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Abstract
We study a generative model in which hidden causes combine competitively to produce observa-
tions. Multiple active causes combine to determine the value of an observed variable through a max
function, in the place where algorithms such as sparse coding, independent component analysis, or
non-negative matrix factorization would use a sum. This maxrule can represent a more realistic
model of non-linear interaction between basic components in many settings, including acoustic and
image data. While exact maximum-likelihood learning of the parameters of this model proves to
be intractable, we show that efficient approximations to expectation-maximization (EM) can be
found in the case of sparsely active hidden causes. One of these approximations can be formulated
as a neural network model with a generalized softmax activation function and Hebbian learning.
Thus, we show that learning in recent softmax-like neural networks may be interpreted as approxi-
mate maximization of a data likelihood. We use the bars benchmark test to numerically verify our
analytical results and to demonstrate the competitivenessof the resulting algorithms. Finally, we
show results of learning model parameters to fit acoustic andvisual data sets in which max-like
component combinations arise naturally.

Keywords: component extraction, maximum likelihood, approximate EM, competitive learning,
neural networks

1. Introduction

In recent years, algorithms such as independent components analysis (ICA; Comon, 1994; Bell
and Sejnowski, 1997), sparse coding (SC; Olshausen and Field, 1996), and non-negative matrix
factorization (NMF; Lee and Seung, 1999) have been used to describethe statistics of the natural
environment, and the components extracted by these methods have been linked to sensory neuronal
response properties. Stated in the language of probabilistic generative models (see, e.g., Dayan and
Abbott, 2001; Rao et al., 2002) these systems describe sensory data as alinear superposition of
learned components. For many types of data, including images, this assumed linear cooperation
between generative causes is unrealistic. Alternative, more competitive generative models have also
been proposed: for instance, Saund (1995) suggests a model in whichhidden causes are combined
by a noisy-or rule, while Dayan and Zemel (1995) suggest a yet more competitive scheme. Here,
we formulate an extreme case of competition, in which the strongest generative influence on an
observed variable (e.g., an image pixel) alone determines its value. Such a rule has the property of
selecting, for each observed variable, a single generative cause to determine that variable’s value.
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This form of combination emerges naturally in the context of spectrotemporalmasking in mixed
audio signals. For image data, occlusion leads to a different combination rule, but one that shares
the selection property in that, under constant lighting conditions, the appearance of each observed
pixel is determined by a single object.

In parallel to this development of generative approaches, a number of artificial neural network
architectures have been designed to tackle the problem of non-linear component extraction, mostly
in artificial data (e.g., Spratling and Johnson, 2002; Lücke and von der Malsburg, 2004; Lücke and
Bouecke, 2005; Spratling, 2006), although sometimes in natural images (e.g., Harpur and Prager,
1996; Charles et al., 2002; Lücke, 2007). These models often perform quite well with respect to
various benchmark tests. However, the relationship between them and the density models that are
implicit or explicit in the generative approach has not, thus far, been made clear. We show here
that inference and learning in a restricted form of our novel generative model correspond closely in
form to the processing and plasticity rules used in such neural network approaches, thus bringing
together these two disparate threads of investigation.

The organization of the remainder of this article is as follows. In Section 2 we define the novel
generative model and then proceed to obtain the associated parameter update rules in Section 3. In
Section 4 we derive computationally efficient approximations to these update rules, in the context of
sparsely active hidden causes—that is, when a small number of hidden causes generally suffices to
explain the data. In Section 5 we relate a restricted form of the generative model to neural network
learning rules with Hebbian plasticity and divisive normalization. Results of numerical experiments
in Section 6 show the component extraction performance of the generativeschemes as well as a
comparison to other algorithms. Finally, in Section 7, we discuss our analyticaland numerical
results.

2. A Generative Model with Maximum Non-linearity

We consider a generative model forD observed variablesyd, (d = 1, . . . ,D), in which H hidden
binary causessh, (h = 1, . . . ,H), each taking the value 0 or 1,competeto determine the value of
each observation (see Figure 1). Associated with each pair(sh,yd), is a weightWhd. Given a set of
active causes (i.e., those taking the value 1), the distribution ofyd is determined by thelargestof
the weights associated with the active causes andyd.

