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Abstract

The linear model with sparsity-favouring prior on the coefficients has important applications in
many different domains. In machine learning, most methods to date search for maximum a pos-
teriori sparse solutions and neglect to represent posterior uncertainties. In this paper, we address
problems of Bayesian optimal design (or experiment planning), for which accurate estimates of
uncertainty are essential. To this end, we employ expectation propagation approximate inference
for the linear model with Laplace prior, giving new insight into numerical stability properties and
proposing a robust algorithm. We also show how to estimate model hyperparameters by empiri-
cal Bayesian maximisation of the marginal likelihood, and propose ideas in order to scale up the
method to very large underdetermined problems.

We demonstrate the versatility of our framework on the application of gene regulatory net-
work identification from micro-array expression data, where both the Laplace prior and the active
experimental design approach are shown to result in significant improvements. We also address
the problem of sparse coding of natural images, and show how our framework can be used for
compressive sensing tasks.

Part of this work appeared in Seeger et al. (2007b). The gene network identification application
appears in Steinke et al. (2007).

Keywords: sparse linear model, Laplace prior, expectation propagation, approximate inference,
optimal design, Bayesian statistics, gene network recovery, image coding, compressive sensing

1. Introduction

In many settings favoured in current machine learning work, the model and data set are given in
advance, and predictions with low error are sought. Many methods from different paradigms have
successfully been applied to these problems. While Bayesian approaches, such as the one we de-
scribe here, enjoy some benefits in this regime, they can be more difficult to implement, less algo-
rithmically robust, and often require more computation time than, for example, penalised estimation
methods, whose computation often reduces to a standard optimisation problem. In our opinion, the
real practical power of the Bayesian way is revealed better in higher-level tasks such as making
optimally cost-efficient decisions or experimental design. In the latter, aspects of the model and
measurement experiments are adapted based on growing knowledge about the current situation, and
data is sampled in a sequential and actively controlled manner, with the aim of obtaining answers as
quickly as possible. Our main motivation in the present work is to demonstrate how Bayesian exper-
imental design can be implemented in a computationally efficient and robust way, and how a range
of challenging applications can benefit from selectively sampling data where it is most needed.
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A number of characteristics of the framework we propose here, are especially useful, if not
essential, to drive efficient experimental design for the applications we consider. The latter, at
least in the sequential variant discussed here, proceeds through a significant number of individual
decisions (say, where to sample data next). In order to make each decision, our current uncertainty
in variables of interest needs to be estimated quantitatively, and for a large number of candidates
we have to consider how, and by how much, each of them would reduce this uncertainty estimate.
As will become clear in the sequel, the uncertainty estimate is given by the posterior distribution,
an approximation to which can be obtained robustly and efficiently by our method. The estimate
is given as a Gaussian distribution, whose change after one more experiment can robustly and very
efficiently be quantified. These points motivate our insistence on robustness1 and efficiency below.
Another key aspect of the models treated here is sparsity. This regularisation principle allows us to
start from an overparameterised model, forcing parameters close to zero if they are not required. In
our experiments, we demonstrate that the interplay between sparsity regularisation and experimental
design seems to be particularly successful. In sequential design, most of the decisions have to be
done early, without a lot of data available, and the focus (under a sparsity prior) on a few relevant
effects only seems particularly useful in that respect.2 In contrast, if the models of interest here are
used with Gaussian priors, as is usually done, then sequential design is not different from optimising
X beforehand. Although observations become available along the way, these are not used at all. We
come back to this important point below.

In this work, we consider the linear model

u = X a + ε, ε ∼ N(0,σ2I), (1)

where X ∈ R
m,n is the design matrix, and a ∈ R

n is the vector of unknown parameters (or weights).
σ2 is the variance of the Gaussian noise. The model can be thought of as representing a noisy linear
system. It is called underdetermined if m ≤ n, and overdetermined otherwise. In the underdeter-
mined case, there are in general many solutions, even if we did not allow for noise, and additional
desired qualities of a need to be formalised. In a Bayesian framework, this is done by placing a
prior distribution on a, concentrating its mass on parameters fulfilling the requirements.

In the applications we consider, sparsity of a is a key prior assumption: elements of a should
be set to very small values whenever they are not required to describe the data well. On the other
hand, few elements should be allowed to be large if necessary. Among different solutions, the ones
with the largest number of very small components should be preferred a priori. Enforcing sparsity
is a fundamental statistical regularisation principle and lies behind many well known ideas such as
selective shrinkage or feature selection. It is discussed in more detail in Section 2.1. Many sparsity-
favouring priors have been suggested in statistics. In this paper, we concentrate on independent
Laplace (or double exponential) distribution priors of the form

P(a) = ∏
i

P(ai), P(ai) =
τ̃
2

e−τ̃|ai|, τ̃ = τ/σ. (2)

1. Robustness is an issue which is often overlooked when comparing machine learning methods, yet it is quite essential
in experimental design, where many decisions have to be done based on small posterior changes, and where non-
robust methods often lead to undesired, erratic high-variance behaviour. In experimental design, robustness can be
more important than high posterior approximation accuracy.

2. We report empirical observations here at the moment. We are not aware of strong theoretical results about this aspect.
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A key advantage of this choice over others is log-concavity, which implies important computational
advantages (see Section 2.1, Section 3.5). We refer to the linear model with Laplace prior as sparse
linear model.3

It is important to note that our method here is different from most of the classical treatments of
experimental design for the linear model, which entirely focus on Gaussian prior distributions. The
difference to these approaches lies in our use of non-Gaussian sparsity priors. Bayesian inference
for the linear model with Gaussian prior is analytically tractable (see O’Hagan, 1994, Chapter 9),
and most of the algorithmic complications we address in the following, do not arise there. On the
other hand, comparative results in some of our experiments show very significant benefits of using
experimental design with sparsity priors rather than Gaussian ones. Our findings point out the need
to theoretically analyse and understand experimental design with non-Gaussian priors, although in
the absence of analytically tractable formulae for inference, such studies would have to be done
conditioned on particular inference approximations.

Once the linear model is endowed with sparsity priors which are not Gaussian, Bayesian in-
ference in general is not analytically tractable anymore and has to be approximated. In this paper,
we employ the expectation propagation (EP) algorithm (Minka, 2001b; Opper and Winther, 2000)
for approximate Bayesian inference in the sparse linear model. Our motivation runs contrary to
most machine learning applications of the sparse linear model considered so far (where maximally
sparse solutions for a given fixed problem are estimated and good uncertainty representations seem
unimportant), mainly because Bayesian experimental design is fundamentally driven by such un-
certainty representations. While Bayesian inference can also be performed using Markov chain
Monte Carlo (MCMC) (Park and Casella, 2005), our approach is much more efficient, especially in
the context of sequential design, and can be applied to large-scale problems of interest in machine
learning. Moreover, experimental design requires the robust estimation in posterior changes across
many candidates, starting from a well-defined current distribution, which seems difficult to do with
MCMC. The application of EP to the sparse linear model is numerically challenging, and some
novel techniques are introduced here in order to obtain a robust algorithm. In this context, the role
of log-concavity for numerical stability of EP is clarified. Moreover, a variant known as fractional
EP (or Power EP) (Minka, 2004) is shown to essentially overcome stability problems in the context
of underdetermined models, while standard EP seems inherently unworkable in these cases. This
observation about fractional EP is novel to our knowledge.

We apply our method to the problem of identifying gene regulatory networks from data obtained
through active experiments, disturbing the system in a controlled manner. Since such experiments
are expensive and time-consuming, a sequentially designed approach is clearly beneficial. Indeed,
our experiments on synthetic data, simulated using realistic setups, show clear advantages in using
Bayesian experimental design and sparsity priors over traditional approaches.

We also address the problem of sparse linear coding of natural images, optimising the codebook
by empirical Bayesian marginal likelihood maximisation. Since current hypotheses about the devel-
opment of early visual neurons in the brain are equivalent to a Bayesian sparse linear model setup
(Lewicki and Olshausen, 1999), our method is useful to test and further refine these.

There has been a lot of recent interest in signal processing in the problem of compressive sens-
ing (Candès et al., 2006; Donoho, 2006; Ji and Carin, 2007). We show how our framework directly

3. The reader may be puzzled about the parameterisation in terms of τ̃ = τ/σ. One reason for this is that it renders τ
scale-free: it does not depend on the scale of the response u. A more important reason is given in Section 3.5.
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addresses the key issues there, which are in fact optimal design problems, and we motivate applica-
tions.

The structure of this paper is as follows. In Section 2, the statistical notion of sparsity is ex-
plained and contrasted with notions currently dominant in machine learning. Furthermore, some
key applications of the sparse linear model are described. In Section 3, we show how to do approxi-
mate inference using the expectation propagation method. Optimal design is discussed in Section 4,
and an approximation to the marginal likelihood is given in Section 5. We show how to address
large-scale problems in Section 6. Experimental results are presented in Section 7. Our framework
is directly related to other approximate inference techniques in Section 8. The paper closes with a
discussion in Section 9.

Efficient and extendible code for the sparse linear model will be put into the public domain, as
part of the LHOTSE toolbox for adaptive statistical models.4

2. The Role of Sparsity. Applications

In this section, we clarify the statistical role of sparsity and motivate the Laplace prior (2) towards
this end. We also introduce the applications of interest in our work here: identification of gene net-
works, and sparse coding of natural images, and we give remarks about applications to compressive
sensing, which are subject to work in progress (Seeger and Nickisch, 2008). The importance of
optimal design and hyperparameter estimation are motivated using these examples.

2.1 The Role of Sparsity Priors

In order to obtain flexible inference methods, it often makes sense in statistics to employ models
with many more degrees of freedom than could uniquely be adapted given finite data. The resulting
under-determinedness (sometimes referred to as “ill-posedness”, “curse”, or other equally negative
terms) is broken by making additional assumptions, leading to the fact that some solutions are
preferred over others, although both fit the data equally well. The mechanics of this comes in
different variants, such as adding a penalty term (or regulariser) to a data-fit functional, or placing a
prior distribution over hypotheses. The underlying principles are, however, the same.

A fundamental regularisation idea is sparsity. For example, suppose a prediction function is a
linear combination of features. If knowledge of good (or optimal) features for a task is vague, it
makes sense to allow for a large number of candidates, then let the data decide which are relevant.
A sparsity prior (or regulariser) on the coefficients, for example in the sparse linear model (1) with
Laplace prior (2), leads to just that. It is important to contrast this with the different, frequently
used idea of forcing components to be uniformly small in size, so that the final predictor is a sum
of many (or all) features, with each giving a small but non-zero contribution. An example of the
latter is the linear model (1) with a Gaussian prior P(a), which due to conjugacy allows for a simple
analytical treatment (see O’Hagan, 1994, Chapter 9). Such a prior does not encode sparsity. The
Laplace distribution puts much more weight close to zero than the Gaussian, while still having
higher probabilities for large values. The implications are depicted in Figure 1, see also Tipping
(2001).

A sparsity prior embodies the bi-separation characteristic: such parameters a with many very
small components at the expense of few large ones are favoured over a whose components are

4. See www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.
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Gaussian Laplace Very Sparse Distribution

Figure 1: The entries of the parameter a can be given different prior distributions. Shown above are three
candidates, plotted jointly over the values of two entries: a Gaussian, a Laplace, and a “very
sparse” distribution (P(ai) ∝ exp(−τ|ai|0.4)). We show contour plots of density functions, where
areas of a specific color contain the same probability mass for each of the distributions. The
upper row shows prior distributions of unit variance, together with the likelihood for a single
measurement (a single linear constraint with Gaussian uncertainty). The lower row shows the
corresponding posterior distributions. Whereas the Gaussian prior is spherically distributed, the
other two shift probability mass towards the axes, so that more mass is given to sparse tuples
(with one entry close to zero). This effect is clearly visible in the posterior distributions, being
the normalised product of prior and likelihood. For the Gaussian prior, the areas close to the axes
have rather low mass. In comparison, the posterior for the Laplace prior is skewed, so that more
mass is concentrated close to the vertical axis. Both posteriors are log-concave and unimodal. The
posterior for the “very sparse” prior shows shrinkage towards the axes even more strongly, and
in terms of enforcing sparsity, this prior is preferable to the Laplacian. However, the posterior is
bimodal now, suggesting two different interpretations for the single observation. The number of
posterior modes can increase exponentially with the number of dimensions, so that sampling from
or even representing this distribution has combinatorial complexity in general. Figure by Florian
Steinke.

uniformly small throughout, but sizes are distributed regularly over this “range of smallness”. Under
the prior, most mass concentrates close to zero, but the tails are also comparatively heavy, allowing
for occasional large values. In fact, heavy tails are an essential feature of a sparsity prior, since
suppressing many components while still maintaining a flexible range of hypotheses is possible
only if some components are allowed to take dominant values. The opposite is true for traditional
Gaussian priors. Ishwaran and Rao (2005) call this bi-separation effect selective shrinkage, in that
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parameters are shrunk towards zero selectively, while a Gaussian prior leads to a more uniform
shrinkage. This characteristic is embodied even more strongly in sparsity priors other than the
Laplace, such as “spike-and-slab” (mixture of narrow and very wide Gaussian), Student’s t, or
distributions ∝ exp(−| · |α), α < 1, see also Figure 1. Among these, only the Laplace distribution
is log-concave, leading to a posterior whose log density is a concave function, thus has a single
local maximum. This simplifies and robustifies accurate inference computations significantly (see
Section 3.5). For a non-log-concave prior, posteriors tend to be multi-modal, spreading their mass
among many bumps, and accurate approximate inference can be a very hard problem. Furthermore,
existing variational inference methods are more prone to non-robust unstable behaviour if applied
to such models, and convergence or approximation errors can be hard to assess. Since we aim our
method to be robust and easy to use by non-experts, we concentrate on log-concave Laplace sparsity
priors in the sequel. The importance of log-concavity has been recognised in statistics and Markov
chain sampling (Pratt, 1981; Gilks and Wild, 1992; Park and Casella, 2005; Lovász and Vempala,
2003; Paninski, 2005), but has not received much attention so far in work on variational approximate
inference.

Our decision to prefer the Laplace sparsity prior over the conventional Gaussian choice, at the
expense of having to approximate inference and of introducing significant complications, is ulti-
mately validated by our experimental findings, where the Laplace prior yields large improvements
over the Gaussian setting (see Section 7.1). However, apart from failing to encode a sparsity bi-
separation, the Gaussian prior leads to other serious artifacts in the context of experimental design
with the linear model. For example, suppose we are interested in sequentially designing covariates
x for which responses u are queried (this is related to, but not the same setting we use here, see Sec-
tion 4), say by choosing a “location” t in a feature map x(t). It is well known and easily established
that the Bayesian optimal design is independent of the response measurements we obtain along the
way, it can in fact be computed beforehand. This fact seems absurd for many design problems, in-
cluding ours here, pointing out a shortcoming of the model-prior combination. In the gene network
identification problem (see Section 2.2 for notation), if we were to use a Gaussian prior, the poste-
rior covariances would be identical for all rows of A. This means that no matter what disturbance
experiments are done, the uncertainty in how gene i is influenced directly by the others, is the same
for all i! Since design decisions mainly hinge on these uncertainty estimates, such artifacts due to a
bad prior choice can lead to very suboptimal outcomes (see Section 7.1).

It is important to contrast our approach, and more generally the Bayesian statistical notion of
sparsity, with what some maximum a posteriori (MAP) treatments of the sparse linear model are
aiming to do. In the latter approach, which is very prominent in machine learning (Tibshirani, 1996;
Chen et al., 1999; Peeters and Westra, 2004), the mode â of the posterior P(a|X ,u) is found through
convex optimisation (recall that the log posterior is concave), and â is treated as posterior estimate
of a. â has the property that many components are exactly zero:5 the vector is sparse as such.
This is useful for applications which aim for such exact sparsity, say for reasons of algorithmic
efficiency. In contrast, in the Bayesian case, the posterior mass of all exactly sparse a (at least
one component exactly zero) is zero, because the posterior has a density w.r.t. Lebesgue measure.6

Not even commonly used Bayesian estimates of a, such as posterior mean or median, are exactly
sparse in general. From a Bayesian viewpoint this makes sense, since in the presence of finite data,

5. One can easily show that as σ2 → 0, no more than m components of â can be non-zero.
6. Spike-and-slab sparsity priors have been used which place point masses on zero. However, approximate inference

for such a setting is very challenging. Such priors are certainly not log-concave distributions.
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one should always have some remaining uncertainty in exact values of parameters. The role of a
sparsity prior in our situation is not to force many parameter values exactly to zero, but rather to
enforce a clear partition into a large set of parameters which are close to zero with high (posterior)
probability, and a small set which have significant mass on large values. Interestingly, following
this probabilistic notion of sparsity sometimes allows to uncover sparsity in parameters of higher
order that are of real interest, which is missed by MAP approaches. Our findings in Section 7.2 are
a nice example of this effect.

2.2 Gene Network Identification

Measuring m-RNA expression levels for many genes in parallel is affordable and widely done today
using DNA micro-arrays (DeRisi et al., 1997). One goal of such efforts is to recover regulatory
networks. For example, some genes may code for transcription factor proteins, which up-/down-
regulate the expression of other genes. In an active approach to network recovery, the evolution
of expression levels of n genes is modeled by a system of ordinary differential equations, which is
linearised at its steady state:

ẋ(t) = Ax(t)−u(t)+ ε(t), (3)

where x(t) is the deviation in expression from steady state, and ε(t) is white noise. A is the system
matrix, whose non-zero entries represent the edges of the network. u(t) is an external control,
allowing the active user to probe the unknown A. It is generally assumed that u(t) is small enough
not to drive the system out of its linearity region. Due to the noisy environment, it is typical to
restrict controls to be constant, u(t) ≡ u, and to measure the new steady state limt→∞ x(t) (Tegnér
et al., 2003). Such disturbances may be implemented biologically using gene switches (Gardner
et al., 2000), which puts further restrictions on allowable u.

