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Abstract
Feature ranking is a fundamental machine learning task with various applications, including fea-
ture selection and decision tree learning. We describe and analyze a new feature ranking method
that supports categorical features with a large number of possible values. We show that existing
ranking criteria rank a feature according to the training error of a predictor based on the feature.
This approach can fail when ranking categorical features with many values. We propose the Ginger
ranking criterion, that estimates the generalization error of the predictor associated with the Gini
index. We show that for almost all training sets, the Ginger criterion produces an accurate esti-
mation of the true generalization error, regardless of the number of values in a categorical feature.
We also address the question of finding the optimal predictor that is based on a single categori-
cal feature. It is shown that the predictor associated with the misclassification error criterion has
the minimal expected generalization error. We bound the bias of this predictor with respect to the
generalization error of the Bayes optimal predictor, and analyze its concentration properties. We
demonstrate the efficiency of our approach for feature selection and for learning decision trees in a
series of experiments with synthetic and natural data sets.
Keywords: feature ranking, categorical features, generalization bounds, Gini index, decision trees

1. Introduction

In this paper we address the problem of supervised feature ranking in the presence of categorical
features. Feature ranking mechanisms have various applications; For instance, they can be used
to define a filter for feature selection or as a splitting criterion for growing decision trees. In the
feature ranking task we order a given set of features according to their relevance for predicting a
target label. As in other supervised learning tasks, the ranking of the features is generated based
on an input training set. Examples of widely used feature ranking criteria are the Gini index, the
misclassification error, and Information Gain, also termed ‘cross-entropy’ (Hastie et al., 2001). The
focus of this paper is feature ranking in the presence of categorical features. We show that a direct
application of existing ranking criteria might lead to poor results in the presence of categorical
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features that can take many values. We propose an adaptation of existing ranking criteria that copes
with these difficulties.

Many feature ranking methods are equivalent to the following two-phase process: First, each
individual feature is used to construct a predictor of the label. Then, the features are ranked based on
the errors of these predictors. Most current approaches use the same training set both for construct-
ing the predictor and for evaluating its error. When dealing with binary features, the training error is
likely to be close to the generalization error, and therefore the ranking generated by current methods
works rather well. However, this is not the case when dealing with categorical features that can take
a large number of values. To illustrate this fact, consider the problem of predicting whether someone
is unemployed, based on their social security number (SSN). A predictor constructed using any fi-
nite training set would have zero error on the training set but a large generalization error. Therefore,
a ranking criterion that supports categorical features should employ a more robust estimation of the
generalization error.

The first contribution of this paper is an estimator for the generalization error of the predictor
associated with the Gini index. This estimator can be calculated from the training set and we propose
to use it instead of the original Gini index criterion in the presence of categorical features. We
prove that regardless of the underlying distribution, our estimation is close to the true value of the
generalization error for almost all training sets.

Based on our perspective of ranking criteria as estimators of the generalization error of a certain
predictor, a natural question that arises is which predictor to use. Among all predictors that are based
on a single feature, we ultimately would like to use the one whose generalization error is minimal.
We prove that the best predictor in this sense is the predictor associated with the misclassification
error criterion. We analyze the difference between the expected generalization error of this predictor
and the error of the Bayes optimal hypothesis. Finally, we show a concentration result for the
generalization error of this predictor.

Feature ranking criteria have been extensively studied in the context of decision trees (Mingers,
1989; Kearns and Mansour, 1996; Quinlan, 1993). The failure of existing feature ranking criteria
in the presence of categorical features with a large number of possible values has been previously
discussed in Quinlan (1993) and Mitchell (1997). Quinlan suggested the Information Gain Ratio
as a correction to the Information Gain criterion. In a broader context, information-theoretic mea-
sures are commonly used for feature ranking (see for example Torkkola, 2006, and the references
therein). One justification for their use is the existence of bounds on the Bayes optimal error that are
based on these measures (Torkkola, 2006). However, obtaining estimators for the entropy or mu-
tual information seems to be difficult in the general case (Antos and Kontoyiannis, 2001). Another
ranking criterion designed to address the above difficulty is a distance-based measure introduced by
de Mantaras (1991).

The problem we address shares some similarities with the problem of estimating the miss-
ing mass of a sample, typically encountered in language modeling (Good, 1953; McAllester and
Schapire, 2000; Drukh and Mansour, 2005). The missing mass of a sample is the total probability
mass of the values not occurring in the sample. Indeed, in the aforementioned example of the SSN
feature, the value of the missing mass will be close to one. In some of our proofs we borrow ideas
from McAllester and Schapire (2000) and Drukh and Mansour (2005). However, our problem is
more involved, as even for a value that we do observe in the sample, if it appears only a small
number of times then the training error is likely to diverge from the generalization error. Finally, we
would like to note that classical VC theory for bounding the difference between the training error
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and the generalization error is not applicable here. This is because the VC dimension grows with the
number of values a categorical feature may take, and in our framework this number is unbounded.

This paper is organized as follows. In Sec. 2 we formally describe our problem setting. We
introduce our main results in Sec. 3 and prove them in Sec. 4. We present experimental results in
Sec. 5 and concluding remarks are given in Sec. 6.

2. Problem Setting

In this section we establish the notation used throughout the paper and formally describe our prob-
lem setting. In the supervised feature ranking setting we are provided with k categorical features
and with a label. Each categorical feature is a random variable that takes values from a finite set.
We denote a feature by X and the set of values X can take by V . We make no assumptions on the
identity of V for each X nor on its size. The label is a binary random variable, denoted Y , that takes
values from {0,1}.

Generally speaking, the goal of supervised feature ranking is to rank the features based on their
merit in constructing an accurate classification rule. The features are ranked according to their
“relevance” to the label. Different criteria exist for assessing the relevance of a feature to the label.
Since relevance is assessed for each feature separately, let us ignore the fact that we have k features
and from now on focus on defining a relevance measure for a single feature X . We denote by V the
set of values that X can take. To simplify our notation we denote

pv
∆
= Pr[X = v] and qv

∆
= Pr[Y = 1|X = v].

In practice, the probabilities {pv} and {qv} are unknown. Instead, it is assumed that we have
a training set S = {(xi,yi)}m

i=1, which is sampled i.i.d. according to the joint probability distribu-
tion Pr[X ,Y ]. Based on S, the probabilities {pv} and {qv} are usually estimated as follows. Let
cv = |{i : xi = v}| be the number of examples in S for which the feature takes the value v and let
c+

v = |{i : xi = v∧ yi = 1}| be the number of examples in which the value of the feature is v and the
label is 1. Then {pv} and {qv} are estimated as follows:

p̂v
∆
=

cv

m
and q̂v

∆
=

{

c+
v

cv
cv > 0

1
2 cv = 0.

Note that p̂v and q̂v are implicit functions of the training set S.
Two popular relevance criteria (Hastie et al., 2001) are the misclassification error

∑
v∈V

p̂v min{q̂v,(1− q̂v)} , (1)

and the Gini index
2 ∑

v∈V

p̂v q̂v(1− q̂v) . (2)

In these criteria, smaller values indicate more relevant features.
Both the misclassification error and the Gini index were found to work rather well in practice

when |V | is small. However, for categorical features with a large number of possible values, we
might end up with a poor feature ranking criterion. As an example (see Mitchell, 1997), suppose
that Y indicates whether a person is unemployed and we have two features: X1 is the person’s SSN
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and X2 is 1 if the person has a mortgage and 0 otherwise. For the first feature, V is the set of all the
SSNs. Because the SSN alone determines the target label, we have that q̂v is either 0 or 1 for any v
such that p̂v > 0. Thus, both the misclassification error and the Gini index are zero for this feature.
For the second feature, it can be shown that with high probability over the choice of the training
set, the two criteria mentioned above take positive values. Therefore, both criteria prefer the first
feature over the second. In contrast, for our purposes X2 is much better than X1. This is because X2

can be used later for learning a reasonable classification rule based on a finite training set, while X1

will suffer from over-fitting.
It would have been natural to attribute the failure of the relevance criteria to the fact that we use

estimated probabilities instead of the true (unknown) probabilities. However, note that in the above
example, the same problem would arise even if we used {pv} and {qv} in Eq. (1) and Eq. (2). The
aforementioned problem was previously underscored in the context of the Information Gain crite-
rion (Quinlan, 1993; de Mantaras, 1991; Mitchell, 1997). In that context, Quinlan (1993) suggested
an adaptation of the Information Gain, called Information Gain Ratio, which was found rather ef-
fective in practice.

In this paper we take a different approach, and propose to interpret a feature ranking criterion as
the generalization error of a classification rule that can be inferred from the training set. To do so,
let us first introduce some additional notation. A probabilistic hypothesis is a function h : V → [0,1],
where h(v) is the probability to predict the label 1 given the value v. The generalization error of h is
the probability to incorrectly predict the label,

`(h)
∆
= ∑

v∈V

pv (qv (1−h(v))+(1−qv)h(v)) . (3)

We now define two hypotheses based on the training set S. The first one is

hGini
S (v) = q̂v . (4)

As its name indicates, hGini
S is closely related to the Gini index filter given in Eq. (2). To see this, we

note that the generalization error of hGini
S is

`(hGini
S ) = ∑

v∈V

pv (qv (1− q̂v)+(1−qv) q̂v) .

If the estimated probabilities {p̂v} and {q̂v} coincide with the true probabilities {pv} and {qv}, then
`(hGini

S ) is identical to the Gini index defined in Eq. (2). This will be approximately true, for example,
when m � |V |. In other words, the Gini index is the training error of hGini

S . When the training set is
small, using `(hGini

S ) is preferable to using the Gini index given in Eq. (2), because `(hGini
S ) takes into

account the fact that the estimated probabilities might be skewed.
The second hypothesis we define is

hBayes

S (v) =











1 q̂v > 1
2

0 q̂v < 1
2

1
2 q̂v = 1

2

. (5)

Note that if {q̂v} coincide with {qv} then hBayes

S is the Bayes optimal classifier, which we denote by
hBayes

∞ . If in addition {p̂v} and {pv} are the same, then `(hBayes

S ) is identical to the misclassification
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error defined in Eq. (1). Here again, the misclassification error might differ from `(hBayes

S ) for small
training sets.

