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Abstract

Efficient and expressive comparison of sequences is anteds@ocedure for learning with se-
guential data. In this article we propose a generic framkviar computation of similarity mea-
sures for sequences, covering various kernel, distancenamanetric similarity functions. The
basis for comparison is embedding of sequences using a fftemguage, such as a set of natu-
ral words,k-grams or all contiguous subsequences. As realizationseoframework we provide
linear-time algorithms of different complexity and cagaisis using sorted arrays, tries and suffix
trees as underlying data structures.

Experiments on data sets from bioinformatics, text prdogssnd computer security illustrate
the efficiency of the proposed algorithms—enabling peakoperénces of up to fpairwise com-
parisons per second. The utility of distances and non-msimilarity measures for sequences as
alternatives to string kernels is demonstrated in apptinatof text categorization, network intru-
sion detection and transcription site recognition in DNA.

Keywords: string kernels, string distances, learning with sequédéita

1. Introduction

Sequences of discrete symbols are one of the fundamental data reégtiess in computer sci-
ence. A great deal of applications—from search engines to documargking, from gene finding to
prediction of protein functions, from network surveillance tools to antis/fprograms—critically
depend on analysis of sequential data. Providing an interface to dexjudaia is therefore an
essential prerequisite for applications of machine learning in these domains.

Machine learning algorithms have been traditionally designed for vectaiat-dprobably due
to the availability of well-defined calculus and mathematical analysis tools. A ladg of such
learning algorithms, however, can be formulated in terms of pairwise relaffsetween objects,
which imposes a much looser constraint on the type of data that can be dhambles, a powerful
abstraction between algorithms and data representations can be established

The most prominent example of such abstractiokeigel-based learninge.g., Miller et al.,
2001; Sclilkopf and Smola, 2002) in which pairwise relationships between objecexaressed
by a Mercer kernel, an inner product in a reproducing kernel Hilkgaice. Following the seminal
work of Boser et al. (1992), various learning methods have beeornedfated in terms of kernels,
such as PCA (Sailkopf et al., 1998b), ridge regression (Cherkassky et al., 196%),(Harmeling
et al., 2003) and many others. Although the initial motivation for the “kernel'twas to allow
efficient computation of an inner product in high-dimensional featureespahe importance of an
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abstraction from data representation has been quickly realized (e.gikVap95). Consequently
kernel-based methods have been proposed for non-vectorial dgreaagtsas analysis of images
(e.g., Scblkopf et al., 1998a; Chapelle et al., 1999), sequences (e.g., Ja&klkdla2000; Watkins,
2000; Zien et al., 2000) and structured data (e.g., Collins and Duff\2;Z6&rtner et al., 2004).

Although kernel-based learning has gained significant attention in rgearg, a Mercer kernel
is only one of many possibilities for defining pairwise relationships betwegrctsh Numerous
applications exist for which relationships are defined as metric or non-nuestences (e.g., An-
derberg, 1973; Jacobs et al., 2000; von Luxburg and Bousqued,)28imilarity or dissimilarity
measures (e.g., Graepel et al., 1999; Roth et al., 2003; Laub alerV2004; Laub et al., 2006) or
non-positive kernel functions (e.g., Ong et al., 2004; Haasdonlg)200s therefore imperative to
address pairwise comparison of objects in a most general setup.

The aim of this contribution is to develop general frameworlor pairwise comparison of
sequences. Its generality is manifested by the ability to handle a large nufnkemel func-
tions, distances and non-metric similarity measures. From consideratiofficiginey, we focus
on algorithms with linear-time asymptotic complexity in the sequence lengths—at plea s of
narrowing the scope of similarity measures that can be handled. For examept® not consider
super-linear comparison algorithms such as the Levenshtein distananfheein, 1966) and the
all-subsequences kernel (Lodhi et al., 2002).

The basis of our framework is embedding of sequences in a high-dimah$&ature space
using aformal languagea classical tool of computer science for modeling semantics of sequences
Some examples of such languages have been previously used for smedsk such as the bag-
of-words, k-gram or contiguous-subsequence kernel. Our formalization allowsoonse a much
larger set of possible languages in a unified fashion, for example qudsees defined by a finite
set of delimiters or position-dependent languages. A further advanfagebedding using formal
languages is separation of embedding models from algorithms, which allosvsodnvestigate
different data structures to obtain optimal efficiency in practice.

Several data structures have been previously considered for spaifiarity measures, such
as hash tables (Damashek, 1995), sorted arrays (Sonnenbur@60a)., tries (Leslie et al., 2002;
Shawe-Taylor and Cristianini, 2004; Rieck et al., 2006), suffix treggyusatching statistics (Vish-
wanathan and Smola, 2004), suffix trees using recursive matchingk(Biexd., 2007) and suffix
arrays (Teo and Vishwanathan, 2006). All of these data structures aile to develop linear-time
algorithms for computation of certain similarity measures. Most of them are aitbke for the
general framework developed in this paper; however, certain triisiexst between their asymp-
totic run-time complexity, implementation difficulty and restrictions on embedding kgegithey
can handle. To provide an insight into these issues, we propose alydeattaee data structures
suitable for our frameworksorted arraystries andsuffix treeswith an extension to suffix arrays.
The message of our analysis, supported by experimental evaluatiorn, tisettdoice of an optimal
data structure depends on the embedding language to be used.

This article is organized as followed: In Section 2 we review related workemjuence com-
parison. In Section 3 we introduce a general framework for computatisimdarity measures for
sequences. Algorithms and data structures for linear-time computationemenped in Section 4.
We evaluate the run-time performance and demonstrate the utility of distinct simiteeégures in
Section 5. The article is concluded in Section 6
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2. Related Work

Assessing the similarity of two sequences is a classical problem of commigecs. First ap-
proaches, the string distances of Hamming (1950) and Levenshtein)(b@igated in the domain
of telecommunication for detection of erroneous data transmissions. Theedaglissimilarity be-
tween two sequences is determined by computing the shortest trace df@pseransertions, dele-
tions and substitutions—that transform one sequence into the other (SanéidKruskal, 1983).
Applications in bioinformatics motivated extensions and adaptions of this pgnioe example
defining sequence similarity in terms of local and global alignments (NeedlendaNamsch, 1970;
Smith and Waterman, 1981). However, similarity measures based on the Hanistargd are re-
stricted to sequences of equal length and measures derived fromvigreshéein distance (e.g., Liao
and Noble, 2003; Vert et al., 2004), come at the price of computatiomablexity: No linear-time
algorithm for determining the shortest trace of operations is currently kn@ne of the fastest
exact algorithms runs i®(n?/logn) for sequences of length(Masek and Patterson, 1980).