The linear model of (1) captures this setup as follows. Suppose that m observations D = {xi, ui}
have been made, where ui is an external control, and xi is the corresponding difference between
steady state expression levels of the perturbed and the unperturbed system. We write U = (ui)

T ∈
R

m,n, X = (xi)
T ∈ R

m,n. We have that ui ∼ N(Axi,σ2I). If ai is the transpose of the i-th row of
A, this Gaussian likelihood decomposes into n factors, one for each ai. If the coefficients of A are
assumed to be independent Laplacian a priori, the posterior factorises accordingly:

P(A|D) = ∏
j

P(a j|D), P(a j|D) ∝ N(U ·, j|X a j,σ2I)∏
i

P(a j,i).

Thus, we have n independent sparse linear models, on which inference is done separately.
Since biological experiments involving gene switches are expensive and time-consuming, a key

requirement is to perform with as few data as possible, which is possible if biological prior knowl-
edge is encoded in P(A). Importantly, regulatory networks are observed to be sparsely connected,
that is, plausible A are sparse, a property which is directly represented in the sparse linear model.
A principled way of saving on the number of expensive experiments is optimal design, which in a
special case of interest here boils down to the question: given the current posterior belief and a set
of candidate controls u∗, which of these experiments renders most new information about A? Thus,
a “value of information” is sought which can be computed for each candidate u∗ without doing the
corresponding experiment. Optimal design is well developed in classical and Bayesian statistics
(Fedorov, 1972; Chaloner and Verdinelli, 1995; MacKay, 1991), and access to this methodology is
a key motivation for developing a good inference approximation here.
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2.3 Coding of Natural Images

A second application of the sparse linear model is concerned with linear coding of natural images
(Olshausen and Field, 1997; Lewicki and Olshausen, 1999), with the aim of understanding proper-
ties of visual neurons in the brain. Before we describe the setup, it is important to point out what
our motivation is here, since it deviates significantly from what is usually done in machine learning.
One approach in theoretical neuroscience is to formulate principles which can be described reason-
ably simply in mathematical terms, so that certain phenomena observed in experiments emerge if
only these principles are followed. Once such principles are established, one can think about neural
mechanisms implementing them. Also, if different principles lead to the same observed phenomena,
one can plan experiments to further discriminate between them. In machine learning, the problems
are known, and methods are compared with the aim of finding the best one, using an evaluation
score and methodology independent of the set of methods to ensure a fair comparison. If results are
not much different across methods, the most efficient one is usually preferred. In theoretical neu-
roscience,7 the outcomes are known, and simple “universal” principles to explain them are sought.
Once a principle is suggested, the aim is to devise a method following that principle as closely as
possible. If such a method can then successfully reproduce observed phenomena, the principle can
be established. In the context here, we are interested in testing a hypothesis put forward by Lewicki
and Olshausen (1999), which is formulated in Bayesian terms. We are not interested here in coding
images in the best possible way, and certainly not in how to do this with the highest computational
efficiency.

An image u ∈ R
m is modeled as u = X a + ε, where the columns of X are codebook vectors,

a ∈ R
n are basis coefficients, and ε ∼ N(0,σ2I) independently. Note that codebook vectors are also

referred to as filters, or basis functions. A central assumption on a is sparsity, which is especially
important in the underdetermined (or overcomplete) regime: m < n. The Bayesian approach via
the sparse linear model (1) has been suggested by Lewicki and Olshausen (1999), where the aver-
age coding cost of images under the model is put forward as criterion for ranking different code
matrices X . Their work aims to give a probabilistic interpretation to the findings of Olshausen and
Field (1997). In a Bayesian nomenclature, the average coding cost is the negative log marginal like-
lihood − logP(D), where P(D) = ∏ j P(u j), P(u j) =

R

P(u j|a j)P(a j)da j, and differences of these
for different X are log Bayes factors. In Section 5, we show how to obtain a good approximation to
− logP(D) through EP, which can be minimised w.r.t. the code matrix X in a gradient-based way.
This general idea is proposed by Lewicki and Olshausen (1999) as well, but they use a second-
order (Laplace) approximation to − logP(D), which is not suitable in case of a Laplace prior.8 In
the earlier approach of Olshausen and Field (1997), the learning of X is driven by point estimates
(or maximum a posteriori decoding), and a criterion different from the average coding cost is opti-
mised. This ignores posterior uncertainty in the decodings, and requires additional renormalisation
heuristics in order to learn a good code. Our approximation here implements the probabilistic hy-
pothesis of Lewicki and Olshausen (1999) fairly accurately, and can therefore be used to analyse
more closely which of the features found by Olshausen and Field (1997) are due to the minimi-
sation of average coding cost, versus which may rather be caused by particular characteristics of
their learning method. Note that maximisation of the marginal likelihood is an important empirical

7. Or, in fact, in most natural sciences, with the exception of Engineering and Computer Science.
8. The problem is that logP(a j) is not differentiable at the posterior mode â j , so that the matrix B in Lewicki and

Olshausen (1999) is not well-defined. See comments in Section 3.
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Bayesian way of estimating free hyperparameters, and Bayes factors are routinely used to compare
model setups, so our approximation will be useful in other applications of the sparse linear model
as well.

One of the key questions in natural image modelling is: under which conditions do basis vec-
tors emerge which are spatially oriented and localised, thus show properties which have been es-
tablished for the receptive fields of certain visual neurons? Given that the hypothesis of Lewicki
and Olshausen (1999) is taken for granted, the sparsity hypothesis can be tested using the sparse
linear model. Interestingly, other conditions brought forward (such as non-negativity) can also be
dealt with in principle using the linear model, with different priors on a. Technically, non-negativity
can be implemented by “cutting off” (and renormalising) a given prior density, which amounts
to replacing P(ai) by 2P(ai)I{ai≥0}. Importantly, if P(ai) is log-concave, so is this modification,
because logI{ai≥0} is (generalised) concave. For example, “cutting off” the Laplace distribution
results in the exponential distribution,9 which has been used in the context of image modelling by
Hojen-Sorensen et al. (2002). While exponential priors encode non-negativity and sparsity at the
same time, a cut-off Gaussian P(ai) = 2N(ai|0, τ̃−2)I{ai≥0} could be used to represent non-negativity
alone.

2.4 Bayesian Compressive Sensing

There has been a lot of recent interest in signal processing in the problem of compressive sensing
(Candès et al., 2006; Donoho, 2006). The idea is appealingly simple. Suppose a signal is measured
and then transferred over some channel or stored on some media. The second step almost always
includes lossy compression in practice, especially with signals such as images or sound, where the
loss may not be perceivable. Many of today’s codes are sparse: the signal is transformed one-to-
one, after which many coefficients are close to zero. These coefficients are then set to zero, and are
not transmitted or stored. The first sensing (or sampling) step is traditionally done in a way which
does not lead to loss of information, say by relying on the Nyquist/Shannon sampling theorem. The
question of compressive sensing is whether one can sample a signal in a more efficient, but lossy
way, so that the loss is part of that one encountered through subsequent compression anyway. The
main attractiveness is that if a lossy compression is used, compressive sensing does not add further
losses.

Although maybe not phrased in that way by much of the existing work, this is a classical problem
of experimental design. An approximate Bayesian variant of compressive sensing has been proposed
by Ji and Carin (2007), using sparse Bayesian learning (Tipping, 2001) to approximate the inference.
Most practical codes today are linear, in that y = Φa, where y is the signal (say, an image), Φ is
the code matrix (say, a Wavelet transform), and a are the coding coefficients. The code is designed
such that a is approximately sparse, in much the same sense as elaborated in Section 2.1. Typically,
Φ is one-to-one, even unitary. We then measure the signal linearly, that is, obtain u = Py +ε, where
P is a measurement matrix, u are the responses, and ε is noise due to measurement errors. Here,
P ∈ R

m,n with m < n (the savings promised by compressive sensing). If X = PΦ, this is exactly
the setup of the linear model (1). Furthermore, the sparsity of a is encoded via a Laplace prior,
motivating the sparse linear model for compressive sensing.

The measurement matrix P can be designed at will, where we are possibly limited to certain
parametric families, due to constraints from the measurement architecture or (for very large n)

9. For this reason, the Laplace distribution is sometimes called double exponential distribution.
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computational tractability (see Section 6). Anyway, we can design P row by row through an instance
of standard sequential experimental design described in Section 4. This has been proposed in Ji and
Carin (2007). Moreover, we can try to optimise P a priori over a large database of signals from the
domain of the application, in what turns out to be an interesting variant of the image coding problem
of Section 2.3. Here, the image code Φ is fixed, but P is to be learned.

Another point in which our approach differs from much of the existing work on compressive
sensing, has to do with the sparsity prior we employ. Namely, many theoretical results have been
obtained under the assumption that the signal y can be exactly sparsely coded, in that most coef-
ficients in the corresponding a are exactly zero. However, in many real-world applications, this
may be too strict an assumption. For example, the Wavelet transform of an image is virtually never
exactly sparse, but rather features the bi-separation characteristic discussed in Section 2.1: many
coefficients are very close to zero, and a subsequent quantisation leads to an image visually in-
distinguishable from y. Our sparsity prior concentrates on the bi-separation characteristic, without
enforcing exact sparseness, thus may be better suited to many compressive sensing applications than
the requirement of exact sparsity.

Results from experiments with different variants of compressive sensing are in preparation (joint
work with Hannes Nickisch) and will be presented in a later paper (Seeger and Nickisch, 2008).

3. Expectation Propagation for the Linear Model

Exact Bayesian inference is not analytically tractable for the sparse linear model. In this section,
we show how to apply the recently proposed expectation propagation (EP) method (Minka, 2001b;
Opper and Winther, 2000) to this problem, circumventing some caveats we have not seen being
addressed before. We begin with a high-level description, filling in the details further below. In
the case of EP for the sparse linear model, it turns out that some details concerning robustness are
essential for obtaining a practically useful method.

In EP, we compute a Gaussian approximation Q(a) to the posterior

P(a|D) ∝ N(u|X a,σ2I)P(a).

Here, the likelihood N(u|X a,σ2I) is Gaussian, and it is the non-Gaussian prior P(a) which forces
us to approximate Bayesian inference. Our restriction to Gaussian Q(a) is primarily done for prag-
matic reasons, since Bayesian computations such as marginalisation and conditioning can be done
analytically in this family, using standard matrix operations which can be computed robustly and
efficiently. However, in our case, the Gaussian approximation can be argued for more strongly than
in many others. Namely, recall that logP(a) is concave (2). Since the likelihood is a Gaussian
function of a, the true log posterior logP(a|D) is concave as well, thus has a single mode only.

If P(0)(a) := N(u|X a,σ2I) is the Gaussian likelihood (1), the true posterior is

P(a|D) ∝ P(0)(a)∏
i

ti(ai), ti(ai) =
τ̃
2

e−τ̃|ai|.

We refer to the ti as sites, and to P(0) as base measure. Note that the latter is not in general normal-
isable.

In order to motivate EP, note that an optimal Gaussian posterior approximation Q(a) (at least
in our context here) would be obtained by setting its mean and covariance to the true posterior
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statistics. However, this would require a n-dimensional non-Gaussian integration, which cannot at
present be done tractably. However, we are able to compute one-dimensional integrals involving a
single non-Gaussian site ti(ai). EP makes use of this capability in an iterative fashion, in order to
approximate the desired joint posterior moments. The EP posterior approximation has the form

Q(a) ∝ P(0)(a)∏
i

t̃i(ai),

where t̃i(ai|bi,πi) are Gaussian factors. Formally, one gets from the intractable P(a|D) to its Gaus-
sian approximation Q(a) by replacing each non-Gaussian ti(ai) by a Gaussian counterpart t̃i(ai).
This formal replacement introduces site parameters b, π ∈ R

n, and the EP algorithm is an iterative
method for adjusting these in turn.

In a single EP update, bi, πi are adjusted, while leaving all other site parameters the same.
Starting from the current Gaussian approximation Q, we compute the Gaussian cavity distribution
Q\i ∝ Qt̃−1

i by dividing out the site approximation t̃i(ai), then the non-Gaussian tilted distribution
P̂i ∝ Q\iti by multiplying in the true site ti(ai) instead, finally we update bi, πi such that the new Q′

has the same mean and covariance as P̂i. These single updates are iterated in some random ordering
over the sites until convergence.10 Thus, EP is inherently based on the idea of moment matching. In
other words, Q′ is chosen by minimising the relative entropy D[P̂i ‖·] over all Gaussians.

From an algorithmic viewpoint, several questions have to be addressed. First, how can we
represent the Gaussian Q(a), so that single EP updates are served well in terms of efficiency and
robustness? We will see that a good representation has to allow for the rapid “random-access”
extraction of marginals Q(ai), and we have to be able to efficiently and robustly update it after a
change of bi, πi. Second, how can the mean and variance of the non-Gaussian P̂i(ai) be computed
accurately? To address these questions, we need to introduce some notation and details.

Denote the family of unnormalised Gaussian measures by

NU(z|b,P) := exp

(

−1
2

zT Pz +bT z

)

,

P being positive semidefinite. Then, P(0)(a) = NU(a|σ−2b(0),σ−2Π(0)) with Π(0) = XT X , b(0) =
XT u. The site approximations are t̃i(ai) = NU(ai|σ−2bi,σ−2πi), so that Q is a Gaussian. In general
applications of EP, the πi can become negative, but this does not happen in the cases discussed
in this paper. We will show in Section 3.5 that for log-concave sites ti, all πi remain nonnegative
throughout the course of the EP algorithm.

Moreover, the reader may wonder why we restrict ourselves to t̃i(ai), instead of allowing for
general site approximations t̃i(a). Also, a careful reader may have noted that we are only concerned
about marginal distributions Q(ai) and P̂i(ai) during an EP update at ti. Importantly, all this does
not come with a loss of generality, as is shown in Section 3.1.

We initialise the algorithm with b = 0 and π = ε1, ε > 0. A useful heuristic is ε = τ2/2, making
sure that ti(ai) and t̃i(ai) have the same variance initially. In the case of the sparse linear model,
the implementation of EP is complicated in a fundamental way. If m < n (underdetermined case),
the base measure P(0)(a) is not normalisable, because Π(0) = XT X is singular. It is easily seen that

10. To our knowledge, little is known in general about convergence properties of EP, even with log-concave sites. Em-
pirically, we have never observed failure of convergence in the log-concave case, except for reasons of numerical
instability (see Section 3.3.1). Obtaining a formal convergence proof in this case remains a very important point for
future research.
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if any of the πi = 0, the resulting Q(a) is (in general) not a proper Gaussian either, so we have to
ensure that πi > 0 at all times. If m � n, we would like to represent the posterior Q in a way which
scales with m rather than n. We address these issues below in this section.

It is important to note that EP is not merely a local approximation, in that t̃i is somehow fitted to
ti locally. This would not be useful at all,11 because posterior mean and covariance are shaped jointly
by the non-Gaussian ti and the coupled Gaussian base measure. Loosely speaking, the likelihood
couples coefficients ai, so that the intentions of the prior factors ti(ai), namely to force their respec-
tive arguments towards zero, have to be weighted against each other in a very non-local procedure.12

After each EP update, although only a single site approximation is modified, its influence propa-
gates to all other sites, because they are coupled through the base measure. In fact, non-locality is
a central aspect of Bayesian inference which makes it so hard to compute, and inference is particu-
larly hard to do in models where strong long-range posterior dependencies are present which cannot
easily be predicted from local interactions only.

Finally, would it not be much simpler and more efficient to locate the true posterior mode
through convex optimisation (recall that the posterior is log-concave), then do a Laplace approx-
imation there, which amounts to expanding the log posterior density to second order around the
mode? Indeed, finding the mode can be done efficiently by solving a quadratic program (Tibshi-
rani, 1996). General problems with this approach include that the curvature around the mode may
not be characteristic of the target density, and that the mode may not be a good place to center a
Gaussian approximation at. In the case of the sparse linear model, the Laplace approximation is
not even a valid option, since it is not well-defined in the presence of a Laplace prior.13 Namely,
logP(ai) does not have a curvature at ai = 0. The posterior mode is guaranteed to contain at least
some zero components, so the curvature there is not defined. EP does not require P(ai) or logP(ai)
to be differentiable. On models where both methods can be applied, EP tends to improve upon a
Laplace approximation significantly, but is also typically more expensive (Minka, 2001a; Kuss and
Rasmussen, 2005).

3.1 Overview of Algorithm

In this section, we provide a schematic overview of the EP algorithm, filling in details in the sections
to come. Recall that EP iterates site updates at i ∈ {1, . . . ,n}, computing Q\i ∝ Qt̃−1

i and P̂i ∝ Q\iti,
then adjusting Q → Q′ such that Q′ has the same mean and covariance as P̂i. Since ti depends on ai

only, P̂i(a\i|ai) = Q\i(a\i|ai), where a\i := (a j) j 6=i, thus Q′(a\i|ai) = Q\i(a\i|ai). Therefore, an EP
update automatically results in the site approximation t̃i being a (Gaussian) function of ai only. It
also implies that in order to drive the EP update, all we need is the marginal distribution Q(ai). Just
as most other variational “message-passing” approximate inference methods, EP can be seen as an
iterative algorithm, improving estimates of the marginals Q(ai), i = 1, . . . ,n until convergence. An
EP update is local, in that its input is a marginal Q(ai) and it affects single site parameters bi,πi

only. However, this globally affects all other marginals, which have to be updated through Gaussian
propagation.

In common variational algorithms applied to discrete structured graphical models, such correc-
tions of marginal estimates are performed by passing messages along the graph. In our case, the

11. Our experiments comparing Laplace and Gaussian priors in Section 7.1 illustrate this fact very nicely.
12. Our arguments about locality assume that a neighborhood structure can be imposed on a, say neighboring pixels in

an image.
13. It is not known whether P. S. Laplace thought about this problem or even fixed it.
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Algorithm 1 Expectation propagation algorithm for sparse linear model.