To illustrate the advantage of `(hGini
S ) and `(hBayes

S ) over their counterparts given in Eq. (2) and
Eq. (1), we return to the example mentioned above. For X1, the SSN feature we have `(hGini

S ) =

`(hBayes

S ) = 1
2 M0, where M0

∆
= ∑v:cv=0 pv. In general, we denote

Mk
∆
= ∑

v:cv=k

pv . (6)

The quantity M0 is known as the missing mass (Good, 1953; McAllester and Schapire, 2000) and
for the SSN feature, M0 ≥ (|V |−m)/|V |. Therefore, the generalization error of both hGini

S and hBayes

S
would be close to 1 for a reasonable m. On the other hand, for X2, the feature of having a mortgage,
it can be verified that both `(hBayes

S ) and `(hGini
S ) are likely to be small. Therefore, using `(hGini

S ) or
`(hBayes

S ) yields a correct ranking for this naive example.
We have proposed a modification of the Gini index and the misclassification error that uses the

generalization error and therefore is suitable even when m is smaller than |V |. In practice, however,
we cannot directly use the generalization error criterion since it depends on the unknown probabil-
ities {pv} and {qv}. To overcome this obstacle, we must derive estimators for the generalization
error that can be calculated from the training set. In the next section we discuss the problem of
estimating `(hGini

S ) and `(hBayes

S ) based on the training set. Additionally, we analyze the difference
between `(hBayes

S ) and the error of the Bayes optimal hypothesis.

3. Main Results

We start this section with a derivation of an estimator for `(hGini
S ), which can serve as a new feature

ranking criterion. We show that for most training sets, this estimator will be close to the true
value of `(hGini

S ). We then shift our attention to `(hBayes

S ). First, we prove that among all predictors
with no prior knowledge on the distribution Pr[X ,Y ], the generalization error of hBayes

S is smallest in
expectation. Next, we bound the difference between the generalization error of hBayes

S and the error of
the Bayes optimal hypothesis. Finally, we prove a concentration bound for `(hBayes

S ). Regretfully, we
could not find a good estimator for `(hBayes

S ). Nevertheless, we believe that our concentration results
can be used for finding such an estimator. This task is left for future research.

We propose the following estimator for the generalization error of hGini
S :

ˆ̀ ∆
=

|{v : cv = 1}|
2m

+ ∑
v:cv>1

2cv

cv −1
p̂vq̂v(1− q̂v) . (7)

This estimator can be derived using a leave-one-out technique (see for instance Wasserman, 2004).
In the next section we show a different derivation, based on a conditional cross-validation technique.
We suggest to use the estimation of `(hGini

S ) given in Eq. (7) rather than the original Gini index given
in Eq. (2) as a feature ranking criterion. Let us compare these two criteria: First, for values v that
appear many times in the training set we have that cv

cv−1 ≈ 1. If for all v ∈ V we have that the size
of the training set is much larger than 1/pv, then all values in V are likely to appear many times in
the training set and thus the definitions in Eq. (7) and Eq. (2) consolidate. The two definitions differ
when there are values that appear rarely in the training set. For such values, the correction term
is larger than 1. Special consideration is given to values that appear exactly once in the training
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set. For such values we estimate the generalization error to be 1
2 , which is the highest possible

error. Intuitively, since one example provides us with no information as to the variance of the label
Y given X = v, we cannot have a more accurate estimation for the contribution of this value to the
total generalization error. Furthermore, the fraction of values that appear exactly once in the training
set is an estimator for the probability mass of those values that do not appear at all in the training
set (see also Good, 1953; McAllester and Schapire, 2000).

We now turn to analyze the quality of the proposed estimator. We first show in Thm. 1 that the
bias of this estimator is small. Then, in Thm. 2, we prove a concentration bound for the estimator,
which holds for any joint distribution of Pr[X ,Y ] and does not depend on the size of V . Specifically,
we show that for any δ ∈ (0,1), in a fraction of at least 1− δ of the training sets the error of the
estimator is O( ln(m/δ)√

m ).

Theorem 1 Let S be a set of m examples sampled i.i.d. according to the probability measure
Pr[X ,Y ]. Let hGini

S be the Gini hypothesis given in Eq. (4) and let `(hGini
S ) be the generalization

error of hGini
S , where ` is as defined in Eq. (3). Let ˆ̀ be the estimation of `(hGini

S ) as given in Eq. (7).
Then,

∣

∣E[`(hGini
S )]−E[ ˆ̀]

∣

∣≤ 1
2m , where expectation is taken over all samples S of m examples.

The next theorem shows that for most training sets, our estimator is close to the true generaliza-
tion error of hGini

S .

Theorem 2 Under the same assumptions as in Thm. 1, let δ be an arbitrary scalar in (0,1). Then,
with probability of at least 1−δ over the choice of S, we have

∣

∣`(hGini
S )− ˆ̀

∣

∣≤ O

(

ln(m/δ)
√

ln(1/δ)√
m

)

.

Based on the above theorem, ˆ̀ can be used as a ranking criterion. The convergence rate shown can
be used to establish confidence intervals on the true Gini generalization error. The proofs of Thm. 1
and Thm. 2 are given in the next section.

So far we have derived an estimator for the generalization error of the Gini hypothesis and
shown that it is close to the true Gini error. The Gini hypothesis has the advantage of being highly
concentrated around its mean. This is important especially when the sample size is fairly small.
However, the Gini hypothesis does not produce the lowest generalization error in expectation. We
now turn to show that the hypothesis hBayes

S defined in Eq. (5) is optimal in this respect, but that its
concentration might be weaker. These two facts are characteristic of the well known bias-variance
tradeoff commonly found in estimation and prediction tasks.

Had we known the underlying distribution of our data, we could have used the Bayes optimal
hypothesis, hBayes

∞ , that achieves the smallest possible generalization error. When the underlying
distribution is unknown, the training set is used to construct the hypothesis. Thm. 3 below shows
that among all hypotheses that can be learned from a finite training set, hBayes

S achieves the smallest
generalization error in expectation. More precisely, hBayes

S is optimal among all the hypotheses that
are symmetric with respect to both |V | and the label values. Clearly, symmetric hypotheses cannot
exploit prior knowledge on the underlying distribution Pr[X ,Y ]. Formally, let F be the set of all
symmetric functions over N×N, that is,

F = { f : N×N → [0,1] | ∀n1,n2 ∈ N, f (n1,n2) = 1− f (n1,n1 −n2)}
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and let H be the following set of mappings from samples of size m to hypotheses:

H =
{

h : (V ×{0,1})m →V [0,1]
∣

∣ (8)

∃ f ∈ F s.t. ∀S ∈ (V ×{0,1})m,∀v ∈V, h[S](v) = f (cv(S),c+
v (S))

}

.

That is, H is the set of mappings that given a sample, generate a hypothesis based solely on the
sample. Thus, hypotheses that rely on any prior knowledge on Pr[X ,Y ] are excluded.

The following theorem establishes the optimality of hBayes

S and bounds the difference between the
Bayes optimal error and the error achieved by hBayes

S .

Theorem 3 Let S be a set of m examples sampled i.i.d. according to the probability measure
Pr[X ,Y ]. For any hypothesis h, let `(h) be the generalization error of h, as defined in Eq. (3).
Let hBayes

S be the hypothesis given in Eq. (5), let hBayes
∞ be the Bayes optimal hypothesis, and let H be

the set of hypothesis mappings defined in Eq. (8). Then

E[`(hBayes

S )] = min
h∈H

E[`(h[S])], (9)

and

E[`(hBayes

S )]− `(hBayes
∞ ) ≤ 1

2
E[M0]+

1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk], (10)

where Mk is as defined in Eq. (6). Furthermore,

lim
m→∞

(

1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk]

)

= 0. (11)

Note that the first term in the difference between E[`(hBayes

S )] and `(hBayes
∞ ) is exactly half the expec-

tation of the missing mass. This is expected, because we cannot improve our prediction over the
baseline error of 1

2 for values not seen in the training set, as exemplified in the SSN example de-
scribed in the previous section. Subsequent terms in the bound can be attributed to the fact that even
for values observed in the training set, a wrong prediction might be generated if there is a small
number of examples.

We have shown that hBayes

S has the smallest generalization error in expectation, but this does not
guarantee a small generalization error on a given sample. Thm. 4 below bounds the concentration of
`(hBayes

S ). This concentration along with Thm. 3 provides us with a bound on the difference between
hBayes

S and the Bayes optimal error that is true for most samples.

Theorem 4 Under the same assumptions of Thm. 3, assume that m ≥ 8 and let δ be an arbitrary
scalar in (0,1). Then, with probability of at least 1−δ over the choice of S, we have

|`(hBayes

S )−E[`(hBayes

S )]| ≤ O

(

ln(m/δ)
√

ln(1/δ)

m1/6

)

.

The concentration bound for `(hBayes

S ) is weaker than the concentration bound for `(hGini
S ), sug-

gesting that indeed the choice between hGini
S and hBayes

S is not trivial. To use `(hBayes

S ) as a ranking
criterion, an estimator for this quantity is needed. However, at this point we cannot provide such an
estimator. We conjecture that based on Thm. 4 an estimator with a small bias but a weak concentra-
tion can be constructed. We leave this task to further work. Finally, we would like to note that Antos
et al. (1999) have shown that the Bayes optimal error cannot be estimated based on a finite training
set. Finding an estimator for `(hBayes

S ) would allow us to approximate the Bayes optimal error up to
the bias term quantified in Thm. 3.
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4. Proofs of Main Results

In this section we provide the full proofs of the theorems presented above.

