
Z1 6= Z2, fix Z ∈ Z1 \Z2. By Lemma 40, rule 2 applies for {Z}∪Z2 in G for Px(y|w), contradicting
our assumption.

Thus if we fix G and Px(y|w), any set to which rule 2 applies must be a subset of the unique
maximal set Z. It follows that Z = {Z ∈W|Px(y|w) = Px,z(y|w\{z})}.
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Figure 14: Inductive cases for proving non-identifiability of Px(y|w,w′).

Lemma 41 Let F,F ′ form a hedge for Px(y). Then F ⊆ F ′∪X.

Proof It has been shown that ID fails on Px(y) in G and returns a hedge if and only if Px(y) is
not identifiable in G. In particular, edge subgraphs of the graphs G and S returned by line 5 of ID
form the C-forests of the hedge in question. It is easy to check that a subset of X and S partition G.

We rephrase the statement of Theorem 21 somewhat, to reduce “algebraic clutter.”

Theorem 21 Let Px(y|w) be such that every W ∈ W has a back-door path to Y in G \X given
W\{W}. Then Px(y|w) is identifiable in G if and only if Px(y,w) is identifiable in G.

Proof If Px(y,w) is identifiable in G, then we can certainly identify Px(y|w) by marginalization
and division. The difficult part is to prove that if Px(y,w) is not identifiable then neither is Px(y|w).

Assume Px(w) is identifiable. Then if Px(y|w) were identifiable, we would be able to compute
Px(y,w) by the chain rule. Thus our conclusion follows.

Assume Px(w) is not identifiable. We also know that every W ∈W contains a back-door path to
some Y ∈Y in G\X given W\{W}. Fix such W and Y , along with a subgraph p of G which forms
the witnessing back-door path. Consider also the hedge F,F ′ which witnesses the non-identifiability
of Px′(w′), where X′ ⊆ X,W′ ⊆W.

Let H = G
De(F)∪An(W′

)Gx′
. We will attempt to show that Px′(Y |w) is not identifiable in H ∪ p.

Without loss of generality, we make the following three assumptions. First, we restrict our attention
to W′′ ⊆W that occurs in H∪ p. Second, we assume p is a path segment which starts at H and ends
at Y , and does not intersect H. Third, we assume all observable nodes in H have at most one child.

Consider the models M1,M2 from the proof of Theorem 17 which induce H. We extend the
models by adding to them binary variables in p. Each variable X ∈ p is equal to the bit parity of its
parents, if it has any. If not, X behaves as a fair coin. If Y ∈ H has a parent X ∈ p, the value of X is
added to the bit parity computation Y makes.

Call the resulting models M1
∗ ,M

2
∗ . Because M1,M2 agreed on P(H), and variables and functions

in p are the same in both models, P1
∗ = P2

∗ . We will assume w′′ assigns 0 to every variable in W′′.
What remains to be shown is that P1

∗x(y|w′′) 6= P2
∗x(y|w′′). We will prove this by induction on the

path structure of p. We handle the inductive cases first. In all these cases, we fix a node Y ′ that
is between Y and H on the path p, and prove that if Px′(y′|w′′) is not identifiable, then neither is
Px′(y|w′′).
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Figure 15: Inductive cases for proving non-identifiability of Px(y|w,w′).
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Figure 16: Base cases for proving non-identifiability of Px(y|w,w′).

Assume neither Y nor Y ′ have descendants in W′′. If Y ′ is a parent of Y as in Fig. 14 (a), then
Px′(y|w′′) = ∑y′ P(y|y′)Px′(y′|w′′). If Y is a parent of Y ′, as in Fig. 14 (b) then the next node in p
must be a child of Y ′. Therefore, Px′(y|w′′) = ∑y′ P(y|y′)Px′(y′|w′′). In either case, by construction
P(Y |Y ′) is a 2 by 2 identity matrix. This implies that the mapping from Px′(y′|w′′) to Px′(y|w′′) is
one to one. If Y ′ and Y share a hidden common parent U as in Fig. 15 (b), then our result follows
by combining the previous two cases.

The next case is if Y and Y have a common child C which is either in W′′ or has a descendant
in W′′, as in Fig. 15 (a). Now Px′(y|w′′) = ∑y′ P(y|y′,c)Px′(y′|w′′). Because all nodes in W′′ were
observed to be 0, P(y|y′,c) is again a 2 by 2 identity matrix.