Require: X , u, τ, σ2, η
b = 0. π = ε1. Compute initial representation of Q
repeat

for i ∈ {1, . . . ,n} (random order) do
Compute marginal Q(ai) = N(ai|hi,σ2ρi) from representation
Do (fractional) EP update: (bi,πi) → (b′i,π′

i)
Update representation of Q

end for
Refresh representation

until marginal estimates {Q(ai)} converged

fully coupled Gaussian factor P(0) plays the role of the graph, and the messages are replaced by a
posterior representation of Q(a) = N(a|h,σ2Σ). Just as with messages, the purpose of a represen-
tation is twofold: first, it needs to deliver mean and variance of an arbitrary marginal Q(ai) rapidly.
Second, we need to be able to update it efficiently after each EP update. Our representations are
given in Section 3.2, together with efficient update rules. Numerical errors can accumulate after
many updates, so the representation is refreshed (i.e., recomputed from scratch) after each O(n)
EP updates. An iteration of EP updates over all (or most of the) sites is referred to as sweep. The
structure of the EP approximate inference algorithm is given in Algorithm 1.

We close this section by remarking on the stopping rule we use in our EP implementation. One
could stop once the site parameters do not change significantly anymore. However, we are really
interested in the marginal means and variances, which in some cases are only weakly dependent on
certain site parameters. For example, a large πi means in general that the corresponding marginal
mean is nailed down with a small variance, and increasing πi further may have no large effect
on the marginal distribution. Let d(a,b) := |a− b|/max{|a|, |b|,10−3} and ∆i = max{d(h′i,hi),
σd(
√

ρ′
i,
√ρi)}, where Q(ui) = N(hi,σ2ρi) and Q′(ui) = N(h′i,σ2ρ′

i) are the posterior marginals
before and after an update at site i. We stop once maxi ∆i for a sweep over all sites is below some
threshold.

3.2 Posterior Representation

In this section, we develop a representation of the posterior approximation Q(a) = N(h,σ2Σ) which
allows efficient access to entries of h, diagΣ (marginal moments), and which can be updated ro-
bustly and efficiently for single site parameter changes (after EP updates). In fact, we propose two
different representations: a degenerate and a non-degenerate one. The former is only useful in
the underdetermined case (m < n), its updates are less numerically stable and more complicated,
but it scales as O(m2), while the non-degenerate one scales as O(n2). If m � n, the degenerate
representation leads to large computational savings.

We begin with the simpler non-degenerate representation:

Σ−1 = XT X +Π = LLT , γ := L−1(b(0) +b),

where Π := diagπ here and elsewhere. L ∈ R
n,n is the lower-triangular Cholesky factor (Horn and

Johnson, 1985). Recall that b(0) = XT u. Note that h = L−T γ. The marginal Q(ai) = N(hi,σ2ρi)
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is determined as hi = vT γ, ρi = ‖v‖2, where v = L−1δi. Here, δi is the Dirac unit vector with 1
at position i, and 0 elsewhere. This costs O(n2) (single back-substitution). After an EP update
bi → b′i, πi → π′

i, we have that

L′(L′)T = LLT +(π′
i −πi)δiδT

i , L′γ′ = Lγ +(b′i −bi)δi.

L′, γ′ are computed from L, γ using a Cholesky rank one update (downdate) for positive (negative)
π′

i −πi. This can be done in O(n2), we use a modification of the LINPACK routines dchud, dchdd
(Dongarra et al., 1979), see Seeger (2004) for details. The update (downdate) is not done if |π′

i −πi|
is too small. The reader may wonder why we do not represent and update Σ directly, using the
Woodbury formula (see below). However, this would be numerically less stable than the Cholesky
representation suggested here, and the operation count is the about the same.

In the underdetermined case m < n, another degenerate representation can be used, which leads
to large savings if m � n. We noted in Section 3 above that Q is well-defined only if all πi > 0. For
numerical stability (with the degenerate representation), we require that πi ≥ κ at all times, where
κ > 0 is a small constant (we use κ = 10−8 presently). This constraint is enforced in all EP updates.
We can use the Woodbury formula (Henderson and Searle, 1981) in order to write

Σ =
(

XT X +Π
)−1

= Π−1 −Π−1XT (I +X Π−1XT )−1
X Π−1.

We represent this via the lower-triangular Cholesky factor L in

LLT = I +X Π−1XT .

Furthermore, let γ := L−1X Π−1(b(0) +b), whence

h = Σ(b(0) +b) = Π−1
(

b(0) +b−XT L−T γ
)

,

thus both h and Σ are represented by L, γ. For not too small κ, this representation is numerically

stable. The marginal Q(ai) is obtained as ρi = π−1
i (1−π−1

i ‖v‖2), hi = π−1
i (b(0)

i +bi − vT γ), where
v := L−1x with x = X ·,i. After an EP update bi → b′i, πi → π′

i, the representation is modified as

follows. Let ∆1 := (b(0)
i +b′i)/π′

i − (b(0)
i +bi)/πi, ∆2 := (π′

i)
−1 −π−1

i . We have that

L′(L′)T = LLT +∆2xxT , L′γ′ = Lγ +∆1x.

Just as above, L′, γ′ can be computed from L, γ as a Cholesky rank one update/downdate, at the cost
of O(m2). We do not modify πi and the representation if |∆2| falls below some small threshold.

All in all, we can use a representation of Q whose size, as well as cost of a single site update,
is quadratic in the smaller of n and m. Beware that L, γ have different definitions in the two cases.
Note that we can also use the non-degenerate representation in the case m < n. In general, the
non-degenerate representation leads to more numerically stable computations (supposedly because
the Woodbury formula is not used), which are in fact more efficient in practice once m ≈ n/2.
We recommend to use the degenerate representation only if significant computational savings are
observed in practice.

In some experimental design applications, such as gene network identification considered here,
m � n initially, but m grows up to n/2 eventually. In such cases, one could be tempted to use the
degenerate representation initially, then switch to the non-degenerate one. In general, this does not
make sense, since the majority of the computational effort is spent in the later stages anyway, and
the non-degenerate representation should be used throughout.
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3.3 The EP Update

An EP update works by matching moments between a tilted and the new posterior distribution. For
an update at site i, we require the marginal Q(ai) = N(hi,σ2ρi) only, which is obtained from the
Q representation. The moment matching requires the computation of Gaussian expectations with
ti(ai), a univariate quadrature which in general is not an analytical computation.

If Q\i(ai) = N(h\i,σ2ρ\i), we have that

ρ\i =
ρi

1−ρiπi
, h\i =

hi −ρibi

1−ρiπi
.

If the degenerate representation is used, it is more stable to compute the cavity marginal directly.
Namely, if v := L−1X ·,i, then ρ\i = ‖v‖−2 −π−1

i and h\i = (b(0)
i − vT γ)/‖v‖2 +bi/πi.

Next, we need to compute mean and variance of P̂i(ai) = Z−1
i Q\i(ai)ti(ai), which we do as de-

scribed in Seeger (2003), Appendix C.1.3. Note that Zi = EQ\i [ti(ai)], and define βi :=
(d logZi)/(dh\i), νi := −(d2 logZi)/(dh2

\i). The concrete computation of βi,νi (or equivalently,

of the first and second moment of P̂i(ai)) can be done analytically for Laplace sites, but is not
straightforward due to issues of numerical stability, it is described in Appendix A. Then, the new
site parameters are given by

π′
i =

σ2νi

1−σ2νiρ\i
, b′i =

σ2(βi +h\iνi)

1−σ2νiρ\i
.

We show in Section 3.5 that νi ≥ 0, thus π′
i ≥ 0, due to the log-concavity of ti. If π′

i < κ and the
degenerate representation is used, we set π′

i = κ.
The numerical difficulties with the EP update for Laplace sites are remarkable, given that no

such problems occur in several other EP applications, for example Gaussian process classification
(GPC) with probit or logit noise (Minka, 2001b; Opper and Winther, 2000; Lawrence et al., 2003),
where less careful implementations still work fine, and even approximate Gaussian quadrature can
be used. Several early attempts of ours led to complete failure of the algorithm on realistic data
(in the underdetermined case), motivating the fairly elaborate solution in Appendix A. While we
cannot offer a firm explanation for this yet, our intuition is that the effect of Laplace prior sites on
the posterior is much stronger, trying to emulate the essentially discrete feature selection process
in a “unimodal” manner. Our findings also shed some sceptical light on proposals to implement a
generic toolbox for EP, applying Gaussian quadrature14 to do EP updates for general sites (Zoeter
and Heskes, 2005). In the gene network identification application, we ran into problems of numer-
ical instability coming from the combination of Laplace sites with very underdetermined coupling
factors P(0). We suspect these problems are inherent, and in our case could be handled only by
considering a modification of EP, as discussed just below.

3.3.1 FRACTIONAL EP UPDATES

We just mentioned the numerical difficulty of doing EP updates with Laplace sites in the strongly
underdetermined case m < n. A frequent cause of numerical problems with EP is sloppiness in

14. Gaussian quadrature would fail completely for sites like the Laplace, which are not smooth functions. A central
assumption with virtually all quadrature methods today is that the integrand up to a predefined weight function can
be closely approximated by a low-order polynomial. Note that Monte Carlo integration is usually not considered
useful for (low-dimensional) quadrature, due to its poor relative accuracy.
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the implementation. For example, representation updates based on the Woodbury formula are a
frequent source of accumulation of round-off and cancellation errors (see Section 3.2). The EP
update with Laplace sites is quite difficult to do in a stable way (see Appendix A).15 However, even
using all these careful measures did not allow us to run standard EP on many of the gene network
identification problems of Section 7.1 or on a fraction of the image coding problems of Section 7.2.
We think that these stability problems of EP are inherent for some tasks, giving some motivation
below. Fortunately, EP can be modified to use fractional updates, which in fact counter exactly
the numerical problems we face. While fractional EP has been suggested as alternative to standard
EP (Minka, 2004), its role for circumventing stability problems has not been noted so far to our
knowledge.

Recall from Section 3 that if we set all or most of the πi = 0 in the underdetermined case, the
variance of most marginals Q(ai) is infinite. We face this problem by ensuring that πi ≥ κ at all
times. Still, at least for some updates, the cavity marginal variance of Q\i(ai) is huge. This is
because we divide through the site approximation t̃i(ai), whose πi ≥ κ keeps the variance small.
The variance is not infinite due to the effect of the other π j ≥ κ and the coupling through P(0), but
in many underdetermined situations, this coupling is weak. We then try to do an EP update based
on a very wide cavity distribution Q\i(ai) and a quite narrow site ti(ai) (enforcing a strong sparsity
constraint requires a rather large τ). This is inherently difficult to do.

It would be better to make Q\i(ai) narrower and ti(ai) wider, which is exactly what happens
in fractional EP updates. Here, we obtain Q\i(ai) by dividing out only a fraction of t̃i(ai), and
P̂i(ai) by multiplying with only a fraction of ti(ai). This idea is fairly natural, simply imagine the
sites being replicated q times, then taken to the power of η = 1/q to obtain the original setup. The
only difference to standard EP is that we tie the parameters of the corresponding fractional site
approximation replicas. Of course, the idea is not limited to rational fractions. Some extensions
and theory of this method are discussed by Minka (2004). Another view on fractional EP is that
projections from standard EP’s P̂i to Q′ are done based not on the relative entropy (see Section 3),
but on an α-divergence depending on the fraction.

For the fraction parameter η ∈ (0,1], let Q\i ∝ Qt̃−η
i and P̂i ∝ Q\itη

i . We choose the new site
parameters b′i, π′

i such that the moments of P̂i and Q′ match. This can be incorporated into the
derivations above by setting b̃i = ηbi, π̃i = ηπi, and τ̃ = ητ. The cavity moments are computed as

ρ\i =
ρi

1−ρiηπi
, h\i =

hi −ρiηbi

1−ρiηπi
.

For the degenerate representation, a direct computation may be more stable:

ρ\i = π−1
i

R
1−ηR

, h\i = π−1
i

(

b(0)
i − vT γ
1−ηR

+bi

)

, R = 1−π−1
i ‖v‖2.

We then compute b̃′i, π̃′
i as above, using τ̃ = ητ instead of τ in the Laplace site, so that P̂i and

∝ Q\it̃i(·|b̃′i, π̃′
i) have the same moments. Fractional updates are easily implemented for sites ti(ai|τ)

with some hyperparameter τ, such that ti(ai|τ)η = ti(ai|ητ). The Laplace site is of this kind, if the
normalisation constant of τ/(2σ) is dropped (it does not affect mean or variance of P̂i). Note that in

15. It is even harder to do for certain non-log-concave sites. For example, the sparse linear model with Student’s t prior
would be very hard to address with standard EP (Malte Kuss, pers. comm.).
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general, tη
i is log-concave if ti is. Finally, the site parameters are updated as

b′i = (1−η)bi + b̃′i, π′
i = (1−η)πi + π̃′

i,

upon which P̂i and the new Q′ have the same moments.
Another idea of making EP run smoother on hard problems is damping (Minka, 2001a). There,

the full standard EP update is computed, but the site parameters are updated to a convex combination
of old and proposed new values. This addresses a quite contrary problem to ours here. Damping
is useful if EP update computations are stable, but lead to an improper new posterior, or the prop-
agation of the updated information fails. If EP is viewed as finding a saddle point of a free energy
approximation (Opper and Winther, 2005), damping can be understood as a step-size rule within
this process. It slows down convergence in general in situations where EP without damping works
fine, but the fixed points are not altered. Our problem is not solved by damping, since proposed new
values for the site parameters cannot even be computed.

Finally, the reader may wonder whether the problems with standard EP are due to a bad initial-
isation of the site parameters. While we have not analysed it in all details, we think the problem is
inherent. For example, we tried to run fractional EP to convergence, then start standard EP (with
η = 1) from the fractional fixed point. On critical cases, this fails about as fast as if started in the
usual way, often in the first sweep of standard EP.

3.4 Inclusion of a New Point

Suppose we would like to operate inference in the sparse linear model in a sequential manner, in
that new data points (x∗,u∗) become available over time. This is the case in sequential design
applications, since single experiments result in new measurements. In this section, we show how
the EP posterior representation is updated once a new point (x∗,u∗) is added to the current data set
D. The inclusion of (x∗,u∗) works in two stages. First, the Gaussian base measure is modified in
order to incorporate the new point. Second, EP updates are done until convergence. The mechanics
of the latter have been described above, so we can concentrate on the first stage here.

For the non-degenerate representation, let v := L−1x∗. The change of b(0) results in γ̃ = γ +
u∗v. Since L′(L′)T = LLT + x∗xT

∗ , L′, γ′ is obtained from L, γ̃ by a rank one Cholesky update (see
Section 3.2). The cost is O(n2).

For the degenerate representation, let X ′ = (XT , x∗)T ∈R
m+1,n and u′ = (uT , u∗)T ∈R

m+1. Since
b(0) = XT u, we have that b(0)′ = b(0) + u∗x∗. Let l := L−1X Π−1x∗. Then, γ̃ = γ + u∗l incorporates
the update of b(0). Next, LLT grows by a row/column ((Ll)T , 1+ xT

∗ Π−1x∗)T . Therefore, L′, γ′ are
obtained from L, γ̃ by a Cholesky extension, as described in Seeger (2004). The cost of the inclusion
is O(m2).

3.5 Some Consequences of Log-concavity

A nonnegative function f (x) is log-concave if

f (λx1 +(1−λ)x2) ≥ f (x1)
λ f (x2)

1−λ

for all x1, x2, and λ ∈ [0,1]. f (x) is log-concave iff log f (x) is concave as a generalised function,
which can take on the value −∞, see Boyd and Vandenberghe (2002), Sect. 3.5. We call a distribu-
tion log-concave, if its density exists and is log-concave. In this section, we show some implications
of log-concave sites for the numerical stability of EP.
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Gaussians are clearly log-concave, so models of the sort considered here are log-concave if the
sites are (products of log-concave functions are log-concave). For example, Laplace sites ti(ai) are
log-concave, while Student’s t sites are not. A direct consequence is that for log-concave sites, the
posterior is log-concave, so its unique mode can be found by convex optimisation. Log-concavity
is stronger than unimodality though. For example, all upper level sets (areas enclosed by con-
tours) of the posterior are convex sets. Intuitively, log-concave distributions are “simple”, although
strong consequences of this fact for variational approximate inference methods are not known to
our knowledge.16 Our main result is the following theorem.

Theorem 1 Let EP be applied to a model with true posterior of the form

P(a|D) ∝ P(0)(a)∏
i

ti(ai),

where P(0)(a) is a joint unnormalised Gaussian factor, and the sites ti(ai) are log-concave. Suppose
the site parameters πi are initialised to non-negative values. Then, all EP updates are computable
(in exact arithmetic), and all πi remain non-negative throughout.

The proof is given in Appendix A.1. The theorem holds just as well for general sites ti(a)
with corresponding site approximations t̃i(a) = NU(σ−2bi,σ−2Πi), if “πi ≥ 0” is replaced by “Πi

positive semidefinite”. It hinges on a fundamental marginalisation theorem for log-concave func-
tions due to Prékopa, see Bogachev (1998). Namely, suppose that f (x,y) is jointly log-concave
in (x,y), x ∈ R

p, y ∈ R
q. Then

R

f (x,y)dy is log-concave in x. Theorem 1 implies that EP can
be implemented in a numerically stable way. Namely, the non-negativity of all πi ensures that the
representations introduced in Section 3.2 can be updated in a stable manner. The situation for some
applications with non-log-concave sites is much less satisfactory. It is usually not possible to keep
all πi positive anymore, without making significant approximation errors (Minka, 2001a). Full EP
updates lead to erratic behaviour or cannot even be done, and damping has to be used, leading to
slower convergence. Negative entries πi can lead to very ill-conditioned Cholesky factors in the
representations, resulting in large errors at each update.

Our theorem also implies that for applications where EP is started with π = 0, for example Gaus-
sian process classification, we have that the entropy H[Q] of the posterior decreases monotonically
during the first sweep. Namely, the entropy is log |Σ| up to constants, which is decreasing in every
single πi. Minka (2001a) notes that the first sweep of EP is equivalent to a method called assumed
density filtering (Kushner and Budhiraja, 2000), so our theorem has implications for this method as
well.17

Another interesting consequence of log-concavity holds for the sparse linear model, independent
of whether EP is used for approximate inference or not. It serves to motivate the parameterisation
of the Laplace sites (2) in terms of τ̃ = τ/σ. Up to additive constants, logP(u,a) has the form

(2m+n) logσ−1 − 1
2
‖u/σ−X a/σ‖2 − τ∑

i

|ai/σ|,

16. In contrast, MCMC sampling from log-concave distributions has been proven to be computationally efficient (Lovász
and Vempala, 2003).