A different approach to sequence comparison originated in the fieldahnation retrieval with
the vector space or bag-of-words model (Salton et al., 1975; Salt@0).1%extual documents are
embedded into a vector space spanned by weighted frequencies ohednterds. The similarity
of two documents is assessed by an inner-product between the cod@spvectors. This concept
was extended t&-grams—k consecutive characters or words—in the domain of natural language
processing and computer linguistic (e.g., Suen, 1979; Cavnar and@r&akR4; Damashek, 1995).
The idea of determining similarity of sequences by an inner-product wagedkin kernel-based
learning in the form of bag-of-words kernels (e.g., Joachims, 199&;K2r et al., 1999; Joachims,
2002) and various string kernels (e.g., Zien et al., 2000; Leslie et al2;206hwanathan and
Smola, 2004). Moreover, research in bioinformatics and text progeadivanced the capabilities of
string kernels, for example, by considering gaps, mismatches and positestiences (e.g., Lodhi
et al., 2002; Leslie et al., 2003; Leslie and Kuang, 2004; Rousu angeshaylor, 2005; Rtsch
et al., 2007). The comparison framework proposed in this article shareptitept of embedding
sequences with all of the above kernels, in fact most of the linear-time &gingls (e.g., Joachims,
1998; Leslie et al., 2002; Vishwanathan and Smola, 2004) are encloteslfirmmework.

A further alternative for comparison of sequences are kernelsedefiem generative proba-
bility models, such as the Fisher kernel (Jaakkola et al., 2000) and thek&@EBl (Tsuda et al.,
2002). Provided a generative model, for example a HMM trained overmus®f sequences or
modeled from prior knowledge, these kernel functions essentially spporel to inner-products of
partial derivatives over model parameters. The approach enabldseslyn of highly specific sim-
ilarity measures which exploit the rich structure of generative models xample, for prediction
of DNA splice sites (Rtsch and Sonnenburg, 2004). The run-time complexity of the kernel com-
putation, however, is determined by the number of model parameters, sinthaimple models
yield run-time linear in the sequence lengths. Moreover, obtaining a suitatdenpter estimate for
a probabilistic model can be difficult or even infeasible in practical applicatio

3. Similarity Measures for Sequential Data

Before introducing the framework for computation of similarity measures, eadrio establish
some basic notation. 8equence is a concatenation of symbols from alphabetA. The set of
all possible concatenations of symbols frofris denoted by4* and the set of all concatenations
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of lengthk by A*. A formal language LC A* is any set of finite-length sequences drawn frdm
(Hopcroft and Motwani, 2001). The length of a sequerds denoted byx| and the size of the
alphabet by.A|. A contiguous subsequenaeof x is denoted byw C X, a prefix ofx by w Cp X
and a suffix byw Cg X. Alternatively, a subsequenegof x ranging from position to | is referred
to asx]i..j].

3.1 Embedding Sequences using a Formal Language

The basis for embedding of a sequemncis a formal languagé., whose elements are sequences
spanning arL|-dimensional feature space. We referltcas theembedding languagend to a
sequencev € L as awordof L. There exist numerous ways to defineeflecting particular aspects
of application domains, yet we focus on three definitions that have beexiywided in previous
research:

1. Bag-of-words In this model,L corresponds to a set of words from a natural languagsan
be either defined explicitly by providing a dictionary or implicitly by partitioning segces
according to a set of delimiter symbdlsc A (e.g., Salton, 1979; Joachims, 2002).

L = Dictionary (explicity L = (A\ D)* (implicit).

2. K-grams andblended k-grams For the case ok-grams (in bioinformatics often referred
to ask-mers),L is the set of all sequences of lendtl{e.g., Damashek, 1995; Leslie et al.,
2002). The model ok-grams can further be “blended” by considering all sequences from
length j up tok (e.g., Shawe-Taylor and Cristianini, 2004).

k
L = A (k-grams) L =|_JA' (blendedk-grams)
i—j

3. Contiguous sequenceslin the most general cask,corresponds to the set of all contiguous
sequences or alternatively to blendedrams with infinitek (e.g., Vishwanathan and Smola,
2004; Rieck et al., 2007).

L=.A* or L:GAi.

i=1

Note that the alphabet in the embedding languages may also be composed of higher semantic
constructs, such as natural words or syntactic tokens. In these &&sgiam corresponds tk
consecutive words or tokens, and a bag-of-words models couldsemtrtextual clauses or phrases.

Given an embedding language a sequence can be mapped into th& |-dimensional feature
space by calculating a functiah), (x) for everyw € L appearing irx. The embedding functiod
for a sequence is given by

DX (¢w (X)) weL with Puw (X) == ocdw,X) - W, (l)

where oc¢w, X) is the number of occurrences ofin the sequence andV,, a weighting assigned
to individual words. Alternatively oqa, x) may be defined as frequency, probability or binary flag
for the occurrences ab in x.
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While the choice and design of an embedding languagdfer a large degree of flexibility,
it is often necessary to refine the amount of contribution for each woedL, for example it is
a common practice in text processing to ignore stop words and terms that darnp semantic
content. In the embedding function (1) such refinement is realized by tightivey termV,,. The
following three weighting schemes for definiing,, have been proposed in previous research:

1. Corpus dependent weighting.The weight,, is based on the occurrences®in the corpus
of sequences (see Salton et al., 1975). Most notable is the inversaelotcitequency (IDF)
weighting, in whichWW,, is defined over the number of documehntsand the frequencg(w)
of w in the corpus.