Finally, we handle the base cases of our induction. In all such cases, Y is the first node not in H
on the path p. Let Y ′ be the last node in H on the path p.

Assume Y is a parent of Y ′, as shown in Fig. 16 (a). By Lemma 41, we can assume Y 6∈ An(F \
F ′)H . By construction, (∑W′′ = Y + 2 ∗∑U) (mod 2) in M1

∗ , and (∑W′′ = Y + 2 ∗∑(U∩F ′))
(mod 2) in M2

∗ . If every variable in W′′ is observed to be 0, then Y = (2 ∗∑U) (mod 2) in M1
∗ ,

and Y = (2 ∗∑(U∩F ′)) (mod 2) in M2
∗ . If an intervention do(x) is performed, (∑W′′ = Y +

2 ∗∑(U∩F ′)) (mod 2) in M2
∗x, by construction. Thus if W′′ are all observed to be zero, Y = 0

with probability 1. Note that in M1
x as constructed in the proof of Theorem 17, (∑w′′ = x + ∑U′)

(mod 2), where U′ ⊆ U consists of unobservable nodes with one child in An(X)F and one child in
F \An(X)F .

Because Y 6∈ An(F \F ′)H , we can conclude that if W′′ are observed to be 0, Y = (x + ∑U′)
(mod 2) in M1

∗x′ . Thus, Y = 0 with probability 0.5. Therefore, P1
∗x′(y|w

′′) 6= P2
∗x′(y|w

′′) in this case.
Assume Y is a child of Y ′. Now consider a graph G′ which is obtained from H ∪ p by removing

the (unique) outgoing arrow from Y ′ in H. If Px′(Y |w′′) is not identifiable in G′, we are done.
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Assume Px′(Y |w′′) is identifiable in G′. If Y ′ ∈ F , and R is the root set of F , then removing the
Y ′-outgoing directed arrow from F results in a new C-forest, with a root set R∪{Y ′}. Because Y
is a child of Y ′, the new C-forests form a hedge for Px′(y,w′′). If Y ′ ∈ H \F , then removing the
Y ′-outgoing directed arrow results in substituting Y for W ∈W′′∩De(Y ′)H . Thus in G′, F,F ′ form
a hedge for Px′(y,w′′ \{w}). In either case, Px′(y,w′′) is not identifiable in G′.

If Px′(w′′) is identifiable in G′, we are done. If not, consider a smaller hedge H ′ ⊂H witnessing
this fact. Now consider the segment p′ of p between Y and H ′. We can repeat the inductive argument
for H ′, p′ and Y . See Fig. 16 (b).

If Px′(w′′) is identifiable in G′, we are done. If not, consider a smaller hedge H ′ ⊂H witnessing
this fact. Now consider the segment p′ of p between Y and H ′. We can repeat the inductive argument
for H ′, p′ and Y . See Fig. 16 (b). If Y and Y ′ have a hidden common parent, as is the case in Fig.
16 (c), we can combine the first inductive case, and the first base case to prove our result.

We conclude the proof by introducing a slight change to rid us of non-positivity in the distri-
butions P1,P2 in our counterexamples. Specifically, for every node I in p∪ (De(R)∩An(Y)), add
a new binary exogenous parent UI which is independent of other nodes in U, and has an arbitrar-
ily small probability of assuming the value 1, and causing its child to flip its current value. We
let Podd be the probability an odd number of UI nodes assume the value 1. Because P(UI = 1) is
vanishingly small for every I, Podd is much smaller than 0.5. It’s easy to see that P is positive in
counterexamples augmented in this way. In the base case when Y is a parent of Y ′, we modify our
equations to account for the addition of UI . Specifically, (∑W′′ = Y + 2 ∗∑U + ∑UI) (mod 2)
in M1

∗ , and (∑W′′ = Y + 2 ∗∑(U∩F ′) + ∑UI) (mod 2) in M2
∗ , where UU is the set of nodes

added. If every variable in W′′ is observed to be 0, then Y = (2 ∗∑U + ∑UI) (mod 2) in M1
∗ ,

and Y = (2∗∑(U∩F ′)+∑UI) (mod 2) in M2
∗ . So prior to the intervention, P(Y = 1|w′′) = Podd .

But because P1
x′(Y = 1|w′′) = 0.5, adding UI nodes to the model does not change this probability.