17. The entropy H[Q] can increase in later sweeps of EP (this happens regularly, not only in special cases). This is
why we need to consider Cholesky downdates in Section 3.2, and shows that H[Q] alone cannot be used to prove
convergence of EP.
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which is jointly concave in (φ,σ−1), where φ := a/σ. This fact has been noted in Park and Casella
(2005). In fact, even P(u,a)σ is log-concave in (φ,σ−1), since 2m+n ≥ 1. The marginal likelihood
P(u) is a crucial criterion when it comes to hyperparameter optimisation or Bayesian tests (see
Section 5). Now,

P(u) =
Z

P(u,a)da =
Z

P(u,a)σdφ,

and by the marginalisation theorem, P(u) is log-concave in σ−1. This implies that if all other
hyperparameters are fixed, the empirical Bayesian maximisation of logP(u) w.r.t. the noise variance
σ2 is in fact a convex problem with a unique solution. Unfortunately, this property does not extend
to other hyperparameters such as τ or X . On a practitioner’s level, it is interesting to relate this fact
to a scheme mapping out the entire regularisation path of Lasso (or, equivalently, an SVM) (Hastie
et al., 2004). In either case, adjusting one hyperparameter trading off prior and likelihood given all
others is shown to be simple. Here, as there, this gives some reassurance if σ2 is adapted along with
other parameters (see Section 7.2).

We close this section by some technical side comments for readers interested in details, all others
may skip this paragraph. We require results from Section 5. We just showed that the exact logP(u)
is concave in σ−1, but how about the EP approximation of this quantity, called L in Section 5? To
answer this question, we first have to establish that L is well-defined and continuous as a function
of σ2 in the first place. Now, L is defined in terms of the site parameters at convergence, and
the EP algorithm has not been proven to always converge uniquely. Opper and Winther (2005)
show that L is a proper approximate free energy as function of b, π, but the site parameters at
convergence are only a saddle point thereof. Using tools such as the implicit function theorem,
one can argue that L(σ2) is well-defined across some range, but does this hold globally across all
σ2? If the dependence of the site parameters on σ2 is ignored locally, then L is log-concave in
σ−1, following similar arguments as above. We know from Section 5 that for computing the first
derivative w.r.t. σ2, the site parameters can be assumed constant, but this is not true in general for
the second derivative (which would characterise concavity). Clearly, there is more work needed to
gain a better understanding of such properties of the implicitly defined EP approximate free energy
L.

4. Sequential Optimal Design

The role of sequential optimal design18 for saving on expensive experiments has already been moti-
vated in Section 2. The topic is well-researched in classical and Bayesian statistics (Fedorov, 1972;
Chaloner and Verdinelli, 1995). A variant is known in machine learning as active learning19 (Seung
et al., 1992). We follow MacKay (1991) here, whose setting is closest to ours.

In the sparse linear model, a typical design problem can be formulated as follows. Given a set
of candidate points x∗, at which of these should a corresponding target value u∗ be sampled in order
to obtain as much new information about the unknown a as possible? Assuming (for the moment)
that u∗ is known for a x∗, natural scores quantify the decrease in posterior uncertainty or gain in

18. Optimal design is a fixed term in statistics for a methodology, in which designs are optimised. We have no intention
of claiming that any of the methods presented here solve problems in an optimal way, in fact they usually do not. In
the context of this paper, optimal design and experimental design mean the same thing.

19. Confusingly, active learning is also used for the related, but not identical setup, where data comes in sequentially,
and the method has to decide which cases to incorporate versus which to ignore. We are not interested here in this
latter setting.
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information from the current posterior Q to the novel Q′ which is obtained by including (x∗,u∗) into
the data set D. In this paper, we concentrate on the information gain D[Q′ ‖Q] = EQ′ [logQ′− logQ].
A large information gain means that Q′ is different from Q, thus much novel information is gained
from (x∗,u∗). Now, u∗ is not known for the candidates x∗. Bayesian methodology dictates that
u∗ is averaged over its current posterior Q(u∗|x∗,D) =

R

P(u∗|x∗,a)Q(a|D)da. Since Q(a|D) is
Gaussian for our approximation, the posterior over u∗ is Gaussian as well. A natural score for x∗
is the expected information gain EQ(u∗|x∗,D)[D[Q′ ‖Q]]. This one-dimensional integral can easily be
approximated using Gaussian quadrature.

However, optimal design for the gene network application of Section 2 does not fall into this
standard category and requires some additional thoughts. The goal is to score the utility of inclusion
of candidate controls u∗, given current data D (and posterior Q). Among a list of candidates, the
highest-scoring u∗ is then subjected to a new experiment in order to obtain x∗, whence (u∗,x∗) are
included to form D′ = D∪{(u∗,x∗)} and a new posterior Q′. Here, the posterior is a product of
independent factors for the rows of A, so that for given (x∗,u∗), the information gain is the sum of
D[Q′ ‖Q] over the posterior factors, where (x∗,u∗, j) is appended to D for the j-th factor.

More importantly, it is x∗ which is unknown, rather than u∗ in the standard setup. While
Q(u∗|x∗,D) is a Gaussian in our setup, Q(x∗|u∗,D) =

R

P(x∗|u∗,A)Q(A|D)dA is not a simple
distribution. However, we can easily sample from it by first drawing A ∼ Q(A|D), then20 x∗ =
A−1(u∗−ε), ε ∼ N(0,σ2I). Sampling from Q(A|D) is discussed in Appendix B.2. Our information
gain score in the gene network application is

S(u∗;D) = EQ(x∗|u∗,D)

[

D[Q′ ‖Q]
]

,

where the expectation is approximated by using a number of independent samples x∗.
Going back to the standard setup, for fixed (u∗,x∗), Q′ is obtained from the current Q by first

modifying the base measure P(0) corresponding to the inclusion, then updating the site parameters
b, π. The problem with this is that the EP updates are expensive, so only few candidates could be
scored for each inclusion.21 A simpler and much cheaper alternative is to approximate the informa-
tion gain by modifying P(0) only, but keeping the old site parameters, when defining Q′ in D[Q′ ‖Q].
In other words, for the purpose of scoring, we treat the model as purely linear-Gaussian, with Q
as “effective Gaussian prior”. This simple score can be computed very efficiently and reliably, so
many candidates can be scored. Details are given in Section 4.1. Recall that the score for the gene
network setup is the sum of information gains for the posteriors of each row of A.

Once a candidate is chosen for inclusion, a true experiment is done in order to obtain a complete
new data point. In the standard setup, this means drawing u∗, given x∗, but in the gene network
setting, we determine x∗ for given control u∗. The new information is then included by a posterior
update, as described in Section 3.4, and the site parameters are driven to new convergence by the
EP algorithm.

Note that the fact that we approximate the true posterior P(a|D) by a Gaussian Q(a), as well
as use Q′ with the same site parameters as Q, means that we merely approximate the information
gain, and at present we cannot give useful approximation guarantees, beyond our empirical demon-
strations that good designs are usually found. However, our use of Gaussian Q and a simple update

20. We use a LU decomposition of A. The cost of O(n3) may be prohibitive for large n (although the same A sample can
be used to score all candidates), in which case we would recommend sparsifying A and using a sparse matrix solver.

21. One idea would be to update few sites only after each inclusion. The extension described in Section 6.3 could be
used to implement this, which is however not done here.
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Q → Q′ means that our information gain approximation can be computed robustly, which, as noted
in Section 1, is often as important for experimental design as is high approximation accuracy.

4.1 Simple Information Gain

The simple information gain score is D[Q′ ‖Q], where Q is the current posterior, and Q′ is obtained
from Q by including (x∗,u∗) into the base measure P(0) as discussed in Section 3.4, but leaving the
site parameters b, π at their old value. The relative entropy between Gaussians is well known:

D[N(h′,σ2Σ′)‖N(h,σ2Σ)] =
1
2

log |M |+ 1
2

tr
(

M−1 − I
)

+
1
2

σ−2(h′−h)T Σ−1(h′−h), M := (Σ′)−1Σ.

(4)

Importantly, in our case we have that (Σ′)−1 = Σ−1 + x∗xT
∗ , so that M = I + x∗xT

∗ Σ has a simple
form. This allows us to compute the simple information gain very efficiently. Details are given in
Appendix B.1.

4.2 Marginal Criteria

The simple information gain scored discussed in the previous section measures the distance be-
tween the joint distributions Q and Q′ (before and after inclusion). However, inference schemes
such as expectation propagation (and other variational ones) are designed to approximate the pos-
terior marginals well. EP applied to models with Gaussian base distribution results in a full joint
posterior approximation Q, which can of course be used to make decisions or to compute informa-
tion scores, but very little is known about the quality of Q beyond its marginals. A careful approach
would therefore base experimental design scores on the marginals of Q only. On the other hand,
criteria based on the full joint posterior can be more powerful in order to distinguish between many
candidates.

For such marginal scores, we need to know how the marginals change after an update of P(0). Let
h, diagΣ be the current marginal moments. We need to compute h′, diagΣ′ after inclusion of (x∗,u∗)
(we only deal with the “simple” variant here, where no EP updates are done after the inclusion). Let
α = xT

∗ Σx∗, z∗ = Σx∗. By the Woodbury formula, we have that

Σ′ = Σ− (1+α)−1z∗zT
∗ .

The new h′ is given in Appendix B.1, where we also show how to compute z∗, α efficiently. The
marginal moments h, diagΣ have to be computed from the representation before each scoring round,
although another idea is developed in Section 6.

Interestingly, in initial gene network identification experiments, employing the sum of marginal
information gains worked less well than using the simple joint information gain of Section 4.1. In
this case, the latter seems to carry more useful information about the candidates. In other words, the
posterior correlations estimated by EP seem good enough to be useful here. Results with marginal
scores are not reported in this paper.

5. The Marginal Likelihood

Bayesian methodology requires that unobserved variables are marginalised over in order to do pre-
dictions or to make optimal decisions. However, in many situations this is not practically feasible
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for some variables. In the case of the sparse linear model, we can approximately integrate out the
parameters a using EP, but likelihood and prior depend on other hyperparameters still, namely σ2,
τ, and (parameters of) X . A surrogate widely accepted amongst Bayesian practitioners is to estimate
good values for the hyperparameters by maximising the marginal likelihood of the observed data.22

An approximation to the marginal likelihood may be obtained from EP. Details about this ap-
proximation can be found in Seeger (2005). As shown there, it is the same as the approximate free
energy proposed in Opper and Winther (2005). We give the derivation for fractional EP in general
(see Section 3.3.1), η ∈ (0,1]. Standard EP is obtained for η = 1. We have that

P(D) = P(u) =
Z n

∏
i=1

ti(ai)P
(0)(a)da. (5)

Recall that in EP, the sites ti are replaced by approximations t̃i of Gaussian form. Earlier on, we did
not bother with the normalisation constants of these approximations, but now we have to make them
explicit: ti(ai) → Cit̃i(ai), t̃i(ai) = NU(ai|σ−2bi,σ−2πi). Roughly speaking, EP works by making
the first and second order moments of the posterior marginals Q(ai) and the tilted distributions P̂i(ai)
equal for all i. In this line, we fix the Ci such that the normalisation constants are the same as well:

logCi = η−1(logZi − log Z̃i), Zi = EQ\i [ti(ai)
η] , Z̃i = EQ\i [t̃i(ai)

η] .

Here, Q\i ∝ Qt̃i(ai)
−η. The EP approximation L ≈ logP(u) is then obtained by replacing ti by Cit̃i

in (5). This results in

L =
n

∑
i=1

logCi +
1
2

(

log |Σ|+σ−2hT (b(0) +b)−σ−2‖u‖2 +(n−m) log(2πσ2)
)

. (6)

In order to maximise L, we require its gradient w.r.t. hyperparameters, which can be computed
exactly if EP is run to convergence, such that the moments of all Q(ai) and P̂i(ai) coincide. In
Seeger (2005), the following is shown:

∇θ(0)L = EQ[∇θ(0) logP(0)(a)], (7)

where θ(0) are the natural parameters of P(0). Furthermore, if α is a parameter of the site ti indepen-
dent of P(0), then

∂L
∂α

=
∂ logZi

∂α
= EP̂i

[

∂
∂α

log ti(ai)

]

. (8)

Note that this holds for fractional EP in general, if η ∈ (0,1]. The specialisations to our case are
given in Appendix C.

Note that the EP approximation L of logP(u) has an important consistency property. It is well
known that ∇θ(0) logP(u) = EP(a|D)[∇θ(0) logP(0)(a)], from which (7) is obtained by replacing the
true posterior by the EP approximation Q(a): the true gradient of the approximate criterion is the
approximate gradient of the true criterion. Another way to view this is to note that L depends
on hyperparameters directly as well as through the EP site parameters b, π, thus the gradient has
direct as well as indirect contributions. Importantly, the stationary conditions of EP at convergence

22. In work in progress, we show how the noise variance σ2 can be integrated out along with a using EP. This, however,
leads to a significantly more complicated and somewhat less robust algorithm. Details will be given in a later paper.
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imply that the latter contributions do vanish. In Seeger (2005), it is shown that (∂L)/(∂σ−2bi) =
(∂L)/(∂σ−2πi) = 0 at EP stationary points, which directly implies the simple formulae (7), (8). This
fact becomes clear if L is seen as approximate free energy (Opper and Winther, 2005) (although only
the case η = 1 is discussed there).

Note that the fraction η is a parameter of the approximation method, not a statistical variable or
hyperparameter. It is natural to ask for which η one would obtain the best approximation of logP(u).
Since L is not a bound on logP(u), we cannot directly optimise η. Useful theoretical insights about
fractional EP variational free energies for different η are not known to us. We will address this point
as part of an empirical comparative study, which is subject to future work. However, note that EP
cannot be run at all in a stable way for certain setups if η is (very close to) one (see Section 7.1).

6. Large-Scale Applications

A naive implementation of the EP algorithm for the sparse linear model requires O(n3) time for each
sweep and O(n2) memory, if the non-degenerate representation is used. While this is acceptable for
moderate sizes of n, like in the gene network identification application, it is certainly not feasible for
large n. In this section, we propose some ideas in order to apply our framework in such situations.

The dominant computation within our framework, both for experimental design and marginal
likelihood maximisation, is spent performing a sweep of EP updates. Naively, this is a loop over
all n sites (in random ordering). For each site i, the marginal Q(ai) has to be determined, and the
representation for doing so has to be updated afterwards. Time can be saved by doing less than
n updates per sweep, and by speeding up the marginal extraction or representation update. In a
sequential context such as experimental design, it is sensible to assume that many EP updates will
not lead to much change in Q, especially during later stages. A key problem is how to efficiently
detect the sites whose update would change the current posterior the most.

Furthermore, a large-scale application will normally not be generic, but comes with a lot of
structure already. For example, the design matrix X ∈R

m,n is often given implicitly, since its storage
alone would be too costly, and matrix-vector multiplications (MVMs) with X are often much more
efficient than O(nm). A key step in the direction of a large-scale implementation is to make sure
that such special structure is used optimally.

A motivating example for a large-scale application comes from compressive sensing (see Sec-
tion 2.4). Recall that X = PΦ, where Φ is a fixed coding matrix, and P is a measurement matrix
we can design. If the task deals with full images, n can be a million, and neither Φ nor P can be
stored as dense matrices, but have to be defined implicitly as linear mappings. For example, Φ could
be an orthonormal Wavelet code, and P could consist of m selected rows from the discrete cosine
transform (DCT) matrix. An MVM with Φ costs O(n), an MVM with P is O(nlogn), both much
faster than a naive O(nm) MVM for large m. Experiments with this setup are in preparation.

6.1 Matrix-free Updates

We already noted that storing X explicitly should not be necessary, if we have an efficient method to
compute MVMs with X and XT . For example, X could be of special structure, or it could be sparse
(most entries exactly zero). Suppose that m � n with very large n. In this case, the degenerate
representation of Q(a) is used, requiring O(m2) storage. Each EP update requires O(m2) and the
extraction of a column of X , in other words X δi, a single MVM (see Section 3.3). It is necessary to
refresh the representation now and then, which requires the computation of X Π−1XT for arbitrary
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positive πi. This can be reduced to computing X Π−1XT δi, i = 1, . . . ,m, corresponding to m MVMs
with X and XT each.

6.2 No Representation At All

It is in general not feasible to compute all required marginals on demand, just storing π, b, and the
data. A representation is used in order to do this feasibly, using the fact that each update leads to a
rank one modification only. Time is traded for memory, as explained in Section 3.2.

However, suppose that MVMs with X and X T can be done very efficiently. For an update at site
i, we require Q(ai) = N(hi,σ2ρi). Recall that Σ−1 = XT X +Π and h = Σ(b(0) +b). The quadratic
criterion

q(v) := δT
i v− (1/2)vT (XT X +Π)v

can be minimised using the linear conjugate gradients (LCG) algorithm (Saad, 1996), requiring a
MVM with XT X + Π per iteration, thus MVMs with X , X T , and O(n). At the minimum, we have
v∗ = Σδi and q(v∗) = ρi/2, whence hi = vT

∗ (b(0) +b).

We can also start from the degenerate representation and formulate the marginal computation as
quadratic minimisation over vectors of size m, where the system matrix is I + X Π−1XT . However,
both variants have the same cost of two MVMs per iteration, and their convergence behaviour should
be similar.

This method has the advantage of not requiring any representation at all. Apart from the archi-
tecture for computing X and X T MVMs, we need O(n) memory only. However, it is useful only
if LCG converges to satisfying accuracy rapidly (after many fewer than n iterations), and if single
MVMs can be done much faster than O(nm). Another drawback is that the marginal computations
are approximate only, and the error may well depend on the current π. Therefore, it is maybe most
sensible to combine it with a way of reducing the number of EP updates required, as is discussed
just below.