Much of our discussion will apply generally to all models of this causal structure, irrespective
of the details of the distributions involved. For concreteness, however, we focus on a particular
choice, in which the hidden variables are drawn from a multivariate Bernoulli distribution; and the
observed variables are non-negative, integer-valued and, given the causes, conditionally independent
and Poisson-distributed. Thus, collecting all the causes into a single binaryvector~s∈ {0,1}H , and
all the observed variables into an integer vector~y∈ Z

D
+ we have:

p(~s|~π) =
H

∏
h=1

p(sh |πh), p(sh |πh) = πsh
h (1−πh)

1−sh, (1)

p(~y|~s,W) =
D

∏
d=1

p(yd |Wd(~s,W)), p(yd |w) =
wyd

yd!
e−w. (2)

Here,~π ∈ [0,1]H parameterizes the prior distribution on~s, while the weight matrixW ∈ RH×D

parameterizes the influence of the hidden causes on the distribution of~y. It will be convenient to
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Figure 1: A generative model withH = 3 hidden variables andD = 5 observed variables. The
valuesyd of the observed variables are conditionally independent given the values~s of
the hidden variables. The valueyd is drawn from a distribution which is determined by
the parametersW1d, W2d, andW3d. For a given binary vector~s these parameters combine
competitively according to the functionWd(~s,W) = maxh{shWhd}.

group these parameters together intoΘ = (~π,W). The functionWd(~s,W) in (2) gives theeffective
weightonyd, resulting from a particular pattern of causes~s. Thus, in the model considered here,

Wd(~s,W) = max
h

{shWhd} . (3)

It is useful to place the model (1)–(3) in context. Models of this general type, in which the obser-
vations are conditionally independent of one another given a set of hidden causes, are widespread.
They underlie algorithms such as ICA, SC, principal components analysis (PCA), factor analysis
(see, e.g., Everitt, 1984), and NMF. In these five cases, and indeed in the majority of such models
studied, the effective weightsWd(~s,W) are formed by a linear combination of all the weights that
link hidden variables to the observation; that is,Wd(~s,W) = ∑hshWhd. Some other models, notably
those of Saund (1995) and Dayan and Zemel (1995), have implemented more competitive combina-
tion rules, where larger individual weights dominate the effective combination. The present model
takes this competition to an extreme, so that only the single largest weight (amongst those associ-
ated with active hidden variables) determines the output distribution. Thus, where ICA, PCA, SC,
or NMF use a sum, we use a max. We refer to this new generative model as theMaximal Causes
Analysis (MCA) model.

Figure 2 illustrates the difference between linear superposition and competitive combination us-
ing (3). Let us suppose that noise-free observations are generatedby causes in the form of horizontal
and vertical objects with the same gray-value, on a dark (black) background (see Figure 2). If these
objects occlude one-another, they may generate an observed image suchas that illustrated in Fig-
ure 2B. However, if we were to use the actual causes and weights in Figure 2A, but instead combine
them linearly, we would obtain the (different) input pattern of Figure 2C. Inthis case, competitive
combination using the max-rule of Equation (3) would result in the correct pattern. This is not,
of course, generally true, but for monochrome objects with small variationsin their gray-values it
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Figure 2: An illustration of non-linear versus linear combination of hidden causes.A Four exam-
ples of hidden causes with gray-value 200.B The input image that may result if sources
occlude one another. In this case, the correct functionWd(~s,W) (see Figure 1) to combine
the hidden causes is the max-operation.C The input image that results if the four causes
combine linearly (gray-values are scaled to fill the interval [0,255]). ForC, the correct
functionWd(~s,W) is linear super-position.

holds approximately. More generally, the maximum combination rule is always closer to the result
of occlusion than is the simple sum implied by models such as ICA.

As stated above, although in this paper we focus on the specific distributionsgiven in (1) and
(2), much of the analytical treatment is independent of these specific choices. Thus, update rules
for learning the weightsW from data will be derived in a general form, that can accommodate
alternative, non-factored distributions for the binary hidden variables.This general form is also
preserved if the Poisson distribution is replaced, for example, by a Gaussian. Poisson variability
represents a reasonable choice for the non-negative data considered in this paper, and resembles the
cost function introduced by Lee and Seung (1999) for NMF.

3. Maximum Likelihood

Given a set of observed data vectorsY={~y(n)}n=1,...,N, taken to be generated independently from
a stationary process, we seek parameter valuesΘ∗ = (~π∗,W∗) that maximize the likelihood of the
data under the generative model of Equations (1) to (3):

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(

p(~y(1), . . . ,~y(N) |Θ)
)

.