W, =log, N —log,d(w) + 1.

If occ(w, X) is the frequency ofv in x, the embedding function (1) corresponds to the well-
known term frequency and inverse document frequency (TF-1D#FyRting scheme.

2. Length dependent weighting.The weight\V,, is based on the lengiln | (see Shawe-Taylor
and Cristianini, 2004; Vishwanathan and Smola, 2004), for example, sdotiger words
contribute more than shorter words to a similarity measure. A common approdefinig
W, using a decay factor@ / < 1.

W, = 71l

3. Position dependent weighting. The weightV,, is based on the position @ in x. Vish-
wanathan and Smola (2004) propose a direct weighting scheme, in Whjahk defined over
positional weight3/V (k, x) for each positiork in x as

j
W =Wyiij) = ZW(k, X).
k=i

An indirect approach to position dependent weighting can be implementedehygﬁng the
alphabetA with positional information tod = A x N, so that every elemeita, k) € A of the
extended alphabet is a pair of a symband a positiork.

The introduced weighting schemes can be coupled to further refine theddimppeased on
L, for example, in text processing the impact of a particular term might be imdkdeby the term
frequency, inverse document frequency and its length.

3.2 Vectorial Similarity Measures for Sequences

With an embedding languadeat hand, we can now express common vectorial similarity measures
in the domain of sequences. Table 1 and 2 list well-known kernel and distanctions (see Vapnik,
1995; Schilkopf and Smola, 2002; Webb, 2002) in termsLof The histogram intersection kernel
in Table 1 derives from computer vision (see Swain and Ballard, 199@n®dt al., 2005) and the
Jensen-Shannon divergence in Table 2 is defined usingy) = xlog%y + ylog%.

A further and rather exotic class of vectorial similarity measuresandarity coefficientgsee
Sokal and Sneath, 1963; Anderberg, 1973). These coefficiemtstdeeen designed for comparison
of binary vectors and often express non-metric properties. Theyastracted using three summa-
tion variablesa, b andc, which reflect the number of matching componeni&ljlleft mismatching
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Kernel k(x,y)

Linear 2 el P (X)du(Y)
Polynomial (et P (y) +6)°
Sigmoidal tanh(>, o, du(X)du(y) +6)
Gaussian exp(%@”z)

Histogram intersection > et MiN(@y (X), du (¥))

Table 1: Kernel functions for sequential data.

Distance d(x,y) Distance dx,y)
Manhattan — 2_,ct |60 (X) — B0 (Y) Chebyshev MaX,et [¢w (X) — g (Y)
x2 distance el % Geodesic arccoy ¢ uw (X)¢u ()
Canberra > et ST Hellinge? Y ve, VB0 () = Vo))

MinkowskiP >, ci [éw(X) — du (Y)[P Jensen-Shannon >, H(¢w(X), ¢ (¥))

Table 2: Distance functions for sequential data.

components (01) and right mismatching componentg Q) in two binary vectors. Common similar-
ity coefficients are given in Table 3. For application to non-binary vedt@summation variables
a, b, c can be extended in terms of an embedding languafiRieck et al., 2006):

a= Z min(¢w (X), ¢u) (y))a

wel

b=>"[¢, () — min(¢,(X), ¢, (¥))],

wel

C= Z [¢u} (y) - min(¢w (X)> ¢w (Y))] .

wel

The above definition o matches the histogram intersection kerkgrovided in Table 1, so that
alternatively all summation variables can be expressed by

a= k(X, y)a b= k(X, X) - k(X, y)a C= k(ya y) - k(X, y) (2)
Sim. Coeff. s(X,Y) Sim. Coeff. s(X,Y)
Simpson a/min(a+b,a+c) Kulczynski (1) a/(b+c)
Jaccard a/(a+b+c) Kulczynski (2)  3(@/(a+b)+a/(@a+c))
Braun-Blanquet ~ @/max@+b,a+c) Otsuka, Ochiai a/+/(a+b)(@a+c
Czekanowski, 2a/(2a+b+c) Sokal-Sneath, a/(a+2(b+0))
Sgrensen-Dice Anderberg

Table 3: Similarity coefficients for sequential data
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Hence, one can consider the similarity coefficients given in Table 3 agivasaf the histogram
intersection kernel, for example, the Jaccard coefficient can be foredwdalely in terms ok:

a KOG Y)
a+b+c k(x,x)+k(y,y)—k(x,y)

s(X,y) =

3.3 A Generic Framework for Similarity Measures

All of the similarity measures introduced in the previous section share a similaematital con-
struction: an inner component-wise function is aggregated over each slonemsing an outer
operator, for example, the linear kernel is defined as the sum of compatige products and the
Chebyshev distance as the maximum of component-wise absolute difference

One can exploit this shared structure to derive a unified formulation for sitpilmeasures
(Rieck et al., 2006, 2007), consisting of an inner functioand an outer operatep as follows

S(.Y) = @D MG (X), $u (¥))- €)

wel

For convenience in later design of algorithms, we introduce a “multiplicatioatatpr® which
corresponds to executing tkeoperatiork times. Thus, for any € N andx € R, we define® as

XN =XD...OX.
—_——

n

Given the unified form (3), kernel and distance functions presentdélie 1 and 2 can be
re-formulated in terms ofs andm. Adaptation of similarity coefficients to the unified form (3)
involves a re-formulation of the summation variabde$ andc. The particular definitions of outer
and inner functions for the presented similarity measures are given in Zablee polynomial and
sigmoidal kernels as well as the Geodesic distance are not shown sipcathiee expressed using
a linear kernel. For the Chebyshev distance the opegt@presents the identity function, while
for all other similarity measures it represents a multiplication.

