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Abstract

A method is introduced to learn and represent similarity with linear operators in kernel induced
Hilbert spaces. Transferring error bounds for vector valued large-margin classifiers to the setting of
Hilbert-Schmidt operators leads to dimension free bounds on a risk functional for linear representa-
tions and motivates a regularized objective functional. Minimization of this objective is effected by
a simple technique of stochastic gradient descent. The resulting representations are tested on trans-
fer problems in image processing, involving plane and spatial geometric invariants, handwritten
characters and face recognition.
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1. Introduction

Similarity seems fundamental to perception and reasoning. The precise meaning of the word ”simi-
larity” however is elusive and a corresponding Google search reveals a plethora of definitions rang-
ing from ”the property of being similar” to the analyses of Wittgenstein, Russel or Carnap. This
is not surprising: Pairs of triangles may or may not be similar, two poems may induce similar or
radically different moods in similar people, pairs of wines, bird-calls, weather patterns, approaches
to cognitive science, movies and definitions of similarity themselves may each be similar or not
similar or similar to a varying degree. It is the very universality of the concept which explains the
lack of a universal definition, beyond the structural feature that similarity is a property possessed by
pairs of objects and the vague feeling that it is somehow related to geometric proximity.

What cannot be defined may still be learned. Even if we cannot explain the meaning of a
concept, as long as it has observable manifestations we can hope to infer models to predict future
observations. These models will generally be domain-dependent and not in the form of definitions,
but rather vectors of synaptic efficacies, transformation coefficients or other constructions which
often defy verbalization, they are more akin to feeling than to rationality and they will be judged by
their predictive power rather than by logical clarity and comprehensibility.

This paper introduces a technique to learn and to represent similarity, an analysis of generaliza-
tion performance, an algorithmic realization and some experimental results.

1.1 A General Framework

Assumption 1: There is a measurable space X and a probability measure ρ on X 2×{−1,1}, the
pair oracle.
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The interpretation is as follows: X is the input space containing the objects in question. When-
ever we call the oracle it will return the triplet (x,x′,r) ∈ X 2×{−1,1} with probability ρ(x,x′,r).
If the oracle returns (x,x′,1) it asserts that x and x′ are similar, if it returns (x,x′,−1) it asserts that
x and x′ are dissimilar. The assumption that similarity is a binary property, which can only have
the values of true or false, is a simplification which can in principle be removed (see Section 4.1
below). Beyond this restriction arbitrary definitions of similarity can be substituted, we do not re-
quire ”obvious properties” such as ρ(x,x′,r) = ρ(x′,x,r) or ρ(x,x,−1) = 0. We will however use
an intuitive property of similarity, a kinship to closeness or geometric proximity, in the choice of
our hypothesis spaces below.

Assumption 2: X ⊂H, where H is a real separable finite- or infinite-dimensional Hilbert space,
and diam(X )≤ 1.

Either the inputs are already members of some Euclidean space (vectors of neural activations,
pixel vectors or vectors of feature-values), or we identify them with their images under some feature
map, which may be realized by some fixed pre-processor such as a fixed weight neural network or
by a positive definite kernel on X . In the more detailed description of the proposed algorithm and
experimental results we will be more explicit about these feature maps. The bound on the diameter
of the input space is a convenience for the statement of our theoretical results.

Assumption 3: There is a training sample

S =
((

x1,x
′
1,r1

)

, ...,
(

xm,x′m,rm
))

∈
(

X 2×{−1,1}
)m

,

generated in m independent, identical trials of ρ, that is, S∼ ρm.
The assumptions of independence and stationarity are crucial and very strong: The oracle is

without memory of our previous calls and not affected by the passage of time. It will not deliberately
help nor mislead the learner. The training sample contains all the information available to the learner
who wants to find a rule to predict the oracles behavior.

Definition 1: A pair hypothesis is a function f : X 2→{−1,0,1}. Its risk is

R( f ) = Pr
(x,x′,r)∼ρ

{

f
(

x,x′
)

6= r
}

.

The pair hypothesis attempts to predict the similarity value of a pair (x,x′) and its risk is its error
probability as measured by the pair oracle. We allowed the value 0 to account for the possibility
that f may refuse to make a decision. Any such refusal is counted as an error by the risk functional.

1.2 Risk Bounds and Regularized Objectives

So far we have only used the structural condition that similarity is a property possessed by pairs of
objects. In the choice of the hypothesis space we will follow the intuition that similarity is related
to closeness or geometrical proximity. We will consider hypotheses from the set

H =
{

fT :
(

x,x′
)

7→ sgn
(

1−
∥

∥T x−T x′
∥

∥

)

: T ∈ L0 (H)
}

,

where L0 (H) is the set of linear operators of finite rank on H. A transformation T ∈ L0 (H) thus
defines a hypothesis fT which regards a pair of inputs as similar if the distance between their re-
spective images under T is smaller than one, and as dissimilar if this distance is larger than one.
Fixing the threshold to one causes no loss of generality, because any other positive threshold could
be absorbed as a factor of the transformation.
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This choice of the hypothesis space combines the geometric connotation of similarity with the
simplicity of linear representations. The transformations which parametrize our hypothesis space
are in some ways more interesting and useful than the hypotheses themselves. A choice of T ∈
L0 (H) also implies a choice of the Mahalanobis distance d2 (x,x′) = 〈T ∗T (x− x′) ,x− x′〉 and the
positive semidefinite kernel κ(x,x′) = 〈T ∗T x,x′〉.

The risk of the hypothesis fT induces a risk functional on L0 (H)

R(T ) = R( fT ) = Pr
(x,x′,r)∼ρ

{

r
(

1−
∥

∥T x−T x′
∥

∥

2
)

≤ 0
}

.

Since we can write ‖T x−T x′‖2 = 〈T ∗T (x− x′) ,x− x′〉= 〈T ∗T,Qx−x′〉2, where Qx−x′ and 〈., .〉2 are
respectively the outer product operator and the Hilbert-Schmidt inner product (see Section 2.1), the
last expression is reminiscent of the risk of a classifier defined by a linear function thresholded at
1. This provides the intuition underlying the proposed technique: We will look for a linear large-
margin classifier whose weight vector is the positive operator T ∗T .

Let ψ : R→R, ψ≥ 1(−∞,0] with Lipschitz constant L. Given our training sample S = ((x1,x′1,r1),
...,(xm,x′m,rm)) we define the empirical risk estimate

R̂ψ (T,S) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

. (1)

We then have the following theorem, a proof of which will be given in Section 3.

Theorem 1 ∀δ > 0, with probability greater 1−δ in a sample S∼ ρm

∀T ∈ L0 (H) with ‖T ∗T‖2 ≥ 1

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2 +

√

(1/2) ln(2‖T ∗T‖2 /δ)√
m

.

where ‖A‖2 = Tr (A∗A)1/2 is the Hilbert-Schmidt- or Frobenius- norm of A.

The theorem gives a high-probability-bound on the true risk valid for all transformations in
terms of the empirical risk estimate and a complexity term. Because of the uniform nature of the
bound, a principled approach could search for T ∈ L0 (H) to minimize the right side of the bound.
This is just what we propose to do, with two practical modifications:

• The term
√

(1/2) ln(2‖T ∗T‖2 /δ) is neglected, the one linear in ‖T ∗T‖2 being regarded as
the dominant contribution.

• The factor 4L is replaced by an adjustable regularization parameter λ > 0. This allows to
compensate the fact that the difficult estimates in such generalization bounds overestimate
the estimation error.

As a Lipschitz function ψ we use hγ, the hinge-loss with margin γ, which has the value 1− t/γ
for t < γ, and the value 0 otherwise. This leads to the regularized objective function

Λhγ,λ (T ) :=
1
m

m

∑
i=1

hγ

(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

+
λ‖T ∗T‖2√

m
,

which is convex in T ∗T . Details related to the minimization of Λγ,λ are given in Section 3.3. It
follows from the nature of the objective function that the minimizing operator will have rank ≤ m.
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1.3 The Multi-category Problem and Learning-to-learn

In many classification problems occurring in a complex environment a learner cannot hope to obtain
examples for all potential categories. An example is furnished by the recognition of human faces,
since nobody can be expected to ever see all the faces which possibly need to be distinguished in
the future and the total number of categories is itself uncertain.

Human learning appears to cope with these empirically deficient problems: In addition to the
recognition of the already known categories human learners develop meta-techniques to improve
the learning and recognition of future categories. As a child learns to recognize parents, family,
friends, neighbors, classmates and teachers it learns to memorize, recognize and distinguish faces
in general, an ability which leads to a reliable recall often already on the basis of a single training
image. The earlier learning process leading to an improvement of future learning performance is
often referred to as learning-to-learn or meta-learning.

The practical utility of such mechanisms for machine-learning is obvious, and theoretically well
founded models of learning-to-learn may also be interesting from the point of view of cognitive
science or psychology (see Robins, 1998; Thrun, 1998; Baxter, 1998 for surveys, theoretical and
experimental contributions).

Here we exploit the fact that partial empirical knowledge of some of the categories of a domain
implies partial empirical knowledge of an underlying principle of similarity. By a very crude oper-
ational definition similarity is a property of two phenomena which makes them belong to the same
category of some domain, and dissimilarity is the negation of similarity. Following this idea we can
define a pair oracle which regards pairs of inputs as similar if and only if they come with the same
label, use this oracle to generate a large number of examples and train our algorithm to obtain a
similarity rule, together with a representing operator T .

Subsequently, once a novel category is represented by a first example, any new phenomenon can
be classified as belonging to the given category if and only if it is similar to the representing example.
Let us call this decision rule the elementary verifier generated from the example. It follows from
our analysis, that we can be confident that a single randomly chosen example for a future (possibly
previously unseen) category will give an elementary verifier with expected error bounded by the
bound in Theorem 1. These constructions and some related questions will be discussed in Section
5.

A related concept is transfer, where a representation trained from the data-set of a training-
task is applied to facilitate the learning of another, presumably related, target-task. Corresponding
experiments were carried out on a number of problems in image recognition, such as the recognition
of handwritten characters, rotation and scale invariant character recognition and the recognition of
human faces. In all these cases the representations generated from the training-tasks yielded a
considerable performance improvement for single-sample nearest neighbor classifiers on the target-
tasks.

This paper is organized as follows: Section 2 gives notation and theoretical background, Sec-
tion 3 introduces operator valued large-margin classifiers and a corresponding algorithm to train
representations, Section 4 derives an alternative algorithm related to PCA, Section 5 discusses the
application of our method to meta-learning and transfer, Section 6 describes experimental results
and Section 7 gives a brief review of some related approaches in the literature.

A precursor of this paper appeared in the NIPS’06 workshop on ”Learning to Compare Exam-
ples” (Maurer, 2006c).
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2. Notation, Definitions and Preliminary Results

In this section we introduce some notation and necessary theoretical background. For the readers
convenience there is also an appendix with a tabular summary of most of the notation used in this
paper.