We use Expectation-Maximization (EM; Dempster et al. 1977; see also Neal and Hinton 1998, for
the formulation that appears here) to maximize the likelihood in this latent variable model. To do
so, we introduce the free-energyF (Θ,q)—a data-dependent function of the parametersΘ and an
unknown distributionq(~s(1), . . . ,~s(N)) over the hidden data or variables—that is always equal to or
less than the likelihood evaluated at the same parameter values. For independently generated data
vectors~y(n), the distributionq may be taken (without loss of generality) to factor over the hidden
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vectorsq(~s(1), . . . ,~s(N)) = ∏nqn(~s(n)). Then the free-energy is defined as:

F (Θ,q) =
N

∑
n=1

[

∑
~s

qn(~s)
[

log
(

p(~y(n) |~s,Θ)
)

+ log
(

p(~s|Θ)
)

]

]

+H(q) ≤ L(Θ), (4)

whereH(q) = ∑nH(qn(~s)) = −∑n ∑~sqn(~s) log(qn(~s)) is the Shannon entropy ofq. The iterations
of EM alternately increaseF with respect to the distributionsqn while holdingΘ fixed (the E-step),
and with respect toΘ while holding theqn fixed (the M-step). Thus, if we consider a pair of steps
beginning from parametersΘ′, the E-step first finds new distributionsqn that depend onΘ′ and the
observations~y(n), which we write asqn(~s;Θ′). Ideally, these distributions maximizeF for fixed
Θ′, in which case it can be shown thatqn(~s;Θ′) = p(~s|~y(n),Θ′) andF (Θ′,qn(~s;Θ′)) =L(Θ′) (Neal
and Hinton, 1998). In practice, computation of this exact posterior may be intractable, and it is often
replaced by an approximation. After choosing theqn’s in the E-step, we maximizeF with respect
to Θ in the M-step while holding theqn distributions fixed. Thus the free-energy can be re-written
in terms ofΘ andΘ′:

F (Θ,Θ′) =
N

∑
n=1

[

∑
~s

qn(~s;Θ′)
[

log
(

p(~y(n) |~s,Θ)
)

+ log
(

p(~s|Θ)
)

]

]

+ H(Θ′) . (5)

whereH(Θ′) = ∑nH(qn(~s;Θ′)). A necessary condition to achieve this maximum with respect to
Wid ∈ Θ, is that (see Appendix A for details):

∂
∂Wid

F (Θ,Θ′) = ∑
n

∑
~s

qn(~s;Θ′)

(

∂
∂Wid

Wd(~s,W)

)

y(n)
d − Wd(~s,W)

Wd(~s,W)

!
= 0. (6)

Unfortunately, under the max-combination rule of Equation (3),Wd is not differentiable. Instead,
we define a smooth functionW

ρ
d that converges toWd asρ approaches infinity:

W
ρ
d(~s,W) :=

(

H

∑
h=1

(shWhd)
ρ

)
1
ρ

⇒ lim
ρ→∞

W
ρ
d(~s,W) = Wd(~s,W), (7)

and replace the derivative ofWd by the limiting value of the derivative ofW
ρ
d, which we write as

A id (see Appendix A for details):

A id(~s,W) := lim
ρ→∞

(

∂
∂Wid

W
ρ
d(~s,W)

)

= lim
ρ→∞

si (Wid)ρ

∑hsh(Whd)
ρ . (8)

Armed with this definition, a rearrangement of the terms in (6) yields (see Appendix A):

Wid =

∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
n
〈A id(~s,W)〉qn

, (9)

where〈A id(~s,W)〉qn
is the expectation ofA id(~s,W) under the distributionqn(~s;Θ′):

〈A id(~s,W)〉qn
= ∑

~s

qn(~s;Θ′)A id(~s,W) . (10)
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Equation (9) represents a set of non-linear equations (one for eachWid) that defines the necessary
conditions for an optimum ofF with respect toW. The equations do not represent straightforward
update rules forWid because the right-hand-side does not depend only on the old valuesW′ ∈ Θ′.
They can, however, be used as fixed-point iteration equations, by simplyevaluating the derivatives
A id at W′ instead ofW. Although there is no guarantee that these iterations converge, if they do
converge the corresponding parameters must lie at a stationary point of the free-energy. Numerical
experiments described later confirm that this fixed-point approach is, in fact, robust and convergent.
Note that the denominator in (9) vanishes only ifqn(~s;Θ′)A id(~s,W) = 0 for all~s andn (assuming
positive weights), in which case (6) is already satisfied, and no update ofW is required.

Thus far, we have not made explicit reference to the form of prior source distribution, and
so the result of Equation (9) is independent of this choice. For our chosen Bernoulli distribution
(1), the M-step is obtained by setting the derivative ofF with respect toπi to zero, giving (after
rearrangement):

πi =
1
N ∑

n
〈si〉qn

, with 〈si〉qn
= ∑

~s

qn(~s;Θ′)si . (11)

Parameter values that satisfy Equations (9) and (11), maximize the free-energy given the distribu-
tions qn = qn(~s;Θ′). As stated before, the optimum with respect toq (and therefore, exact opti-
mization of the likelihood, since the optimal setting ofq forces the free-energy bound to be tight) is
obtained by setting theqn to the posterior distributions:

qn(~s;Θ′) = p(~s|~y(n),Θ′) =
p(~s,~y(n) |Θ′)

∑
∼
~s

p(
∼

~s,~y(n) |Θ′)
, (12)

wherep(~s,~y(n) |Θ′) = p(~s|~π′) p(~y(n) |~s,W′), and with the latter distributions given by (1) and (2),
respectively.