4.1 Proof of Thm. 1

In the previous section, an estimator for the generalization error of the Gini hypothesis was pre-
sented. We stated that for most training sets this estimation is reliable. In this section, we first
derive the estimator ˆ̀ given in Eq. (7) using a conditional cross-validation technique, and then use
this interpretation of ˆ̀ to prove Thm. 1 and Thm. 2.

To derive the estimator given in Eq. (7), let us first rewrite `(hGini
S ) as the sum ∑v `v(hGini

S ), where
`v(hGini

S ) is the amount of error due to value v and is formally defined as

`v(h)
∆
= Pr[X = v] Pr[h(X) 6= Y | X = v] = pv (qv (1−h(v))+(1−qv)h(v)) .

We now estimate the two factors Pr[X = v] and Pr[hGini
S (X) 6= Y | X = v] independently. Later on

we multiply the two estimations. The resulting local estimator of `v(h) is denoted ˆ̀v and our global

estimator is ˆ̀ ∆
= ∑v

ˆ̀v.
To estimate Pr[X = v], we use the straightforward estimator p̂v. Turning to the estimation of

Pr[hGini
S (X) 6= Y | X = v], recall that hGini

S , defined in Eq. (4), is a probabilistic hypothesis where q̂v is
the probability to return the label 1 given that the value of X is v. Equivalently, we can think of the
label that hGini

S (v) returns as being generated based on the following process: Let S(v) be the set of
those indices in the training set in which the feature takes the value v, namely, S(v) = {i : xi = v}.
Then, to set the label hGini

S (v) we randomly choose an index i ∈ S(v) and return the label yi. Based on
this interpretation, a natural path for estimating Pr[hGini

S (X) 6= Y | X = v] is through cross-validation:
Select an i ∈ S(v) to determine hGini

S (v), and estimate the generalization error to be the fraction of
the examples whose label is different from the label of the selected example. That is, the estimation
is 1

cv−1 ∑ j∈S(v): j 6=i 1yi 6=y j . Obviously, this procedure cannot be used if cv = 1. We handle this case
separately later on. To reduce the variance of this estimation, this process can be repeated, selecting
each single example from S(v) in turn and validating each time using the rest of the examples in
S(v). It is then possible to average over all the choices of the examples. The resulting estimation
therefore becomes

∑
i∈S(v)

1
cv

(

1
cv −1 ∑

j∈S(v): j 6=i

1yi 6=y j

)

=
1

cv(cv −1) ∑
i, j∈S(v):i6= j

1yi 6=y j .

Thus, we estimate Pr[hGini
S (X) 6= Y | X = v] based on the fraction of differently-labeled pairs of

examples in S(v). Multiplying this estimator by p̂v we obtain the following estimator for `v(hGini
S ),

ˆ̀v = p̂v
1

cv(cv −1) ∑
i, j∈S(v),i6= j

1yi 6=y j (12)

= p̂v
2c+

v (cv − c+
v )

cv(cv −1)
= p̂v

2c2
v q̂v(1− q̂v)

cv(cv −1)
= p̂v ·

2cv

cv −1
q̂v(1− q̂v).

Finally, for values v that appear only once in the training set, the above cross-validation procedure
cannot be applied, and we therefore estimate their generalization error to be 1

2 , the highest possible
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error. The full definition of ˆ̀v is thus:

ˆ̀v =

{

p̂v · 1
2 cv ≤ 1

p̂v · 2cv
cv−1 q̂v(1− q̂v) cv ≥ 2.

(13)

The resulting estimator ˆ̀ defined in Eq. (7) is exactly the sum ∑v
ˆ̀v.

Based on the above derivation of ˆ̀v, we now turn to prove Thm. 1, in which it is shown that the
expectations of our estimator and of the true generalization error of the Gini hypothesis are close.
To do so, we first inspect each of these expectations separately, starting with E[ ˆ̀v]. The following
lemma calculates the expectation of ˆ̀v over those training sets with exactly k appearances of the
value v.

Lemma 5 For k such that 1 < k ≤ m, E[ ˆ̀v | cv(S) = k] = k
m ·2qv(1−qv).

Proof If cv = k, then p̂v = k
m . Therefore, based on Eq. (12), we have

E[ ˆ̀v | cv(S) = k] =
k
m

1
k(k−1)

E
[

∑
i, j∈S(v),i6= j

1yi 6=y j | cv(S) = k
]

. (14)

Let Z1, . . . ,Zk be independent binary random variables with Pr[Zi = 1] = qv for all i ∈ [k]. The
conditional expectation on the right-hand side of Eq. (14) equals to

E[∑
i6= j

1Zi 6=Z j ] = ∑
i6= j

E[1Zi 6=Z j ] = ∑
i6= j

2qv (1−qv) = k(k−1) ·2qv (1−qv) .

Combining the above with Eq. (14) concludes the proof.

Based on the above lemma, we are now ready to calculate E[ ˆ̀v]. We have

E[ ˆ̀v] = ∑
S

Pr[S]E[ ˆ̀v] =
m

∑
k=0

∑
S:cv(S)=k

Pr[S] ·E[ ˆ̀v | cv(S) = k]. (15)

From the definition of ˆ̀, we have E[ ˆ̀v | cv(S)=1] = 1
2m and E[ ˆ̀v | cv(S)=0] = 0. Combining this

with Lemma 5 and Eq. (15), we get

E[ ˆ̀v] = Pr[cv = 1] · 1
2m

+
m

∑
k=2

Pr[cv = k] · k
m
·2qv(1−qv)

=
1
m

(
1
2
−2qv(1−qv)) Pr[cv = 1]+2qv(1−qv)

m

∑
k=0

Pr[cv = k] · k
m

=
1
m

(
1
2
−2qv(1−qv)) Pr[cv = 1]+ pv ·2qv(1−qv) , (16)

where the last equality follows from the fact that ∑m
k=0 Pr[cv = k] k

m = E[p̂v] = pv. Having calcu-
lated the expectation of ˆ̀v we now calculate the expectation of `v(hGini

S ).

Lemma 6 E[`v(hGini
S )] = pv(

1
2 −2qv(1−qv))Pr[cv = 0]+ pv ·2qv(1−qv).
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Proof From the definition of `v(hGini
S ), we have that

E[`v(h
Gini
S )] = E[pv (qv(1−hGini

S (v))+(1−qv)h
Gini
S (v))]

= pv (qv(1−E[hGini
S (v)])+(1−qv)E[hGini

S (v)])

= pv (qv +(1−2qv) E[hGini
S (v)])) . (17)

Next, we calculate E[hGini
S (v)] as follows

E[hGini
S (v)] = ∑

S

Pr[S]hGini
S (v)

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

k

∑
i=0

Pr[cv(S) = k and c+
v (S) = i]

i
k

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

Pr[cv(S) = k]
k

∑
i=0

Pr[c+
v (S) = i | cv(S) = k]

i
k

= Pr[cv(S) = 0] · 1
2

+
m

∑
k=1

Pr[cv(S) = k] ·qv

= Pr[cv(S) = 0] · 1
2

+Pr[cv(S) > 0] ·qv

= qv +
1
2
(1−2qv)Pr[cv(S) = 0] . (18)

Plugging Eq. (18) into Eq. (17) and rearranging terms we conclude our proof.

Equipped with the expectation of ˆ̀v given in Eq. (16) and the expectation of `v(hGini
S ) given in

Lemma 6, we are now ready to prove Thm. 1.
Proof [of Thm. 1] Using the definitions of `(hGini

S ) and ˆ̀ we have that

E[ ˆ̀]−E[`(hGini
S )] = E[∑

v

ˆ̀v]−E[∑
v

`v(h
Gini
S )] = ∑

v
(E[ ˆ̀v]−E[`v(h

Gini
S )]) . (19)

Fix some v ∈V . From Eq. (16) and Lemma 6 we have

E[ ˆ̀v]−E[`v(h
Gini
S )] = (

1
2
−2qv(1−qv))(

1
m

Pr[cv = 1]− pv Pr[cv = 0]) . (20)

Also, it is easy to see that

1
m

Pr[cv = 1]− pv Pr[cv = 0] = pv(1− pv)
m−1 − pv(1− pv)

m

= p2
v(1− pv)

m−1 =
pv

m
Pr[cv = 1] .

Plugging this into Eq. (20) we obtain:

E[ ˆ̀v]−E[`v(h
Gini
S )] = (

1
2
−2qv(1−qv))

1
m

pv Pr[cv = 1].

For any qv we have that 0 ≤ 2qv(1−qv) ≤ 1
2 , which implies the following inequality:

0 ≤ E[ ˆ̀v]−E[`v(h
Gini
S )] ≤ 1

2m
pv Pr[cv = 1] ≤ pv

2m
.
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Summing this over v and using Eq. (19) we conclude that

0 ≤ E[ ˆ̀]−E[`(hGini
S )] ≤ ∑

v

pv

2m
=

1
2m

.

4.2 Proof of Thm. 2

We now turn to prove Thm. 2 in which we argue that with high confidence on the choice of S, the
value of our estimator is close to the actual generalization error of hGini

S . To do this, we show that
both our estimator and the true generalization error of hGini

S are concentrated around their mean. The
proof of Thm. 2 will then follow from Thm. 1.

We start by showing that our estimator ˆ̀ is concentrated around its expectation. The concentra-
tion of ˆ̀ follows relatively easily by application of McDiarmid’s Theorem (McDiarmid, 1989):

Theorem 7 (McDiarmid) Let X1, . . . ,Xm be independent random variables taking values in a set
V and let f : V m → R be such that for every 1 ≤ i ≤ m

sup | f (x1, . . . ,xm)− f (x1, . . . ,xi−1,x
′
i,xi+1, . . . ,xm)| ≤ ci

where the supremum is taken over all x1, . . . ,xm,x′i ∈V . Then with probability at least 1−δ

f (X1, . . . ,Xm) ≤ E[ f (X1, . . . ,Xm)]+

√

1
2

ln(
1
δ
)

m

∑
i=1

ci

and with probability at least 1−δ

f (X1, . . . ,Xm) ≥ E[ f (X1, . . . ,Xm)]−
√

1
2

ln(
1
δ
)

m

∑
i=1

ci .