2.1 Hilbert Space and Hilbert Schmidt Operators

The letter H denotes a finite- or infinite-dimensional real, separable Hilbert space, with inner product
〈., .〉 and norm ‖.‖. Inner products and norms on other spaces will be identified with subscripts. If
(

S ,‖.‖S
)

is a generic normed space and E ⊆ S , we will use the notation

‖E‖S = sup
x∈E
‖x‖S .

If H ′ is another Hilbert space, with inner product 〈., .〉′ and norm ‖.‖′, then L∞ (H,H ′) denotes the
Banach space of linear transformations T : H→ H ′ such that

‖T‖∞ = sup
x∈H,‖x‖≤1

‖T x‖′ < ∞.

For T ∈L∞ (H,H ′) , Ker (T ) is the subspace {x : T x = 0} and T ∗ is the unique member of L∞ (H ′,H)
satisfying 〈T x,y〉′= 〈x,T ∗y〉, ∀x∈H,y∈H ′. If S⊂H then S⊥ is the subspace {x : 〈x,y〉= 0,∀y ∈ S}.
A transformation U ∈ L∞ (H,H ′) is called a partial isometry if ‖Ux‖= ‖x‖, ∀x ∈ Ker (U)⊥.

We write L∞ (H) = L∞ (H,H). An operator T ∈ L∞ (H) is called symmetric if T = T ∗ and
positive if it is symmetric and 〈T x,x〉 ≥ 0, ∀x ∈H. We use L∗∞ (H) and L+

∞ (H) to denote the sets of
symmetric and positive members of L∞ (H) respectively. For every T ∈L+

∞ (H) there is some unique
T 1/2 ∈ L+

∞ (H) with T = T 1/2T 1/2. Evidently for every T ∈ L∞ (H,H ′) we have T ∗T ∈ L+
∞ (H)

and we denote with |T | the positive operator (T ∗T )1/2. For every T ∈ L∞ (H,H ′) there is a polar
decomposition T = U |T | for a unique partial isometry U ∈ L∞ (H,H ′).

For V ⊆L∞ (H) we use the notation V ∗V =
{

T ∗T : T ∈ V
}

. The set of finite rank operators on
H is denoted by L0 (H). Any orthonormal basis establishes a one-to-one correspondence between
L0 (H) and

S∞
n=1 {T : H→ R

n : T linear}.
With L2 (H) we denote the real vector space of operators T ∈L∞ (H) satisfying ∑∞

i=1 ‖Tei‖2≤∞
for every orthonormal basis (ei)

∞
i=1 of H. The members of L2 (H) are compact and called Hilbert

Schmidt operators. For S,T ∈ L2 (H) and an orthonormal basis (ei) the series ∑i 〈Sei,Tei〉 is abso-
lutely summable and independent of the chosen basis. The number

〈S,T 〉2 = ∑
i

〈Sei,Tei〉

defines an inner product on L2 (H), making it a Hilbert space. We denote the corresponding norm
with ‖.‖2 (see Reed and Simon, 1980 for background on functional analysis). L ∗2 (H) and L+

2 (H)
denote the sets of symmetric and positive members of L2 (H) respectively. For every member of
L∗2 (H) there is a complete orthonormal basis of eigenvectors, and for T ∈ L ∗2 (H) the norm ‖T‖2 is
just the `2-norm of its sequence of eigenvalues. In the finite dimensional case the norm ‖T‖2 is the
Frobenius norm of the matrix of T in an orthonormal representation.

The set of d-dimensional, orthogonal projections in H is denoted with Pd . It is easy to verify
that Pd ⊂ L+

2 (H) and if P ∈ Pd then ‖P‖2 =
√

d and P2 = P.
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Definition 2 For x ∈ H define an operator Qx on H by Qxz = 〈z,x〉x, ∀z ∈ H.

The map x→ Qx is an embedding of H in L+
2 (H) which is homogeneous of degree two (i.e.,

Qλx = λ2Qx, λ ∈ R, x ∈ H). In matrix terminology Qx is the ’outer product’ of x with itself. The
following simple lemma is crucial for our proofs (see also Maurer, 2006b).

Lemma 3 Let x,y ∈ H and T ∈ L2 (H). Then
(i) Qx ∈ L+

2 (H) and ‖Qx‖2 = ‖x‖2 .

(ii) 〈Qx,Qy〉2 = 〈x,y〉2 .

(iii) 〈T,Qx〉2 = 〈T x,x〉.
(iv) 〈T ∗T,Qx〉2 = ‖T x‖2 .

(v) For α ∈ R, Qαx = α2Qx.

(vi) For P ∈ Pd we have ‖PT P‖2 ≤ ‖T‖2.

Proof For x = 0 all assertions are trivial. Otherwise extend x/‖x‖ to an orthonormal basis of H and
use this basis in the definition of 〈T,Qx〉2 to obtain 〈T,Qx〉2 = 〈T x/‖x‖ ,Qxx/‖x‖〉 =
‖x‖−2 〈T x,〈x,x〉x〉 = 〈T x,x〉, which is (iii). (ii),(iv) and the second half of (i) follow immedi-
ately, the first part of (i) then follows from (iii) with T = Qx. (v) is trivial. To prove (vi) com-
plete a basis {ei}i=1,..,d for the range of P to a basis ei for H to get ‖PT P‖2

2 = ∑i j

〈

PT Pei,e j
〉2

=

∑i, j≤d

〈

Tei,e j
〉2 ≤ ∑i j

〈

Tei,e j
〉2

= ‖T‖2
2.

2.2 Rademacher Complexities

To derive the uniform laws of large numbers we need for Theorem 1 we will use Rademacher
averages as complexity measures for function classes:

Definition 4 Let F be a real-valued function class on a space X . Let {σi : i ∈ {1, ...,m}} be
a collection of independent random variables, distributed uniformly in {−1,1}. The empirical
Rademacher complexity of F is the function R̂m (F ) defined on X m by

R̂m (F )(x) = Eσ

[

sup
f∈F

2
m

m

∑
i=1

σi f (xi)

]

.

If X = (Xi)
m
i=1 is a vector of X -valued independent random variables then the expected Rademacher

complexity of F is

Rm (F ) = EX

[

R̂m (F )(X)
]

.

Theorem 5 Let F be a [0,1]-valued function class on a space X , and X = (Xi)
m
i=1 a vector of

X -valued independent, identically distributed random variables. Fix δ > 0.
With probability greater than 1−δ we have for all f ∈ F

E [ f (X1)]≤
1
m

m

∑
i=1

f (Xi)+Rm (F )+

√

ln(1/δ)

2m
.
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We also have with probability greater than 1−δ for all f ∈ F , that

E [ f (X1)]≤
1
m

m

∑
i=1

f (Xi)+ R̂m (F )(X)+

√

9ln(2/δ)

2m
.

For a proof see Bartlett and Mendelson (2002) or Maurer (2006b). We will also use the following
result from Bartlett et al. (2005):

Theorem 6 Let F be a class of real-valued functions on a space X and suppose that ψ : R→ R

has Lipschitz constant L. Let ψ◦F ={ψ◦ f : f ∈ F }. Then R̂m (ψ◦F )≤ L R̂m (F ).

2.3 Bounds for Vector-valued Processes

In this section we review some bounds for vector valued processes and linear classifiers. The bounds
are not at all original (they are taken from Koltchinskii and Panchenko, 2002; Bartlett and Mendel-
son, 2002; Shawe-Taylor and Christianini, 2003), nor are they necessarily the tightest possible,
because they are uniformly valid on the chosen function classes (compare with Bartlett et al., 2005).
Because the proofs are easy we provide them for the readers convenience.

Using Lemma 3 all these results can be easily transferred from the Hilbert space H to the Hilbert
space L2 (H). This simple step, together the geometrical interpretation implied by Lemma 3 (iv), is
the principal theoretical contribution of this paper.

Lemma 7 Let V ⊂ H and F ={x ∈ H 7→ 〈x,v〉 : v ∈V}. Then for any x = (x1, ...,xm) ∈ Hm

R̂m (F )(x)≤ 2‖V‖
m

(

m

∑
i=1

‖xi‖2

)1/2

.

Proof From Schwartz’ and Jensen’s inequality and linearity we obtain

R̂m (F )(x) = Eσ

[

sup
v∈V

2
m

m

∑
i=1

σi 〈xi,v〉
]

= Eσ

[

sup
v∈V

2
m

〈

m

∑
i=1

σixi,v

〉]

≤ 2‖V‖
m

Eσ

[∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

]

≤ 2‖V‖
m



Eσ





∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

2








1/2

,

but by the properties of the σi we have Eσ [σiσ j] = δi j, so we get

Eσ





∥

∥

∥

∥

∥

m

∑
i=1

σixi

∥

∥

∥

∥

∥

2


=
m

∑
i=1

m

∑
j=1

Eσ [σiσ j]
〈

xi,x j
〉

=
m

∑
i=1

‖xi‖2 .
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Theorem 8 Let (X ,r) be a random variable with values in H×{−1,1} and let (X,r) = ((X1,r1) ,
...,(Xm,rm)) be a vector of m iid copies of (X ,r). Let ψ : R→R, ψ≥ 1(−∞,0] with Lipschitz constant
L and V ⊂ H. For v ∈V denote err(v) = Pr{sign(1−〈X ,v〉) 6= r} and

err̂ψ (v,(X,r)) =
1
m

m

∑
i=1

ψ(ri (1−〈Xi,v〉)) .

Let δ > 0. Then with probability greater than 1−δ we have for all v ∈V

err(v)≤ err̂ψ (v,(X,r))+
2L ‖V‖

m

(

m

∑
i=1

‖Xi‖2

)1/2

+

√

9ln(2/δ)

2m
.

If ‖X‖ ≤ 1 a.s. then with probability greater than 1−δ we have for all v ∈V that

err(v)≤ err̂ψ (v,(X,r))+
2L ‖V‖√

m
+

√

ln(1/δ)

2m
.

Proof If we can prove the Theorem for ψ : R→ [0,1], then it will follow for general ψ, because it
will also be true for min{ψ,1} which has Lipschitz constant bounded by L and err̂min{ψ,1} (v,(X,r))
≤err̂ψ (v,(X,r)). We can thus assume ψ : R → [0,1] and since ψ ≥ 1(−∞,0] we have R(v) =
E
[

1(−∞,0] (r (1−〈X ,v〉))
]

≤ E [ψ(r (1−〈X ,v〉))]. In view of Theorem 5 it therefore suffices to
prove that

R̂m (ψ◦F )(X)≤ 2L ‖V‖
m

(

m

∑
i=1

‖Xi‖2

)1/2

, (2)

where F is the function class

F ={(x,r) ∈ H×{−1,1} 7→ r (1−〈x,v〉) : v ∈V} .

By Theorem 6 we have R̂m (ψ◦F )≤ L R̂m (F ) and one verifies easily that R̂m (F ) = R̂m(x 7→ 〈x,v〉 :
v ∈V ), so (2) follows from Lemma 7.