6.3 Keeping Marginal Moments Up-to-date

The suggestions so far try to speed up single EP update computations. However, if n is very large,
a major problem is that we cannot update all n sites in a sweep. For example, in the context of
experimental design, it is not affordable to update each site after each new data point inclusion.
Updates have to be done selectively on a subset. In this section, we indicate how this can be done.
See Seeger and Nickisch (2008) for a demonstration in practice.

Given the marginal Q(ai), an EP update at i is O(1), so its effect on Q(ai) can be measured
cheaply. The costly part (in the formulation used so far) is to extract the marginal from the repre-
sentation, and to update the latter. It is reasonable to assume that a small impact of an EP update on
the marginal Q(ai) implies that the whole posterior Q changes little, so site i need not be updated at
the moment.

In order to direct EP updates towards sites with maximum marginal impact, it is necessary
to keep all marginals Q(ai) up-to-date at all times. In other words, Q(ai) must be computable
in O(1) from the representation, for any i. With the representations of Section 3.2, this costs
O((min{n,m})2). We concentrate on the degenerate representation, which is more important in
the large-scale context (the non-degenerate case is also simpler). Let V := X T L−T , and define
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e1 = diagVV T , e2 = V γ. Given the latter vectors, each marginal can be computed in O(1):

ρ = Π−1(1−Π−1e1), h = Π−1(b(0) +b− e2).

We show how e1, e2 can be updated along with the representation. Recall Section 3.2, x = X ·,i.
We can compute ∆1, ∆2 and Q′(ai) in O(1), without knowing v = L−1x = (V i,·)T . If |∆2| or
D[Q′(ai)‖Q(ai)] is too small, the update is rejected. Otherwise, we compute v and w := L−T v, r :=
XT w. First, γ̃ = γ +∆1v. The Woodbury formula gives

(

L′(L′)T )−1
=
(

LLT )−1 − (∆−1
2 + e1,i)

−1wwT ,

so that e′1 = e1 − (∆−1
2 + e1,i)

−1r ◦ r, and

e′2 = V ′(L′)−1(Lγ̃) = e2 +(∆1 − (∆−1
2 + e1,i)

−1vT γ̃)r.

Now, vT γ̃ = e2,i +∆1‖v‖2 = e2,i +∆1e1,i, so that

e′2 = e2 +
∆1 −∆2e2,i

1+∆2e1,i
r.

Finally, L′,γ′ are obtained from L, γ̃ by a rank one Cholesky update as before. The cost is increased
by the computation of w and r, the latter requires a single MVM with X T .

The representation has to be recomputed now and then. Here, the computation of e1 is most
challenging, but can be reduced to doing m MVMs with X T (with the columns of L−T , obtained by
back-substitutions).

In an experimental design context, the representation has to be updated once new data points
(x∗,u∗) are included, as discussed in Section 3.4. Using the notation there, V is transformed to V ′

by appending the column v := l−1
∗ (x∗−XT L−T l), where (lT , l∗) is the new row of L′. Therefore,

e′1 = e1 + v ◦ v. Moreover, γ′ = ((γ +u∗l)T ,g∗)T for a scalar g∗, so that

e′2 = V (γ +u∗l)+g∗v = e2 +u∗x∗ +(g∗−u∗l∗)v.

The computation of v requires one MVM with X T .
Once every marginal is available in O(1) at all times, we can actively select which one to update

next. For a set of candidates i, we compute score values Si, selecting site argmaxi Si for the next
update. A possible score is Si = D[Q′(ai)‖Q(ai)]. Scoring all sites for each update is O(n), thus
prohibitive, so a set of scoring candidates J should be maintained and evolved. A simple rule, which
has been used in the context of sparse Gaussian process methods (Lawrence et al., 2003), works as
follows. Before each update, all sites in J are scored. The winner is chosen for the update, and is
removed from J, along with a fraction (say, 1/2) of the worst-scored ones. J is then filled up again
by drawing at random from {1, . . . ,n}\ J.

Finally, we note that it is possible in principle to maintain e1, e2, therefore the marginal mo-
ments, without storing a representation of size O(m2) at all. For example, the update after a
change of πi,bi is in terms of r = XT L−T v = VV T δi. Since VV T = Π − ΠΣΠ, we have that
r = πi(δi −ΠΣδi). We have shown above how to approximate Σδi by the LCG algorithm. Equiva-
lently, VV T = XT (I +X Π−1XT )−1X , so we can also compute r by LCG on a system of size m. In
principle, such a representation-free method can be used to address problems with large m. How-
ever, when working without a representation, we have no efficient possibility anymore to “refresh”
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e1, e2 now and then. Moreover, using LCG is an additional source of approximation errors. The
danger is that (e1,e2) and (π,b) drift away from the relation that binds them with exact computa-
tions. Experiments assessing the usefulness of such a representation-free treatment in comparison
to a O(m2) representation are in preparation.

7. Experiments

In this section, we present experiments for gene regulatory network identification, for sparse coding
of natural images, and for compressive sensing.

7.1 Regulatory Network Identification

Our application of experimental design to gene network identification, using the sparse linear model,
has been described in Section 2.2. The material presented here is extracted from Steinke et al.
(2007), where all details omitted here can be found. The experiments were done by Florian Steinke.
Note that Matlab code is available23 for scientific use. The results given here can be reproduced
with this code.

In order to evaluate our method, we simulate the whole network identification process. First,
we generate a biologically inspired ground-truth network together with parameters for a numerical
simulator of nonlinear dynamics, respecting the network. We feed our method with a number of
candidate perturbations {u∗}, among which it can choose the experiments to be done. If (say) u∗ is
chosen, a corresponding x∗ is drawn from the simulator, and (u∗,x∗) is included into the posterior
Q(A) as new observation. We score the predictions from the current posterior against the true
network after each inclusion.

Our generator samples networks with a scale-free edge distribution, using n = 50 nodes with in-
degrees (excluding self-edges) in {0, . . . ,6}. An edge is activating with probability 1/2, inhibitory
otherwise. For a given network structure, we sample plausible interaction dynamics, using noisy
Hill-type kinetics inspired by the model of Kholodenko et al. (2002). Here, systems without a stable
fixed point are rejected.

The disturbance candidates u∗ were restricted to have a small number r of non-zero entries,
since a tightly controlled excitation or inhibition for many genes at the same time is unreasonably
expensive in practice. All non-zero elements have the same size, but a random sign, so that all u∗
have the same norm. We use a pool of 200 randomly generated candidates in general.

All results are averaged over 100 runs with independently drawn networks and systems. In the
comparative plots presented below, the different methods all run on the same data.

Our evaluation score measures the quality of the ranking of candidate edges, computed from
the posterior according to the probabilities Q({|ai j| > 0.1}). We modify a standard ROC curve
(true positive rate (TPR) as function of false positive rate (FPR)) by computing the area under the
ROC curve (AUC) only up to a number of false positives equal to the number of edges in the
true network. Namely, since true networks are sparse, there are many more non-edges than edges,
and only very small FPRs are acceptable at all. We denote our score as iAUC, it is normalised to
lie in [0,1]. For n = 50, the trivial method which outputs a random permutation as ranking, has
expected iAUC of 0.02. Furthermore, on average about 25% of the true edges are “undetectable”

23. See www.kyb.tuebingen.mpg.de/sparselinearmodel/. The code is joint work with Florian Steinke and Koji
Tsuda. If you use it as part of a scientific publication, please cite Steinke et al. (2007) (details are on the web site).

784



BAYESIAN INFERENCE FOR SPARSE LINEAR MODEL

after linearisation: their entries ai j are very close to zero, so they do not contribute to the dynamics
within the linearisation region. Such edges were excluded from the computation of iAUC.

Our method comes with two hyperparameters: the noise variance σ2, and the scale τ of the
Laplace prior. Given sufficient data, they could be estimated by the method described in Section 5,
but this is hard to do in an experimental design setting, where we start with very few observations.24

It is reasonable to assume that a good value for σ2 does not change too much between networks with
similar biological attributes, so that we can transfer it from a system whose dynamics are known, or
for which sufficiently many observations are already available. This transfer was simulated in our
experiments by generating 50 networks with data as mentioned above, then estimating σ2 from the
size of the ε residuals. The prior parameter τ was set by a simple heuristic described in Steinke et al.
(2007).

We used fractional EP with η = 1/2. Standard EP (i.e., η = 1) does not converge for the majority
of the inference tasks required. This problem is discussed in Section 3.3.1.

In Figure 2, we present reconstruction curves for our method versus competing techniques,
which lack novelties of our approach (experimental design, Laplace prior). Very clearly, experi-
mental; design helps to save on costly experiments. The effect is more pronounced for the Laplace
than for the Gaussian prior. The former is a better prior for the task, and it is usually observed that
improvements of designed over random experiments scale with the appropriateness of the model.
In this case, the iAUC level 0.9 is attained after 36 experiments with designed disturbances, yet
only after 50 measurements with randomly chosen ones, thus saving 30% of the experiments. In
fact, our results indicate that experimental design only realises its full potential together with the
non-Gaussian sparsity prior (see also Section 2.1).

In general, the model with Laplace prior does significantly better than with a Gaussian one.
Of course, τ for the Laplace and the variance for the Gaussian prior were selected independently,
specific to the prior. The difference is most pronounced at times when significantly less than n
experiments have been done and the linear system (3) is strongly underdetermined. This confirms
our arguments in favour of the Laplace prior (see Section 2.1).

The under-performance of the most direct variant LD of our method, up to about n/2 observa-
tions, is not yet completely understood. However, it has been repeatedly observed that aggressive
experimental design based on very little knowledge can perform worse than random data sampling,
if the model does not perfectly reflect the truth. On the other hand, it is important to note that LD
recovers completely from the initial under-performance, and from m = 25 onwards significantly
outperforms the random variant LR, so the initial design choices are not just plain wrong. We also
tested a hybrid strategy LM of starting with random, then switching to designed experiments. In this
particular application, starting from no knowledge about the network, an initial random exploration
seems to lead to most useful results early on, while not hurting a subsequent sequential design.

7.2 Sparse Coding of Natural Images

The application of the sparse linear model to image coding (Olshausen and Field, 1997; Lewicki and
Olshausen, 1999) is motivated in Section 2.3. Here, we present results of a study along the lines of
work reported by Olshausen and Field (1997).25 As is argued at length in Section 2.3, our goal here

24. One may be able to correct initial estimates of σ2, as more observations are made, and a method for doing so is
subject to future work.

25. Data and code used there was obtained from http://redwood.berkeley.edu/bruno/sparsenet/.
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Figure 2: Reconstruction curves for experiments (gene expression changes of 1%, SNR 100, r = 3
non-zeros per u). LD: Laplace prior, experimental design. LR: Laplace prior, random
experiments. GD: Gaussian prior, experimental design. GR: Gaussian prior, random
experiments. LM: Laplace prior, mixed selections (first 20 random, then designed). Error
bars show one standard deviation over runs. All visually discernible differences in mean
curves of different methods are significant under the t-test at level 1%.

is not to compare a range of models to find out which can code images better or learn codes more
efficiently, but rather to test the hypothesis put forward in Lewicki and Olshausen (1999), which
does not call for such a comparison. We extracted two data sets of r = 50000 image patches of size
12×12 by subsampling the 10 whitened natural scenes, using their Matlab code. One is for training,
the other for evaluation.26 We allow for a twice overcomplete basis, therefore m = 144, n = 288. We
also drew a random subsample of size 1000 from the test set, which was used in order to produce
curves over many codes. Recall that a code in our model is given by the matrix X , whose columns
are referred to as codebook vectors or filters.

26. The sets are not guaranteed to be completely distinct, although the extraction of the same patch during the different
sampling runs is unlikely.
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Before we describe the results, we should stress that the main aim at this point is to demon-
strate the efficiency and usefulness of our method on a learning problem of large scale. 41473
hyperparameters are learned here on a set of 50000 cases. Each update step requires approximate
inference on 100 models, each of which comes with 288 latent parameters. A more careful study
will explore the implications of our findings to neuroscience (early vision) and image coding. This
will entail a more refined learning schedule for our method, while our choices here are ad hoc and
did not receive much tuning. Moreover, we base our evaluation entirely on the EP marginal like-
lihood approximation on a test set. An independent MCMC evaluation of this criterion, using for
example annealed importance sampling together with hybrid Monte Carlo (which seems commonly
accepted, but is very expensive to run), is clearly needed in order to draw any scientific conclusions
(which we refrain from doing here). Such a study is subject to future work, and is not in the scope
of this paper.

As noted above, the approach of Olshausen and Field (1997) is to approximate inference by
maximum a posteriori (MAP): P(a j|u j,X ) ≈ δâ j(a j), where â j is the posterior mode. Since the
log posterior is concave, this mode is unique and can be found efficiently. In order to learn the
code X , they propose to impute their estimates in order to obtain a complete data set {(u j, â j)},
then to do maximum likelihood training. Since the estimate â j depends on the current X , this is an
iterative process. Their method will be called OF in the sequel. In contrast to this, we follow the
hypothesis of Lewicki and Olshausen (1999) and learn X by maximising the EP approximation to
the log marginal likelihood logP(D|X ) (see Section 5). While Lewicki and Olshausen (1999) argue
that the method of Olshausen and Field (1997) can be seen as optimising a (different) surrogate to
logP(D|X ) as well, ours is a much better approximation in general.27. Our method will be called
EP here.

We had to modify their code in a minimal way, in order for it to run automatically on a given
fixed training set. Our changes are detailed in Appendix E. Just as with our own method, we did
not attempt to refine parameters for their code here.

The code of Olshausen and Field (1997) performs stochastic gradient descent on batches of size
|B| = 100. We use a similar approach, which works as follows. The criterion − logP(D|X ) is a
sum of independent parts, one for each image. Let φ := −∑ j∈B L j be the EP approximation to this
criterion, evaluated over a batch of size |B| (here, L j is the EP log marginal likelihood approximation
on image j). The update rule for X is

X ′ = X −D′, D′ = 0.85D +ξX XT ∇X φ,

where ξ > 0 is the learning rate. The pre-multiplication of the gradient by X X T is advantageous
for this application, as has been argued in the context of “natural gradient” learning. As opposed to
Olshausen and Field (1997) and Lewicki and Olshausen (1999), we adjust the noise variance σ2 in
the same way by minimising φ. If l := logσ2, a simple update rule is

l′ = l −d′, d′ = 0.85d +ξl∇lφ,

where ξl > 0 is a learning rate different from ξ. The learning rates are decreased in a reasonably
slow way,

ξ(t) =
A

B+ t
, ξl(t) =

Al

Bl + t
,

27. MCMC experiments to strengthen this claim are subject to future work.
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where t is the number of updates so far, and A, B, Al , and Bl are free parameters (Bottou, 1998).
We can compare our update rule of X with the one used in Olshausen and Field (1997). It is

easy to see that the gradient of the exact log marginal likelihood is

∇X logP(u j|X ) = σ−2EP(a j|u j,X )[e ja
T
j ] = σ−2 ((u−X E[a j])E[a j]

T −X Cov[a j]
)

,

where e j := u j −X a j. If OF is seen as optimising an approximation thereof, then the expectation
over P(a j|u j,X ) is replaced by plugging in the mode â j (which is what we mean by “imputation”
above). In other words, the posterior mean E[a j] is replaced with the mode, and the second term
depending on the posterior covariance Cov[a j] is neglected altogether. Since the Laplace sparsity
prior leads to a posterior which is significantly skewed (towards coordinate axes, see Figure 1), mean
and mode tend to be quite different.28 In EP, the posterior expectations are replaced by EQ[·], where
Q = N(h,σ2Σ) is the EP posterior approximation (see Appendix C). In fact, running OF precisely
with the learning rule just stated does not work well in practice, and the neglectance of posterior
uncertainty in the learning rule is put forward as a reason for this in Lewicki and Olshausen (1999).
Olshausen and Field (1997) propose a heuristic renormalisation of the columns of X towards some
“desired variance” as remedy, and this seems an important feature in their code. This heuristic comes
with a number of parameters, which are fixed in their code to some values presumably optimised for
their data by hand. In contrast, EP comes with τ, σ2 only, and the latter can be adjusted automatically
as well,29 as is demonstrated here. Note that Lewicki and Olshausen (1999) suggest to approximate
Cov[a j] by the Laplace method in order to improve on the OF learning rule. However, as noted in
Section 3, this method is not well-defined in case of the sparse linear model. Code implementing
the proposal of Lewicki and Olshausen (1999) is not publicly available.

We can draw an analogy between the difference of learning X in OF and EP to current practices
in speech recognition (Rabiner and Juang, 2003). Given a trained system, the recognition (or decod-
ing) is done by searching for the most likely sequence, in what is called Viterbi decoding. However,
training the system should be done by expectation Maximisation (EM), where the latent sequence
is integrated out using inference. This is about what EP does here, with the difference that inference
in hidden Markov models used for speech is analytically tractable, but has to be approximated here
(by EP). However, since EM training is still computationally demanding, most speech recognition
systems use Viterbi training today, where just as in OF the most likely (MAP) sequence is imputed
instead of doing inference. While EM training is known to produce better recognisers on the same
data, MAP training is still preferred for reasons of computational efficiency.

Our setup is as follows. We ran all methods on the same training data set, starting from the
same initial code (drawn at random). For OF, learning rate and renormalisation heuristic parameters
were left unchanged in their code. We used the values 0.1, 0.2, 0.4, 0.6962 for τ, and 0.006, 0.01
for σ2. The values τ = 0.6962, σ2 = 0.01 come from the OF code, while σ2 = 0.006 is closer to
values ultimately preferred by the EP runs. All methods were run for 10000 batch updates, thus 20
sweeps over all images (in random ordering, different for each sweep). OF was run30 separately for
each of the eight (τ,σ2) variants. On the other hand, for the EP runs, σ2 was adjusted along with
X as described above, and only τ was provided (the initial value for σ2 was 0.002). The following

28. As discussed in Section 2.1, the mode â j has many components which are exactly zero, which does not hold for the
mean.