Equations (9) to (12) thus represent a complete set of update rules for maximizing the data
likelihood under the generative model. The only approximation made to this pointis to use the
old valuesW′ on the right-hand-side of the M-step equation in (9). We therefore referto this set of
updates as a pseudo-exact learning rule and call the algorithm they define MCAex, with the subscript
for exact. We will see in numerical experiments that MCAex does indeed maximize the likelihood.

4. E-Step Approximations

The computational cost of finding the exact sufficient statistics〈A id(~s,W)〉qn
, with qn equal to the

posterior probability (12), is intractable in general. It grows exponentiallyin the smaller of the
number of hidden causesH, and the number of observed variablesD (see Appendix B for details).
A practical learning algorithm, then, must depend on finding a computationally tractable approxi-
mation to the true expectation. One approach, a form of variational method (Jordan et al., 1999),
would be to optimize theqn within a constrained class of distributions; for example, distributions
that factor over the sourcessh. Unfortunately, this conventional factoring approach provides lim-
ited benefit here, as the form ofA id(~s,W) resists straightforward evaluation of the expected value
with respect to the individual sources. Instead, we base our approximations on an assumption of
sparsity—that only a small number of active hidden sources is needed to explain any one observed
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data vector (note that sparsity here refers to thenumberof active hidden sources, rather than to their
proportion). The resulting expressions relate to those that would be found by a variational opti-
mization constrained to distributions that are sparse in the sense above, butare not identical. The
relationship will be explored further in the Discussion.

To develop the sparse approximations, consider grouping the terms in the expected value of
Equation (10) according to the number of active sources in the vector~s:

〈A id(~s,W)〉qn
= ∑

~s

p(~s|~y(n),Θ′)A id(~s,W) (13)

= ∑
a

p(~sa |~y
(n),Θ′)A id(~sa,W)+∑

a,b
a < b

p(~sab|~y
(n),Θ′)A id(~sab,W)+ ∑

a,b,c
a < b < c

. . . ,

where ~sa := (0, . . . ,0,1,0, . . . ,0) with only sa = 1

~sab := (0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0) with only sa = 1, sb = 1, a 6= b,

and~sabc etc. are defined analogously.

Note thatA id(~0,W) = 0 because of (7) and (8). Now, each of the conditional probabilities
p(~s|~y(n),Θ′) implicitly contains a similar sum over~s for normalization:

p(~s|~y(n),Θ′) =
1
Z

p(~s,~y(n) |Θ′) , Z := ∑
~s

p(~s,~y(n) |Θ′) , (14)

and the terms of this sum may be grouped in the same way

Z := p(~0,~y(n) |Θ′)+∑
a

p(~sa,~y
(n) |Θ′)+∑

a,b
a < b

p(~sab,~y
(n) |Θ′)+ ∑

a,b,c
a < b < c

p(~sabc,~y
(n) |Θ′)+ . . . .

Combining (13) and (14) yields:

〈A id(~s,W)〉qn
= (15)

∑a p(~sa,~y(n) |Θ′)A id(~sa,W)+∑ a,b
a<b

p(~sab,~y(n) |Θ′)A id(~sab,W)+ . . .

p(~0,~y(n) |Θ′)+∑a p(~sa,~y(n) |Θ′)+∑ a,b
a<b

p(~sab,~y(n) |Θ′)+ . . .
.

A similar grouping of terms is possible for the expectation〈sh〉qn
.

If we now assume that the significant posterior probability mass will concentrate on vectors~s
with only a limited number of non-zero entries, the expanded sums in both numerator and denomi-
nator of (15) may be truncated without significant loss. The accuracy ofthe approximation depends
both on the sparsity of the true generative process, and on the distance of the current model param-
eters (in the current EM iteration) from the true ones. In general, provided that the true process is
indeed sparse, a truncated approximation will become more accurate as the estimated parameters
approach their maximum likelihood values. The convergence properties and accuracy of algorithms
based on this form of approximation will be tested numerically in Section 6.