To simplify our notation, we will henceforth use the shorthand ∀δS π[S,δ] to indicate that the
predicate π[S,δ] holds with probability of at least 1−δ over the choice of S.

Lemma 8 Let δ ∈ (0,1). Then, ∀δS
∣

∣ ˆ̀−E[ ˆ̀]
∣

∣≤ 12
√

ln( 2
δ )

2m .

Proof We prove the lemma using McDiardmid’s theorem. To do so, we need to show that ˆ̀ has the
bounded differences property; namely, we shall find an upper bound for the effect of any change of
a single example in S on ˆ̀. Changing example (xi,yi) in S to (x′i,y

′
i) is tantamount to first removing

(xi,yi) and then adding (x′i,y
′
i). Since the effect of adding is simply the opposite of the effect of

removing, it is sufficient to find an upper bound for the effect a single removal of example can have.
Then the effect of a change on the sample would be no larger than twice the effect of the removal.

Let S\i denote the set S\{(xi,yi)}. We therefore need to bound | ˆ̀(S)− ˆ̀(S\i)|. Assume, without
loss of generality, that xi = v and yi = 0. Then, using the definition of ˆ̀v we have that

| ˆ̀(S)− ˆ̀(S\i)| = | ˆ̀v(S)− ˆ̀v(S
\i)| .
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Based on the definitions of p̂v = cv/m and q̂v = c+
v /cv, we can rewrite Eq. (13) as

ˆ̀v(S) =

{

1
2m cv = 1
2c+

v (cv−c+
v )

m(cv−1) cv ≥ 2.

Therefore, if cv ≥ 3,

| ˆ̀v(S)− ˆ̀v(S
\i)| = 2c+

v

m

(

cv − c+
v

cv −1
− cv − c+

v −1
cv −2

)

=
2c+

v (c+
v −1)

m(cv −1)(cv −2)

≤ 2cv(cv −1)

m(cv −1)(cv −2)
=

2cv

m(cv −2)
≤ 6

m
,

while if cv = 2 then

| ˆ̀v(S)− ˆ̀v(S
\i)| = 2c+

v (2− c+
v )

m
− 1

2m
≤ 2

m
.

Lastly, if cv = 1 then | ˆ̀v(S)− ˆ̀v(S\i)| = 1
2m . Therefore for any sample S

| ˆ̀v(S)− ˆ̀v(S
\i)| ≤ 6

m
,

and thus the effect of a single change in S is no larger than 12
m . We can now apply McDiarmid’s

theorem to get that with probability of at least 1−δ:

| ˆ̀−E[ ˆ̀]| ≤
√

1
2

ln

(

2
δ

)

m(
12
m

)2 = 12

√

ln
(

2
δ
)

2m
.

We now turn to show a concentration bound on the true generalization error `(hGini
S ). Here we cannot

directly use McDiarmid’s Theorem since the bounded differences property does not hold for `(hGini
S ).

To see this, suppose that V = {0,1}, p0 = p1 = 1
2 , q0 = 0.99 and q1 = 1. Assume in addition that

|S(0)| = 1; namely, there is only a single example in S for which the feature takes the value 0,
an unlikely but possible scenario. In this case, if the single example in S(0) is labeled 1, then
`(hGini

S ) = 0.01, but if this example is labeled 0, then `(hGini
S ) = 0.99. That is, a change of a single

example might have a dramatic effect on `(hGini
S ). This problem can intuitively be attributed to the

fact that S is an atypical sample of the underlying distribution {pv}. To circumvent this obstacle, we
use the following lemma. Note that a similar result can be derived from the results in Kutin (2002),
albeit with much larger constants. The lemma below provides tighter bounds for a more restricted
case.

Lemma 9 Let S be a sample with m examples drawn i.i.d from the distribution Pr[X ,Y ]. Let δ be
a confidence parameter. For two samples S1 and S2 with m examples, we say that d(S1,S2) ≤ 1 if
there is at most one example that is different between the two samples. Let f be a real function of
the sample. If there exists a function of the sample g and real numbers c,b such that the following
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conditions hold:

∀S1,S2 s.t. d(S1,S2) ≤ 1 |g(S1)−g(S2)| ≤
c
m

(21)

∀δS f (S) = g(S) (22)

|E[ f (S)]−E[g(S)]| ≤ b√
m

, (23)

then

∀2δS | f (S)−E[ f (S)]| ≤
c
√

ln( 2
δ)+b

√
2

√
2m

.

Proof From Eq. (21) and McDiarmid’s theorem we have

∀δS |g(S)−E[g(S)]| ≤
c
√

ln( 2
δ)

√
2m

.

In addition,

| f (S)−E[ f (S)]| ≤ | f (S)−g(S)|+ |g(S)−E[g(S)]|+ |E[ f (S)]−E[g(S)]| .

Therefore, using Eq. (22) and Eq. (23) and applying a union bound, we have

∀2δS | f (S)−E[ f (S)]| ≤ 0+
c
√

ln( 2
δ)

√
2m

+
b√
m

=
c
√

ln( 2
δ)+b

√
2

√
2m

.

To use Lemma 9 we define a new hypothesis hδ
S that depends both on the sample S and on the

desired confidence parameter δ. This hypothesis would ‘compensate’ for atypical samples. We let

f
∆
= `(hGini

S ) and g
∆
= `(hδ

S), and show that the conditions of the lemma hold.
We construct a hypothesis hδ

S such that g satisfies the three requirements given in Eqs. (21-23)
based on Lemma 10 below. This lemma states that except for values with small probabilities, we
can assure that with high confidence, cv(S) grows with pv. This means that as long as pv is not too
small, a change of a single example in cv(S) does not change hδ

S(v) too much. On the other hand,
if pv is small then the value v has little effect on the error to begin with. Therefore, regardless of
the probability pv, the error `(hδ

S) cannot be changed too much by a single change of example in S.
This would allow us to prove a concentration bound on `(hδ

S) using McDiardmid’s theorem. Let us
first introduce a new notation. Given a confidence parameter δ > 0, a probability p ∈ [0,1], and a
sample size m, we define

ρ(δ, p,m)
∆
= mp−

√

mp ·3ln(2/δ).

Lemma 10 below states that cv(S) is likely to be at least ρ(δ/m, pv,m) for all values with non-
negligible probabilities.

Lemma 10 Let δ ∈ (0,1) be a confidence parameter. Then,

∀δS ∀v ∈V : pv ≥
6ln( 2m

δ )

m
⇒ cv(S) ≥ ρ(δ/m, pv,m) > 1.
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Proof The proof is based on lemma 44 from Drukh and Mansour (2005). This lemma states that

for all v ∈V such that pv ≥ 3ln( 2
δ )

m we have that

∀δS |pv − p̂v| ≤

√

pv ·3ln( 2
δ)

m
. (24)

Based on this lemma, we immediately get that for all v such that pv ≥ 3ln( 2
δ)/m,

∀δS cv ≥ ρ(δ, pv,m).

Note, however, that this bound is trivial for pv = 3ln( 2
δ)/m, because in this case ρ(δ, pv,m) = 0. We

therefore use the bound for values in which pv ≥ 6ln( 2
δ)/m. For these values it is easy to show that

ρ(δ, pv,m) > 1 for any δ ∈ (0,1). Trivially, there are at most m values v for which pv ≥ 6ln(2/δ)
m .

Therefore, by substituting δ/m for δ and applying a union bound, the proof is concluded.

Based on the bound given in the above lemma, we define hδ
S to be

hδ
S(v)

∆
=







hGini
S (v) pv <

6ln( 2m
δ )

m or cv ≥ ρ( δ
m , pv,m)

c+
v +qv(dρ( δ

m ,pv,m)e−cv)

dρ( δ
m ,pv,m)e otherwise.

That is, hδ
S(v) is equal to hGini

S (v) if either pv is negligible or if there are enough representatives of
v in the sample. If this is not the case, then S is not a typical sample and thus we “force” it to
be typical by adding dρ( δ

m , pv,m)e− cv ‘pseudo-examples’ to S with the value v and with labels
that are distributed according to qv. Therefore, except for values with negligible probability pv,
the hypothesis hδ

S(v) is determined by at least dρ( δ
m , pv,m)e ‘examples’. As a direct result of this

construction we obtain that a single example from S has a small effect on the value of `(hδ
S).

We can now show that each of the properties in (21-23) hold. From the definition of hδ
S and

Lemma 10 it is clear that Eq. (22) holds. Let us now show that Eq. (23) holds, with b.

Lemma 11
∣

∣E[`(hGini
S )]−E[`(hδ

S)]
∣

∣≤ 1
m .

Proof We have
E[`(hGini

S )]−E[`(hδ
S)] = ∑

v

(

E[`v(h
Gini
S )− `v(h

δ
S)]
)

. (25)

We bound E[`v(hGini
S )− `v(hδ

S)] as follows. First, for values v such that pv < 6ln( 2m
δ )/m, we have

that hGini
S (v) = hδ

S(v). Thus E[`v(hGini
S ) − `v(hδ

S)] = 0. For the rest of the values, pv ≥ 6ln( 2m
δ )/m

and thus the definition of `v(hδ
S) implies

E[`v(h
Gini
S )− `v(h

δ
S)] =

Pr [cv < ρ(δ/m, pv,m)] ·E
[

`v(h
Gini
S )− `v(h

δ
S) | cv < ρ(δ/m, pv,m)

]

. (26)

Using Eq. (24) again, we obtain that Pr[cv < ρ(δ/m, pv,m)] ≤ δ/m. In addition, since both `v(hGini
S )

and `v(hδ
S) are in [0, pv] we have that

∣

∣

∣E

[

`v(h
Gini
S )− `v(h

δ
S) | cv < ρ(δ/m, pv,m)

]∣

∣

∣≤ pv.
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Combining the above two facts with Eq. (26) we get

∣

∣

∣
E[`v(h

Gini
S )− `v(h

δ
S)]
∣

∣

∣
≤ pvδ

m
≤ pv

m
.