29. We could adjust τ in the same way with EP, but this is not done here. As noted in Section 3.5, the optimisation of σ2

should behave better.
30. We also ran OF with τ = 0.05, which gave bad results not reported here.
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τ = 0.1 τ = 0.2 τ = 0.4 τ = 0.69
σ2 OF EP OF EP OF EP OF EP

0.006 -27.09 -80.04 -68.17 -80.04 -35.91 -80.05 92.73 -80.04
0.01 -2.329 -63.37 -53.53 -63.47 -43.69 -63.63 60.44 -63.80

Table 1: EP negative log marginal likelihood (EP average coding cost) per image, evaluated on the
full test set (50000 cases), for different methods after 10000 batch updates of learning X .
OF: Olshausen/Field; EP: our method.

learning rate schedule parameters31 were used: A = 0.79, B = 0.79 ·103, Al = 0.79 ·10−5, Bl = B.
This means that ξ decreases from 10−3 to 7.32 ·10−5, and ξl from 10−8 to 7.32 ·10−10.

We compare methods in general by evaluating the EP negative log marginal likelihood approxi-
mation on the test set, normalised by the number of images. This is equivalent to the EP approxima-
tion of the average coding cost per image (Lewicki and Olshausen, 1999) (smaller is better). For all
but the final codes (after 10000 updates), we do this evaluation on the subset of size 1000. In order
to evaluate test scores or to learn X (EP variants only), we need to perform EP inference on each
image separately. To this end, we intended to use standard EP initially (η = 1, see Section 3.3.1),
but ran into severe numerical problems on a significant number of images,32 as described in Sec-
tion 3.3.1. This led us to use fractional EP with η = 0.9 instead, which is the basis for all learning
and test score evaluation results presented in this section.

learning curves along 10000 batch updates are shown in Figure 3 (using the test subset), and final
EP negative log marginal likelihoods per image on the full test are given in Table 1. To recapitulate,
the figures show average coding costs per image under the codes learned by the different methods,
where τ and σ2 are fixed for the evaluation. While OF was provided with τ, σ2, EP only received τ
during learning and had to adjust σ2 alongside the code matrix X . We see from Figure 3 (upper left)
that for the learning rate schedule used here, EP grows σ2 smoothly from 0.002 to about 0.005.

Note that in the Bayesian viewpoint of image coding, all hyperparameters of a model work
together in order to represent a data distribution (of image patches u) well, that is the code X , but
also τ and the noise variance σ2. In other words, code and noise variance are dependent. The EP
runs settle at around σ2 = 0.005, so the codes X found by them do better at σ2 = 0.006 than at
σ2 = 0.01. The results for EP seem to not much depend on τ, but the situation is quite different
for OF. At τ = 0.2, the OF codes do well in comparison to the EP ones, and the lower σ2 = 0.006
is preferred as well. For τ = 0.1 or τ = 0.4, they do significantly worse, and the preferred value is

31. These values were chosen after few initial runs, but not optimised over. Only for ξl(0) did we compare runs, looking
at learning curves on the training set. For ξl(0) = 10−9, σ2 hardly changed at all, while for ξl(0) = 10−7, σ2 increased
sharply to above 0.02, then descended slowly towards 0.01.

32. None of these problems happened with fractional EP, η = 0.9. However, there is a pattern to these failures, indicating
that further analysis would be valuable. In general, during learning X , EP convergence was harder to attain when
the code was already optimised, with structural features emerging in the filters. While X could still be learned with
τ = 1, the test set log marginal likelihood evaluations for these codes could not be computed for many patches (using
EP with η = 1). We evaluated these scores using EP with η = 0.9, finding very similar results (not shown here) than
with the codes learned using η = 0.9. The reason for not simply abandoning standard EP for more robust fractional
variants in general is based on arguments concerning alpha-divergences (Minka, 2004) (no hard theory is available
to settle this issue, to our knowledge), apart from the somewhat more appealing motivation that can be given for
standard EP (Opper and Winther, 2000).
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Figure 3: learning curves along 10000 batch updates. Upper left: Noise variance σ2 for EP (differ-
ent prior scales τ). Others: EP − logP(D)/r on test subset (r = 1000); τ = 0.1 (middle
left), τ = 0.6962 (middle right), τ = 0.2 (lower left), τ = 0.4 (lower right).

σ2 = 0.01 for τ = 0.4. Finally, poor results33 are obtained by OF with τ = 0.6962, as well as with

33. We re-ran this case several times, in the way described in Appendix E, always obtaining the same poor results.
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τ = 0.05 (not shown here). The learning curve behaviour of the EP runs is much smoother than for
OF, suggesting that the former optimisation problem is better behaved.

OF, τ=0.2, σ2=0.006 OF, τ=0.2, σ2=0.01

EP, τ=0.2 EP, τ=0.4

OF, τ=0.4, σ2=0.006 OF, τ=0.4, σ2=0.01

Figure 4: Final codes (after 10000 batch updates). Filters are ordered by descending ‖X ·,i‖, row-
major ordering. Filters with ‖X ·,i‖ > (3%)max j ‖X ·, j‖ have white frame, black other-
wise.
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τ = 0.1 τ = 0.2 τ = 0.4 τ = 0.69
σ2 EP[96] EP[288] EP[95] EP[288] EP[96] EP[288] EP[94] EP[288]

0.006 -81.41 -80.04 -81.41 -80.04 -81.41 -80.05 -81.41 -80.04
0.01 -64.74 -63.37 -64.84 -63.47 -65.18 -63.63 -65.18 -63.80

Table 2: EP negative log marginal likelihood (EP average coding cost) per image, evaluated on the
full test set (50000 cases), where X has been learned by EP. EP[288]: All X columns
(copied from Table 1); EP[94–96]: Only X columns of significant size.

The final codes for different setups are given in Figure 4. The most distinctive difference be-
tween EP and OF codes is that for the latter, the filters do not differ much in size,34 while there
is a clear size signature in the codes found by EP: about 96 filters have significant sizes, while the
remaining ones are about two orders of magnitude smaller. In the panels of Figure 4, filters with
‖X ·,i‖ larger than three percent of the maximum value are surrounded by white frames. For EP,
these are 94–96 of 288 columns of X . In Table 2, we show EP average coding costs for the full test
set, given that only the filters of significant size are used. These are even slightly lower than for the
respective models using all columns of X .

We see that for the given task, codes attaining the lowest average cost are in fact undercomplete.
A Bayesian method (such as EP here) removes unnecessary dimensions by default, through what
has been called automatic relevance determination (see also Section 8.1). This does not happen for
the OF method, which is not Bayesian and ignores covariances when learning X . We also note that
in the codes found by OF, the filters of largest size are non-localised gratings, while all filters of
significant size found by EP are localised and oriented. Both the smaller number of filters required
and the strict localisation properties can be explained by noting that each image patch is explained
probabilistically in EP, following Lewicki and Olshausen (1999), while in OF, this has to be done
using a deterministic sparse encoding. In an update of X , each image only affects a small number
of filters. It is then not too surprising that additional non-localised filters emerge in OF. If the
hypothesis of Lewicki and Olshausen (1999) is taken for granted, these filters should be interpreted
as artifacts of its improper implementation.

Note that the OF method runs much faster than EP. Finding â j is a quadratic program (Tib-
shirani, 1996), which can be solved efficiently. Our EP code for the experiments here is “naive”,
in that all sites are visited in random ordering, no further efforts (such as the ones described in
Section 6.3) are done. However, the arguments in Olshausen and Field (1997) and Lewicki and
Olshausen (1999) do not call for a method which can be run very efficiently on a digital computer.
A model is suggested which, in simple terms such as independence, linearity, and sparsity, could
account for the formation of early visual neuron’s receptive fields. The hypothesis of Lewicki and
Olshausen (1999) is equivalent to a Bayesian perspective, where inference is a core requirement for
improving the code, in much the same way as in EM for speech recognition, or graphical model
learning in general. For both OF and EP, filters of significant size are localised, oriented gratings.
However, our EP method more accurately implements the hypothesis of Lewicki and Olshausen
(1999) than the algorithm of Olshausen and Field (1997), and leads to qualitatively different find-

34. Their renormalisation heuristic keeps them at similar, yet not at equal sizes.
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ings: the data calls for a significantly undercomplete, therefore rather compact code, a fact that is not
picked up by the OF method at all (Berkes et al., 2008, report similar findings with an approximate
Bayesian method). Moreover, OF uses a significant number of non-localised filters, which are not
present among the vectors of significant size found by EP. A more careful study based on our frame-
work will shed light on what relevant properties in the codes can be explained by the probabilistic
hypothesis of Lewicki and Olshausen (1999), versus which findings should rather be attributed to
their particular computational method (maximum a posteriori, winner-takes-all X updates, variance
renormalisation heuristic, etc.).

Apart from learning codes with EP, we can also use the log marginal likelihood approximation
of EP in order to compare codes obtained by other methods. In Bayesian terms, such a comparison
is done by computing Bayes factors, which is comparable to hypothesis testing. Moreover, for a
fixed code X and data {u j}, the noise variance σ2 can be optimised by EP, in what is suggested to
be a robust process in Section 3.5.

7.3 Compressive Sensing

In this section, we present results for a compressive sensing toy example. The motivation behind
this application was given in Section 2.4. Results from a larger set of experiments, including some
large-scale applications (see Section 6), are given in a later paper (Seeger and Nickisch, 2008). The
experiments have been done by Hannes Nickisch.

In our toy experiment, the signal y ∈ R
n is sparse itself, so the coding matrix Φ is the identity.

We have n = 512. Measurements are taken as u = Py + ε, where P (or X here) is the measurement
matrix, and ε is Gaussian noise with standard deviation σ = 0.005. We compare methods where the
measurement projections P are optimised in a sequential row-by-row manner, with methods where
P is drawn uniformly at random on the unit hypersphere. In any case, the projections (i.e., rows of
P) are constrained to have unit norm. The signal y is created by drawing k = 20 non-zero positions
at random. The non-zero yi are drawn at random from {−1,+1} (uniform spikes), or according
to a density35 with support R \ (−0.21,0.21) (non-uniform spikes). Examples for such signals are
shown in Figure 5.

50 100 150 200 250 300 350 400 450 500
−1

0

1

50 100 150 200 250 300 350 400 450 500
−1

0

1

Figure 5: Examples for signal y. Top: uniform spikes. Bottom: non-uniform spikes.

The sequential experimental design of rows of P is a special case of the standard design setup
of Section 4. Namely, among all p j of unit norm, select the one which leads to minimum expected
entropy E[H[Q′]], where Q′ is the posterior after inclusion of p j, and the expectation is w.r.t. Q(u j),

35. Namely, yi = α(r +0.25sgnr), r ∼ N(0,1), where α = (5/4+
√

2/π−2/π)−1/2 ≈ 0.84, so that Var[yi] = 1.
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u j being the new measurement. Note that H[Q′] is in fact independent of u j, since Q′ is Gaussian.
Moreover, one can show that this criterion is equivalent to the expected information gain in this
case (MacKay, 1991). A simple argument shows that the eigenvector for the largest eigenvalue of
Σ solves this problem, where Q = N(h,σ2Σ) is the current posterior. This eigenvector can be found
by the power method.

We compare the following methods. Our design approach based on EP is called EP opt. The
method suggested by Ji and Carin (2007) is called RVM opt (P designed) or RVM rand (P random).
They select P in the same way as we do, but making use of their approximate posterior, which
they obtain as a variant of sparse Bayesian learning (SBL) (Tipping, 2001) (RVM refers to the
most commonly used variant of SBL). The method most frequently used in compressive sensing
applications so far is basis pursuit (Chen et al., 1999), where y is estimated by minimising ‖y‖1 =

∑i |yi|, subject to X y = u. Note that this corresponds to MAP estimation in the sparse linear model
if σ2 → 0 (noiseless case). This can be formulated as a linear program. L1 and BP here use two
different implementations.36 For all methods, the first 40 rows of P are drawn at random. If ŷ
denotes the best prediction of y from the measurements u (the mean of Q for our method and the
RVM variants), the error is measured as ‖ŷ−y‖/‖y‖, where ‖ ·‖ is the Euclidean norm. Results are
shown in Figure 6.
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Figure 6: Results for compressive sensing toy example comparison. Left: uniform spikes. Right:
non-uniform spikes. Averaged over 100 runs, shown are means and standard deviations
(latter only for EP and RVM). See text for details.

Further experiments are required in order to draw definite conclusions, such are in preparation.
We note that our EP method outperforms all others, and that random methods in general perform
worse than the ones using experimental design. Moreover, our method clearly performs much better
than the method of Ji and Carin (2007), while theirs is somewhat faster. Notably, our method
also performs more robustly across runs than theirs. Moreover, the methods trying to approximate
Bayesian inference in general perform better than basis pursuit on this task. The latter is certainly
significantly faster than any of the other methods here, but its suboptimal performance on the same
fixed data, and more importantly the lack of an experimental design framework, clearly motivates
considering approximate Bayesian inference for compressive sensing as well.

36. L1 is l1-magic from www.acm.caltech.edu/l1magic/, and BP is from SparseLab sparselab.stanford.edu/.
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8. Related Approximate Inference Methods

In this section, we put EP for the sparse linear model into perspective by directly comparing it to
other proposed methods of approximate inference. We rely on Palmer et al. (2006), who provide
a somewhat more general discussion, but EP is not mentioned there. Before we start, we remind
the reader that by “approximate inference” method, we mean a technique which delivers a use-
ful approximation of marginal (or even joint) posteriors, and ideally can also be used in order to
approximate the marginal likelihood. This is important in the context of the sparse linear model,
where many methods rather try to find a maximally sparse solution of the noisy system (1), without
addressing the former points. A study, comparing the methods discussed here in terms of approx-
imation quality of marginals and of the marginal likelihood, is subject to future work. Note that
none of these methods has been applied to the experimental design problem we address here (to our
knowledge), with the exception of SBL (Ji and Carin, 2007).

8.1 Sparse Bayesian Learning

The idea of automatic relevance determination (ARD) has been proposed by Neal (1996). It is a
variant of empirical Bayesian marginal likelihood maximisation (see Section 5). In the context of
the sparse linear model, only a few components of a are typically relevant for describing the data,
all others could be set to zero. ARD works by placing a prior N(ai|0,σ2π−1

i ) on ai, where πi is a
scale parameter, then maximising the marginal likelihood P(u,π) w.r.t. π. Here, πi can be given a
heavy-tailed hyperprior. The Occam’s razor effect embedded in empirical Bayes (MacKay, 1992)
leads to πi becoming large for irrelevant components ai: a model with few relevant components is
simpler than one with many, and if both describe the data well, the former is preferred under ARD.

ARD has been applied to the sparse linear model by Tipping (2001), where the method was
called sparse Bayesian learning (SBL). The derivation there makes use of scale mixture decom-
positions (Gneiting, 1997; Palmer et al., 2006) for the non-Gaussian prior sites. Namely, many
univariate symmetric distributions can be represented in the form P(ai) = E[N(ai|0,σ2π−1

i )], with
some distribution over πi. Tipping uses Student’s t sparsity priors P(ai), for which πi has a Gamma
distribution. However, a direct comparison with the sparse linear model used here requires Laplace
priors.

The Laplace density has the following scale mixture decomposition (Park and Casella, 2005;
Gneiting, 1997):

τ̃
2

e−τ̃|ai| = E[N(ai|0,σ2π−1
i )], πi ∼ λπ−2

i e−λ/πiI{πi>0} = IG(1,λ), λ =
τ2

2
. (9)

Note that the scale distribution of πi does not have mean or variance. With Π = diagπ, we have

P(u,π) =
Z

P(0)(a)N(a|0,σ2Π−1)da|Π|−2λne−λ1T (π−1),

which has the same form as in our framework. Here, bi = 0, and the πi have a different interpretation
as scale hyperparameters. The marginal likelihood P(u) is obtained by integrating out π, which
cannot be done tractably. Instead, a maximum a posteriori (MAP) approximation is done in SBL:
we find a maximiser π̂ of P(u,π), then approximate P(u) ≈ P(u, π̂). This is a joint non-convex
optimisation problem, so all we can hope for is a local maximum. Faul and Tipping (2002) propose
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the simple sequential technique of maximising P(u,π) one πi at a time. This results in the following
update rule, as is shown in Appendix D.1:

π′
i =

√

9+4τ2β−3
2β

, β = ρi +σ−2h2
i = σ−2EQ[a2

i ]. (10)

Confusingly, this is in fact not the method used in the experiments of Tipping (2001). This point is
clarified at the end of this section.

Comparing SBL to our EP method, we note that the former does not require quadrature, but
merely simple analytical updates. The πi remain positive, and the method is numerically stable.
SBL can be implemented using the same representation as ours. While b = 0 here, this does not
lead to simplifications in representations or updates. In fact, both methods can share much of the
same code, they differ only in how πi → π′

i is computed for each site i. The marginal likelihood
approximation resulting from SBL is P(u, π̂). Just as for EP, this is not a bound on P(u) (see
Section 5).

Note that a variant of SBL with the Laplace prior has been proposed by Figueiredo (2003).
However, they were interested in the MAP solution argmaxa P(a|D) rather than in an approximation
to the posterior, which allowed them to integrate out the πi by EM. Note also that SBL for the linear
model with Student’s t prior has been applied to gene network identification by Rogers and Girolami
(2005), although they did not consider experimental design.

While a direct comparison is subject to future work, we note that SBL is certainly simpler to
implement for the sparse linear model. Some safeguards required to make EP run in a numerically
robust way, are not needed with SBL. On the other hand, EP is of course more general, since SBL
is limited to non-Gaussian sites with a scale mixture decomposition. For example, non-symmetrical
distributions such as classification likelihoods cannot be used.

There is at least the following worrying fact about SBL as approximation to Bayesian inference.
We have used the scale mixture decomposition of the Laplace density (9) in terms of πi, but we could
just as well have chosen the one based on si = π−1

i , with an exponential distribution on si. Doing
so, we obtain an entirely different method, which did much worse than the variant derived here in
initial experiments and in fact fails badly as approximation to Bayesian inference, since predictive
variances are orders of magnitude too small. Furthermore, this “variant” of SBL converges exceed-
ingly slowly in the si, while the method given here runs quite fast. Nevertheless, both variants are
motivated in the same way: scale mixture decomposition, followed by a MAP approximation. The
problem is that the latter, much in contrast to exact Bayesian inference (or, in fact, to expectation
propagation), is not invariant to reparameterisations. The one chosen by Tipping (2001) certainly
works well, at least in terms of delivering sparse solutions, but with others, SBL can fail badly. This
important ambiguity has been noted by Wipf et al. (2004).