Different choices of the truncation yield approximate algorithms with different properties. Two
of these will be considered here.
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4.1 MCA3

In the first approximation, we truncate all but one of the sums that appear inthe expansions of
〈A id(~s,W)〉qn

and〈si〉qn
after the terms that include three active sources, while truncating the nu-

merator of〈A id(~s,W)〉qn
after the two-source terms (see Appendix C for details):

〈A id(~s,W)〉qn
≈

πi exp(I (n)
i ) + ∑

c(c6=i)

πiπcexp(I (n)
ic )H (Wid −Wcd)

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6 ∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

(16)

and 〈si〉qn
≈

πi exp(I (n)
i ) + ∑

c(c6=i)

πiπcexp(I (n)
ic ) + α

2 ∑
b,c(b6=c6=i)

πiπbπcexp(I (n)
ibc )

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6 ∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

, (17)

where

πi =
πi

1−πi
, I (n)

i = ∑
d

(

log(Wid)y(n)
d − Wid

)

,

W̃ab
d = max(Wad,Wbd), I (n)

ab = ∑
d

(

log(W̃ab
d )y(n)

d − W̃ab
d

)

,

W̃abc
d = max(Wad,Wbd,Wcd), I (n)

abc = ∑
d

(

log(W̃abc
d )y(n)

d − W̃abc
d

)

,

(18)

and whereH (x) = 1 for x > 0; 1
2 for x = 0; 0 forx < 0 is the Heaviside function. The above

equations have been simplified by dividing both numerator and denominator byterms that do not
depend on~s, for example, by∏H

i=1(1−πi) (see Appendix C). Approximations (16) and (17) are used
in the fixed-point updates of Equations (9) and (11), where the parameters that appear on the right-
hand-side are held at their current values. Thus all parameters that appear on the right-hand-side of
the approximations take values inΘ′ = (~π′,W′).

The early truncation of the numerator in (16) improves performance in experiments, partly by
increasing competition between causes further, and partly by reducing thecontribution of more
complex data patterns that are better fit, given the current parameter settings, by three active sources
than by two. By contrast, the three-source terms are kept in the numerator of (17). In this case,
neglecting complex input patterns as in (16) would lead to greater errors in the estimated source
activation probabilitiesπi . Indeed, even while keeping these terms,πi tend to be underestimated
if the input data include many patterns with more than three active sources. Tocompensate, we
introduce a factor ofα > 1 multiplying the three-source term in (17) (so thatα = 1 corresponds to
the actual truncated sum), which is updated as described in Appendix C. This scheme yields good
estimates ofπi , even if more than three sources are often active in the input data.

The M-step Equations (9) and (11) together with E-step approximations (16) and (17) represent
a complete set of update equations for the MCA generative model. The computational cost of one
parameter update grows polynomially in the total number of causes, with orderH3. The algorithm
that is defined by these updates will therefore be referred to as MCA3.
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4.2 R-MCA2

In the second place, we consider a restriction of the generative model in which (i) all sh are dis-
tributed according to the same prior distribution with fixed parameterπ; (ii) the weightsWid associ-
ated with each source variablei are constrained to sum to a constantC:

∀i ∈ {1, . . . ,H} : πi = π and ∑
d

Wid = C; (19)

and (iii) on average, the influence of each hidden source is homogeneously covered by the other
sources. This third restriction means that each non-zero generating weight Wgen

id associated with
causei can be covered by the same number ofWgen

cd ≥Wgen
id :

Wgen
id > 0 ⇒ ∑

c6=i

H (Wgen
cd −Wgen

id ) ≈ bi , (20)

whereH is the Heaviside function andbi is the number of causes that can cover causei. Figure 3 il-

B CA

Figure 3: A and B show patterns of weights that satisfy the uniformity condition (20) whereas
weights inC violate it. Each hidden cause is symbolized by an ellipse, with the gray-
level of the ellipse representing the valueWid of each weight within the ellipse. Weights
outside the ellipse for each cause are zero (black). The black squaresindicate the 4-by-4
grid of observed pixels.

lustrates this condition. Figure 3A,B show weight patterns associated with hidden causes for which
the condition is fulfilled; for instance in Figure 3Bbi = 0 for all causes with horizontal weight pat-
terns, whilebi = 1 for the vertically oriented cause. In Figure 3C the condition is violated. Roughly,
these conditions guarantee that all hidden causes have equal averageeffects on the generated data
vectors. They make the development of a more efficient approximate learning algorithm possible
but, despite their role in the derivation, the impact of these assumptions is limited in practice, in the
sense that the resulting algorithm can perform well even when the input data set violates assump-
tions (19) and (20). This is demonstrated in a series of numerical experiments detailed below.