Because P2(Y = 1|w′′) = P2
x(Y = 1|w′′), our conclusion follows.

In the inductive cases above, we showed that Px(Y ′ = Y |W′′) = 1 in our counterexamples. It’s
easy to see that with the addition of UI , Px(Y ′ = Y |W′′) = Podd . This implies that if P1

x(Y ′|W′′) 6=
P2

x(Y ′|W′′), then P1
x(Y |W′′) 6= P2

x(Y |W′′).
This completes the proof.

What remains for us to show are the theorems which imply the soundness and completeness
results in Section 4. The most important point in these proofs is that counterfactual graphs are
generally no different from causal diagrams discussed in Sections 2 and 3, with their only special
feature being that by construction, some nodes in the graph happen to share functions. This means
that a lot of results we already proved for Section 3 can be reused without change.

Lemma 42 If the preconditions of line 7 are met, P(S) = Px(var(S)), where x =
S

sub(S).

Proof Let x =
S

sub(S). Since the preconditions are met, x does not contain conflicting assign-
ments to the same variable, which means do(x) is a sound action in the original causal model. Note
that for any variable Yw in S, any variable in (Pa(S)\S)∩An(Yw)S is already in w, while any vari-
able in (Pa(S) \ S) \An(Yw)S can be added to the subscript of Yw without changing the variable.
Since Y ∩X = /0 by assumption, Yw = Yx. Since Yw was arbitrary, our result follows.

For convenience, we show the soundness of ID* and IDC* asserted in Theorem 26 separately.
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Theorem 26 (a) If ID* succeeds, the expression it returns is equal to P(γ) in a given causal graph.

Proof The proof outline in Section 3 is sufficient for everything except the base cases. In particular,
line 6 follows by Lemma 33. For soundness, we only need to handle the positive base case, which
follows from Lemma 42.

The soundness of IDC* is also fairly straightforward.

Theorem 26 (b) If IDC* does not output FAIL, the expression it returns is equal to P(γ|δ) in a
given causal graph, if that expression is defined, and UNDEFINED otherwise.

Proof Theorem 20 shows how an operation similar to line 4 is sound by rule 2 of do-calculus (Pearl,
1995) when applied in a causal diagram. But we know that the counterfactual graph is just a causal
diagram for a model where some nodes share functions, so the same reasoning applies. The rest is
straightforward.

To show completeness of ID* and IDC*, we first prove a utility lemma which will make it easier
to construct counterexamples which agree on P∗ but disagree on a given counterfactual query.

Lemma 43 Let G be a causal graph partitioned into a set {S1, ...,Sk} of C-components. Then two
models M1,M2 which induce G agree on P∗ if and only if their submodels M1

v\si
,

M2
v\si

agree on P∗ for every C-component Si, and value assignment v\ si.

Proof This follows from C-component factorization: P(v) = ∏i Pv\si
(si). This implies that for

every do(x), Px(v) can be expressed as a product of terms Pv\(si\x)(si \x), which implies the result.

The next result generalizes Lemma 27 to a wider set of counterfactual graphs which result from
non-identifiable queries.
Lemma 28 Assume G is such that X is a parent of Y and Z, and Y and Z are connected by a
bidirected path with observable nodes W 1, ...,W k on the path. Then P∗,G 6`id P(yx,w1, ...,wk,zx′),
P(yx,w1, ...,wk,z) for any value assignments y,w1, ...,wk,z.

Proof We construct two models with graph G as follows. In both models, all variables are binary,
and P(u) is uniform. In M1, each variable is set to the bit parity of its parents. In M2, the same is true
except Y and Z ignore the values of X . To prove that the two models agree on P∗, we use Lemma
43. Clearly the two models agree on P(X). To show that the models also agree on Px(V\X) for all
values of x, note that in M2 each value assignment over V\X with even bit parity is equally likely,
while no assignment with odd bit parity is possible. But the same is true in M1 because any value
of x contributes to the bit parity of V\X exactly twice. The agreement of M1

x ,M
2
x on P∗ follows by

the graph structure of G.
To see that the result is true, we note firstly that P(ΣiW i +Yx +Zx′ (mod 2) = 1) = P(ΣiW i +

Yx +Z (mod 2) = 1) = 0 in M2, while the same probabilities are positive in M1, and secondly that
in both models distributions P(yx,w1, ...,wk,zx′) and P(yx,w1, ..,wk,z) assign equal probabilities to
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outcomes with positive probabilities, while we just established that the set of these possible out-
comes differs in M1 and M2. Note that the proof is easy to generalize for positive P∗ by adding a
small probability for Y to flip its normal value.