Kernel <) m(x, y) Distance &) m(x, y)
Linear + X-y Manhattan + X —y|
Histogram inters. + min(x, y) x? distance +  (X=Y)?/(X+Y)
Canberra + X —=Yy|/(X+Y)
Sim. Coef. <) m(X, ) MinkowskiP + X —y|P
Variablea + min(x, y) Chebyshev max X —y|
Variableb +  X—min(x,y) Hellinger + (VX = /Y)?
Variablec + y—min(x,y) Jensen-Shannon + H(x,y)

Table 4: Unified formulation of similarity measures.

As a last step towards the development of comparison algorithms, we needréssthe high
dimensionality of the feature space induced by the embedding landuagée unified form (3)
theoretically involves computation ofi over allw € L, which is practically infeasible for modt.

Yet the feature space induced byis sparse, since a sequemxceomprises only a limited number of
contiguous subsequences—at m@s + |x|) /2 subsequences. As a consequence of the sparseness
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only very few termsp,, (X) andg,, (y) in the unified form (3) have non-zero values. We exploit this
fact by definingm(0, 0) = e, whereeis the neutral element for the operatbyso that for ank € R
holds

Xxde=Xx, edx=Xx.

By assigningn(0, 0) to e, the computation of a similarity measure can be reduced to cases where
eitherg,, () > 0 or ¢, (y) > 0, as the terrm(0, 0) does not affect the result of expression (3). We
can now refine the unified form (3) by partitioning the similarity measures déotgunctiveand
disjunctivemeasures using an auxiliary functién

S(%,Y) = EP M (%), B0 ().
wel
1. Conjunctive similarity measures. The inner functionrm only accounts pairwise non-zero
components, so that for amye R holdsm(x, 0) = eandm(0, x) = e.

m(x,y) =

m(x,y) ifx>0andy>0
otherwise.

Kernel functions fall into this class, except for the distance-based RBfel. By using a
kernel to express similarity coefficients as shown in expression (2), sityizoefficients
also exhibit the conjunctive property.

2. Disjunctive similarity measures. The inner functiorm requires at least one component to
be non-zero, otherwism(0, 0) = e holds.

m(x,y) ifx>0ory>0
e otherwise.

m(x,y) = |

Except for the Geodesic distance, all of the presented distances fathistdass. Depend-
ing on the embedding language, this class is computational more expensivatijanctive
measures.

As a result, any similarity measure, including those in Table 1, 2 and 3, compbdsa inner
and outer function can be applied for efficient comparison of embedstpeesaces, if (a) a neutral
elemente for the outer functiond exists and (b) the inner functiom is either conjunctive or
disjunctive, that is at leash(0, 0) = e holds.

4. Algorithms and Data Structures

We now introduce data structures and algorithms for efficient computatibte proposed similarity
measures. In particular, we present three approaches differingpabitities and implementation
complexity covering simple sorted arrays, tries and generalized suffig. tleer each approach,
we briefly present the involved data structure, provide a discussiorecddmparison algorithm
and give run-time bounds for extraction and comparison of embeddedrsess. Additionally, we
provide implementation details that improve run-time performance in practice.

As an example running through this section we consider the two sequereesbaaand
y = baaaabfrom the binary alphabetl = {a, b} and the embedding language of 3-grainss .43.
For a data structure storing multiple words= L of possibly different lengths, we denote kyhe
length of longest words.
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4.1 Sorted Arrays

Data structure. A simple and intuitive representation for storage of embedded sequerges a
sorted arraysor alternatively sorted lists (Joachims, 2002; Rieck et al., 2006; Sonrgm al.,
2007). Given an embedding languageand a sequence all wordsw € L satisfyingw C x are
maintained in an arra)X along with their embedding values,(x). Each fieldx of X consists of

two attributes: the stored wondlord x] and its embedding valughix]. The length of an array

is denoted by X]. In order to support efficient comparison, the fieldsXoére sorted by contained
words, for example, using the lexicographical order of the alphdb&tgure 1 illustrates the sorted
arrays of 3-grams extracted from the two example sequenaedy.

wordx] phix]
X e——abb| 1—baa| 1—bba| 1}——e

Y e——laaa| 2—laab| 1—baa| 1——o

Figure 1: Sorted arrays of 3-grams for= abbaaandy = baaaab The number in each field
indicates the number of occurrences.

Algorithm. Comparison of two sorted arrayé andY is carried out by looping over the fields

of both arrays in the manner of merging sorted arrays (Knuth, 1973)in@each iteration the
inner functionm is computed over contained words and aggregated using the operatdhe
corresponding comparison procedure in pseudo-code is given inithigpnl. Herein, we denote
the case where a word is present irk andy asmatchand the case ab being contained in either

X ory asmismatch For run-time improvement, these mismatches can be ignored in Algorithm 1 if
a conjunctive similarity measure is computed (cf. Section 3.3).

Algorithm 1 Array-based sequence comparison
1. function COMPARE(X,Y : Array) : R
2: sS«—eiel j1l

3: whilei < |X]or j <|Y|do

4: X« X[i], y < Y[j]

5: if y=NIL or wordx] < wordy] then > Mismatch atx
6: s « s@m(phix],0)

7: i «—i+1

8: else ifx = NIL or word Xx] > wordy] then > Mismatch aty
9: s < s@m(0, phily])

10: je<j+1

11: else > Match atx andy
12: s « s@®m(phix], phiy])

13: i+l j«j+1

14: return s
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Run-time. The comparison algorithm based on sorted arrays is simple to implement, yesit do
not enable linear-time comparison for all embedding languages, for exaimple- A*. However,
sorted arrays enable linear-time similarity measures, if there €xist) words withw C X, which
implies allw € L have no or constant overlap n Examples are the common bag-of-words and
k-gram embedding languages.

Under these constraints a sorted array is extracted from a sequend® (k|x|) time using
linear-time sorting, for example, radix sort (Knuth, 1973), whietis the maximum length of all
wordsw € L in x. The comparison algorithm requires at mpgtt |y| iterations, so that the worst-
case run-time i© k(x| +y|)). For extraction and comparison the run-time complexity is linear in
the sequence lengths due to the constraint on constant overlap of wbids impliesk|x| € O(|x|)
for anyk andx.