Summing the above over v and using Eq. (25) we conclude that,

∣

∣

∣E[`(hGini
S )− `(hδ

S)]
∣

∣

∣≤ ∑
v

pv

m
=

1
m

.

Finally, the following lemma shows that Eq. (21) also holds.

Lemma 12 For any δ > 0, and for any two samples S1 and S2 with m examples such that d(S1,S2)≤
1 with d defined as in Lemma 9,

∣

∣

∣`(hδ
S1

)− `(hδ
S2

)
∣

∣

∣≤
12ln( 2m

δ )

m
.

The proof of this lemma is deferred to the appendix.

We have shown that the functions g
∆
= `(hδ

S) and f
∆
= `(hGini

S ) satisfy the three requirements given
in Eqs. (21-23) and therefore Lemma 9 can be used to show that `(hGini) is concentrated.

Lemma 13 ∀δ > 0 ∀δS
∣

∣`(hGini
S )−E[`(hGini

S )]
∣

∣≤
12ln( 4m

δ )
√

ln( 4
δ)√

2m
+ 1

m .

Proof In Lemma 9, let f
∆
= `(hGini

S ) and let g
∆
= `(hδ

S). Let c
∆
= 12ln( 2m

δ ), and let b
∆
= 1√

m . By
Lemma 10, Eq. (22) holds. By Lemma 12, Eq. (21) holds, and by Lemma 11, Eq. (23) holds.
Therefore, from Lemma 9 we have

∀δ > 0 ∀2δS | f (S)−E[ f (S)]| ≤
12ln( 2m

δ )
√

ln( 2
δ)

√
2m

+
1
m

.

The proof is concluded by substituting δ
2 for δ.

Thm. 2 states that with high confidence, the estimator ˆ̀ is close to the true generalization error of the
Gini hypothesis, `(hGini

S ). We conclude the analysis of the Gini estimator by proving this theorem.
Proof [of Thm. 2] Substituting δ

2 for δ and applying a union bound, we have that all three properties
stated in Lemma 13, Thm. 1 and Lemma 8 hold with probability of at least 1− δ. We therefore
conclude that with probability of at least 1−δ,

∣

∣`(hGini
S )− ˆ̀

∣

∣≤ |`(hGini
S )−E[`(hGini

S )]|+
∣

∣E[`(hGini
S )]−E[ ˆ̀]

∣

∣+
∣

∣E[ ˆ̀]− ˆ̀
∣

∣

≤ 2
m

+
12ln

(

8m
δ
)

√

ln
(

8
δ
)

√
2m

+12

√

ln( 4
δ)

2m
= O





ln(m
δ )
√

ln( 1
δ)

√
m



 .
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4.3 Proof of Thm. 3

Throughout this section we use the notation S(m) to denote a random training set of m examples.
Before proving Thm. 3, we provide the following lemma, that shows that the expectation of Mk

converges to 0 for any k.

Lemma 14 For any natural k and a countable V ,

lim
m→∞

E[Mk(S
(m))] = 0

Proof Following McAllester and Schapire (2000) we have that for any m

E[Mk(S
(m))] = ∑

v∈V

pv Pr[|S(m)
v | = k] .

Since V is a countable set we can rewrite it as V
∆
= {v1,v2,v3, . . .}. Let ε > 0, and let N be a positive

integer such that ∑N
i=1 pvi > 1− ε

2 . Since limm→∞

(

Pr[|S(m)
v | = k]

)

= 0 for any natural k, there exists

an m′ such that for any m > m′, ∑N
i=1 pvi Pr[|S(m)

vi | = k] < ε
2 . In addition, ∑|V |

i=N+1 pvi < ε
2 . Hence, for

every m > m′,

E[Mk(S
(m))] =

N

∑
i=1

pvi Pr[|S(m)
vi | = k]+

|V |

∑
i=N+1

pvi Pr[|S(m)
vi | = k] < ε.

Proof [of Thm. 3] To prove Eq. (9), we calculate the expectation of the generalization error E[`(hS)]
of an arbitrary hypothesis mapping h ∈ H and show that this error is minimized when h[S] = hBayes

S .
Let fh : N×N → [0,1] be a function such that fh(n1,n2) = 1− fh(n1,n1−n2) and let h be a hypoth-
esis mapping such that for all v ∈V , h[S](v) = fh(cv(S),c+

v (S)). Then,

E[`(h[S])] = ∑
v

pv E[qv(1− fh(cv(S),c+
v (S)))+(1−qv) fh(cv(S),c+

v (S))]

= ∑
v

pv(qv +(1−2qv))E[ fh(cv(S),c+
v (S))].

From the above expression it is clear that if qv < 1
2 then E[`(h[S])] is minimal when E[ fh(cv(S),c+

v (S))]
is minimal, and if qv > 1

2 then E[`(h[S])] is minimal when E[ fh(cv(S),c+
v (S))] is maximal. If qv = 1

2
the expectation equals 1

2 regardless of the choice of fh. We have

E[ fh(cv(S),c+
v (S))] = ∑

S

Pr[S] fh(cv(S),c+
v (S))

=
m

∑
k=0

Pr[cv(S) = k]
k

∑
i=0

Pr[c+
v (S) = i | cv(S) = k] fh(k, i)
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Consider the summation on i for a single k from the above sum. If k is odd, then

k

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)

=

k−1
2

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)+

k

∑
i= k+1

2

P[c+
v = i | cv = k](1− fh(k,k− i))

=

k−1
2

∑
i=0

Pr[c+
v = i | cv = k] fh(k, i)+

k−1
2

∑
i=0

Pr[c+
v = k− i | cv = k](1− fh(k, i))

= C +

k−1
2

∑
i=0

(

Pr[c+
v = i | cv = k]−Pr[c+

v = k− i | cv = k]
)

fh(k, i)

where C is a constant that does not depend on fh. In the above expression, note that if qv < 1
2 then

for each i ≤ k−1
2 , Pr[c+

v = i | cv = k]−Pr[c+
v = k− i | cv = k] is positive, and that if qv > 1

2 then this
expression is negative. This means that in both cases, to minimize E[`(hS)], we need to maximize
fh(k, i) for i ≤ k−1

2 . For an even k the analysis is similar, except that we have the special case of
i = k

2 that does not pair with another summand. However, from the symmetry constraint on fh it
follows that fh(k, k

2) = 1
2 . Therefore no maximization or minimization is allowed for this value of i.

Based on the above analysis, the function fh that minimizes E[`(hS)] is:

fh(n1,n2) =











1 n2 ≤ n1−1
2

0 n2 ≥ n1+1
2

1
2 n2 = n1

2

Setting hS(v) = fh(cv(S),c+
v (S)) we have that hS(v) = hBayes

S (v) for all values v in V .
To prove Eq. (10), we first calculate the difference between `v(hBayes

∞ ) and the expectation of
`v(h

Bayes

S ). Assume without loss of generality that qv > 1
2 . Then `v(hBayes

∞ ) = pv(1−qv), and

E[`v(h
Bayes

S )] = pv(qv Pr[q̂v <
1
2
]+ (1−qv)(1−Pr[q̂v <

1
2
])+

1
2

Pr[q̂v =
1
2
]).

Subtracting, we have

E[`v(h
Bayes

S )]− `v(h
Bayes
∞ ) = pv(2qv −1)(Pr[q̂v <

1
2
]+

1
2

Pr[q̂v =
1
2
])

≤ pv(2qv −1)Pr[cv = 0] · 1
2

+ pv

m

∑
k=1

Pr[cv = k](2qv −1)Pr[q̂v ≤
1
2
|cv = k].

We use Lemma 17 below to bound (2qv−1)Pr[q̂v ≤ 1
2 |cv = k] for k ≥ 3. For k = 0,1,2 we maximize

this term individually for each k. This leads us to the following bound:

E[`v(h
Bayes

S )]− `v(h
Bayes
∞ )

≤ 1
2

pv Pr[cv = 0]+
1
8

pv Pr[cv = 1]+
1
8

pv Pr[cv = 2]+
m

∑
k=3

1√
ek

pv Pr[cv = k].
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Recall that Mk is the probability mass of the values seen k times in the sample. Following McAllester
and Schapire (2000) we have that for k ≥ 0, E[Mk] = ∑v pv Pr[cv = k]. Hence, summing over all the
values v, we have

E[`(hBayes

S )]− `(hBayes
∞ ) = ∑

v
(E[`v(h

Bayes

S )]− `v(h
Bayes
∞ ))

≤ 1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk].

To prove Eq. (11), denote by S(m) a sample of m examples. Let ε > 0 be a scalar. Then there
exists an integer t such that 1√

et
< ε

2 . Since ∑m
k=1 E[Mk(S(m))] = 1, we have

m

∑
k=t

1√
ek

E[Mk(S
(m))] <

ε
2
. (27)

Now, by Lemma 14, for every k < t, limm→∞ E[Mk(S(m))] = 0. Hence, there exists an m′ such that
for every m > m′,

1
2

E[M0(S
(m))]+

1
8

E[M1(S
(m))]+

1
8

E[M2(S
(m))]+

t

∑
k=3

1√
ek

E[Mk(S
(m))] <

ε
2
. (28)

Combining Eq. (27) and Eq. (28), we have that for every m > m′,

1
2

E[M0]+
1
8

E[M1]+
1
8

E[M2]+
m

∑
k=3

1√
ek

E[Mk] < ε.

Hence the limit of this expression when m → ∞ is 0.