To derive our bounds for hyperbolic PCA in Section 4 we need the following lemma. A similar
statement can be found in Shawe-Taylor and Christianini (2003).

Lemma 9 Let V,W ⊂ H be and suppose that X1, ...,Xm are independent, identically distributed,
zero-mean random variables with values in W. Then for ε and m such that ‖W‖‖V‖ <

√
mε we

have

Pr

{

sup
v∈V

∣

∣

∣

∣

∣

1
m

m

∑
i=1

〈v,Xi〉
∣

∣

∣

∣

∣

> ε

}

≤ exp

(

−(
√

mε−‖V‖‖W‖)2

2 |〈V,W 〉|2

)

.

Proof Consider the average X̄ = (1/m)∑m
1 Xi. With Jensen’s inequality and using independence we

obtain
(

E
[∥

∥X̄
∥

∥

])2 ≤ E

[

∥

∥X̄
∥

∥

2
]

=
1

m2

m

∑
i=1

E

[

‖Xi‖2
]

≤ ‖W‖2 /m.
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Now let f : W m→ R be defined by f (x) = supv∈V |(1/m)∑m
1 〈v,xi〉|. We have to bound the proba-

bility that f > ε. By Schwartz’ inequality and the above bound we have

E [ f (X)] = E

[

sup
v∈V

∣

∣

〈

v, X̄
〉∣

∣

]

≤ ‖V‖E
[∥

∥X̄
∥

∥

]

≤
(

1/
√

m
)

‖V‖‖W‖ . (3)

Let x∈W m be arbitrary and x′ ∈W m be obtained by modifying a coordinate xk of x to be an arbitrary
x′k ∈W . Then

∣

∣ f (x)− f
(

x′
)∣

∣≤ 1
m

sup
v∈V

∣

∣〈v,xk〉−
〈

v,x′k
〉∣

∣≤ 2
m
|〈V,W 〉| .

By (3) and the bounded-difference inequality (see McDiarmid, 1998) we obtain for t > 0

Pr

{

f (X) >
‖V‖‖W‖√

m
+ t

}

≤ Pr{ f (X)−E [ f (X)] > t} ≤ exp

(

−mt2

2 |〈V,W 〉|2

)

.

The conclusion follows from setting t = ε− (1/
√

m)‖V‖‖W‖

We will also use the following model-selection lemma taken from (Anthony and Bartlett, 1999,
Lemma 15.5):

Lemma 10 Suppose

{F (α1,α2,δ) : 0 < α1,α2,δ≤ 1}

is a set of events such that:
(i) For all 0 < α≤ 1 and 0 < δ≤ 1,

Pr{F (α,α,δ)} ≤ δ.

(ii) For all 0 < α1 ≤ α≤ α2 ≤ 1and 0 < δ1 ≤ δ≤ 1,

F (α1,α2,δ1)⊆ F (α,α,δ) .

Then for 0 < a,δ < 1,

Pr





[

α∈(0,1]

F (αa,α,δα(1−a))



≤ δ.

3. Operator Valued Large Margin Classifiers

In this section we derive our algorithm. We give a proof of Theorem 1, then discuss the derivation
of an objective functional and finally some issues related to its minimization.
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3.1 Generalization Bounds

We first give a version of Theorem 1 for a fixed hypothesis space given by Hilbert-Schmidt operators
of uniformly bounded norm and then derive from it a regularized version applying to all Hilbert-
Schmidt operators.

Recall that the pair oracle is a probability measure ρ on X 2×{−1,1}, the set of labeled pairs
(sometimes also called equivalence constraints; Bar-Hillel et al., 2005), and that we assumed the
input space X to be embedded in the Hilbert space H such that diam(X ) ≤ 1. We will apply
Theorem 8 to the Hilbert space L2 (H) instead of H and replace the random variable (X ,r) of
Theorem 8 by the random variable (Qx−x′ ,r) with values in L2 (H)×{−1,1}, where (x,x′,r) are
distributed according to the pair oracle ρ. The training sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm))

corresponds to m independent realizations
((

Qx1−x′1
,r1

)

, ...,
(

Qxm−x′m ,rm
)

)

of this random variable.

Since diam(X )≤ 1 we have ‖Qx−x′‖2 = ‖x− x′‖2 ≤ 1 a.s. by virtue of Lemma 3 (i).
Recall the definition of the risk associated with a transformation T . Using Lemma 3 (iv) we

have

R(T ) = Pr
{

r
(

1−
∥

∥T x−T x′
∥

∥

2
)

≤ 0
}

= Pr{r (1−〈Qx−x′ ,T
∗T 〉2)≤ 0}

= err(T ∗T ) .

Here err(T ∗T ) (see Theorem 8) is the expected error of the linear classifier defined by the vector
T ∗T in L2 (H) thresholded at the value 1 and applied to a random labeled data point (Qx−x′ ,r) ∈
L2 (H)×{−1,1}. Also note that the empirical estimator (1) can be rewritten

R̂ψ (T,S) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
〈

Qxi−x′i
,T ∗T

〉

2

))

.

With corresponding substitutions Theorem 8 becomes

Theorem 11 Let ψ : R→ R, ψ≥ 1(−∞,0] with Lipschitz constant L and V ⊂ L2 (H). Let δ > 0.
(i) With probability greater than 1−δ we have for all T ∈ L∞ (H) such that T ∗T ∈ V

R(T )≤ R̂ψ (T,S)+
2L
∥

∥V
∥

∥

2

m

(

m

∑
i=1

∥

∥Xi−X ′i
∥

∥

4

)1/2

+

√

9ln(2/δ)

2m
.

(ii) With probability greater than 1−δ we have for all T ∈ L∞ (H) such that T ∗T ∈ V

R(T )≤ R̂ψ (T,S)+
2L
∥

∥V
∥

∥

2√
m

+

√

ln(1/δ)

2m
.

Typically V would be a ball of some fixed radius, say c, about the origin in L2 (H), so that
∥

∥V
∥

∥

2 = c. Our application of the vector valued generalization Theorem 8 introduced a certain
looseness: Theorem 8 gives bounds on err(A) for all A ∈ V , while we only require the bounds for
those A ∈ V which are of the form A = T ∗T , that is we are only using the linear functionals in
V ∩L+

2 (H). This raises the question if we might not get much better bounds for V ∩L +
2 (H) than

for V . The following proposition shows that this will not work using Rademacher averages.
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Proposition 12 Let F and F + be the function classes on L2 (H) given by

F = {B ∈ L2 (H) 7→ 〈B,A〉2 : ‖A‖2 ≤ 1} ,
F + =

{

B ∈ L2 (H) 7→ 〈B,A〉2 : ‖A‖2 ≤ 1, A ∈ L+
2 (H)

}

.

Then R̂m (F +)≤ R̂m (F )≤ 4R̂m (F +) .

Proof The first inequality is obvious since F + ⊂ F (see Theorem 12 in Bartlett and Mendelson,
2002). Suppose ‖A‖2 ≤ 1. With A1 = (A+A∗)/2 and A2 = (A+A∗)/2 we can write A = A1 + A2

with Ai symmetric and ‖Ai‖2 ≤ 1. By symmetry of the Ai and the spectral theorem we can write
Ai = Ai1 − Ai2 with Ai j ∈ L+

2 (H) and
∥

∥Ai j
∥

∥

2 ≤ 1. So any f ∈ F can be written in the form
f = f11− f12 + f21− f22 with fi j ∈ F +, or F = F +−F + + F +−F +, whence the second in-
equality also follows from Theorem 12 in Bartlett and Mendelson (2002), or from an application of
the triangle inequality.

By stratification over balls in L2 (H) we arrive at a generalization bound valid for all bounded
operators. If specialized to L0 (H), the second conclusion below becomes Theorem 1 in the intro-
duction.

Theorem 13 Let ψ : R→ R, ψ≥ 1(−∞,0] with Lipschitz constant L and δ > 0.
1. With probability greater than 1−δ we have for all T ∈ L∞ (H)

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2

m

(

m

∑
i=1

∥

∥Xi−X ′i
∥

∥

4

)1/2

+

√

9ln(4‖T ∗T‖2 /δ)

2m
.

2. With probability greater than 1−δ we have for all T ∈ L∞ (H)

R(T )≤ R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
+

√

ln(2‖T ∗T‖2 /δ)

2m
.

Proof We will use Lemma 10. For α ∈ (0,1] let V (α) = {T ∈ L∞ (H) : ‖T ∗T‖2 ≤ 1/α} and
consider the events

F (α1,α2,δ) =
{

∃T ∈ V (α2) such that

R(T ) > R̂(T,S)+
2L

α1m

(

m

∑
i=1

∥

∥

∥QXi−X ′i

∥

∥

∥

2
)1/2

+

√

9ln(2/δ)

2m







.

By the first conclusion of Theorem 11 the events F (α1,α2,δ) satisfy hypothesis (i) of Lemma 10,
and it is easy to see that (ii) also holds. If we set a = 1/2 and replace α by 1/‖T ∗T‖2, then the
conclusion of Lemma 10 becomes the first conclusion above. The second conclusion is proved sim-
ilarly.
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3.2 The Objective Functional

Because of the complicated estimates involved, risk bounds such as Theorem 13 have a tendency to
be somewhat loose, so that a learning algorithm relying on naive minimization of the bounds may
end up with suboptimal hypotheses. On the other hand in the absence of other helpful information
such a bound provides a valuable guiding principle, as long as it is transformed to an objective
functional which can be minimized in practice and allows for a flexible parametrization of the slack
suspected in the bound.

Departing from the simpler of the two conclusions of Theorem 13, a naive approach would look
for some T ∈ L0 (H) to minimize the objective functional

R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
+

√

ln(2‖T ∗T‖2 /δ)

2m
.

Our first modification is to discard the last term on the grounds that it will be dominated by second
one. This is only justified if we exclude extremely small values of the confidence parameter δ
and work with operators of reasonably large norm, so that ‖T ∗T‖2 is substantially greater than
√

ln‖T ∗T‖2 /δ. The new objective functional reads

R̂ψ (T,S)+
4L ‖T ∗T‖2√

m
.

Our second modification is to replace the factor 4L in the second term by an adjustable regularization
parameter λ > 0. On the one hand this just absorbs the Lipschitz constant L of the function ψ (which
is yet to be fixed), on the other hand it expresses the belief that ‖T ∗T‖2 /

√
m gives the right order

of the true estimation error. We will stick to this belief, even though it can be successfully argued
that it is naive, because the estimation error may decay much more rapidly than m−1/2 as shown by
Bartlett et al. (2005) and several other works. There were in fact experimental indications, that in
our case the decay is not much better than m−1/2, because the same value of λ appeared to work
very well for different applications with rather different values of m (see Section 6.1).