Implementation notes. The simple design of the sorted array approach enables a very efficient
extension. If we consider a CPU with registersodtits, we restrict the maximum word lengthso
that every word fits into a CPU register. This restriction enables storafjecanparison operations
to be performed directly on the CPU, that is operations on werdéth |w| < k are executed in
0O(1) time. Depending on the size of the alphahdt and the CPU bitd, the maximum word
length is|b/log, |.A|]. In many practical applications one can strongly benefit from this extesisio
ask is either bounded anyway, for example, fegrams, or longer words are particular rare and
do not increase accuracy significantly. For example on current 64Riit &chitectures one can
restrictk to 32 for DNA sequences wittd| = 4 and tok = 10 for textual documents withd| < 64.
Alternatively, embedded words may also be represented using hask @&lubits, which enables
considering words of arbitrary length, but introduces a probability &shitollisions (Knuth, 1973).

Another extension for computation of conjunctive measures using samggsadas been pro-
posed by Sonnenburg et al. (2007). If two sequencesady have unbalanced sizés| < |y|,
one loops over the shorter sorted artdyand performs a binary search procedureYgnin fa-
vor of processing both sorted arrays in parallel. The worst-caséimenfor this comparison is
O(k(|x|log, |yl)), so that one may automatically apply this extension if for two sequeneaesly
holds|x|log, ly| < |X|+1yI.

4.2 Tries

Data structure. A trie is a tree structure for storage and retrieval of sequences. The eflges
trie are labeled with symbols of (Fredkin, 1960; Knuth, 1973). A path from the root to a marked
nodex represents a stored sequence, hereafter denotedAyrie nodex contains a vector of size
|A] linking to child nodes, a binary flag to indicate the end of a sequeram# x] and an embedding
valuephix].> Thei-th child node representing theth symbol inA is accessed viahild[x,i]. If
thei-th child is not presenthild[x,i] = NIL.

A sequences is embedded using a tri by storing allw € L with w E x and corresponding
¢, (X) in X (Shawe-Taylor and Cristianini, 2004). Figure 2 shows tries of 3-gramthé two ex-
ample sequencesandy. Note, that for the embedding languagekajrams considered in Figure 2
all marked nodes are leaves, while for other embedding languages thegamagpond to inner
nodes, for example, for the case of blendtegrams, where every node in a trie marks the end of a
sequence.

1. For convenience, we assume that child nodes are maintained in g wagte in practice sorted lists, balanced trees
or hash tables may be preferred.
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a b
a

{1 A
markx] il il d
phix] (1) 1) 1) @ @ @
Figure 2: Tries of 3-grams fox = abbaaandy = baaaab The number in brackets at leaves

indicate the number of occurrences. Marked nodes are squared. Mgtizs are implicit
and not maintained in a compact trie representation.

I—O‘—O—U—O\

[

Algorithm.  Comparison of two tries is performed as in Algorithm 2: Starting at the roo¢siod
one recursively traverses both tries in parallel. If the traversal pagseast one marked node the in-
ner functionm is computed as either a matching or mismatching word occurred (Rieck et &), 200
To simplify presentation of the algorithm, we assume that{NiL] returns false anadhila[NIL, ]
returnsniL .

Algorithm 2 Trie-based sequence comparison
1. function COMPARE(X,Y : Trie) : R

2: S« e

3 if X=NIL andY = NIL then > Base case
4: return s

5: fori « 1,|4| do

6: X « child X,i], y < child]Y,i]

7 if marKx] and not marKy] then > Mismatch atx
8: s « s@m(phix],0)

9: if not markx] and marKy] then > Mismatch aty
10: s <« s@m(0, phily])
11: if marfx] and marKy] then > Match atx andy
12: s « s@®m(phix], phiy])
13: S < s&@ COMPARE(X, Y)

14: return s

Run-time. The trie-based approach enables linear-time similarity measures over adatgd
formal languages than sorted arrays. For tries we requiteall with w C x to have either constant
overlap inx or to be prefix of another word, for example, as for the blenkigdlam embedding
languages.

To determine the run-time complexity on tries, we need to consider the followomedy: A
trie storingn words of maximum lengtlk has depthtk and at moskn nodes. Thus, a sequenke
containingO(|x|) words of maximum lengtk is embedded using a trie @ (k|x|) run-time. As an
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invariant for the comparison procedure, the nodlemdy in Algorithm 2 stay at the same depth in
each recursion. Hence, the comparison algorithm visits at kiist k|y| nodes, which results in

a worst-case run-time dD(k(|x| + |y])). The extraction and comparison run-time is linear in the
sequence lengths, as we require words to either have constant owdrialp impliesk|x| € O(|x]),

or to be prefix of another word, which implies that both words share anig@épath in the trie.

Implementation notes. The first extension for the trie data structure is aggregation of embedding
values in nodes. If in Algorithm 2 a mismatch occurs at nedie algorithm recursively descends

to all child nodes ofx. At this point, however, it is clear that all nodes belawwill also be
mismatches, as all words with X £, w are not present in the compared trie. This fact can be
exploited by maintaining an aggregated vajyeat each node given by

ox =P b () with | ={we L |XE,w).

wel

Instead of recursively descending at a mismatching noame usesy to retrieve the aggregation
of all lower embedding values. The extension allows disjunctive similarity nmeaso be computed
as efficient as conjunctive measures at a worst-case run-ti@ékahin(|x|, |y|)).

The second extension originates from the close relation of tries and s@#. The nodes
of a trie can be classified asplicit if they link to only one child node and axplicit otherwise.
By iteratively removing implicit nodes and appending their labels to edgesplit&parent nodes
one obtains @ompact trie(cf. Knuth, 1973; Gusfield, 1997). Edges are labeled by subsegaen
encoded using indiceésand j pointing tox[i..j]. The major benefit of compact tries is reduced
space complexity, which decreases frak|x|) to O(]x|) independent of the maximum length
of stored words.