Finally, we note that there is some confusion about what exactly constitutes SBL, started in part
by somewhat unclear formulations in Tipping (2001). In the paper, a method for finding maximally
sparse solutions to the noisy linear system (1) is proposed. While the motivation is clearly Bayesian,
the fact that a Student’s t sparsity prior is used, is mentioned only in order to explain the favourable
results. In fact, the “prior” actually used for πi is ∝ 1/πi, resulting in P(ai) ∝ 1/|ai|. Both are
not normalisable as distributions. Our interest is in approximate Bayesian inference, with an eye
towards experimental design, so we cannot consider such uninformative priors. We take the freedom
here to interpret SBL as introducing scale mixture parameters πi, followed by a MAP approximation
w.r.t. π, at the expense of actually not covering the algorithm used in the experiments of Tipping
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(2001). Wipf et al. (2004) show that the latter algorithm can in fact be interpreted as an instance of
direct site bounding (see Section 8.2), which at first sight has little to do with scale mixtures, but
see Palmer et al. (2006).

We would not stress this point if there was little difference in practice between (what we refer
to as) SBL and direct site bounding (or other variants of the theme). However, initial comparative
experiments with the sparse linear model show very significant differences in approximation qual-
ity. All these techniques find local maxima of P(u|π) f (π). Contrary to what seems to be widely
believed among practitioners, the form of f really matters. From our experience, the quality of ap-
proximate inference as well as the speed of convergence of sequential optimisation depend strongly
on f . Wipf et al. (2007) show that the capability of the method estimating the correct relevant subset
also hinges dominantly on the choice of f . Beyond that, the dependence on f of the quality of the
covariance estimate, centrally important for experimental design, has not been analysed at all to our
knowledge.

8.2 Direct Site Bounding. Variational Mean Field Bayes

A direct approach for obtaining an easily computable lower bound on the log marginal likelihood
logP(u) works by lower-bounding the sites ti(ai) by terms of Gaussian form. A powerful way
of obtaining global lower bounds of simple form is exploiting convexity (Jaakkola, 1997). We
can apply this approach to the sparse linear model with Laplace prior, which results in a method
proposed by Girolami (2001). The general idea in the context of non-Gaussian linear models is
noted in Palmer et al. (2006).

For the Laplace (2), we have that log ti(ai) = −τ̃
√

a2
i + log(τ̃/2), which is convex in a2

i . A
global tight lower bound is obtained using Legendre-Fenchel duality (Boyd and Vandenberghe,
2002), resulting in

e−τ̃|ai| = sup
πi>0

NU(ai|0,σ−2πi)e
−(τ2/2)π−1

i .

We can plug in the r.h.s. for ti(ai), then integrate out a in order to obtain a lower bound on logP(u).

The outcome is quite similar to SBL, where ti is replaced by the same term times (2π)−1/2τπ−3/2
i .

Since the ratio does not depend on a, we have that

P(u) ≥ PGiro(u;π) = (2π)−n/2τn|Π|−3/2PSBL(u,π),

Following Appendix D.1, it is clear that the update of πi, keeping all others fixed, results in a
quadratic equation with the positive solution

π′
i =

τ
√

β
, β = ρi +σ−2h2

i = σ−2EQ[a2
i ].

While SBL does not render a bound on logP(u), Girolami’s method does so by construction.
Note that SBL and direct site bounding lead to quite similar replacements for ti, if applied to the
linear model with Laplace prior. The same is true if a Student’s t prior is used, as has been observed
by Wipf et al. (2004). Somewhat ironically, the modification in the latter case is precisely the result
of the “uninformative limit” taken in Tipping (2001), which also seems to work best in practice.
This point is discussed at the end of Section 8.1. Palmer et al. (2006) give the precise relationship
between SBL and direct site bounding (called “integral case” and “convex case” there), showing
that if ti admits a scale mixture decomposition, it can also be bounded via Legendre duality.
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Note that for the same (β, τ), π′
i is smaller for the SBL update than for the direct site bounding

one. Namely,

π′
SBL,i = π′

Giro,i ×
(√

1+α−
√

α
)

, α = 9/(4τ2β).

The ratio is smallest for small β, so Girolami’s method chooses much larger πi for the components
which are “switched off”, in that EQ[a2

i /σ2] ≈ 0. It is thus more aggressively aiming for sparse
solutions. In initial comparative experiments, Girolami’s method outperformed SBL on the sparse
linear model significantly in terms of the quality of inference approximation. Especially, the SBL
marginal likelihood approximation turned out to be poor. A larger comparative study, from which
conclusions can be drawn, is subject to future work.

A comparison between approximate inference techniques would be incomplete without includ-
ing variational mean field Bayes (VMFB) (Attias, 2000; Ghahramani and Beal, 2001), maybe the
most well known variational technique in the moment. It is also simply known as “variational
Bayes” (see www.variational-bayes.org), although we understand this term as encompassing
other variational methods for Bayesian inference as well, such as EP, SBL, direct site bounding,
and others more. The distinctive feature of VMFB, previously known as “structured mean field”, is
the use of the generic mean field lower bound, as reviewed in Appendix D.2. VMFB for the sparse
linear model is equivalent to direct site bounding, as has been shown in Palmer et al. (2006), and as
is discussed in more detail in Appendix D.2. This equivalence holds as well for linear models with
many other symmetric priors, for example Student’s t.

8.3 Markov Chain Monte Carlo

While variational approximations are fairly established in machine learning, the dominant methods
for approximating Bayesian inference in statistics are Markov chain Monte Carlo (MCMC) simu-
lations (Neal, 1993; Gilks et al., 1996). In these techniques, a Markov chain over latent variables
of interest (and possibly additional auxiliary ones) is simulated, whose stationary distribution is the
desired posterior.

A simple MCMC method for the sparse linear model with Laplace prior has been proposed by
Park and Casella (2005). They employ the scale mixture representation (9), introducing the scale pa-
rameters π as auxiliary variables alongside a. Their method is an instance of block Gibbs sampling,
in that a is resampled given π, and vice versa. For simplicity, we denote the true posterior P(. . . |D)
by Q in this section only. Now, the full conditional distribution Q(a|π) is simply N(a|h,σ2Σ), with
h, Σ defined as usual in terms of π (as in SBL above, b = 0 here), a Gaussian we can sample from
easily (see Appendix B.2).

Next, the πi are independent under Q(π|a), with

Q(πi|a) ∝ π−3/2
i exp

(

−a2
i σ−2(

√
2λσ2/|ai|−πi)

2

2πi

)

∝ π−3/2
i exp

(

−λ̃(πi − µ̃)2

2µ̃2πi

)

,

with µ̃ =
√

2λσ2/|ai|, λ̃ = 2λ = τ2. This density is the inverse Gaussian, which can be sampled
from easily (see Chhikara and Folks, 1989, Section 4.5). The normalisation constant is (λ/π)1/2.

Note that, just as with SBL and direct site bounding, we can use our existing EP code in order
to implement this method as well. The πi are resampled, instead of being updated deterministically.
While they could be updated sequentially, Park and Casella (2005) consider joint updates which
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tend to have better mixing properties. The representation, now maintaining the true Q(a|π), has to
be recomputed from scratch after each π update, so that each step costs O(n min{m,n}2).

This sampler is certainly very simple to implement, especially with our representation code in
place. Park and Casella (2005) give some arguments about the favourable role of log-concavity
of Q(a) for the sampler.37 These are empirical, and even if good theoretical properties of MCMC
samplers for log-concave posteriors have been established (Lovász and Vempala, 2003), these are
different from the method considered here. Initial experiments with the sampler gave good results,
although some erratic jumps in π components can be observed. The main cause of failure of block
Gibbs samplers is the presence of strong dependencies between a and π. A more definite statement
would require a comparison between this method and another sampler not based on scale variables.

The main advantage of MCMC over variational approximations is that it has no approximation
bias in principle, if the chain is run for an unbounded amount of steps. In contrast, variational
methods such as EP do have such a bias, which cannot be diminished by simply running them for
longer.38 It is also the case that simple variants of MCMC are typically fairly easy to implement,
for example there are hardly ever problems with numerical stability. A main drawback of MCMC
applied to problems of the sort considered here is that significantly more running time is required in
order to obtain solutions of similar accuracy. Another major disadvantage is that a lot of expertise
is required in order to run MCMC in a proper way. There are no convergence diagnostics which
are easy to use or, in fact, are generally widely accepted. Most machine learning applications, such
as the ones considered here, require methods which can be run robustly by users without extensive
training in diagnosing Markov chain convergence. This problem becomes severe in the context of
experiment design, where new decisions have to be done continuously, and even an expert would
be hard pressed trying to diagnose proper convergence for all MCMC runs in between. Another
drawback of MCMC is that while samples of the posterior are obtained, these cannot be used in a
simple way in order to obtain a good estimate of the log marginal likelihood logP(u) (see Section 5).
While the method of Chib (1995) proposes just that, it failed catastrophically in toy experiments of
rather small scale with the sampler considered here, even if an excessive number of steps was used.
This failure is interesting, given that the posterior is a log-concave (unimodal) distribution.

9. Discussion

We have shown how to perform accurate approximate Bayesian inference in the linear model with
Laplace prior efficiently, by means of expectation propagation, and how this can be used to address
tasks such as optimal design and hyperparameter estimation. The importance of numerical stability
is raised for EP, and several means of improving robustness are proposed. Some implications of
log-concavity for EP, and for approximate inference in general, have been shown.

The optimal design capability has been demonstrated for the application of gene regulatory
network identification, where the sparsity prior was found to be essential in order to realise very
significant gains. It is also motivated by preliminary experiments in the area of compressive sensing.
Marginal likelihood optimisation has been used in order to optimise sparse codes for natural images,

37. They sample jointly over (a,σ2), noting that Q(a,σ2) is log-concave in the transformation of (a,σ2) described in
Section 3.5.

38. Many variational methods allow for the choice of approximation families of varying complexity. For example, EP can
be run with exponential families beyond the Gaussian, and even the case of Gaussian Q can potentially be improved
by considering joint updates of blocks of sites. This requires the computation of multivariate non-Gaussian integrals,
which is hard to do accurately, and is not done here.
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in what constitutes an application of approximate inference on a large scale. Our experiments have
been driven by a robust, efficient, and general implementation, which will be made available for
scientific use.

9.1 Related Work

The sparse linear model (1) is of high practical relevance in statistics and machine learning, and
has received a lot of attention. Some approximate inference techniques related to ours have been
reviewed in Section 8. It is noted there that the computational representations and their robust
update rules developed here, are required for these just as well.

The idea of L1 regularisation of least squares has been used in very many contexts. The max-
imum a posteriori (MAP) treatment of the sparse linear model has been proposed as Lasso (Tib-
shirani, 1996) and as basis pursuit (Chen et al., 1999) (the latter for σ2 → 0). While the Lasso
results in a quadratic program, basis pursuit is a linear programming problem. The prime advantage
of an MAP treatment is that fitting to fixed data can be done very efficiently, in fact significantly
faster than running EP until convergence. Very recently, several strong properties of the Lasso, ba-
sis pursuit, or other convex programming formulations of sparse estimation have been established,
showing that in certain regimes they perfectly reconstruct very sparse signals in a minimax sense
(Donoho and Elad, 2003; Candès et al., 2006; Wainwright, 2006). On the other hand, MAP as an
approximation to Bayesian inference is fairly poor in this case. As noted in Section 3, a direct
Laplace approximation is not well-defined for the sparse linear model. Even if this obvious problem
was not present, the fact that there are many more variables than observations, renders the usual
justification for Laplace’s method obsolete. We have demonstrated a few advantages of going the
full Bayesian way properly in this paper, such as optimal design based on uncertainty estimates,
or marginal likelihood hyperparameter estimation. The MAP approximation for the sparse linear
model has been applied to the gene network identification problem by Peeters and Westra (2004),
but they did not address the problem of optimal design.

A general framework for EP on a class of hybrid models has been proposed by Zoeter and Hes-
kes (2005). EP updates are done generically using Gaussian quadrature. Based on our findings here,
EP for the sparse linear model with Laplace prior is very sensitive to the accuracy of EP updates,
and the Gauss-Hermite rule would not lead to a working solution here. The generic proposal of con-
verting between natural and moment parameterisation stated there is known to be unstable even in
purely Gaussian models such as the Kalman filter, while our representation updates are essentially
stable for log-concave sites. Also, the generality is quite restricted, in that they assume a fully fac-
torised distribution family F , which would not include joint Gaussians Q we consider here. Thus,
while the prospect of a generic EP implementation is intriguing, important special cases such as
Laplace or other sparsity prior sites, or joint Gaussian factors, would have to be treated as special
cases. It remains to be seen whether the techniques to improve EP’s numerical properties proposed
here, are useful in this more general context as well.

Technically, our framework is quite related to the Independent Component Analysis method of
Hojen-Sorensen et al. (2002), using Adaptive TAP (Opper and Winther, 2000) in order to estimate
mean and covariance of the sources.39 In fact, EP can be seen as particularly efficient way of
searching for an ADATAP fixed point. They address the sparse image coding problem with the
sparse linear model, but do not consider optimal design applications. Our approach is different to

39. What is meant is the posterior covariance of the sources, since in ICA, they are assumed to be independent a priori.
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theirs in several important points. Their paper approaches a larger range of problems. On the other
hand, they do not employ the natural EP marginal likelihood approximation we use here, but rather
a variational bound. The study of Kuss and Rasmussen (2005) has indicated the superior quality of
the EP approximation in a different, but related situation. Second, their image coding experiments
are fairly small in scale, and they do not report any of the numerical problems we encountered, or
in fact propose special measures to deal with such. Their paper treats numerically benign cases
such as classification with logistic or probit likelihood alongside challenging (Laplace) or (in our
opinion) highly problematic ones (Student’s t; exponential power with exponent < 1), essentially
recommending the same generic computations (which do not work, to the best of our knowledge
and experience, in the situations we were interested in here).

9.2 Future Work

We have commented in Section 2.3 on the application of our method to the problem of learning and
analysing image codes (Olshausen and Field, 1997; Lewicki and Olshausen, 1999), with the aim
of understanding properties of visual neurons in the brain. In this context, the sparse linear model
has been proposed as a useful setup, in which codes can be learned by maximising the marginal
likelihood. The marginal likelihood approximation of Section 5 is more accurate than the one
used by Lewicki and Olshausen (1999), and it will be interesting to test their hypothesis using our
framework. A study with similar aims is given in Berkes et al. (2008), using variational mean field
Bayes to approximate inference.

Other interesting applications lie in the area of compressive sensing. Some potential ones have
been motivated in Section 2.4, and results will be reported in a later paper (Seeger and Nickisch,
2008). In this context, the large scale techniques motivated in Section 6 will be explored. Our
preliminary findings in Section 7.3 indicate that approximate Bayesian inference and experimental
design hold significant promises for compressive sensing, where so far approaches based on L1-
penalised estimation and random designs seem to predominate.

As detailed in Section 8, our EP framework is closely related to several other established meth-
ods of approximate inference. We plan to do a large, comparative study on several different tasks
and data sets, where ground truth computations will be done via computationally intensive MCMC.
We are not aware of existing comparative studies encompassing several approximate inference tech-
niques for the sparse linear model.

Our experiences with the sparse linear model on the image coding problem (or with very un-
derdetermined gene network identification settings) suggest that in some relevant cases, numerical
stability issues seem to be inherently present in EP (i.e., are not just due to a bad implementation).
These need to be understood much better, before we can seriously talk about generic EP solutions
(Zoeter and Heskes, 2005), comparable to BUGS (Spiegelhalter et al., 1995) for Gibbs sampling
or VIBES (Bishop and Winn, 2003) for variational mean field Bayes, both of which do not pose
big problems of numerical stability. The sparse linear model seems a good test bed for such stud-
ies, different to the Gaussian process classification problem, which is numerically rather harmless.
Since log-concavity helps in the important special case of fully Gaussian posterior approximations,
its role needs to be understood better. Again, the Laplace prior of the sparse linear model will be
important there, being “just about log-concave”. Also, “cut-off” sites enforcing non-negativity, or
more generally linear constraints (see Section 2.3), will play an important role there, not even being
supported on all of R.
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In the MCMC approach of Park and Casella (2005), the noise variance σ2 is integrated out
along with the parameters a. This is possible (approximately) with EP as well, by choosing Q
from an exponential family over (a,σ2), which is not purely Gaussian. We have already done
initial experiments with this extension, which will be reported in a later paper. In comparison to
the method given here, the extension treats σ2 as nuisance variable in a proper Bayesian fashion.
It does not have to be chosen by other means, such as marginal likelihood maximisation. Much of
the treatment of a, such as the representation of Q(a|σ2), or the analytical EP update w.r.t. ai, is
inherited from the framework given here. As an extension of EP beyond the case of fully Gaussian
approximations, the extension is important as test bed for theoretical analyses. On the other hand,
the extension is somewhat more complicated to implement, furthermore some of the numerical
robustness of our method here is lost. For example, Theorem 1 does not hold for non-Gaussian
Q. Moreover, the integration over σ2 required by the EP updates cannot be done analytically, and
approximate Gauss-Laguerre quadrature has to be used.

The Bayesian sparse linear model may have many other applications, given that its MAP variants
(Lasso, basis pursuit) are very widely used. EP has also been applied to approximate inference in
generalised linear models, where the likelihood is not Gaussian anymore, but comes from another
exponential family. An application of this sparse generalised linear model to analysing neuronal
spiking data is given in Seeger et al. (2007a) and Gerwinn et al. (2008), see also Qi et al. (2004). In
this context, efficient online optimisation of experimental stimuli is an important task as well (Lewi
et al., 2007).