The objective functional now depends on ψ and λ and has the form

Λψ,λ (T,S) = R̂ψ (T,S)+
λ‖T ∗T‖2√

m
. (4)

We still have to fix the Lipschitz function ψ, satisfying ψ ≥ 1(−∞,0]. We want it to be as small as
possible to reduce slack, but it should be convex for practical reasons. It is easy to show that any
convex function ψ with ψ ≥ 1(−∞,0] and Lipschitz constant L satisfies ψ ≥ hL−1 , where hγ is the
hinge loss with margin γ > 0, defined by

hγ (t) =

{

1− t/γ if t ≤ γ
0 if t > γ .

We settle for the hinge loss, not only because it is optimal with respect to convexity, the Lipschitz
condition and the lower bound constraint, but because of its simplicity. Our final objective function
thus depends on the two parameters λ and γ and reads

Λhγ,λ (T,S) =
1
m

m

∑
i=1

hγ

(

ri

(

1−
∥

∥T xi−T x′i
∥

∥

2
))

+
λ‖T ∗T‖2√

m
,
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for a sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) generated in m independent, identical trials of the pair
oracle ρ. The proposed algorithm searches for T ∈ L∞ (H) to minimize Λhγ,λ (T,S).

While the hinge loss is used in most of our experiments, there are other choices. It is inherent
to the problem of similarity learning that one is led to consider an asymmetric response to similar
and dissimilar examples (see, for example, the approaches of Bar-Hillel et al., 2005 and Xing et al.,
2002). This is implemented by making the Lipschitz function ψ dependent on the parameter r which
indicates similarity or dissimilarity. We thus consider two functions ψ1,ψ−1 : R→ R , ψi ≥ 1(−∞,0]

and the objective functional

Λψ1,ψ−1,λ (T,S) =
1
m

m

∑
i=1

ψri

(

ri

(

1−
∥

∥T
(

xi− x′i
)∥

∥

2
))

+
λ‖T ∗T‖2√

m
.

Note that our generalization bounds remain valid for the empirical risk estimate using ψ1 and ψ−1

as long as we use for L the Lipschitz constant of min{ψ1,ψ−1}. Using ψi = hγi we are effectively
considering an inside margin γ1, which applies to similar pairs, and an outside margin γ−1, which
applies to dissimilar pairs.

The use of different margins, or more generally different functions ψi in response to similar and
dissimilar examples is nonsensical from the point of view of our bounds, which would always as-
sume a smaller value if we used min{ψ1,ψ−1} to begin with. These bounds however were imported
from the inherently symmetric vector valued case to a situation which is inherently asymmetric, be-
cause 〈QX−X ′ ,T ∗T 〉2 = ‖T X−T X ′‖2 ≥ 0 for all possible solutions T . The asymmetric margins
may therefore have their merit and an instance of asymmetric margins is described in Section 4.

Even with symmetric margins the response will be asymmetrical: If we use γ = 1 (as in fact we
did in our experiments) every similar pair (xi,x′i) will make a contribution to the objective function
unless T xi = T x′i, whereas dissimilar pairs will only contribute if ‖T xi−T x′i‖

2 < 2, which can
exclude many examples of dissimilarity, in particular if the regularization parameter λ is small.

Why not use the trace-norm ‖T ∗T‖1 = ‖T‖2
2 as a regularizer? Since ‖T ∗T‖2 ≤ ‖T ∗T‖1 the

trace-norm could be substituted in our bounds and the regularization part of the algorithm in Table
1 below would simplify considerably if we used ‖T‖2

2 instead of ‖T ∗T‖2. Regularization with the
trace-norm is also believed to enforce sparsity in the sense of a low rank of T .

The trace-norm was not used for three reasons:

1. The bounds become looser upon substitution of ‖T ∗T‖1. While this is obvious, one could
argue, that there may be other bounds which work well with ‖T ∗T‖1. Besides, the idea of
minimizing bounds has to be approached with caution, so this argument is not decisive.

2. The trace-norm does not work as well in practice. In all experiments the trace norm was
tried and performance found to be slightly inferior (while still comparable) to the use of the
Hilbert-Schmidt norm ‖T ∗T‖2 (see Section 6).

3. Regularization with the trace norm can cause too much sparsity and instability of the learning
algorithm. This can be seen by simplifying the empirical part of the objective to be linear in
V = T ∗T (that this is a valid approximation is shown in Proposition 15 below). Then there is
an empirical operator A (made explicit in Section 4.2) such that an objective functional can
be written as

−〈V,A〉2 +λ‖T ∗T‖p
p ,
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to be minimized with positive operators V . In this case the minimizers can be given explicitly
in terms of A. For p = 2 (the Hilbert-Schmidt case) one finds that the minimizer is a multiple
of the positive part A+ of the empirical operator A (the source of the sparsity observed in
our experiments), and stable under small perturbations of the eigenvalues of A. For p = 1
however the minimizer V will be a multiple of the projection to the subspace spanned by
the eigenvectors corresponding to the largest positive eigenvalue of A. This space will be
generically one-dimensional, making it useless for many data-representations. If it is more
than one-dimensional then it will be unstable under perturbations of the eigenvalues of A.

3.3 Minimization of the Objective Functional

Throughout this section fix a sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) and assume that ψ : R→R is
convex, satisfying ψ≥ 1(−∞,0]. For λ > 0 consider the functional Ωψ,λ : L+

2 (H)→ R

Ωψ,λ (A) =
1
m

m

∑
i=1

ψ
(

ri

(

1−
〈

Qxi−x′i
,A
〉

2

))

+
λ‖A‖2√

m
. (5)

Comparison with (4) reveals that Λψ,λ (T ) = Ωψ,λ (T ∗T ), so that any operator T is a minimizer of
Λψ,λ if and only if T ∗T is a minimizer of Ωψ,λ in L+

2 (H), a simple fact which has several important
consequences. Note that Ωψ,λ is convex if ψ is convex, and since L+

2 (H) is a convex set we obtain
a convex optimization problem. The situation somewhat resembles that of an SVM (in particular if
ψ is the hinge loss), but solutions cannot be sought in all of L2 (H) but must lie in the cone L+

2 (H),
a positivity constraint which makes the optimization problem quite different.

Denote with M the linear span of {xi− x′i : i = 1, ...,m} in H and define a map from Mm to
L+

2 (H) by

Av =
m

∑
i=1

Qvi where v = (v1, ...,vm) ∈Mm.

That Av ∈ L+
2 (H) follows from Lemma 3. We also define a linear transformation Tv : H → R

m by
setting

(Tvz)k = 〈z,vk〉 for k = 1, ...,m and z ∈ H. (6)

Then we have T ∗v Tv = Av. Also note that v↔ Tv establishes a continuous bijection between Mm and
the set of all linear transformations T : H→ R

m with M⊥ ⊆ Ker (T ).
Suppose we can find some v ∈ Mm such that Ωψ,λ (Av) ≤ Ωψ,λ (A) for all A ∈ L+

2 (H). Then
Λψ,λ (Tv) = Ωψ,λ (T ∗v Tv) = Ωψ,λ (Av) is also optimal, so Tv will be an optimal pre-processor and
we are done. To find such an optimal v ∈ Mm we plan to do gradient descent of Ωψ,λ (Av) in the
parameter v which automatically ensures the positivity constraint and keeps us comfortable in an
at most m-dimensional environment. Since Ωψ,λ (Av) is not generally convex in v, even if Ωψ,λ is
convex, one might worry about the existence of local minima.1 The following theorem excludes
this possibility:

Theorem 14 Assume that ψ is convex. For v∈Mm define Φ(v) = Ωψ,λ (Av). If Φ has a stable local
minimum at v ∈Mm then Av is a global minimizer of Ωψ,λ in L+

2 (H).

1. Recall that a real function f on a topological space X has a local minimum at x ∈ X if there is an open set O 3 x such
that f (x)≤ f (y) ∀y ∈ O
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Proof Abbreviate Ωψ,λ to Ω and use P to denote the orthogonal projection onto M. We first claim
that

∀A ∈ L+
2 (H) we have Ω(PAP)≤Ω(A) . (7)

This follows from
〈

Qxi−x′i
,PAP

〉

2
=
〈

Qxi−x′i
,A
〉

2
and Lemma 3 (vi) by inspection of (5). Next

consider the identity
{Av : v ∈Mm}=

{

PAP : A ∈ L+
2 (H)

}

. (8)

First note that the inclusion from left to right follows from Av = PAvP for v ∈ Mm. On the other
hand for any A ∈ L+

2 (H) all the eigenvectors of PAP with nonzero eigenvalues have to lie in M, and
enumerating the eigenvectors ei of PAP beginning with those in M (of which there can be at most
m) we have

PAPz =
m

∑
i=1

λi 〈z,ei〉ei =
m

∑
i=1

〈

z,λ1/2
i ei

〉

λ1/2
i ei =

m

∑
i=1

Q(
λ1/2

i ei

)z = Avz

for all z ∈ H, so that PAP ∈ {Av : v ∈Mm} which proves (8).
To prove the theorem let Φ attain a local minimum at v ∈Mm. We will assume that Ω does not

attain a global minimum at Av and derive a contradiction. We can write Av = T ∗v Tv, using (6). Since
Ω is convex it cannot even attain a local minimum at Av, so there is a sequence An ∈ L+

2 (H) such
that An→ Av and Ω(An) < Ω(Av). By continuity of multiplication also PAnP→ PAvP = Av, by (7)
Ω(PAnP) ≤ Ω(An) < Ω(Av) and by (8) there exists vn ∈Mm such that Avn = PAnP. We thus have
Avn → Av (this does not imply that vn→ v !) and Ω(Avn) < Ω(Av). By continuity of the square-root

A1/2
vn → A1/2

v = |Tv|. By polar decomposition we can write Tv =U |Tv|, where U is a partial isometry,

and define Tn : M→R
m by Tn =UA1/2

n . Then Tn→Uv |Tv|= Tv, so if wn is chosen such that Tn = Twn

we have wn→ v, but also Φ(wn) = Ω(T ∗n Tn) = Ω
(

A1/2
n U∗UA1/2

n

)

= Ω(An) < Ω(Av) = Φ(v), so

Φ cannot attain a local minimum at v.

Observe that this result justifies the gradient descent method in the presence of positivity con-
straints also for other convex loss functions besides the hinge loss. Nevertheless, it does not exclude
the existence of points with vanishing gradients away from the global minimum. While the probabil-
ity of arriving at these points during gradient descent is vanishing, the algorithm can still be slowed
down considerably in their neighborhood, a possibility which we have to be prepared for (although
it doesn’t seem to happen in practice). The theorem therefore only proves that the gradient descent
works, but not that it is efficient.