4.3 Generalized Suffix Trees

Data structure. A generalized suffix tre@ST) is a compact trie containing all suffixes of a set of
sequences,, ..., X (Gusfield, 1997). Every pathin a GST from the root to a leaf corredptmone
suffix. A GST is obtained by extending each sequenogith a delimiter $ ¢ A and constructing
a suffix tree from the concatenatian= x1$;...x%.
For each GST node we denote bychildreriv] the set of child

N nodes, bylengtljv] the number of symbols on the incoming edge, by
depthiv] the total number of symbols on the path from the root node to
v and byphiv,i] the number of suffixes of; passing through node
/ ) As every subsequence gf is a prefix of some suffixphiv, i] reflects
L lengthfe] the occurrences (alternatively frequency or binary flag) for alksub

’ A guences terminating on the edgevtoAn example of a GST is given in
Figure 3. In the remaining part we focus on the case of two sequeraesy delimited by $ and
$,, computation of similarity measures over a set of sequences being a steigintf extension.

depth[v]

Algorithm.  Computation of similarity measures is carried out by traversing a GST in depth-fi
order (Rieck et al., 2007). An implementation in pseudo-code is given inrithgo 3. At each
nodeo the inner functiorm is computed usinghiv, 1] and phiv,2]. To account for different
words along an edge and to support various embedding languagesadtieritFLTER is employed,
which selects appropriate contributions similar to the weighting introduced bywedisathan and
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Figure 3: Generalized suffix tree far= abbad, andy = baaaal$,. The numbers in brackets at
each inner node correspond t@hiv, 1] andphiv, 2]. Edges are shown with associated
subsequences instead of indices.

Smola (2004). At a node the function take¢engthv] and deptfjv] of v as arguments to determine
how much the node and its incoming edge contribute to the similarity measureafopéx for the
embedding language &fgrams only nodes up to a path depttkafeed to be considered.

Algorithm 3 GST-based sequence comparison
1: function COMPARE(X,Y : A*): R
2. T < CONCAT(X,Y)
S < SUFFIXTREE(T)
return TRAVERSE(roof9))
function TRAVERSH_o : Node) :R
S«e
for ¢ « childrerjv] do
S < S@® TRAVERSK(C) > Depth-first traversal
n « FILTER(lengtHv], deptho]) > Filter words on edge to
10: S « s@m(phiv, 1], phiv, 2]) ®n
11: return s

Algorithm 4 shows a filter function fok-grams. The filter returns O for all edges that do not
correspond to &-gram, either because they are too shallow or too deep in the GST, antbrtifir
ak-gram terminates on the edge to a noede

Algorithm 4 Filter function fork-grams,L = AX
function FILTER(v : Node) :N
if depthjv] > k and deptHo] — lengthv] < k then
return 1
return O
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Another example of a filter is given in Algorithm 5. The filter implements the embeddin
languagel = A*. The incoming edge to a nodecontributes to a similarity measure gngtho],
because exactliengtifv] contiguous subsequences terminate on the edge to

Algorithm 5 Filter function for all contiguous subsequenckss A*
function FILTER(v : Node) :N
return lengtto]

The bag-of-words model can be implemented either by encoding eactawardymbol of4 or
by augmenting nodes to indicate the presence of delimiter symbols on edgierBefinitions of
weighting schemes for string kernels, which are suitable for Algorithme3giaen by Vishwanathan
and Smola (2004).

Run-time. Suffix trees are well-known for their ability to enhance run-time perforraaristring
algorithms (Gusfield, 1997). The advantage exploited herein is that & $tgé comprises a
guadratic amount of information, namely all suffixes, in a linear representarhus, a GST en-
ables linear-time computation of similarity measures, even if a sequecaetainsO (|x|%) words
and the embedding language corresponds to.4*.

There are well-known algorithms for linear-time construction of suffix t(eeg, Weiner, 1973;
McCreight, 1976; Ukkonen, 1995), so that a GST for two sequexeesly can be constructed in
O(|x] + |y]) using the concatenatian= x$;y$, . As a GST contains at mos{Z nodes, the worst-
case run-time of any traversal @(|z]) = O(|x| +|y|). Consequently, computation of similarity
measures between sequences using a GST can be realized in time linearagubece lengths
independent of the complexity &f.

Implementation notes. In practice the GST algorithm may suffer from high memory consump-
tion, due to storage of child nodes and suffix links. To alleviate this problemitarnative data
structure with similar propertiessuffix arrays—was proposed by Manber and Myers (1993). A
suffix array is an integer array enumerating the suffixes of a sequendexicographical order. It
can be constructed in linear run-time, however, algorithms with super-lrneaiime are surpris-
ingly faster on real-world data (see Manzini and Ferragina, 2004jddalto and Puglisi, 2007).

Abouelhoda et al. (2004) propose a generic procedure for replaciffix trees with enhanced
suffix array, for example, as performed for the string kernel computatideo and Vishwanathan
(2006). This procedure involves several auxiliary data structuresdintenance of child nodes and
suffix links. In our implementation we follow a different approach basetherwork of Kasai et al.
(2001a) and Kasai et al. (2001b). Using a suffix array and ary afréongest-common prefixes
(LCP) for suffixes, we replace the traversal of the GST by looping ageneralized suffix array in
linear time.

Application of suffix arrays reduces memory requirements by a factor ébdut 11z| bytes
are required for the modified GST algorithm: 8 bytes for a suffix and ieveusfix array, 2 bytes
for sequence indices and on average 1 byte for an LCP array. Inastuop, a suffix tree usu-
ally requires over 4f2| bytes (Abouelhoda et al., 2004) and the enhanced suffix array o&afieo
Vishwanathan (2006) about [ bytes.
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5. Experiments and Applications

In order to evaluate the run-time performance of the proposed compaigamithms in practice and
to investigate the effect of different similarity measures on sequential watapnducted experi-
ments on real world sequences. We chose nine data sets from the dofmaimisformatics, text
processing and computer security. Details about each data set, corgainezhces and references
are given in Table 5.