4.4 Proof of Thm. 4

To prove Thm. 4, we first introduce some additional notation. Let δ ∈ (0,1) be a confidence param-
eter. Let V δ

1 , V δ
2 , and V δ

3 be three sets that partition V according to the values of the probabilities
pv:

V δ
1 = {v | pv ≤ 6ln

(

2m
δ

)

m− 2
3 }

V δ
2 = {v | 6ln

(

2m
δ

)

m− 2
3 < pv ≤ 6ln

(

2m
δ

)

m− 1
2 }

V δ
3 = {v | 6ln

(

2m
δ

)

m− 1
2 < pv}

We denote the contribution of each set to `(hBayes

S ) by `δ
i (S)

∆
= ∑v∈V δ

i
`v(h

Bayes

S ). Additionally, given

two samples S and S′, let κ(S,S′) be the predicate that gets the value “true” if for all v ∈V we have
cv(S) = cv(S′).
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Using the above definitions and the triangle inequality, we can bound |`(hBayes

S ) − E[`(hBayes

S )]|
as follows:

|`(hBayes

S )−E[`(hBayes

S )]| =

∣

∣

∣

∣

∣

3

∑
i=1

(

`δ
i (S)−E[`δ

i ]
)

∣

∣

∣

∣

∣

≤
∣

∣

∣
`δ

1(S)−E[`δ
1]
∣

∣

∣
+
∣

∣

∣
`δ

2(S)−E[`δ
2(S

′) | κ(S,S′)]
∣

∣

∣
+

∣

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣

∣+
∣

∣

∣ E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2 + `δ

3]
∣

∣

∣ .

To prove Thm. 4 we bound each of the above terms as follows: First, to bound
∣

∣ `δ
1(S)−E[`δ

1]
∣

∣

(Lemma 15 below), we use the fact that for each v ∈ V δ
1 the probability pv is small. Thus, a single

change of an example in S has a moderate effect on the error and we can use McDiarmid’s theorem.
To bound

∣

∣ `δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]

∣

∣ (Lemma 16 below) we note that the expectation is taken
with respect to those samples S′ in which cv(S′) = cv(S) for all v. Therefore, the variables `v(h

Bayes

S )
are independent. We show in addition that each of these variables is bounded in [0, pv] and thus we
can apply Hoeffding’s bound. Next, to bound

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣ (Lemma 19 below), we
use the fact that in a typical sample, cv(S) is large for all v ∈ V δ

3 . Thus, we bound the difference
between `v(h

Bayes

S ) and E[`v(S′) | κ(S,S′)] for each value in V δ
3 separately. Then, we apply a union

bound to show that for all of these values the above difference is small. Finally, we use the same
technique to bound

∣

∣ E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2 + `δ

3]
∣

∣ (Lemma 20 below). The proof of the
first lemma, stated below, is omitted.

Lemma 15 ∀δ > 0 ∀δS |`δ
1(S)−E[`δ

1]| ≤
12ln( 2m

δ )
m1/6

√

1
2 ln
(

2
δ
)

.

Proof We prove the lemma using McDiarmid’s theorem. To do so, we examine the effect a removal
of a single example (xi,yi) from S can have on `δ

1(h
Bayes

S ). The largest effect occurs if xi ∈V δ
1 and the

removal of yi changes the value of hBayes(xi). In this case,

|`δ
1(S)− `δ

1(S
\i)| = |`xi(h

Bayes

S )− `xi(h
Bayes

S\i )| ≤ pv ≤ 6ln

(

2m
δ

)

m− 2
3 .

Applying McDiarmid’s theorem, it follows that |`δ
1(S)−E[`δ

1]| is at most
√

1
2

ln

(

2
δ

)

m ·
(

12ln

(

2m
δ

)

m− 2
3

)2

=
12ln

(

2m
δ
)

m1/6

√

1
2

ln

(

1
δ

)

.

Lemma 16 ∀δ > 0 ∀δS |`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≤

√

3ln( 2m
δ ) ln( 2

δ)
m1/4 .

Proof Since the expectation is taken over samples S′ for which cv(S′) = cv(S) for each v ∈V , we get
that the value of the random variable `v(h

Bayes

S ) for each v depends only on the assignment of label
for each example. Therefore the random variables `v(h

Bayes

S ) are all independent of each other when
conditioned on κ(S,S′), and `δ

2(S) = ∑v∈V δ
2
`v(h

Bayes

S ) is a sum of independent random variables. The
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expectation of this sum is E[`δ
2(S

′) | κ(S,S′)]. In addition, it is trivial to show that `v(h
Bayes

S ) ∈ [0, pv]
for all v. Thus, by Hoeffding’s inequality,

Pr[|`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≥ t] ≤ 2e

−2t2/∑v∈V δ
2

p2
v
. (29)

Using the fact that for v in V δ
2 , pv ≤ 6ln

(

2m
δ
)

/
√

m we obtain that

∑
v∈V δ

2

p2
v ≤ max

v∈V δ
2

{pv} · ∑
v∈V δ

2

pv ≤ 6ln

(

2m
δ

)

/
√

m .

Plugging the above into Eq. (29) we get that

Pr[|`δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]| ≥ t] ≤ 2e−2t2√m/(6ln( 2m

δ )) .

Setting the right-hand side to δ and solving for t, we conclude our proof.

So far, we have bounded the terms
∣

∣ `δ
1(S)−E[`δ

1]
∣

∣ and
∣

∣ `δ
2(S)−E[`δ

2(S
′) | κ(S,S′)]

∣

∣. In both
of these cases, we used the fact that pv is small for all v ∈V δ

1 ∪V δ
2 . We now turn to bound the term

∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣. In this case, the probabilities pv are no longer negligible. Therefore,
we use a different technique whereby we analyze the probability of hBayes

S (v) to be ‘wrong’, that is
to return the less probable label. Since pv is no longer small, we expect cv to be relatively large.
The following key lemma bounds the probability of hBayes

S (v) to be wrong given that cv is large. The
resulting bound depends on the difference between qv and 1/2 and becomes vacuous whenever qv

is close to 1/2. On the other hand, if qv is close to 1/2, the price we pay for a wrong prediction is
small. In the second part of this lemma, we balance these two terms and end up with a bound that
does not depend on qv.

Lemma 17 Let Z̄ = (Z1, . . . ,Zk) be a sequence of i.i.d. binary random variables such that
Pr[Zi = 1] = q for all i, and assume that q ≥ 1

2 . Then,

Pr[∑
i

Zi ≤ k/2] ≤ e−2(q− 1
2 )2 k and (2q−1) Pr[∑

i

Zi ≤ k/2] ≤ 1√
ek

.

Proof The first inequality is a direct application of Hoeffding’s inequality. Multiplying both sides by
2q−1 we get that the left-hand side of the second inequality is bounded above by (2q−1)e−2(q− 1

2 )2k.
We now let x = q− 1

2 and use the inequality 2xe−2x2k ≤ 1/
√

ek, which holds for all x ≥ 0 and k > 0.

Based on the above lemma, we now bound
∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣. First, we show that if
cv(S) is large then `v(S) is likely to be close to the expectation of `v over samples S′ in which
cv(S) = cv(S′). This is equivalent to the claim of the following lemma.

Lemma 18 Under the same assumptions of Lemma 17. Let f (Z̄) be the function

f (Z̄) =











(1−q) if ∑i Zi > k/2

q if ∑i Zi < k/2
1
2 if ∑i Zi = k/2

.

Then, for all δ ∈ (0,e−1/2] we have ∀δZ̄ | f (Z̄)−E[ f ]| ≤
√

2ln( 1
δ)

ek .
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Proof To simplify our notation, denote α = Pr[∑i Zi > k/2], β = Pr[∑i Zi < k/2], and γ = Pr[∑i Zi =
k/2]. A straightforward calculation shows that

| f (Z̄)−E[ f (Z̄)]| =











(2q−1)(β+ γ/2) with probability α
(2q−1)(α+ γ/2) with probability β
(2q−1)(α−β) with probability γ

.

Using the fact that (α,β,γ) is in the probability simplex we immediately obtain that

| f (z̄)−E[ f (Z̄)]| ≤ (2q−1) .

If 2q− 1 ≤
√

2 ln
(

1
δ
)

/k then the bound in the lemma clearly holds. Therefore, from now on we

assume that 2q− 1 >
√

2 ln
(

1
δ
)

/k. In this case, using the first inequality of Lemma 17 we have

that β + γ ≤ e−2(q− 1
2 )2k ≤ δ. Therefore, 1− δ < α, and so with probability of at least 1− δ we

have that
| f (Z̄)−E[ f (Z̄)]| = (2q−1)(β+ γ/2) ≤ (2q−1)(β+ γ) .

Applying the second inequality of Lemma 17 on the right-hand side of the above inequality we
get that | f (Z̄)−E[ f (Z̄)]| ≤

√

1/ek ≤
√

2ln(1/δ)/ek, where the last inequality holds since we
assume that δ ≤ e−1/2.

Equipped with the above lemma we are now ready to bound
∣

∣ `δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]

∣

∣.

Lemma 19 If m ≥ 4 then ∀(2δ)S |`δ
3(S)−E[`δ

3(S
′) | κ(S,S′)]| ≤ 1/m

1
4 .

Proof Recall that `δ
3(S) = ∑v∈V δ

3
`v(S). m ≥ 4, hence δ/m ≤ 1/m ≤ e−1/2. Choose v ∈ V δ

3 and

without loss of generality assume that qv ≥ 1/2. Thus, from Lemma 18 and the definition of `v(S)
we get that with probability of at least 1−δ/m over the choice of the labels in S(v):

|`v(S)−E[`v(S
′) | κ(S,S′)]| ≤ pv

√

2ln
(

m
δ
)

e · cv(S)
. (30)

By the definition of V δ
3 and Lemma 10, ∀δS, ∀v ∈ V δ

3 , cv(S) ≥ ρ(δ/m, pv,m). Using the fact
that ρ is monotonically increasing with respect to pv it is possible to show (see Lemma 21 in
the appendix)that ρ(δ/m, pv,m) ≥ 2ln

(

m
δ
)

m1/2 for all v ∈ V δ
3 for m ≥ 4. Therefore, if indeed

cv(S) ≥ ρ(δ/m, pv,m) for any v ∈V δ
3 , we have that

√

2ln
(

m
δ
)

e · cv(S)
≤ pv m−1/4.