There is an alternative technique (see Xing et al., 2002) of iterative projections which avoids the
problem of vanishing gradients and stays more closely to the original convex optimization problem.
Briefly, one extends the functional Ω to all of L2 (H), so that the problem becomes equivalent to
an SVM, and then alternates between gradient descent in Ω, which is convex, and projections onto
L+

2 (H). The projection of an operator A ∈ L2 (H) to L+
2 (H) is effected by an eigen-decomposition

and reconstruction with all the negative eigenvalues set to zero, so that only the positive part of A is
retained. This method would also work for our objective functional, in fact for any convex objective
constrained to positive operators. Here this technique was not chosen, because it appeared that the
effort of the repeated eigen-decomposition might cancel the advantages of the method. Also the
proposed gradient descent, which is easily converted to an online algorithm, appeared more elegant
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Given sample S, regularization parameter λ, margin γ, learning rate θ
set λ′ = λ/

√

|S| and d = m
randomly initialize v = (v1, ...,vd)
repeat

Compute ‖Av‖2 =
(

∑i j

〈

vi,v j
〉2
)1/2

For i = 1, ...,d compute wi = 2‖Av‖−1
2 ∑ j

〈

vi,v j
〉

vi

Fetch (x,x′,r) randomly from sample S
For i = 1, ...,d compute ai← 〈vi,x− x′〉
Compute b← ∑d

i=1 a2
i

If r (1−b) < γ
then for i := 1, ...,d do vi← vi−θ

(

r
γ ai (x− x′)+λ′wi

)

else for i := 1, ...,d do vi← vi−θλ′wi

until convergence

Table 1: Learning algorithm

in its implicit adherence to the positivity constraint. The ultimate reason to stay with the proposed
technique was of course its practical success.

So our algorithm will randomly initialize the vector v ∈Mm and then follow the negative gradi-
ent of Φ, either for a specified number of steps or until some heuristic convergence criterion on the
value of Φ is met. Straightforward differentiation gives for the k-th component of the gradient of Φ
at v ∈Mm the expression

(∇Φ)k (v) =
−2
m

m

∑
i=1

ψ′
(

ri

(

1−
m

∑
j=1

a2
i j

))

riaik
(

xi− x′i
)

+
2λ

‖Av‖2
√

m

m

∑
j=1

〈

vk,v j
〉

v j,

where aik = 〈xi− x′i,vk〉 and ‖Av‖2 =
(

∑i, j

〈

vi,v j
〉2
)1/2

. In Table 1 we give a corresponding algo-

rithm of stochastic gradient descent for the case that ψ is the hinge-loss with margin γ.
In a simplified view, which disregards the regularization term (or if λ = 0), the algorithm will

modify T in an attempt to bring T xi and T x′i closer if xi and x′i are similar (i.e., ri = 1) and their
distance exceeds 1− γ, it will attempt to move T xi and T x′i further apart if xi and x′i are dissimilar
(i.e., ri =−1) and their distance is less than 1 + γ, and it will be indifferent to all other cases. This
procedure can also be interpreted in terms of the effect which the individual gradient steps have
on the level ellipsoid of the quadratic form induced by T ∗T . Figure 1 tries to shows the simple
geometrical intuition behind this construction.

There are two heuristic approximations to accelerate this algorithm. A simple time-saver is the
observation that the contribution of the regularization term to the gradient changes only very little
with small updates v. It therefore doesn’t need to be recomputed on every iteration, but it suffices
to compute it intermittently.

Also in the experiments reported below a singular value decomposition of the optimal operator
revealed that it was dimensionally sparse, in the sense that very few (generally less than 50) singular

1064



LEARNING SIMILARITY

Figure 1: The effect of similar and dissimilar pairs on the level ellipsoid of the quadratic form
induced by T ∗T in the case of hinge loss with margin γ. If ‖T x−T x′‖ ≤ 1− γ for similar
or ‖T x−T x′‖ ≥ 1 + γ for dissimilar pairs there is no effect. If ‖T x−T x′‖ < 1 + γ for
similar pairs, the ellipsoid is compressed in a direction parallel to the line between x and
x′. If ‖T x−T x′‖ > 1− γ for dissimilar pairs, the ellipsoid is dilated. Regularization
corresponds to a shrinking of the ellipsoid.

values were significantly different from zero. This implies that Av can be well approximated by
some Aw where w ∈Md with d� m, and shows that the proposed algorithm effects a dimensional
reduction. It also suggests that one might try gradient descent in Md instead of Mm for d < m, which
causes a considerable acceleration if d ≈ 102 and m≥ 103. Of course the argument in Theorem 14
is then no longer valid, because finite dimensional constraints are not convex, so that local minima
might become a problem. In practice this never happened for d ≈ 102 and was observed only for
d ≤ 5. The heuristic is implemented by accordingly modifying the initialization d = m in Table 1.
In our experiments we used d = 100.

There is a simple practical use to an eigen-decomposition of the optimal Av returned by the
algorithm. The vi will in general not be orthogonal, the algorithm does not enforce this in any way).
If the decomposition reveals that only few eigenvalues of Av are significantly different from zero,
we can restrict ourselves to the span of the corresponding eigenvalues. This yields a representation
operator T with very low dimensional range, which is easier to compute and facilitates subsequent
processing.

By virtue of our dimension free bounds the algorithm is well suited for kernel implementations.
Note that the search space consists of vectors v = (v1, ...,vd) ∈Md which admit a linear representa-
tion

vi =
m

∑
j=1

αi
j

(

x j− x′j
)
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in terms of the training sample. To add two such v we just add the corresponding matrices αi
j, to

compute inner products we just use the kernel function on the input space. Substituting these rules
one finds that there is no problem in kernelization of the algorithm.

4. Similarity Regression and Hyperbolic PCA

In this section we consider some alternatives. The first is rather obvious and extends the method de-
scribed above to continuous similarity values. The other method is derived from the risk functional
R and has already been described in Maurer (2006a).

4.1 Similarity Regression

The bounds in Section 3.1 have straightforward extensions to the case, when the oracle measure
is not supported on X 2×{−1,1} but on X 2× [0,1], corresponding to a continuum of similarity
values, and ` : [0,1]×R→ R is a loss function such that `(y, .) has Lipschitz constant at most L for
all y ∈ [0,1]. The corresponding risk functional to be minimized would be

R′ (T ) = E(x,x′,r)∼ρ

[

`
(

r,
∥

∥T x−T x′
∥

∥

2
)]

.

If ` has the appropriate convexity properties, then an obvious modification of the proposed algorithm
can be used. With a least-squares loss function the square of the norm (an unavoidable feature of
our method) will lead to an overemphasis of large distances, probably an undesirable feature which
can be partially compensated by a redefinition of the loss function at the expense of a large Lipschitz
constant (e.g., with `(y, t) = (y− t)2 /(y− y0)

2 for some y0 > 0).
The possibilities of this type of similarity regression (or learning of metrics) remain to be ex-

plored.

4.2 Risk Bounds with Affine Loss Functions and Hyperbolic PCA

Consider again the case of a binary oracle (similar/dissimilar) and the task of selecting an operator
from some set V ⊂ L2 (H).

Proposition 15 Suppose 1 <
∥

∥V
∥

∥

∞ = c < ∞ and set η1 =−1 and η−1 = 1/
(

c2−1
)

. Then for all
T ∈ V

R(T )≤ 1+E(x,x′,r)∼ρ [ηr]−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

For a balanced oracle this becomes

R(T )≤ c2

2(c2−1)
−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

Proof Define real functions ψ1,ψ−1 by ψ1 (t) = 1−t and ψ−1 (t) = 1−t/
(

c2−1
)

. Since ‖x− x′‖≤
1 a.s. and by the definition of c we have for T ∈ V

1(−∞,0]

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))

≤ ψr

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))

a.s.
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We also have for r ∈ {−1,1} that ψr (t) = 1+ rηrt, whence

R(T ) = E(x,x′,r)∼ρ

[

1(−∞,0]

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))]

≤ E(x,x′,r)∼ρ

[

ψr

(

r
(

1−
∥

∥T X−T X ′
∥

∥

2
))]

= E(x,x′,r)∼ρ

[

1+ηr

(

1−
∥

∥T X−T X ′
∥

∥

2
)]

= 1+E(x,x′,r)∼ρ [ηr]−
〈

T ∗T,E(x,x′,r)∼ρ [ηrQx−x′ ]
〉

2
.

Since for a balanced oracle 1+E(x,x′,r)∼ρ [ηr] = c2/
(

2
(

c2−1
))

, the second conclusion is immedi-
ate.

Of course we can use the risk bounds of the previous section for an empirical estimator con-
structed from the Lipschitz functions ψ1,ψ−1 used in the proof above, corresponding to an inner
margin of 1 and an outer margin of c2−1 (see Section 3.1 and 3.2). The affine nature of these func-
tions however allows a different, more direct analysis and a different algorithmic implementation.

The operator
A := E(x,x′,r)∼ρ [ηrQx−x′ ]

is the expectation of the operator-valued random variable (x,x′,r) 7→ ηrQx−x′ . Minimizing the
bounds in Proposition 15 is equivalent to maximizing 〈T ∗T,A〉2, which is the only term depend-
ing on the operator T . Given the sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) the obvious way to try this
is by maximizing the empirical counterpart

〈

T ∗T, Â
〉

2 where Â is the empirical operator

Â(S) =
1
m

m

∑
i=1

ηriQxi−x′i
. (9)

The next result addresses the issue of estimation. The result is similar to Theorem 13 but can be
obtained without the use of Rademacher averages.

Theorem 16 Under the above assumptions and if c≥ 2 we have for δ > 0 with probability greater
1−δ in the sample S that for all T ∈ V

∣

∣

〈

T ∗T, Â
〉

2−〈T
∗T,A〉2

∣

∣≤ 2√
m

(

sup
T∈V
‖T ∗T‖2 + c2

√

2ln(1/δ)

)

.

Proof Apply Lemma 9 to the L2 (H)-valued random variable ηrQx−x′ −E [ηrQx−x′ ]. The corre-
sponding substitutions give

Pr
{∣

∣

〈

T ∗T, Â
〉

2−〈T
∗T,A〉2

∣

∣> ε
}

≤ exp

(

−(
√

mε−2supT∈V ‖T ∗T‖2)
2

8c4

)

,

and the result follows from equating the right side to δ.

Of course an analogous result could have been obtained from Theorem 11.
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We now specialize the space of candidate operators to V =cPd where Pd is the set of d-
dimensional orthogonal projections. Then supT∈V ‖T ∗T‖2 = c2

√
d in the bound above. The op-

timization problem now is to maximize
〈

P, Â
〉

2 for P ∈ Pd which is done by projecting onto a
maximal eigenspace of Â, as shown by the following proposition.

Proposition 17 Suppose A∈ L2 (H) is symmetric with eigenvectors ei and corresponding eigenval-
ues λi. Suppose that d ∈ N and that the sum in the eigen-expansion of A can be ordered in such a
manner that λi ≥ λ j for all i≤ d < j. Then

max
P∈Pd

〈A,P〉2 =
d

∑
i=1

λi,

the maximum being attained by the projection onto the span of (ei)
d
i=1.