Name \ Sequence type # |A| x|, Reference

Bioinformatics

ARTS DNA sequences 46794 4 2400 Sonnenburg et al. (2006)
C.Elegans| DNA sequences 10025 4 10000 Wormbase WS120
SPROT Protein sequences 150807 23 467 O’Donovan et al. (2002)
Text processing

Reuters | News articles 19042 92 839 Lewis (1997)

Heise News articles 30146 96  1800www. hei se. de

RFC Text documents 4589 106 49954wwv.rfc-editor.org
Computer security

HIDS System call traces 25979 83 156 Lippmann et al. (2000)
NIDS Connection payloads 21330 116 1274 Lippmann et al. (2000)
Spam Emails bodies 33702 176 1539 Metsis et al. (2006)

Table 5: Data sets of sequences. The number of sequences in e@matiesatted by #, the alphabet
size by|.A| and the average sequence lengthptly.

5.1 Run-time Experiments

The linear-time algorithms presented in Section 4 build on data structures e&siicg complexity
and capability—sorted arrays are simple but limited in capabilities, tries are markwed, yet
they do not cover all embedding languages and generalized suffixaireeslatively complex and
support the full range of embedding languages. In practice, howigvierthe absolute and not
asymptotic run-time that matters. Since the absolute run-time is affected by ltidkdstant factors,
depending on design and implementation of an algorithm, it can only be evakigiedmentally.

Therefore each algorithm was implemented using enhancements coveredléméengation
notes. In particular, for Algorithm 1 we incorporated 64-bit variablesetdize a sorted 64-bit ar-
ray, for Algorithm 2 we implemented a compact trie representation and forriéhgo 3 we used
generalized suffix arrays in favor of suffix trees. For each of thégarithms we conducted experi-
ments using different embedding languages to assess the run-time on teetdafi@en in Table 5.

We applied the following experimental procedure and averaged run-time 1dv individual
runs: 500 sequences are randomly drawn from a data set andBB@0matrix is computed for the
Manhattan distance using a chosen embedding language. The run-timenatthecomputation is
measured and reported in pairwise comparisons per second. Notey¢hiat the symmetry of the
Manhattan distance only? +n)/2 comparisons need to be performed fomaxan matrix.
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Figure 4: Run-time of sequences comparison over vikegdams for different algorithms. The x-
axis gives the word-gram lengths. The y-axis shows the number of comparison opera-
tions per second in log-scale.

Embedding language: bag-of-words. As a first embedding language, we consider the bag-of-
words model. Since natural words can be defined only for textual d&tdimit the focus of this
experiment to text data sets in Table 5. In particular, we use the embeddungate ofword
k-grams—covering the classic “bag of words” as word 1-grams—by using anahkphof words
instead of characters. Each symbol of the alphabet is stored in 32 bitsatsap to 3? different
words can be represented. Experiments are conducted for valkearding from 1 to 8.

Figure 4 shows the run-time performance of the implemented algorithms asteafuatk on
the Reuters, Heise and RFC data sets. The sorted array approackamglyitbutperforms the other
algorithms on all data sets, yet it can only be appliedkfer2, as it is limited to 64 bits. For small
values ofk suffix arrays require more time for each comparison compared to comjgs;tvitile
for k > 5 their performance is similar to compact tries. This difference is explaingdeogumber
of uniquek-gramsvy in each sequence For small values ok often holdsv, < |X|, so that a trie
comparison require® (k(vx 4+ vy)) time in contrast taO(|x| 4 |y|) for a suffix array. The worse
run-time performance on the RFC data set is due to longer sequences.

Embedding language: k-grams. For this experiment we focus on the embedding languade of
grams, which is not limited to a particular type of sequences, so that expésimere conducted for
all data sets in Table 5. In contrast to the previous sditgrams are associated with the original
alphabet of each data set: DNA bases and proteins for bioinformatiasaathrs for texts, and
system calls and bytes for computer security. For each data set the F#tlievaried from 1 to 19.

The run-time as a function & for each data set and algorithm is given in Figure 5. The sorted
array approach again yields the best performance on all data setsoworthe limitation of sorted
arrays to 64 bits does not effect all data sets, so that for DNR-gthm lengths can be computed.
The suffix array slightly outperforms the trie comparison for larger valuk, @s its worst-case
run-time is independent of the lengthlofgrams. Absolute performance in terms of the number of
comparisons per second differs among data sets due to differengyasguence lengths. For data
sets with short sequences (e.g., HIDS, ARTS) performance rates Gp ¢orhparisons per second
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Figure 5: Run-time of sequences comparison d#grams for different algorithms. The x-axis

gives thek-gram lengths. The y-axis shows the number of comparison operations pe

second in log-scale.
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are attainable, while for data sets with longer sequences (e.g., Spam, & Ty up to 19— 10*
comparisons per second are achievable at best.

5.2 Applications

We now demonstrate that the ability of our approach to compute diverse simitag@gures is
beneficial in real applications, especially in unsupervised learningagosn Our experiments are
performed for: (a) categorization of news articles, (b) intrusion deteatioetwork traffic (c) tran-
scription start site recognition in DNA sequences.

Unsupervised text categorization. For this experiment news articles from the topics “Coffee”,
“Interest”, “Sugar” and “Trade” in the Reuters data set are selectée. learning task is to cate-
gorize these articles using clustering, without any prior knowledge ofdalde preprocessing we
remove all stop words and words that occur in single articles only. We theipate dissimilar-
ity matrices for the Euclidean, Manhattan and Jensen-Shannon distasicgshe bag-of-words
embedding language as discussed in Section 3. The embedded articleslyrasisigned to four
clusters using complete linkage clustering (see Duda et al., 2001).

Figure 6(a) shows projections of the embedded articles obtained frons#imiarity matrices
using multidimensional scaling (see Duda et al., 2001). Although projectierisrated in describ-
ing high-dimensional data, they visualize structure and, thus, help to iatertoistering results.
For example, the projection of the Euclidean distances in Figure 6(a) naolifcdiffers in shape
compared to the Manhattan and Jensen-Shannon distances.