Using a union bound to make sure that this condition holds and Eq. (30) holds for all v ∈V δ
3 simul-

taneously, we obtain that ∀(2δ)S ∀v ∈ V δ
3 |`v(S)−E[`v(S′) | κ(S,S′)]| ≤ pv m−1/4 . Summing

over v ∈ V δ
3 , using the triangle inequality, and using the fact that ∑v pv = 1 we conclude the proof.
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Lemma 20 For m ≥ 8,

∀δS |E[`δ
2(S

′)+ `δ
3(S

′) | κ(S,S′)]−E[`δ
2(S

′)+ `δ
3(S

′)]| ≤ 1
m

+
1

m1/6
.

Proof As in the proof of Lemma 19, we use the definitions of V δ
3 and V δ

2 along with Lemma 10 and
Lemma 21 to get that for m ≥ 8

∀δS ∀v ∈V δ
2 ∪V δ

3 cv(S) ≥ ρ(δ/m, pv,m) ≥ 3ln(m/δ)m1/3 . (31)

To bound the difference between the conditional expectation and the unconditional expectation,
let us first examine both these quantities for individual values v. To simplify our notation, denote
α1 = Pr[q̂v(S′) > 1/2 | cv(S′) = cv(S)], β1 = Pr[q̂v(S′) < 1/2 | cv(S′) = cv(S)], and γ1 = Pr[q̂v(S′) =
1/2 | cv(S′) = cv(S)]. Similarly, denote α2 = Pr[q̂v(S′) > 1/2], β2 = Pr[q̂v(S′) < 1/2], and γ2 =
Pr[q̂v(S′) = 1/2]. Using the definition of `v we have that

E[`v(S
′) | cv(S) = cv(S

′)] = pv

(

(1−qv)α1 +qβ1 +
1
2

γ1

)

.

Similarly, for the unconditional expectation:

E[`v(S
′)] = pv

(

(1−qv)α2 +qβ2 +
1
2

γ2

)

. (32)

Subtracting the above two equations and rearranging terms it can be shown that

∆ ∆
= |E[`v(S

′) | cv(S) = cv(S
′)]−E[`v(S

′)]|

= pv (q− 1
2
) | (β1 + γ1)− (β2 + γ2)+(γ1 − γ2) | . (33)

Let Z1, . . . ,Zcv(S) be an i.i.d. sequence of random variables with Pr[Zi = 1] = qv. Then we have

β1 + γ1 = Pr[∑i Zi ≤ cv(S)/2]. In addition cv(S) ≥ dρ(δ/m, pv,m)e ∆
= ρ. Assume without loss of

generality that qv ≥ 1/2. Thus we have Pr[∑ρ
i=1 Zi ≤ ρ/2] ≥ Pr[∑cv(S)

i=1 Zi ≤ cv(S)/2]. We clearly
have that 0 ≤ β1 + γ1 ≤ Pr[∑ρ

i=1 Zi ≤ ρ/2]. We now argue that

0 ≤ β2 + γ2 ≤
δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] .

The left-hand side inequality is trivial. To prove the right-hand side inequality, we note that

β2 + γ2 =
m

∑
i=1

Pr[cv(S
′) = i]Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = i

]

≤ Pr[cv(S
′) ≤ ρ]+Pr

[

q̂v(S
′) ≤ 1

2
| cv(S

′) = ρ
]

≤ δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] .
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Therefore,

|(β1 + γ1)− (β2 + γ2)| ≤
δ
m

+Pr[
k

∑
i=1

Zi ≤ k/2] . (34)

Similarly, since 0 ≤ γ1 ≤ β1 + γ1 and 0 ≤ γ2 ≤ β2 + γ2 we also have that

|γ1 − γ2| ≤
δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2] . (35)

Combining Eq. (34) and Eq. (35) with Eq. (33) we get that

∆ ≤ pv (2q−1)

(

δ
m

+Pr[
ρ

∑
i=1

Zi ≤ ρ/2]

)

≤ pv





1
m

+
1

√

e ·ρ( δ
m , pv,m)



 ,

where the last inequality follows from Lemma 17. Finally, by summing over v ∈ V δ
2 ∪ V δ

3 and
using Eq. (31) we conclude our proof.

5. Experiments

In this section we present experimental results that demonstrate the merits of our feature ranking
criterion given in Eq. (7). Throughout this section we compare the following four feature ranking
criteria:

1. IG: The Information Gain criterion (Quinlan, 1993; de Mantaras, 1991; Mitchell, 1997).

2. IGR: The Information Gain Ratio criterion (Quinlan, 1993).

3. Gini: The original Gini Index (Breiman et al., 1984), which is given in Eq. (2).

4. Ginger: Our modified Gini criterion that aims to minimize the generalization error, given in
Eq. (7).

We first present experiments with synthetic data that exemplify the generalization properties of
the different criteria. Next, we compare the performance of the different criteria on a natural data
set from the UCI repository. Finally, we compare the use of the different ranking criteria for the
task of growing a decision tree.

5.1 Synthetic Data

Three synthetic data sets were constructed to exemplify the generalization properties of the different
ranking criteria in different scenarios. In all of the synthetic data sets the target label was first
sampled according to the probability measure Pr[Y = 1] = 1

2 . Synthetic data set I includes only
binary features. The goal of data set I is to show that the Ginger criterion behaves similarly to the
Gini criterion on binary features. 11 binary features were constructed. For each i ∈ {0,1, . . . ,10}
the ith feature was sampled according to the probability measure Pr[Xi = Y |Y ] = 1+0.1 i

2 . Thus,
feature X0 is completely uncorrelated with the label, while feature X10 perfectly predicts the label.
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Figure 1: Each of the plots above show the generalization error of each feature (the y axis) against
the ranking order of the feature in one of the ranking criteria (the x axis). Each column
corresponds to a specific ranking criteria. Each row corresponds to a specific synthetic
data set.

A training set of 5000 examples was generated, and the features were ranked using each of the four
ranking criteria on the training set. The generalization errors of the 11 classification rules of each
feature, defined as in Eq. (5), were measured on a fresh test set of 5000 examples. A plot of the
generalization error of each feature against the ranking order of the feature is given for each of the
ranking criteria on the top row of Fig. 1. This plot should be monotonically increasing for good
feature ranking criteria. As the plots show, all four criteria perform well on this data set.

Data set II is identical to data set I, except that one more feature, indexed X11, was added. X11 is
simply the index of the example (this simulates an SSN-like feature as described in Sec. 2). Clearly,
the generalization error of X11 is 1

2 as no value of the feature that occurred in the training set would
occur in a test set. The performance of the four feature ranking criteria on data set II is shown
on the second row of Fig. 1. As expected, the Gini criterion and the IG criterion both suffer from
overfitting and rank X11 very high. The IGR criterion, suggested by Quinlan (1993) attempts to
fix the overfitting effect of the IG criterion by dividing IG by the entropy of the feature. As the
plots show, this correction indeed causes IGR to rank X11 lower than do IG and Gini. However, the
correction is not strong enough, as the new feature is still ranked 8th out of 12 features although
its generalization error is the worst. Finally, it is clear from the plots that the new Ginger criterion
produces a correct ranking of the features in this example.
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Data set III is identical to data set II, except that one more feature indexed X12 was added. X12

was constructed according to the following probability measure:

Pr[X = i | Y = 1] =

{

1
2000 if i ∈ {1, . . . ,2000}
0 otherwise

and

Pr[X = i | Y = −1] =

{

1
2000 if i ∈ {2001, . . . ,4000}
0 otherwise

X12 is thus categorical with many values but it is still highly predictive of the label. The performance
of the four feature ranking criteria on data set III is shown on the bottom row of Fig. 1. As the plots
show, the rankings of the Gini criterion and of the IG criterion are not adversely affected by the
addition of this feature, although they still fail on X11, the SSN-like feature. IGR penalizes X12

because it has a large number of values, thus its ranking for this feature is too low. The new Ginger
criterion is the only one to rank the features in accordance with their respective generalization error,
as is apparent from its monotonically increasing plot.

5.2 Natural Data

To test the ranking criteria on natural data, we used the USCensus1990raw data set from the UCI
Repository.1 This data set contains person records, where each record has 125 features, such as age,
salary, marital status etc. Several labeled data sets were constructed from USCensus1990raw by
defining a binary target label based on one of the attributes, and using the rest of the attributes as
features. For attributes that take more than two values, the binary label was set to 1 if the feature
takes its most frequent value and −1 otherwise. Only cases where the probability of the label to
be 1 was at least 0.1 and no more than 0.9 were used. This process resulted in 62 binary learning
problems.

In Fig. 2, each of the rows corresponds to one learning problem. A plot is shown for each
problem and each ranking criterion, depicting the generalization error of each feature against the
ranking order of the features. Recall that good ranking criteria should produce monotonically in-
creasing graphs. The plots clearly show that the Ginger criterion produces the most accurate feature
ranking. Fig. 3 compares the Ginger criterion to each of the other ranking criteria. In each of the
plots, each data point corresponds to one of the 62 learning problems and portrays the difference
in generalization error between the feature that was top-ranked by Ginger and the feature that was
top-ranked by the other criterion. Positive data points are cases where Ginger outperformed the
other criterion. Again, it is apparent that the Ginger criterion outperforms the other criteria.