Proof let P ∈ Pd with v1, ...,vd being an orthonormal basis for the range of P. Then

〈A,P〉2 =
d

∑
j=1

d

∑
i=1

λi
〈

v j,ei
〉2

+
d

∑
j=1

∞

∑
i=d+1

λi
〈

v j,ei
〉2

≤
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+λd

d

∑
j=1

(

∞

∑
i=d+1

〈

v j,ei
〉2

)

=
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+λd

d

∑
i=1

(

1−
d

∑
j=1

〈

v j,ei
〉2

)

≤
d

∑
i=1

λi

d

∑
j=1

〈

v j,ei
〉2

+
d

∑
i=1

λi

(

1−
d

∑
j=1

〈

v j,ei
〉2

)

=
d

∑
i=1

λi,

which proves supP∈Pd
〈A,P〉2 ≤ ∑d

i=1 λi (this also follows directly from Horn’s theorem; Simon,

1979, Theorem 1.15). If P is the projection onto the span of (ei)
d
i=1 we can set v j = e j above and

obtain an equality.

This gives an alternative algorithm to the one described in Section 3: Fix a quantity c > 2 and
construct a matrix representation of the empirical operator Â given in (9). For some fixed target-
dimension d find the projection onto a d-dimensional dominant eigenspace of Â. We omit the rather
straightforward technical details concerning to the representation of Â and the implementation of a
kernel. Some of these issues are discussed in Maurer (2006a) where corresponding experiments are
reported.

There is an intuitive interpretation to this algorithm, which could be called hyperbolic PCA: The
empirical objective functional is proportional to

m
〈

P, Â
〉

2 =
m

∑
i=1

ηri

∥

∥Pxi−Px′i
∥

∥

2

=
1

c2−1 ∑
i:xi,x′i dissimilar

∥

∥Pxi−Px′i
∥

∥

2− ∑
i:xi,x′i similar

∥

∥Pxi−Px′i
∥

∥

2
.
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When similarity and dissimilarity are defined by class memberships, then maximizing this expres-
sion corresponds to maximizing inter-class- and minimizing intra-class variance, where the param-
eters 1/

(

c2−1
)

and the proportions of similar and dissimilar pairs control the trade-off between
these potentially conflicting goals. A similar proposal can be found in Thrun (1998). Typically
we have c� 1 so that 1/

(

c2−1
)

� 1, so that dissimilar pairs (’negative equivalence constraints’)
receive a much smaller weight than similar pairs, corresponding to the intuitive counting argument
given ba Bar-Hillel et al. (2005).

The method is similar to principal component analysis insofar as it projects to a principal
eigenspace of a symmetric operator. In contrast to PCA, where the operator in question is the
empirical covariance operator, which is always nonnegative, we will project to an eigenspace of an
empirical operator which is a linear combination of empirical covariances and generally not posi-
tive. While the quadratic form associated with the covariance has elliptic level sets, the empirical
operator induces hyperbolic level sets.

5. Applications to Multi-category Problems and Learning to Learn

In this section we apply similarity learning to problems where the nature of the application task
is partially or completely unknown, so that the available data is used for a preparatory learning
process, to facilitate future learning.

5.1 Classification Problems Involving a Large Number of Categories

A multi-category task τ with input space X is a pair τ = (Y ,µ) where Y is a finite or countable
alphabet of labels and µ a probability measure on X ×Y . We interpret µ(x,y) as the probability to
encounter the pattern x with label y. As usual we assume X to be embedded in the Hilbert space H.

Let τ = (Y ,µ) be such a task, T ∈L0 (H) and suppose that we are given a single labeled example
(x,y) ∈ X ×Y . Any classifier trained on this example alone and applied to another pattern x′ ∈ X
can sensibly only make the decisions ”x′ is of type y” or ”x′ is not of type y” or no decision at all.
Face verification is a case where such classifiers can be quite important in practice: Anyone having
to verify the identity of a person on the basis of a single photograph has to learn and generalize on
the basis of a single example image. A simple classifier using only the pseudo-metric induced by T
is the elementary verifier εT (x,y) which decides

x′ is of type y if ‖T (x− x′)‖< 1
undecided if ‖T (x− x′)‖= 1

x′ is not of type y if ‖T (x− x′)‖> 1
.

Relative to the task τ = (Y ,µ) it has the error probability (counting ’undecided’ as an error)

errτ (εT (x,y)) = Pr
(x′,y′)∼µ

{

r
(

y,y′
)(

1−
∥

∥T
(

x− x′
)∥

∥

)

≤ 0
}

,

where the function r : Y ×Y →{−1,1} quantifies equality and inequality: r (y,y′) = 1 if y = y′ and
r (y,y′) =−1 if y 6= y′.

There is a canonical pair oracle derived from the task τ. It is the probability measure ρτ on
X 2×{−1,1} given by

ρτ (A) = Pr
((x,y),(x′,y′))∼µ2

{(

x,x′,r
(

y,y′
))

∈ A
}

for A⊆ X 2×{−1,1} . (10)
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To generate a draw (x,x′,r) from ρτ make two independent draws of (x,y) and (x′,y′) from µ and
then return (x,x′,1) if y = y′ and (x,x′,−1) if y 6= y′. Then

E(x,y)∼µ [errτ (εT (x,y))] = Rρτ (T ) , (11)

so we can use the risk bounds in Sections 3.1 or 4.2 to bound the expected error of the elementary
verifier εT (x,y) under a random draw of the training example (x,y).

If there are many labels appearing approximately equally likely, then dissimilar pairs will be
sampled much more frequently than similar ones, resulting in a negative bias of elementary classi-
fiers. Similar unwanted effects have been noted by Xing et al. (2002) and Bar-Hillel et al. (2005).
This does not mean that our bounds are paradoxical, because the biased sampling corresponds to an
equally biased error measure: Under these circumstances the non-verifier which always asserts ”x′

is not of type y” would already have a small error.
This problem can be avoided by a simple balancing technique: In the computation of the error

of the elementary classifier εd (x,y) we assign different weights to the cases of false rejection and
false acceptance. Define a balanced error

err̄τ (εd (x,y)) =
1

2C1
Pr

(x′,y′)∼µ

{∥

∥T
(

x− x′
)∥

∥≥ 1 and y′ = y
}

+
1

2C−1
Pr

(x′,y′)∼µ

{∥

∥T
(

x− x′
)∥

∥≤ 1 and y′ 6= y
}

,

where C1 = µ2 {((x,y) ,(x′,y′)) : y′ = y} and C−1 = µ2 {((x,y) ,(x′,y′)) : y′ = y} are the probabilities
to obtain examples with equal and unequal labels respectively in two independent draws of µ. If we
define a balanced pair oracle ρ̄ by

ρ̄τ (A) =
ρτ
(

A∩X 2×{1}
)

2ρτ (X 2×{1}) +
ρτ
(

A∩X 2×{−1}
)

2ρτ (X 2×{−1}) ,

where ρτ is defined in (10) then one again verifies that

E(x,y)∼µ [err̄τ (εd (x,y))] = Rρ̄τ (T ) (12)

and that ρ̄τ returns similar and dissimilar pairs with equal probability. To generate a draw of (x,x′,r)
from ρ̄τ first draw (x,y) from µ and then flip a fair coin. On heads draw x′ from the class conditional
distribution of y and return (x,x′,1), on tails draw x′ from the conditional distribution for Y \{y} (or
continue to draw (x′,y′)∼ µ until y′ 6= y) and return (x,x′,−1).

Whichever of the two oracles we use: If we make m independent draws from it to obtain a
sample S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) from which we generate the operator T according to the
algorithm derived in Section 3, then we are essentially minimizing a bound on the expected error
of elementary verifiers trained on future examples. In this way the proposed algorithm can be
considered an algorithm of learning to learn.

This is particularly interesting if m < |Y |, because we obtain performance guarantees for cate-
gories which we haven’t seen before. Consider for example the case where Y stands for a large
population of human individuals, and the inputs correspond to facial images. From a sample
S = ((x1,x′1,r1) , ...,(xm,x′m,rm)) we train an operator T and then use the elementary verifiers εT

for face-verification on the entire population. With methods similar to the balancing technique de-
scribed above the oracle can be also modified to achieve different desired penalties for false rejection
and false acceptance.
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5.2 Similarity as a Vehicle for Transfer

The face-verification system proposed above is somewhat naive from an economical point of view,
because the example-pairs have to be obtained independently, which means that we will need images
of approximately 3m/2 individuals (with balancing), all of which will probably have to be paid to
cooperate. It would be preferable to collect the data independently but conditional to a smaller
subpopulation Y ′⊂ Y with |Y ′|< m, so that multiple images can be gathered from each individual.
This effectively replaces the original task τ = (Y ,µ) with a subtask τ′ = (Y ′,µ′), where

µ′ (A) =
µ(A)

µ(X ×Y ′)
for A⊆ X ×Y ′.

Of course events which are independent w.r.t. µ are not independent w.r.t. µ′ and vice versa, so if
we sample independently from µ′ our generalization guarantees will only work for the task τ′. The
operator T generated from the sample drawn from µ′ may nonetheless work for the original task τ
corresponding to the entire population.

This points to a different method to apply the proposed algorithm: Use one task τ = (Y ,µ), the
training task, to draw the training sample and train the representation T , and apply T to the data of
the application task τ′ = (Y ′,µ′).

As the application task is unknown at the time of training T , this transfer mechanism may of
course fail. Deciding between success or failure however does not have the sample complexity
of learning, which is affected by a complexity penalty of the function class, but only the sample
complexity of validation, which can be determined from Hoeffdings inequality. If T has been trained
from τ and is subsequently tested on τ′ = (Y ′,µ′) then with probability greater 1− δ in an i.i.d.
sample S′ of size m drawn from µ′ we have

Rρτ′ (T )≤ R̂1(−∞,0]

(

T,S′
)

+

√

ln(1/δ)

2m
,

which is of course much better than the bounds in Theorem 11 (here R̂1(−∞,0]
(T,S′) is the empirical

risk of T on S′).
Of course this type of transfer can be attempted between any two binary classification tasks,

but its success normally requires a similarity of the pattern classes themselves. A classifier trained
to distinguish images of the characters ”a” and ”b” will be successfully applied to two classes of
images if these pattern classes have some resemblance of ”a” and ”b”. A representation of similarity
however can be successfully transferred if there is a similar notion of similarity applicable to both
problems. It is this higher conceptual level of similarity concepts that allows them to transcend
task-boundaries. This kind of ’meta-similarity” is for example present, when there is a common
process of data generation, as is the case when the tasks share an invariance property.

Suppose now that the learner has trained operators T1, ...,TK from the samples S1, ...,SK gathered
in past experience, with each Sk drawn iid from a corresponding multi-category task τk, and that
the learner is currently confronted with a new task τ′, for which a new sample S′ is available. A
simple union bound yields from Hoeffdings inequality the following standard result: ∀δ > 0 with
probability greater 1−δ in S′ we have that for every k ∈ {1, ...,K}

Rρτ′ (Tk)≤ R̂1(−∞,0]

(

Tk,S
′)+

√

lnK + ln(1/δ)

2m
.
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Let us assume that K is not too large. Minimizing R̂1(−∞,0]
(Tk,S′) over k is a simple algorithm which

does two things:

1. It finds the operator Tk∗ which optimally represents the data of τ′ for the purpose of recognition
on the basis of single training examples.