To obtain a full characterization of non-identifiable counterfactual graphs, we augment the dif-
ficult graphs we obtained from the previous two results using certain graph transformation rules
which preserve non-identifiability. These rules are given in the following two lemmas.
Lemma 29 Assume P∗,G 6`id P(γ). Let {y1

x1 , ...,yn
xm} be a subset of counterfactual events in γ.

Let G′ be a graph obtained from G by adding a new child W of Y 1, ...,Y n, and let P′∗ be the set of
all interventional distributions in models inducing G′. Let γ′ = (γ\{y1

x1 , ...,yn
xm})∪{wx1 , ...,wxm},

where w is an arbitrary value of W. Then P′∗,G
′ 6`id P(γ′).

Proof Let M1,M2 witness P∗,G 6`id P(γ). We will extend these models to witness P′∗,G
′ 6`id P(γ′).

Since the function of a newly added W will be shared, and M1,M2 agree on P∗ in G, the extensions
will agree on P′∗ by Lemma 43. We have two cases.

Assume there is a variable Y i such that yi
x j ,yi

xk are in γ. By Lemma 27, P∗,G 6`id P(yi
x j ,yi

xk).
Then let W be a child of just Y i, and assume |W | = |Y i| = c. Let W be set to the value of Y i

with probability 1− ε, and otherwise it is set to a uniformly chosen random value of Y i among the
other c−1 values. Since ε is arbitrarily small, and since Wx j and Wxk pay attention to the same U
variable, it is possible to set ε in such a way that if P1(Y i

x j ,Y i
xk) 6= P2(Y i

x j ,Y i
xk), however minutely,

then P1(Wx j ,Wxk) 6= P2(Wx j ,Wxk).
Otherwise, let |W | = ∏i |Y

i|, and let P(W |Y 1, ...,Y n) be an invertible stochastic matrix. Our
result follows.

Lemma 30 Assume P∗,G 6`id P(γ). Let G′ be obtained from G by merging some two nodes X ,Y
into a new node Z where Z inherits all the parents and children of X ,Y , subject to the following
restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) where x ∈ s, y 6∈ s, and X ∈ An(W )G, then Y 6∈ An(W )G.

• If (∃ys ∈ γ) where x ∈ s, then An(X)G = /0.

• If (Yw,Xs ∈ γ), then w and s agree on all variable settings.

Assume |X | × |Y | = |Z| and there’s some isomorphism f assigning value pairs x,y to a value
f (x,y) = z. Let γ′ be obtained from γ as follows. For any ws ∈ γ:

• If W 6∈ {X ,Y}, and values x,y occur in s, replace them by f (x,y).

• If W 6∈ {X ,Y}, and the value of one of X ,Y occur in s, replace it by some z consistent with the
value of X or Y .

• If X ,Y do not occur in γ, leave γ as is.

• If W = Y and x ∈ s, replace ws by f (x,y)s\{x}.
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• otherwise, replace every variable pair of the form Yr = y,Xs = x by Zr,s = f (x,y).

Then P∗,G′ 6`id P(γ′).

Proof Let Z be the Cartesian product of X ,Y , and fix f . We want to show that the proof of non-
identification of P(γ) in G carries over to P(γ′) in G′.

We have five modification conditions which can apply to a variable ws ∈ γ. However, since γ is
left alone if X ,Y do not occur in γ (the third condition), only the remaining four of these conditions
result in an actual modification of a counterfactual variable in γ.

We go through these remaining conditions one by one. The first clearly results in the same
counterfactual variable. For the second, due to the restrictions we imposed, wz = wz,y,x, which
means we can apply the first modification.

For the fourth, we have P(γ) = P(δ,yx,z). By our restrictions, and rule 2 of do-calculus (Pearl,
1995), this is equal to P(δ,yz|xz). Since this is not identifiable, then neither is P(δ,yz,xz). Now it’s
clear that our modification is equivalent to one applied after the fifth condition.

The fifth modification is simply a merge of events consistent with a single causal world into a
conjunctive event, which does not change the overall expression.

We are now ready to show the main completeness results for counterfactual identification algo-
rithms. Again, we prove this results separately for ID* and IDC* for convenience.