5.3 Decision Trees

Decision tress are a popular classification tool (see for instance Mitchell, 1997). The process of
growing a decision tree is a greedy iterative procedure which is performed as follows: The procedure
starts with a tree composed only of a root node. At each iteration, one of the leaves of the tree is
turned into an inner node, whose children represent all the possible values of one feature. Choosing

1. The original census data set was used rather than the preprocessed data set. The preprocessed data set obtained from
Meek, Thiesson, and Heckerman eliminates categorical attributes that have many values, exactly the type of attributes
that this paper addresses. The data set used in our experiments is available through
http://kdd.ics.uci.edu/databases/census1990/USCensus1990raw.data.txt.
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Label IG Gini IGR Ginger
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Figure 2: Each of the plots above show the generalization error of the features in a learning problem
(the y axis) against the ranking order of the features in one of the ranking criteria (the x
axis). Each column corresponds to a specific ranking criterion. Each row corresponds to
a specific learning problem, generated from USCensus1990raw by setting the label to be
the most common value of one of the attributes.
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Figure 3: Each plot above portrays the difference in generalization error between the feature that
was top-ranked by Ginger and the feature that was top-ranked by one of the other criteria,
for each of the 62 learning problems obtained from USCensus1990raw.

which leaf to split and which feature to use for splitting can be based on feature ranking criteria
such as the ones discussed in this paper. In our experiments, we compared decision tree learning
with each of the four feature ranking criteria: IG, IGR, Gini, and Ginger. The experiments were
performed on the 62 learning problems described in Sec. 5.2.

Usually, the iterative process of growing a decision tree continues until no further splits can be
made. Then, as a post processing step, the tree is pruned, so as to improve the generalization error
of the decision tree. Since this paper focuses on splitting criteria rather then on pruning methods,
the experiments do not include tree post-pruning. Instead, the generalization error is measured as
a function of the number of splits. Given a ranking criterion, the following procedure is used to
choose which leaf to split and which feature to split by: Let m be the number of training examples.
A decision tree T with k leaves is equivalent to a mapping T : {1, . . . ,m}→ {1, . . . ,k}. That is, each
example is mapped to one of the leaves of the tree. We can think of the vector (T (1), . . . ,T (m)) as
the vector of values of a constructed feature. At each iteration of the decision tree learning process,
a new tree needs to be generated from the current tree by splitting one of the current tree leaves
based on one of the features. Each possible new tree induces a different new constructed feature
as described above. To select the leaf to split and the feature to split by, we assess the quality of
each new constructed feature based on the ranking criterion in use. The selected leaf and feature are
those that correspond to the top-ranked constructed feature.

Fig. 4 shows the training error and generalization error of the Gini, IGR and Ginger splitting
criteria as a function of the number of splits, for several learning problems. The IG criterion plot
was omitted since its behavior was almost identical to that of the Gini criterion. As can be seen
from the plots, the training error of the Gini criterion drops faster, but the resulting tree suffers from
severe overfitting. In contrast, the generalization error of the Ginger criterion is much smaller and
remains close to the training error, as long as the number of splits is not too large. As expected, after
making a large number of splits all criteria exhibit an overfitting effect. Comparing the IGR and the
Ginger criteria, we observe that both methods perform rather well, each showing an advantage on
some of the learning problems.

Lastly, Fig. 5 compares the performance of the decision tree learning with the Ginger splitting
criterion to decision tree learning with the other splitting criteria. In each of the plots, the data points
correspond to the 62 learning problems, and portray the difference in the minimal generalization
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Label Gini IGR Ginger
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Figure 4: The training error (solid red line) and generalization error (dotted blue line) of decision
trees grown according to the Gini, IGR, and Ginger splitting criteria, as a function of the
number of splits. Each column corresponds to a specific splitting criterion. Each row
corresponds to a specific learning problem, generated from USCensus1990raw by setting
the label to be the most common value of one of the attributes.
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Figure 5: Left: The minimal generalization error of the IG criterion minus the minimal generaliza-
tion error of the Ginger criterion for each of the labeled data sets. Middle: Same for IGR.
Right: Same for Gini.

error achieved by the decision tree grown using Ginger and the one that was achieved using the
other criterion. Positive data points are cases where Ginger outperformed the other criterion. The
plots show that the Ginger criterion outperforms the IG and Gini criteria, and that in most cases the
Ginger criterion outperforms the IGR criterion as well.

6. Discussion

In this paper, a new approach for feature ranking is proposed, based on a direct estimation of the
true generalization error of predictors that are deduced from the training set. We focused on two
specific predictors, namely hGini

S and hBayes

S . An estimator for the generalization error of hGini
S , termed

the Ginger criterion, was proposed and its convergence was analyzed. Experimental evaluation
suggests that the Ginger criterion outperforms existing feature ranking methods. We showed that
the expected error of hBayes

S is optimal and proved a concentration bound for this error. Constructing
an estimator for hBayes

S is left for future work.

There are various extensions for this work that we did not pursue. First, it is interesting to
analyze the number of categorical features one can rank while avoiding overfitting. The experiments
with decision trees suggest that the Ginger criterion has potential to improve the generalization
error of decision trees. It may be possible to use the bounds for constructing a stopping criterion
for growing the decision tree. Second, our view of a ranking criterion as an estimator for the
generalization error of a predictor can be used for constructing new ranking criteria by defining
other predictors. Finally, understanding the relationship between this view and information theoretic
measures is also an interesting future direction.

Appendix A. Technical Proofs

Lemma 21 Let c be a positive constant. Then, if pv > 6ln
(

2
δ
)

m−c, and m ≥ 2
1

1−c we have

∀δ > 0 ρ(δ, pv,m) ≥ 3ln

(

2
δ

)

m1−c.
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Proof By the definition of ρ,

ρ(δ, pv,m) = mpv −
√

mpv ·3ln

(

2
δ

)

=
√

mpv

(

√
mpv −

√

3ln

(

2
δ

)

)

.

Therefore, ρ( δ
m , pv,m) is upward monotonic with pv. Thus if pv > 6ln

(

2m
δ
)

m−c,

ρ(δ, pv,m) = mpv −
√

mpv ·3ln

(

2
δ

)

≥ 6ln

(

2
δ

)

m1−c −
√

6ln

(

2
δ

)

m1−c ·3ln

(

2
δ

)

= 3ln

(

2
δ

)

m
1−c

2

(

2m
1−c

2 −
√

2
)

= 3ln

(

2
δ

)

m
1−c

2 (m
1−c

2 +m
1−c

2 −
√

2)

≥ 3ln

(

2
δ

)

m1−c.

Proof [Lemma 12] Similarly to the proof of Lemma 8, we will bound the effect a single removal of
an example from S can have on `(hδ

S). The maximal effect of a single change in the sample is no
larger than twice the maximal effect of a single removal. Assume without loss of generality that the
removed example is xi = (v,0), and denote the resulting sample by S\i. The removal only affects
`v(hδ

S). Therefore

|`(hδ
S)− `(hδ

S\i)| = |`v(h
δ
S)− `v(h

δ
S\i)|

=
∣

∣

∣
pv

(

qv(1−hδ
S(v))+(1−qv)h

δ
S(v)− pvqv(1−hδ

S\i(v))+(1−qv)h
δ
S(v)

)∣

∣

∣

=
∣

∣

∣pv(1−2qv)(h
δ
S(v)−hδ

S\i(v))
∣

∣

∣

≤ pv

∣

∣

∣
hδ

S(v)−hδ
S\i(v)

∣

∣

∣
.

For v such that pv <
6ln( 2m

δ )

m ,

|`(hδ
S)− `(hδ

S\i)| ≤ pv <
6ln( 2m

δ )

m
. (36)

For v such that pv ≥ 6ln( 2m
δ )

m , we distinguish between three cases by cv, the number of examples of v
in S:

1. cv < ρ( δ
m , pv,m),

2. ρ( δ
m , pv,m) ≤ cv < ρ( δ

m , pv,m)+1,
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3. ρ( δ
m , pv,m)+1 ≤ cv.

In case 1,

hδ
S(v) =

c+
v +qv(dρ( δ

m , pv,m)e− cv)

dρ( δ
m , pv,m)e

and hδ
S\i(v) =

c+
v +qv(dρ( δ

m , pv,m)e− (cv −1))

dρ( δ
m , pv,m)e

,

hence
|hδ

S(v)−hδ
S\i(v)| =

qv

dρ( δ
m , pv,m)e

.

In case 2, dρ( δ
m , pv,m)e = cv, therefore

hδ
S(v) = hGini

S (v) =
c+

v

cv
and hδ

S\i(v) =
c+

v +qv(cv − (cv −1))

cv
,

hence
|hδ

S(v)−hδ
S\i(v)| =

qv

cv
=

qv

dρ( δ
m , pv,m)e

.

In case 3, since ρ( δ
m , pv,m) > 1 we have cv ≥ 2 and

hδ
S(v) = hGini

S (v) =
c+

v

cv
and hδ

S\i(v) = hδ
S\i(v) =

c+
v

cv −1

Hence

|hδ
S(v)−hδ

S\i(v)| =
c+

v

cv(cv −1)
≤ cv

cv(cv −1)
=

1
cv −1

≤ 1

dρ( δ
m , pv,m)e

.

Therefore, in all cases, for v such that pv ≥ 6ln( 2m
δ )

m ,

|`(hδ
S)− `(hδ

S\i)| ≤ pv

∣

∣

∣hδ
S(v)−hδ

S\i(v)
∣

∣

∣≤ pv

ρ( δ
m , pv,m)

=
pv

mpv −
√

mpv ·3ln( 2m
δ )

=
1
m

√
pv

√
pv −

√

3ln( 2m
δ )

m

≤ 1
m





√

6ln( 2m
δ )

m
√

6ln( 2m
δ )

m −
√

3ln( 2m
δ )

m



=
1
m

2√
2−1

≤ 4
m

.

Combining this with Eq. (36), we have

|`(hδ
S)− `(hδ

S\i)| ≤ max

{

4
m

,
6ln( 2m

δ )

m

}

=
6ln( 2m

δ )

m
.

Hence, doubling the effect of a single removal, we have that for any two samples S1 and S2 such
that d(S1,S2) ≤ 1

|`(hδ
S1

)− `(hδ
S2

)| ≤
12ln( 2m

δ )

m
.
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