The cluster assignments are presented in Figure 6(b) and the distributmpiofabels among
clusters is given in Figure 6(c). For the Euclidean distance the clustaitsgtd unveil features
discriminative for article topics, as the majority of articles is assigned to a sihgtec In compar-
ison, the Manhattan and Jensen-Shannon distance allow categorizatiwntopics “Coffee” and
“Sugar”, due to observed high frequencies of respective wordditgies. However, the Manhattan
distance does no allow discrimination of the other two topics, as both are mixetgamo clus-
ters. The Jensen-Shannon distance enables better separation of tipios. The topics “Coffee”
and “Sugar” are almost perfectly assigned to clusters and the topicse$titeand “Trade” each
constitute the majority in a respective cluster.

Network intrusion detection. Network intrusion detection aims to automatically identify hacker
attacks in network traffic. As labels for such data are hard to obtain irtipgaainsupervised
learning has gained attention in intrusion detection research. The NIDSetatsed for the run-
time experiments (cf. Table 5) is known to contain major artifacts (see McH@)Q). In order
to provide a fair investigation of the impact of various similarity measures orctileteof attacks,
we generated a smaller private data set. Normal traffic was recordedtfi® members of our
laboratory by providing a virtual network. Additionally attacks were injedig security expert.

For this experiment we pursue an unsupervised learning approactwarkéntrusion detection
(Rieck and Laskov, 2007). The incoming byte sequences of netwankextions are embedded
using the language of 5-grams, and Zeta, an unsupervised anomaliasfeteethod based ok-
nearest neighbors, is applied over the following similarity measures: tHelEac, Manhattan and
Jensen-Shannon distance and the second Kulczynski coeffigenséstion 3.2).

ROC curves for the detection of attacks in the network protocols HTTP, &htPSMTP are
shown in Figure 7. Application of the Jensen-Shannon distance anddsEcdczynski coefficient
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Figure 6: Clustering of Reuters articles using different similarity measbees ¢f-words).

yield the highest detection accuracy. Over 78% of all attacks are identiftacho false-positives
in an unsupervised setup. In comparison, the Euclidean and Manhattamceigjive significantly
lower detection rates on the FTP and SMTP protocols. The poor detectimnpance of the latter
two similarity measures emphasizes that choosing a discriminative similarity méssuueial for
achieving high accuracy in a particular application.

Transcription start site recognition. The last application focuses on recognition of transcription
start sites (TSS), which mark the beginning of genes in DNA. We considekRT S data set, which
comprises human DNA sequences that either cover the TSS of proteirgapeties or have been
extracted randomly from the interior of genes. Following the approaclmhé&burg et al. (2006)
these sequences are embedded using the language of 6-grams apdravagior machine (SVM)
and a baggeé#t-nearest neighbor classifier are trained and evaluated on the diffeagitions of
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Figure 7: ROC curves for unsupervised anomaly detection on 5-granetwbrk connections and
attacks recorded at our laboratory.
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Figure 8: ROC curves for supervised and unsupervised recognfticangcription start sites (TSS)
on 6-grams of DNA sequences (ARTS data set).

the data set. Each method is evaluated for the Euclidean distance, the Marthsiimce and
the second Kulczynski coefficient. As only 10% of the sequences indtee skt correspond to
transcription start sites, we additionally apply the unsupervised outliertietanethod Gamma
(Harmeling et al., 2006), which is similar to the method employed in the previowesiexgnt.

Figure 8 shows the performance achieved by the baggeehrest neighbor classifier and the
unsupervised learning methédThe accuracy in both setups strongly depends on the chosen sim-
ilarity measures. The metric distances yield better accuracy in the supeseisgd The second
Kulczynski coefficient and also the Manhattan distance perform signific better than the Eu-
clidean distance in unsupervised application. In the absence of labedstieasures express better
discriminative properties for TSS recognition, that are difficult to actiessigh Euclidean dis-
tances. For the supervised application, the classification performance idlimitall similarity

2. Results for the SVM are similar to the bagdedearest neighbor classifier and have been omitted.
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measures, as only some discriminative features for TSS recognition eapseated irk-gram
models (cf. Sonnenburg et al., 2006).

6. Conclusions

The framework for comparison of sequences proposed in this artickidesomeans for efficient
computation of a large variety of similarity measures, including kernels, dissasmtd non-metric
similarity coefficients. The framework is based on embedding of sequéameesigh-dimensional
feature space using formal languages, suck-geams, contiguous subsequences, etc. Three im-
plementations of the proposed framework using different data strudtaresbeen discussed and
experimentally evaluated.

Although all three data structures that were considered—sorted atrigssand generalized
suffix trees—have asymptotically linear run-time, significant differencebenabsolute run-time
have been observed in our experiments. The constant factors ectedfby various design issues
illustrated by our remarks on implementation of the proposed algorithms. Iralemes have
observed a consistent trade-off between run-time efficiency and crityméembedding languages
a particular data structure can handle. Sorted arrays are the mosneffiata structure; however,
their applicability is limited tk-grams and bag-of-words models. On the other end of the spectrum
are generalized suffix trees (and their more space-efficient implementsiiog suffix arrays) that
can handle unrestricted embedding languages—at a cost of more conupéitgaiathms and lower
efficiency. The optimal data structure for computation of similarity measurasdépends on the
embedding language to be used in a particular application.

The proposed framework offers machine learning researcherspamtopity to use a large va-
riety of similarity measures for applications that involve sequential data. Adthan optimal sim-
ilarity measure—as it is well known and has been also observed in ouriegres—depends on
a particular application, the technical means for seamless incorporati@riofis similarity mea-
sures can be of great utility in practical applications of machine learninmedialy appealing is the
possibility for efficient computation of non-Euclidean distances over endmbdequences, which
extend applicable similarity measures for sequences beyond innereps@id kernel functions.

In general, the proposed framework demonstrates an important adeasftapstracting data
representation—in the form of pairwise relationships—from learning dkgos, which will hope-
fully motivate further investigation of learning algorithms using a generahfof such abstraction.
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