Update rules for the restricted generative model can again be derived by approximate expectation-
maximization (see Appendix C). Using both the sum constraint of (19) and theassumption of ho-
mogeneous coverage of causes, we obtain the M-step update:

Wid = C
∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
d′

∑
n
〈A id′(~s,W)〉qn

y(n)
d′

. (21)
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Empirically, we find that the restricted parameter space of this model means thatwe can approximate
the sufficient statistics〈A id(~s,W)〉qn

by a more severe truncation than before, now keeping two-
source terms in the denominator, but only single-source terms in the numerator, of the expansion
(15). This approximation, combined with the fact that any zero-valued observed patterns (i.e., those
with ∑d y(n)

d = 0) do not affect the update rule (21) and so can be neglected, yields theexpression
(see Appendix C):

〈A id(~s,W)〉qn
≈

exp(I (n)
i )

∑
h

exp(I (n)
h ) + π

2 ∑
a,b

a 6= b

exp(I (n)
ab )

, π :=
π

1−π
, (22)

with abbreviations given in (18). Equations (21) and (22) are update rules for the MCA generative
model, subject to the conditions (19) and (20). They define an algorithm that we will refer to as
R-MCA2 with R for restrictedand with2 indicating a computational cost that grows quadratically
with H.

5. Relation to Neural Networks

We now relate component extraction as learned within the MCA framework to that achieved by
a family of artificial neural networks. Consider the network of Figure 4 which consists ofD input
variables (orunits) with valuesy1, . . . ,yD andH hidden units with valuesg1, . . . ,gH . An observation
~y is represented by the values (oractivities) of the input units, which act throughconnectionspa-
rameterized by(Wid) to determine the activities of the hidden units through anactivation function
gi = gi(~y,W ). These parameters(Wid) are known as the network (or synaptic)weights.

Wid

gi(~y,W )

yd

Figure 4: Architecture of a two layer neural network. Input is represented by valuesy1 to yD of
D input units (small black circles). These values combine with synaptic weightsW to
determine the activities of the hidden unitsg1 to gH (big black circles). The dotted hor-
izontal arrows symbolize lateral information exchange that may be requiredto compute
the functionsg1 to gH . After thegi are computed the parameters(Wid) are modified using
a ∆-rule.

Learning in such a neural network involves adjusting the weightsW in response to a series of
input patterns, using a rule that is heuristically designed to extract some form of structure from these
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inputs. A standard choice is the Hebbian∆-rule with divisive normalization:

∆Wid = εgi(~y,W )yd and W new
id = C

Wid +∆Wid

∑d′(Wid′ +∆Wid′)
, (23)

The normalization step is needed to prevent weights from growing without bound, and the divisive
form used here is most common. Here, the constantC defines the value at which∑dWid is held
constant; it will be related below to theC appearing in Equation 19. Many neural networks with
the structure depicted in Figure 4, and that use a learning rule identical or similar to (23), have been
shown to converge to weight values that identify clusters in, or extract useful components from, a
set of input patterns (O’Reilly, 2001; Spratling and Johnson, 2002; Yuille and Geiger, 2003; L̈ucke
and von der Malsburg, 2004; Lücke, 2004; L̈ucke and Bouecke, 2005; Spratling, 2006).

The update rule (23) depends on only one input pattern, and is usually applied online, with the
weights being changed in response to each pattern in turn. If, instead, weconsider the effect of
presenting a group of patterns{~y(n)}, the net change is approximately (see Appendix D):

W new
id ≈ C

∑n gi(~y(n),W )y(n)
d

∑d′ ∑n gi(~y(n),W )y(n)
d′

. (24)

Now, comparing (24) to (21), we see that if the activation function of a neural network were cho-
sen so thatgi(~y(n),W ) = 〈A id(~s,W)〉qn

, then the network would optimize the parameters of the
restricted MCA generative model, withW = W (we drop the distinction betweenW andW from
now on). Unfortunately, the expectation〈A id(~s,W)〉qn

depends ond, and thus exact optimization
in the general case would require a modified Hebbian rule. However, the truncated approximation
of (22) is the same for alld, and so the changes in each weight depend only on the activities of the
corresponding pre- and post-synaptic units. Thus, the Hebbian∆-rule,

∆Wid = εgi yd with gi =
exp(Ii)

∑
h

exp(Ih) + π
2 ∑

a,b
a 6= b

exp(Iab)
(25)

(whereIh, Iab, andπ are the abbreviations introduced in Equations 18 and 22), when combined with
divisive normalization, implements an online version of the R-MCA2 algorithm. We refer to this
online weight update rule as R-MCANN (for Neural Network).

Note that the functiongi in (25) resembles the softmax function (see, e.g., Yuille and Geiger,
2003), but contains an additional term in the denominator. This added term reduces the change in
weights when an input pattern results in more than one hidden unit with significant activity. That is,
the system tries to explain a given input pattern using the current state of its model parametersW.
If one hidden unit explains the input better than any combination of two units, that unit is modified.
If the input is better explained by a combination of two units, the total learning rate is reduced.