The recent empirical success of EP in many different applications renders it important to gain
a firm understanding of this technique. Some of the many relevant open questions are: For which
models does the (single loop) EP algorithm provably converge? For which models is there no more
than a single fixed point? How good is an EP approximation in terms of the marginals, and beyond
that in terms of the covariance estimate? Numerical stability is an important issue for EP, which
does not arise with most other approximate inference techniques. For which models can we expect
numerical difficulties, and why? The step towards fractional EP may improve numerical properties
of the method in general, but how do fractional EP approximations compare to the standard EP
fixed points? Finally, how can EP fixed points be found for very large n, when the current practice
of visiting each site in turn becomes unpractical?
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Appendix A. Details for the EP Update

In this section, we collect details concerning the EP update described in Section 3.3.
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The Laplace site is ti(a) = exp(−τ̃|a|), τ̃ = τ/σ > 0. Note that elsewhere, a prefactor of τ̃/2 is
used, which means that the value for Zi to be computed here has to be multiplied post hoc.40 We
need to compute moments Ik = EN(h,ρ)[a

kti(a)], k = 0,1,2, where we write a = ai, h = h\i, ρ = ρ\i

for simplicity. W.l.o.g., we can assume that τ̃ = 1. Then, I0 = Ĩ0(h)+ Ĩ0(−h), where some algebra
gives

Ĩ0(h) := E
[

I{a≥0}e−a]= exp(ρ/2−h)(1−Φ(ρ1/2 −hρ−1/2)),

where Φ denotes the cumulative distribution function of N(0,1). Now, from the definition of Ĩ0, it
is easy to see that Ĩ0(|h|) ≥ Ĩ0(−|h|), so that

log I0 = log Ĩ0(|h|)+ log

(

1+
Ĩ0(−|h|)
Ĩ0(|h|)

)

can be computed in a stable manner. In the following, we make use of the well known asymptotic
expansion

1−Φ(x) ∼ N(x)x−1 (1−1x−2 (1−3x−2 (1−5x−2 (1−7x−2(. . .)
))))

.

If F(x) := log(1−Φ(x)), we use the asymptotic expansion up to 1−7x−2 for x > 5, while computing
F(x) exactly otherwise.41 It is interesting to note that the simpler approximation 1−Φ(x)≈ N(x)/x
is insufficient and leads to complete failure of EP on most tasks.

With this in mind, we have that log Ĩ0(|h|) = ρ/2−|h|+F(ρ1/2 −|h|ρ−1/2), and

R :=
Ĩ0(−|h|)
Ĩ0(|h|)

= exp
(

2|h|+F(ρ1/2 + |h|ρ−1/2)−F(ρ1/2 −|h|ρ−1/2)
)

.

For example, if ρ1/2 −|h|ρ−1/2 > 5, we use the tail approximation for both F terms. Namely, if the
approximation is 1−Φ(x) ≈ N(x)x−1g(x), we end up with

R =
(ρ−|h|)g(ρ1/2 + |h|ρ−1/2)

(ρ+ |h|)g(ρ1/2 −|h|ρ−1/2)
.

Note that in general, R ∈ (0,1].
Next, I1 = Ĩ1(h)− Ĩ1(−h), with

Ĩ1(h) := E
[

I{a≥0}ae−a]= (h−ρ)Ĩ0(h)+ρ1/2 exp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s
]

,

where s ∼ N(0,1). Using (dN(s))/ds = −sN(s), we have that E[I{s≥s0}s] = N(s0). Furthermore,

exp(ρ/2±h)N(ρ1/2 ±hρ−1/2) = N(hρ−1/2),

which does not depend on sgnh. Therefore, the mean of P̂i(a) is

ĥ =
I1

I0
=

(h−ρ)Ĩ0(h)− (−h−ρ)Ĩ0(−h)

I0
= h+ρ

Ĩ0(−h)− Ĩ0(h)

I0

= h+ρ(sgnh)
(

1−2(1+R)−1) .

40. The reason for dropping this prefactor is that we want to deal with the case of fractional sites (see Section 3.3.1) t η
i

by simply replacing τ by ητ.
41. The C math library provides log1p(x) = log(1+ x), which is accurate for small |x|.
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Since I1/I0 = h+ρβi, we have that

βi = (sgnh)
(

1−2(1+R)−1) . (11)

Next, I2 = Ĩ2(h)+ Ĩ2(−h), where some algebra gives

Ĩ2(h) := E
[

I{a≥0}a2e−a]

= (ρ2 −h2)Ĩ0(h)+2hĨ1(h)−2ρ3/2N(hρ−1/2)+ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

= (h−ρ)2Ĩ0(h)+2ρ1/2N(hρ−1/2)(h−ρ)+ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

.

Using s2N(s) = N(s)− (dsN(s))/ds, we see that

ρexp(ρ/2−h)E
[

I{s≥ρ1/2−hρ−1/2}s2
]

= ρĨ0(h)+ρ(ρ1/2 −hρ−1/2)N(hρ−1/2).

Together, we have

Ĩ2(h) = (h2 +ρ2 +ρ−2hρ)Ĩ0(h)+ρ1/2N(hρ−1/2)(h−ρ),

thus

I2 = (h2 +ρ2 +ρ)I0 −2ρh(Ĩ0(h)− Ĩ0(−h))−2ρ3/2N(hρ−1/2).

Using that βi = (Ĩ0(−h)− Ĩ0(h))/I0 and ĥ = h+ρβi, some algebra gives that

I2

I0
= ρ+ρ2 +h2 +2h(ĥ−h)−2ρ3/2N(hρ−1/2)I−1

0 .

Therefore, the variance of P̂i(a) is

ρ̂ =
I2

I0
− ĥ2 = −h2 +(2h− ĥ)ĥ+ρ+ρ2 −2ρ3/2N(hρ−1/2)I−1

0

= ρ+ρ2(1−β2
i )−2ρ3/2N(hρ−1/2)I−1

0 ,

since (2h− ĥ)ĥ = h2 − (ρβi)
2. Since ρ̂ = ρ(1−ρνi), we have that

νi = β2
i −1+(πρ/2)−1/2 exp

(

− h2

2ρ
− log I0

)

.

Finally, in order to incorporate τ̃ 6= 1, we note that this simply means plugging in h = τ̃h\i, ρ =
τ̃2ρ\i above, and multiplying βi by τ̃, νi by τ̃2. Note that Zi = I0 = EQ\i [ti(ai)] is not required for
the EP update itself, but has to be evaluated if an approximation to the marginal likelihood P(D) is
sought (see Section 5; recall that Zi as computed here has to be multiplied with the prefactor τ̃/2 of
ti which we omitted).
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A.1 The Role of Log-concavity

In this section, we give the proof of Theorem 1. Recall the definition of log-concavity and the
marginalisation theorem of Prékopa from Section 3.5. For an update at site i, we can assume
that Q\i(ai) is a proper Gaussian. We begin by showing that Zi = EQ\i [ti(ai)] is log-concave in

h\i. Namely, logQ\i is jointly concave in (ai,h\i) (being a negative quadratic in ai − h\i), so that
ti(ai)Q\i(ai|h\i) is log-concave in (ai,h\i). Then, Zi(h\i) is log-concave by the marginalisation the-
orem. Therefore, νi = −(∂2 logZi)/(∂h2

\i) ≥ 0 (see Section 3.3). The variance of P̂i is σ2ρ′
i, where

ρ′
i = ρ\i(1−σ2νiρ\i). Since ti is bounded with support of positive measure, this variance exists and

is positive, implying that 1−σ2νiρ\i ∈ (0,1]. But π′
i = σ2νi/(1−σ2νiρ\i)≥ σ2νi ≥ 0, so π′

i remains
nonnegative throughout.

Appendix B. Details for Sequential Design

In this section, we collect details for the sequential design application of the sparse linear model.

B.1 The Simple Information Gain Score

The simple information gain is introduced in Section 4.1. Recall the Gaussian relative entropy from
(4), and the fact that M = I +x∗xT

∗ Σ. Thus, if α := 1+xT
∗ Σx∗, then log |M |= logα, using the relation

|I +VW T | = |I +W TV |. Furthermore, the Woodbury formula (Henderson and Searle, 1981) gives
M−1 = I −α−1x∗xT

∗ Σ, so that tr(M−1 − I) = α−1 −1.
Finally, b̃

′
= b̃ +u∗x∗, where b̃ = b(0) +b (see Section 3.4), so that

h′ =
(

Σ−α−1Σx∗xT
∗ Σ
)(

b̃ +u∗x∗
)

= h +α−1(u∗− xT
∗ h)Σx∗,

and
(h′−h)T Σ−1(h′−h) = (α−1)α−2(u∗− xT

∗ h)2.

Altogether, the simple information gain score is

S(x∗,u∗) =
1
2

(

logα+
α−1

α

(

−1+α−1
(

u∗− xT
∗ h

σ

)2
))

.

We need to compute α and xT
∗ h. In the degenerate case, let v = L−1X Π−1x∗, then α = 1 +

xT
∗ Π−1x∗−‖v‖2, and xT

∗ h = xT
∗ Π−1(b(0) +b)−vT γ. In the non-degenerate case, let v = L−1x∗, then

α = 1+‖v‖2, and xT
∗ h = vT γ.

The marginal criteria of Section 4.2 require the computation of z∗ = Σx∗. In the non-degenerate
case, z∗ = L−T v. In the degenerate case, z∗ = Π−1(x∗−XT L−T v).

B.2 Sampling A

We need to sample from Q(A|D) in order to approximate the expected information gain, as noted
in Section 4. Let Q(a) be the posterior over a row of A, based on the representation given in Sec-
tion 3.2, and let n ∼ N(0, I). In the non-degenerate case, a = L−T (σn + γ) is distributed according
to N(h,σ2Σ).

Sampling is more difficult in the degenerate case. Let

I +X Π−1XT = U DUT
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be the spectral decomposition, where D is diagonal and nonnegative, and U ∈ R
m,m is orthonormal.

We make the ansatz
c =

(

I −Π−1XTU RUT X
)

Π−1/2n

with diagonal R. E[ccT ] = Σ gives (D − I)R2 − 2R + D−1 = 0, which is solved by R =
diag(1/(

√
di(

√
di +1)))i. Finally, a = σc +h.

Appendix C. The Marginal Likelihood

In this section, we derive the EP marginal likelihood approximation and its gradient w.r.t. model
parameters. Recall the discussion of Section 5, the definition of L is given in (6). First, logCi =
η−1(logZi − log Z̃i). The computation of logZi is discussed in Appendix A. Some algebra (Seeger,
2005) gives

log Z̃i =
1
2

(

log(1−ηπiρi)−
ηπih2

i −2hiηbi +ρi(ηbi)
2

σ2(1−ηπiρi)

)

,

where Q(ai) = N(ai|hi,σ2ρi).
We begin with ∇X L and ∂L/∂σ−2 (both parameters of P(0)), using (7). Since σ2 also features

explicitly in the sites ti, the derivative is the sum of two parts, and we deal with the second part
below.

d logP(0)(a) = tr
(

σ−2eaT )T
(dX )+

1
2

(

mσ2 −‖e‖2)(dσ−2), e := u−X a.

If Q(a) = N(h,σ2Σ), then

EQ

[

d logP(0)(a)
]

= tr
(

σ−2 f hT −X Σ
)T

(dX )− 1
2

(

‖ f ‖2 +σ2 trX ΣXT −mσ2)(dσ−2),

f := EQ[e] = u−X h.

Now, trX ΣXT = tr(I −ΣΠ) = n− (diagΣ)T π, so that

dL = tr
(

σ−2 f hT −X Σ
)T

(dX )− 1
2

(

‖ f ‖2 −σ2(diagΣ)T π +(n−m)σ2)(dσ−2).

The derivative w.r.t. τ̃ = τ/σ is computed using (8). We have that (d/d τ̃) log ti(ai) = −|ai|+1/τ̃, so
we need to compute

EP̂i
[−|ai|] = −Z−1

i EQ\i [|ai|ti(ai)],

which is of similar from to I1 in Appendix A. In the notation used there, if Î1 = Ĩ1(h)+ Ĩ1(−h), then
Î1/I0 =−ρ−βih+2ρ1/2N(hρ−1/2)I−1

0 . Plugging in h = τ̃h\i, ρ = τ̃2ρ\i, and dividing by τ̃, we have
that

−Z−1
i EQ\i [|ai|ti(ai)] = τ̃ρ\i +βih\i −2ρ1/2

\i N(h\iρ
−1/2
\i )I−1

0 ,

where βi is given by (11) (it is not multiplied by τ̃). Finally, dτ̃ = σ−1(dτ)+ 1
2 τσ(dσ−2), whereby

we can complete the derivative w.r.t. σ−2 as well.
As an aside, there is a subtle issue concerning the derivative w.r.t. σ2. Seeger (2005) shows that

indirect dependencies on hyperparameters through the site parameters do not have to be taken into
account when computing the gradient. But if the derivative of (6) w.r.t. σ2 is computed, keeping
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bi, πi constant, the result is different from ours here. This is explained by our non-standard param-
eterisation of site parameters in the present paper. Namely, what is referred to as site parameters in
Seeger (2005), are in fact the σ−2bi, σ−2πi here, not bi, πi. If the former are kept constant, a direct
differentiation of (6) renders our result here.

Appendix D. Related Approximate Inference Techniques

In this section, we give details on the approximate inference techniques discussed in Section 8.

D.1 Sparse Bayesian Learning

Recall Section 8.1. In order to compute the marginal likelihood P(u,π), we note that

P(0)(a)N(a|0,σ2Π−1) =(2πσ2)−m/2e−(σ−2/2)‖u‖2
(2πσ2)−n/2|Π|1/2

NU(a|σ−2b(0),σ−2(XT X +Π)),

so that with h = Σb(0), Σ−1 = XT X +Π, some algebra gives

2 logP(u,π) = σ−2hT b(0) + log |Σ|− τ21T (π−1)+C,

where C = −3log |Π|−m log(2πσ2)−σ−2‖u‖2 +2n log(τ2/2).
We need to maximise logP(u,π) w.r.t. πi, keeping all other π j fixed. Then, dΠ = (dπi)δiδT

i ,
and let logP(u,π) = (1/2)ψ +C. Furthermore, Q(ai) = N(ai|hi,σ2ρi), that is, ρi = Σi,i. Now,
d log |Π +XT X | = ρi(dπi), and dσ−2hT b(0) = −σ−2h2

i (dπi), so that

dψ =

(

−σ−2h2
i −3π−1

i −ρi +
τ2

π2
i

)

dπi.

Equating this to zero results in a quadratic equation for πi, whose nonnegative solution is given by
(10).

D.2 Variational Mean Field Bayes

The variational mean field Bayesian (VMFB) framework is a fairly generic approach to variational
inference. It starts from the classical variational characterisation of inference (Wainwright and
Jordan, 2003):

logP(u) = sup
Q

EQ
[

logP(u,a,σ2,π)− logQ(a,σ2,π)
]

, (12)

then relaxes the problem by imposing factorisation constraints on allowable Q (the optimal uncon-
strained choice for Q is the true posterior).42 The variational characterisation is also known as
mean field lower bound, because it is the defining feature of (structured) mean field approximations
(Jordan et al., 1997).

Once appropriate factorisation assumptions are placed on Q, the feasible set can be written
analytically in terms of factors from these families, and the right hand side of (12) and its gradient

42. Here, we introduce the scale parameters πi by employing the scale mixture representation (9). VMFB works for
models which can be represented exclusively in terms of exponential family distributions, which is often possible
by introducing latent variables. One could possibly choose another representation of the Laplace sites, whence the
equivalence of VMFB and direct site bounding would not hold, but this is not done here.
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can be computed easily. Furthermore, this expression now lower bounds logP(u), because the
maximisation is over the subset of factorising Q. On the other hand, the optimisation over factorising
Q is not convex in general, and usually only a local optimum is found. Moreover, even the global
maximum is the minimiser of D[Q‖P(·|D)] over factorising Q (this is also the slack in the lower
bound), so that Q does not in general have the same marginal moments as P(·|D). The latter would
be obtained by minimising D[P(·|D)‖Q] over factorising Q, but not even local minima of the latter
can be found by any tractable method currently known.

For fixed σ2, it has been shown in Palmer et al. (2006) that VMFB is strongly equivalent to
Girolami’s method of Section 8.2, in that the variational parameters, their updates, and the logP(u)
lower bound are the same. We make the factorisation assumption Q(a,π) = Q(a)Q(π). The result-
ing lower bound on logP(u) is optimised by updating the factors in turn, fixing the corresponding
other one. If we fix Q(π), the maximiser is Q(a) = N(h,σ2Σ), where h, Σ are defined as usual, but
plugging in EQ[π] for π. If Q(a) is kept fixed, then the maximiser is

Q(π) ∝ eEQ(a,σ2)[logP(π|a,σ2,u)] ∝ P(π)eEQ(a,σ2)[logP(a|σ2,π)]
,

which decomposes w.r.t. the πi. The form is given in Section 8.3, namely logQ(πi) =C+logπ−3/2
i −

(π2
i E[a2

i σ−2]+2λ)/(2πi), which is inverse Gaussian with mean µ̃ = τ/
√

E[a2
i σ−2] and λ̃ = τ2. A se-

quential VMFB variant iterates over the sites, updating π′
i = τ/

√

E[a2
i σ−2]. This is algorithmically

equivalent the direct site bounding method of Section 8.2.

Appendix E. Modifications of Olshausen/Field Code

We compare our method against the one proposed by Olshausen and Field (1997), using their code
which can be obtained at http://redwood.berkeley.edu/bruno/sparsenet/. Since the code
is written for interactive use, we had to modify it in order to work for our study, which compares
fully automatic methods.

First, our modification accepts a fixed training set of r = 50000 image patches, while the original
code extracts patches on the fly.43 A sweep over the whole set consists of 500 batch updates, where
batches are drawn at random without replacement. 20 sweeps are done in total.

The code comes with several parameters. A study of the code reveals that noise var is our
σ2, beta is our τ̃ = τ/σ, and sigma is set to one. There is a learning rate parameter eta, which
the documentation recommends to set by hand, starting with η = 5, reducing it towards η = 1 (the
default value in the code). We chose the following schedule: η = 5,4,3 for 100, η = 2 for 500, then
η = 1 for the remaining 9200 updates.
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