2. It classifies the new task τ into one of the K meta-categories defined by the old tasks τ1, ...,τK .
The classification is essentially carried out on the basis of compatibility of underlying notions
of similarity.

The more obvious practical aspect is the first, because Tk∗ can be put to use right away. There
are however interesting strategies for ”life long learning” (Thrun, 1998) where the mechanism of
task classification is also useful. If the optimal empirical risk R̂1(−∞,0]

(Tk,S′) is too large one could
use S′ to train T ′ which is appended to (T1, ...,TK) to reflect the fact that a new type of task has been
discovered. If R̂1(−∞,0]

(Tk,S′) is small on the other hand, one could merge the data S′ of the new task
with the data Sk∗ of the most closely matching task and retrain on S′∪Sk∗ to obtain an operator T ′′ to
replace Tk∗ for better generalization due to the larger sample size, and keep the number K constant.

In this context it should be noted, that ”multi-task learning”, the idea of pooling the data from
various tasks to achieve a smaller estimation error (see Caruana 1998; Baxter, 2000; Evgeniou et al.,
2004; Maurer 2006b), is easily implemented in the case of similarity learning by just concatenating
the samples S1 ∪ ...∪ SK and training. The concatenated sample corresponds to a draw from the
mixed pair oracle ρ = ∑ckρk with ck = |Sk|/∑i |Si|.

The proposed method has been derived from the objective of minimizing the risk functional R
which is connected to classification through the identities (11) and (12). It is therefore a principled
technique to train representations for future learning on the basis of a single example. While the
representation T can be used to preprocess data for other algorithms operating on larger future
training examples, there is reason to believe that it will be no longer optimal if there are more
examples. It is a challenging problem to define risk functionals giving optimality for algorithms
operating on other future sample sizes. While the algorithm proposed in Argyriou et al. (2006)
appears to have such properties, corresponding risk bounds are lacking and the relationship to the
current work remains to be explored.

6. Experiments

All the experiments reported concern transfer in machine vision where a representation trained on
one task is applied to another one. The experiments involved the recognition of randomly rotated-,
randomly scaled-, randomly rotated and scaled-, and handwritten characters, spatially rotated ob-
jects and face recognition. Below we briefly describe the parametrization of the training algorithm,
the various tasks tried and the parameters recorded in testing. An executable to reproduce most of
the experiments will be made available at the web-site www.andreas-maurer.eu.

6.1 Parametrization and Experimental Setup

All the experiments with character recognition used gray-scale images of 28× 28 pixels, corre-
sponding to 784-dimensional vectors. The images of the COIL100 database had 64×64, the images
of the ATT face database had 92× 112 pixels. Pixel vectors were normalized to unity, otherwise
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there was no preprocessing. The embedding in the Hilbert space H was effected by the Gaussian
RBF-kernel

〈x,y〉= κ(x,y) = (1/2)exp

(

−4

∣

∣

∣

∣

x
|x| −

y
|y|

∣

∣

∣

∣

2
)

,

where x and y are two images, |.| is the euclidean norm on pixel vectors and 〈., .〉 is the inner product
of the embedded vectors in the RKHS H (see, for example, Christianini and Shawe-Taylor, 2000,
for kernel techniques).

For all tasks involved in the experiments corresponding data-sets were generated and processed
in this kernel-representation.

In every transfer experiment there was a training task and an application- or test task, represented
by corresponding labeled data-sets. On the data-set of the training task the algorithm given in Table 1
was used, together with the accelerating heuristics in Section 3.3, to generate a representation T . All
the experiments reported below were carried out with margin γ = 1 and the regularization parameter
either λ = 0.005 (for the Hilbert-Schmidt norm ‖T ∗T‖2) or λ = 0.001 (for ‖T ∗T‖1 = ‖T‖2

2). These
values were determined by cross validation for problem of handwritten character recognition below
and reused in all the other experiments. Separately optimizing parameters for each experiment using
cross validation would only lead to an improvement of the results.

The gradient descent was carried out for 106 steps with a constant learning rate θ = 0.01. For
the training task we report the final values of the objective function Λ and the empirical risk R̂(T ) =
R̂1(−∞,0]

(T ). Another interesting property of T is its ’essential rank’ as the number of singular values
appreciably larger than 0. In the results below this is referred to as ’sparsity’ and given as the number
of singular values larger than 2% of the spectral norm.

The representation T is applied to the data-set of the application task, with pixel vectors equi-
dimensional to those in the training data-set. Application and training data-sets had no overlapping
categories.

On the application task we measured three properties related to the quality of the representation:

1. The empirical risk R̂(T ) = R̂1(−∞,0]
(T ) as an estimator for the true risk R(T ). This relates to

the theory above and to the performance of elementary verifiers.

2. The area under the ROC-curve (ROC area T ) for the distance as a detector of class-equality.
This can be regarded as an estimator for the probability that a pattern pair with equal labels is
represented at a closer distance than an independently chosen pair with different labels.

3. The error (error T ) of nearest neighbor classifiers when each category of the application task
is represented by a single example, averaged over 100 runs with randomly chosen examples.

Both of the latter two quantities were also measured for the unrepresented but normalized input
pixel vectors (ROC area input, error input). The values obtained using the trace-norm regularization
are given in parentheses.

It has been pointed out by a referee that the theory is not exactly applicable to the experiments,
because training sets and the test sets are not chosen iid from the same distribution. The experiments
were carried out in the present form to illustrate the utility of similarity for transfer. Separating the
same data-sets into sets of training- and test pairs would certainly have produced even better results.
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6.2 Training and Application Tasks

In some of the transfer experiments the training and application tasks shared a definitive class of
invariants, so that similarity of two pattern corresponds the existence of a transformation in the
class of invariants, which (roughly) maps one pattern to the other.

Rotation invariant character recognition. Randomly rotated images of printed alpha charac-
ters were used for the training set and randomly rotated images of printed digits were used for the
test set, the digit 9 being omitted for obvious reasons.

Scale invariant character recognition. Randomly scaled images of printed alpha characters
for the training, randomly scaled images of printed digits were used for the test set. Scaling ranged
over a factor of 2.

Rotation and scale invariant character recognition. Randomly rotated and scaled characters
for training, randomly rotated and scaled images of printed digits were used for the test set, the digit
9 being omitted for obvious reasons. Scaling ranged over a factor of 2, the digit 9 is omitted in the
test set.

Spatially rotation invariant object recognition. The COIL100 database contains images of
objects rotated about an axis at an angle 60◦ to the optical axis. Here the invariance transformations
which relate similar patterns cannot be explicitly computed from the images. The first 80 objects of
the database were taken for training, the remaining 20 for testing.

In the remaining experiments the underlying notion of similarity cannot be explicitly specified
and corresponds to a Gestalt-property of the domain in question.

Handwritten character recognition. The images of handwritten alpha characters from the
NIST database were used for training, the handwritten digits from the MNIST database for testing.

Face recognition. The first 35 images of the ATT database for training, the last 5 for testing.
Unfortunately the ATT database is at the same time very small and very clean and easy, so that the
results are not very conclusive. Attempts to obtain the potentially more interesting Purdue database
failed.

The images for the first three experiments are available on the web-site www.andreas-maurer.eu,
the others are publicly available.

6.3 Results for Transfer

The results are summarized in Tables 2 and 3. The various row headings will be explained in the
sequel.

In all experiments the representation T brings an improvement in recognition rates. This im-
provement is moderate (54% error downto 33% in the case of handwritten characters) to spectacular
(72% downto < 1% for plane rotations). The results on the COIL and ATT databases slightly im-
prove on the corresponding results in Fleuret and Blanchard, (2005) and Chopra et al. (2005), but
the margin is so small, that this may well be a statistical artifact. What is more remarkable is that our
results are at all comparable, because our method makes no assumption on the specific properties of
image data, such as high correlations for neighboring pixels: In contrast to the approaches described
in Chopra et al. (2005) and Fleuret and Blanchard (2005), our method would yield the same results
if the images were subjected to any fixed but unknown permutation of pixel indices.
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type of rotation scale rot.+scale
experiment invariance invariance invariance
training set alpha alpha alpha
nr of categories 20 52 20
nr of examples 2000 1560 4000
R̂(T ) 0.019 0.005 0.058
Λ(T ) 0.074 0.033 0.185
sparsity of T 9 42 7
test set digits \ 9 digits digits \ 9
nr of categories 9 10 9
nr of examples 900 300 1800
R̂(T ) 0.55 0.061 0.128
ROC area input 0.597 0.69 0.54
ROC area T 0.999 (0.999) 0.995 (0.99) 0.982 (0.972)
error input 0.716 0.508 0.822
error T 0.009 (0.011) 0.019 (0.035) 0.097 (0.127)

Table 2:

type of spatial rot. handw. face
experiment invariance Chars recognition
training set COIL ≤80 NIST ATT 1-35
nr of categories 80 52 35
nr of examples 2880 4160 350
R̂(T ) 0.003 0.038 0
Λ(T ) 0.024 0.314 0.022
sparsity of T 46 19 35
test set COIL ≥81 MNIST ATT 36-40
nr of categories 20 10 5
nr of examples 720 10000 50
R̂(T ) 0.379 0.183 0.045
ROC area input 0.845 0.728 0.934
ROC area T 0.989 (0.984) 0.9 (0.891) 0.997 (0.997)
error input 0.375 0.549 0.113
error T 0.093 (0.123) 0.335 (0.383) 0 (0)

Table 3:

6.4 One Experiment in Detail

To illustrate these experiments and results we will consider the example of combined rotation and
scale-invariance, corresponding to the last column in Table 2. Figure 2 shows some typical training
examples, of which there are 200 representing each of the 20 categories, making a total number of
4000.

The oracle presents the learner with pairs of these images together with a similarity value
r ∈ {−1,1}. Similar pairs are chosen from the same category (the same column in Fig. 2) dis-
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Figure 2: Randomly rotated and scaled alpha-characters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: The 15 largest eigenvalues of T ∗T in proportion

Figure 4: Randomly rotated and scaled digits

similar ones from different categories (different columns). The pairs are chosen at random under
the constraint that similar pairs appear with equal frequency as dissimilar ones. These pairs are fed
as input to the stochastic gradient descent algorithm in Table 1. While there are O

(

106
)

pairs poten-
tially generated, only about 2000 of these can be statistically independent in terms of the generation
of the original sample.