Soft winner-take-all (WTA) activation functions, such as the softmax, are found in many net-
works that serve to both clusterandextract components from inputs, as appropriate. For clustering,
the relationship between WTA-like competition and maximum-likelihood methods is well known
(Nowlan, 1990). The connection drawn here offers a probabilistic account of the effectiveness of
similar rules for component identification. If the probability of more than one cause being active is
small (i.e.,π is small), our activation rule forgi (25) reduces to the standard softmax, suggesting that
neural networks with activation and learning functions that resemble Equations (25) may perform
well at both component extraction and clustering.
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6. Experiments

The MCA generative model, along with the associated learning algorithms that have been intro-
duced here, are designed to extract component features from non-linear mixtures. To study their
performance, we employ numerical experiments, using artificial as well as more realistic data. The
artificial data sets are based on a widely-used benchmark for non-linearcomponent extraction, while
the more realistic data are taken from acoustic recordings in one case and from natural images in
the other. The goals of these experiments are (1) to establish whether the approximate algorithms
do indeed increase the likelihood of the model parameters; (2) to test convergence and asymptotic
accuracy of the algorithms; (3) to compare component extraction using MCAto other component-
extraction algorithms; and (4) to demonstrate the applicability of the model and algorithms to more
realistic data where non-linear component combinations arise naturally.

6.1 The Bars Test

The data sets used in experiments on artificial data were drawn from variants of the “bars test”
introduced by F̈oldiák (1990). Each data vector represents a grayscale image, with a non-linear
combination of randomly chosen horizontal and vertical light-colored bars, each extending all the
way across a black background. Most commonly, the intensity of the bars isuniform and equal,
and the combination rule is such that overlapping regions remain at the same intensity. This type
of data is a benchmark for the study of component extraction with non-linearinteractions between
hidden causes. Many component-extraction algorithms have been applied toa version of the bars
test, including some with probabilistic generative semantics (Saund, 1995; Dayan and Zemel, 1995;
Hinton et al., 1995; Hinton and Ghahramani, 1997), as well as many with non-generative objective
functions (Harpur and Prager, 1996; Hochreiter and Schmidhuber, 1999; Lee and Seung, 2001;
Hoyer, 2004) a substantial group of which have been neurally inspired(Földiák, 1990; Fyfe, 1997;
O’Reilly, 2001; Charles et al., 2002; Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; L̈ucke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 2007).

In most of the experiments described here the input data were 25-dimensional vectors, repre-
senting a 5-by-5 grid of pixels; that is,D = 5×5. There wereb possible single bars, some of which
were superimposed to create each image. On the 5-by-5 grid there are 5 possible horizontal, and 5
vertical, bar positions, so thatb = 10. Each bar appears independently with a probabilityπ, with
areas of overlap retaining the same value as the individual bars. Figure 5A shows an example set of
noisy data vectors constructed in this way.

6.2 Annealing

The likelihood surface for the MCA generative model is potentially multimodal. Thus, hill-climbing
algorithms based on EM may converge to local optima in the likelihood, which may well be con-
siderably poorer than the global optimum. This tendency to find sub-optimal fixed points can be
reduced by incorporating a deterministic annealing, or relaxation, procedure (Ueda and Nakano,
1998; Sahani, 1999), whereby the entropy of the posterior distribution inthe free energy (4) is
artificially inflated in early iterations, with this inflation progressively reducedin later iterations,
under the control of a temperature parameter. All of the experiments discussed here incorporated
deterministic annealing, the details of which are given in Appendix E.
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W1d W2d W3d W4d W5d W6d W7d W8d W9d W10d
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A Input patterns

Figure 5: Bars test data withb = 10 bars onD = 5× 5 pixels and a bar appearance probability
of π = 2

10. A 24 patterns from the set ofN = 500 input patterns that were generated
according to the generative model with Poisson noise.B Change of the parametersW if
MCA3 is used for parameter update. Learning stopped automatically after 108 iterations
in this trial (see Appendix E).

6.3 Convergence

From a theoretical standpoint, none of the four algorithms MCAex, MCA3, R-MCA2, or R-MCANN,
can be guaranteed to maximize the likelihood of the MCA generative model. All ofthem update
the parameters in the M-step using a fixed-point iteration, rather than either maximization or a
gradient step. All but MCAex also approximate the posterior sufficient statistics (10). Thus, our
first numerical experiments are designed to verify that the algorithms do, in fact, increase parameter
likelihood in practice, and that they do converge. For this purpose, it is appropriate to use a version
of the bars test in which observations are generated by the MCA model.