Theorem 31 (a) ID* is complete.

Proof We want to show that if line 8 fails, the original P(γ) cannot be identified. There are two
broad cases to consider. If Gγ contains the w-graph, the result follows by Lemmas 27 and 29. If not,
we argue as follows.

Fix some X which witnesses the precondition on line 8. We can assume X is a parent of some
nodes in S. Assume no other node in sub(S) affects S (effectively we delete all edges from parents
of S to S except from X). Because the w-graph is not a part of Gγ, this has no ramifications on edges
in S. Further, we assume X has two values in S.

If X 6∈ S, fix Y,W ∈ S∩Ch(X). Assume S has no directed edges at all. Then P∗,G 6`id P(S) by
Lemma 28. The result now follows by Lemma 29, and by construction of Gγ, which implies all
nodes in S have some descendant in γ.

If S has directed edges, we want to show P∗,G 6`id P(R(S)), where R(S) is the subset of S with
no children in S. We can recover this from the previous case as follows. Assume S has no edges
as before. For a node Y ∈ S, fix a set of childless nodes X ∈ S which are to be their parents. Add
a virtual node Y ′ which is a child of all nodes in X. Then P∗,G 6`id P((S \X)∪Y ′) by Lemma 29.
Then P∗,G 6`id P(R(S′)), where S′ is obtained from S by adding edges from X to Y by Lemma 30,
which applies because no w-graph exists in Gγ. We can apply this step inductively to obtain the
desired forest (all nodes have at most one child) S while making sure P∗,G 6`id P(R(S)).

If S is not a forest, we can simply disregard extra edges so effectively it is a forest. Since the
w-graph is not in Gγ this does not affect edges from X to S.

If X ∈ S, fix Y ∈ S∩Ch(X). If S has no directed edges at all, replace X by a new virtual node Y ,
and make X be the parent of Y . By Lemma 28, P∗,G 6`id P((S \ x)∪ yx). We now repeat the same
steps as before, to obtain that P∗,G 6`id P((R(S)\ x)∪ yx) for general S. Now we use Lemma 30 to
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obtain P∗,G 6`id P(R(S)). Having shown P∗,G 6`id P(R(S)), we conclude our result by inductively
applying Lemma 29.

Theorem 31 (b) IDC* is complete.

Proof The difficult step is to show that after line 5 is reached, if P∗,G 6`id P(γ,δ) then P∗,G 6`id

P(γ|δ). If P∗,G `id P(δ), this is obvious. Assume P∗,G 6`id P(δ). Fix the S which witnesses that for
δ′ ⊆ δ, P∗,G 6`id P(δ′). Fix some Y such that a back-door, that is, starting with an incoming arrow,
path exists from δ′ to Y in Gγ,δ. We want to show that P∗,G 6`id P(Y |δ′). Let G′ = GAn(δ′)∩De(S).

Assume Y is a parent of a node D ∈ δ′, and D ∈G′. Augment the counterexample models which
induce counterfactual graph G′ with an additional binary node for Y , and let the value of D be set
as the old value plus Y modulo |D|. Let Y attain value 1 with vanishing probability ε. That the
new models agree on P∗ is easy to establish. To see that P∗,G 6`id P(δ′) in the new model, note that
P(δ′) in the new model is equal to P(δ′ \D,D = d)∗(1−ε)+P(δ′ \D,D = (d−1) (mod |D|))∗ε.
Because ε is arbitrarily small, this implies our result. To show that P∗,G 6`id P(Y = 1|δ′), we must
show that the models disagree on P(δ′|Y = 1)/P(δ′). But to do this, we must simply find two
consecutive values of D, d,d + 1 (mod |D|) such that P(δ′ \D,d + 1 (mod |D|))/P(δ′ \D,d) is
different in the two models. But this follows from non-identification of P(δ′).

If Y is not a parent of D ∈ G′, then either it is further along on the back-door path or it’s a child
of some node in G′. In case 1, we must construct the distributions along the back-door path in such
a way that if P∗,G 6`id P(Y ′|δ′) then P∗,G 6`id P(Y |δ′), where Y ′ is a node preceding Y on the path.
The proof follows closely the one in Theorem 21. In case 2, we duplicate the nodes in G′ which lead
from Y to δ′, and note that we can show non-identification in the resulting graph using reasoning in
case 1. We obtain our result by applying Lemma 30.
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