The spectrum of T ∗T (Fig. 3) of the resulting operator T shows a marked decrease of singular
values, allowing the conclusion that the data characterizing rotation and scale invariant character
categories in the chosen Gaussian kernel representation is essentially only 5-dimensional. This ob-
served sparsity is not a consequence of the regularization with the Hilbert-Schmidt norm, because
an increase in the regularization parameter λ increases the essential rank of T (a different behav-
ior would be expected with a 1-norm regularizer), but an intrinsic property of the data which the
algorithm discovers.

The representation T is then applied to the recognition of digits. Fig. 4 exemplifies the test data.
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Figure 5: ROC curve for the metric as a feature for similarity. Transformed data solid, input data
dotted.

To measure the empirical risk R̂(T ) = R̂1(−∞,0]
(T ) we generate a random sequence of pairs as we

did with the training task above and average the relative rates of dissimilar pairs with ‖T x−T x′‖H ≤
1 and the rate of similar pairs with ‖T x−T x′‖H ≥ 1. Here the subscript H refers to the distance
in the RKHS. This gives the entry 0.128 in the row labeled by ’Risk T ’, so the representation T
organizes the data of rotation and scale invariant character categories into balls of diameter 1, up to
an error of about 13%.

To parametrize a potential verification system an ROC curve for the utility of the metric as a
feature for class equality is useful. Fig 5 shows these curves dotted for the metric ‖x− x′‖28×28
(where the distance is measured on the raw normalized pixel vectors in R

28×28) in red and solid
for ‖T x−T x′‖H . The areas under these curves correspond to the rows labeled ’ROC area input’
and ’ROC area T ’ respectively. The values in parentheses correspond to regularization with ‖T‖2

2,
which givel slightly inferior results.

Finally we measure the performance of a single-nearest neighbor classifier. A prototype is
selected randomly from each category. The images in either one of the rows in Fig. 4 could represent
such a ’training sample’. We then measure the performance of the corresponding 1-NN classifier on
the test set with the training data omitted. The error rates are averaged over 100 random selections
of the prototype set. These computations are carried out (with equal prototypes) for the metric
‖x− x′‖28×28 and the metric ‖T x−T x′‖H and give the entries in the rows ’error input’ and ’error
T ’ respectively. Again the values in parentheses correspond to regularization with ‖T‖2

2.

6.5 Classification of Tasks

We report some simple results concerning the recognition of task-families on the basis of the sim-
ilarity of underlying similarity concepts, as proposed in Section 5.2. In Table 4 we consider task-
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families with 28× 28 pixel data. These families share the properties of rotation invariance, scale
invariance, combined rotation and scale invariance and the property of being handwritten respec-
tively. The columns correspond to alpha-characters used to train representation, the rows to digits
used for testing. Each entry is the empirical risk R̂(T ) of the operator T trained from the alpha-task
heading the column, measured on the digit-task heading the row. The minimum in each row occurs

rotation scaling rot.+scaling handwritten
rotation 0.055 0.38 0.089 0.374
scaling 0.36 0.061 0.11 0.304
rot.+scaling 0.375 0.39 0.128 0.434
handwritten 0.4 0.336 0.35 0.18

Table 4:

on the diagonal, which shows that the underlying similarity property or invariance of a data-set is
reliably recognized. The margin of this minimum is weakened only for separate rotation and scale
invariances, because the representation for combined rotation and scale invariance also performs
reasonably well on these data-sets, although not as well as the specialized representations. Scale
invariant representations perform better on handwritten data than rotation invariant ones, probably
because scale invariance is more related to the latent invariance properties of handwritten characters
than full rotation invariance.

Given the nature of the algorithm, these results are perhaps not surprising, but they seem to point
in interesting new directions for the design of more autonomous systems of pattern recognition.

7. Related Work

A lot of work has been done to develop learning algorithms for data-representations with optimal
metric properties. Typically a heuristically derived objective function is optimized, and often there
is no discussion of generalization performance for high dimensional input data.

The classical method seems to be Linear Discriminant Analysis (LDA, Fukunaga, 1990) which
projects onto a dominant subspace of the matrix quotient of the inter-class and intra-class empirical
covariances. This can only work if the intra-class covariance operator is non-singular, and it will
work poorly even if it is non-singular, but has very small eigenvalues (a generic situation in high
dimensions), whence there have been several efforts to remedy the situation by optimization within
the null-space of the intra-class covariance operator (NLDA) or by simultaneous diagonalisation of
the intra- and inter-class covariances (OLDA). The stability problem inherent to the quotient ap-
proach is approached by a heuristic regularization prescription (ROLDA). These various extensions
to LDA are presented by Ye and Xiong (2006) and have been tested in an experimental situation
where the trained representation is combined with K-NN classification on the same task where the
representation was trained. The performance appears to be comparable to SVM.

LDA and its extensions can be best compared to the algorithm of hyperbolic PCA presented in
Section 4. In contrast to LDA hyperbolic PCA projects onto a dominant eigenspace of a weighted
difference and not the quotient of the inter- and intra-class covariances. For this reason hyperbolic
PCA is free of the stability problems of LDA and generalization guarantees are easily obtained.

An interesting technique has been proposed by Goldberger et al (2004). The desired represen-
tation is chosen to optimize the performance of a stochastic variant of K-NN classification on the
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represented data. The method, called Neighborhood Component Analysis (NCA) appears to admit
a regularized version, with essentially the same regularizer as in this work, and it seems possible
to obtain dimension-free generalization guarantees for the regularized version. Unfortunately the
optimization problem underlying NCA is not convex.

There is a certain kinship of NCA to the technique presented in this work, because both ap-
proaches depart from an objective defined by performance requirements of algorithms operating on
the represented data. The stochastic K-NN classifiers of NCA correspond to the elementary verifiers
(see Section 5) in our approach.

The problem of similarity learning from pair oracles similar to this paper has been considered
by several authors.

In the work of Bar-Hillel et al. (2005) the triplets (x,x′,r) generated by the oracle are called
equivalence constraints, positive if r = 1 and negative if r = −1. Their algorithm, called RCA for
Relevant Component Analysis, does not use negative equivalence constraints on the grounds that
these are less informative than positive ones, a claim supported by a simple counting argument. The
objective of RCA is essentially entropy maximization under the constraint that ”chunklets” of data
points belonging to the same class, as inferred from the positive equivalence constraints, remain
confined to balls of a fixed diameter. Under Gaussian assumptions there is a bound on the variance
of the RCA-estimator, but in general it is unclear if a representation optimizing the objective for one
data-set will also be nearly optimal for another one drawn from the same distribution.

Xing et al. (2002) use both positive and negative equivalence constraints and pose the following
optimization problem (in our notation) for a sample ((x1,x′1,r1) , ...,(xm,x′m,rm))

min
T

∑
i:ri=1

∥

∥T xi−T x′i
∥

∥

2
such that ∑

i:ri=−1

∥

∥T xi−T x′i
∥

∥≥ 1.

To solve this problem they propose an algorithm which enforces the positivity constraint for T ∗T by
alternating gradient descent and projection to the cone of positive operators by eigenvalue decom-
positions, a method which seems generally applicable when a convex objective is to be optimized
under a positivity constraint.

It is surprising that both in Bar-Hillel et al. (2005) and Xing et al. (2002) the existence of a
pair oracle to generate a sample of labeled pairs (or equivalence constraints) is implicitly assumed,
without attempting to directly predict this oracles behavior. If there is a process which generates
labeled examples (and this is what the equivalence constraints are) it seems natural to learn to predict
the labels.

This idea has already been proposed by Thrun and Mitchell (1995) (see also Thrun, 1998),
where also the obvious connection to transfer and meta-learning is mentioned. This work combines
this with the idea of representation learning, as also proposed by Thrun (1998).

Some authors (Chopra et al., 2005; Fleuret and Blanchard 2005) have considered the utility of
representation learning for the purpose of multi-category and multi-task pattern recognition on the
basis of single training examples. In contrast to the more general method introduced above, these
approaches are tailored to the special domain of image processing.

8. Conclusion

This work presented a technique to represent pattern similarity on the basis of data generated by a
domain dependent oracle. The method works well in multi-task and multi-category environments
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as a preparation for future learning with minimal training sets, such as a single training example or
a single training example per category.

A major theoretical problem is to explain the good performance of the method in the context of
transfer, a phenomenon which doesn’t seem to be completely understood.

Another important development would be a learning algorithm of optimal representations for
larger future sample sizes. It is conceivable that, in the context of learning-to-learn, the learner can
choose from a catalogue of previously trained representations on the basis of the size of the available
training sample. The representations trained by the proposed algorithm would then constitute only
one extreme entry in this catalogue, corresponding to a minimal sample size of one.

Appendix A. Notation Table

Notation Short Description Section
X input space, X ⊂ H,diam(X )≤ 1 1.1
ρ pair oracle. P-measure on X 2×{−1,1} 1.1
(x,x′,r) generic triplet (x,x′,r) ∈ X 2×{−1,1} 1.1
S training sample S ∈

(

X 2×{−1,1}
)m

,S∼ ρm 1.1
R(T ) risk of operator 1.2

= Pr
{

r
(

1−‖T x−T x′‖2
)

≤ 0
}

R̂ψ (T,S) empirical risk estimate for ψ≥ 1(−∞,0] 1.2

= 1
m ∑m

i=1 ψ
(

ri

(

1−‖T (xi− x′i)‖
2
))

R̂(T,S) empirical risk, R̂(T,S) = R̂1(−∞,0]
(T,S) 6.1

hγ hinge-loss with margin γ 1.2
λ regularization parameter 3.2
Λψ,λ (T,S) objective functional 3.2

Λψ,λ (T,S) = R̂ψ (T,S)+m−1/2λ‖T ∗T‖2
Ω convex objective, Ω(T ∗T ) = Λ(T ) 3.3
H real, separable Hilbert space 2.1
〈., .〉 and ‖.‖ inner product and norm on H 2.1
‖T‖∞ operator norm ‖T‖∞ = supx∈H,‖x‖≤1 ‖T x‖ 2.1
T ∗ adjoint of the operator T 2.1
L∞ (H) set of operators on H with ‖T‖∞ < ∞ 2.1
L∗∞ (H) {T ∈ L∞ (H) : T ∗ = T} 2.1
L+

∞ (H) {T ∈ L∗∞ (H) : 〈T x,x〉 ≥ 0,∀x ∈ H} 2.1
L0 (H) set of finite-rank operators on H 2.1
‖T‖2 Hilbert-Schmidt norm 2.1
L2 (H) set of operators on H with ‖T‖2 < ∞ 2.1
〈T,S〉2 inner product in L2 (H) 2.1
L∗2 (H), L+

2 (H) L∗∞ (H)∩L2 (H) and L+
∞ (H)∩L2 (H) resp. 2.1

Pd d-dimensional orthogonal projections in H 2.1
Qx, for x ∈ H the operator Qx (z) = 〈z,x〉x 2.1
‖E‖S , E ⊆ S maximal norm in E, that is, supx∈E ‖x‖S 2.1
R̂m (F ) empirical Rademacher complexity of F 2.2
σi Rademacher variables, uniform on {−1,1} 2.2
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