Thus, we selected MCA parameters that generated noisy bar-like images. There were 10 hidden
sources in the generating model, one corresponding to each bar. The associated matrix of generating
weights,Wgen, was 10×25, with each row representing a horizontal or vertical bar in a 5-by-5 pixel
grid. The weightsWgen

id that correspond to the pixels of the bar were set to 10, the others to 0, so
that∑dWgen

id = 50. Each source was active with probabilityπgen
i = 2

10, leading to an average of two
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bars appearing in each image. We generatedN = 500 input patterns (each with 25 elements) using
Equations (1) to (3); a subset of the resulting patterns is displayed in Figure 5A.
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R-MCA2Wgen,~πgen MCAex MCA3

iterations

Figure 6: Change of the MCA parameter likelihood under different MCA learning algorithms. Data
were generated as in Figure 5. To allow for comparison, the same set ofN = 500 input
patterns was used for all experiments shown. The likelihood of the generating parameters
(Wgen,~πgen) is shown by the dotted horizontal line. The main axes show likelihood values
of the batch-mode algorithms MCAex, MCA3, and R-MCA2 as a function of EM iteration.
The inset axes shows likelihood values of the online algorithm R-MCANN as a function
of number of input pattern presentations. Patterns were randomly selectedfrom the set of
N = 500 inputs, and the parameters were updated for each pattern.

Figure 6 shows the evolution of parameter likelihoods, as a function of iteration, for each of the
MCA algorithms, with 5 different choices of initial parameters for each. With the exception of the
first few iterations of R-MCA2, the likelihood of the parameters under the batch mode algorithms
increased at almost every iteration. The online R-MCANN showed greater fluctuations as updates
based on individual data vectors inevitably perturbed the parameter estimates.

As might be expected, given the observation of increasing likelihoods andthe fact that the like-
lihoods are bounded, each algorithm eventually converged from each initial value used in Figure 6.
Furthermore, in each case, the likelihood of the solution found was close to the likelihood of the ac-
tual weights used in generation (the dashed horizontal lines). The final likelihood values for MCAex

were slightly higher than the likelihoods of (Wgen, ~πgen), as is expected for an exact maximum-
likelihood algorithm in noisy data; whereas the values achieved by the approximations MCA3 and
R-MCA2 were slightly lower. In fact, in 100 further experiments, the annealing and parameter ini-
tialization schemes described in Appendix E, brought the likelihood close to that of the generating
weights in 98 of 100 runs using R-MCA2 and in 90 of 100 runs using MCA3. We did not run
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these more extensive tests for MCAex due to its long running time (it is also omitted from similar
quantitative analyses below).

The two basic observations, that likelihoods generally increased at eachiteration and that the
batch-mode algorithms all reliably converged, held true for all of the experiments described here
and below, even where data were not generated from a version of the MCA model. Thus, we
conclude that these algorithms are generally robust in practice, despite theabsence of any theoretical
guarantees.

6.4 Parameter Recovery

Figure 5B shows the evolution of parametersW, under the approximate MCA3 algorithm, showing
that the estimatedW did indeed converge to values close to the generating parametersWgen, as was
suggested by the convergence of the likelihood to values close to that of thegenerative parameters.
While not shown, the convergence ofW under MCAex, R-MCA2 or R-MCANN was qualitatively
similar to this sequence.

Clearly, if MCAex finds the global optimum, we would expect the parameters found to be close
to those used for generation. The same is not necessarily true of the approximate algorithms. How-
ever, both MCA3 and R-MCA2 did in fact find weightsW that were very close to the generating
values whenever an obviously poor local optimum was avoided.

In MCA3 the average pixel intensity of a bar was estimated to be 10.0±0.5 (standard deviation),
taken across all bar pixels in 90 trials where the likelihood increased to a highvalue. Using R-MCA2
this value was estimated to be 10.0±0.8 (across all bar pixels on 98 high-likelihood trials). Note
that the Poisson distribution (2) results in a considerable variance of bar pixel intensities around the
mean of 10.0 (compare Figure 5A) which explains the high standard deviation around the relatively
precise mean value. The background pixels (original value zero) are estimated to have an intensity
of 0.05±0.02 in MCA3 and are all virtually zero (all are smaller than 10−56) in R-MCA2. MCA3

also estimates the parameters~π. Because of the finite number of patterns (N = 500) we compared the
estimates with the actual frequency of occurrence of each bari: π′

i = (numb of barsi in input)/N.
The mean absolute difference between the estimateπi and the actual probabilityπ′

i was 0.006 (across
the 90 trials with high likelihood), which demonstrates the relative accuracy ofthe solutions, despite
the approximation made in Equation (17).

For the neural network algorithm R-MCANN given by (25) we observed virtually the same be-
havior as for R-MCA2 when using a small learning rate (e.g.,ε = 0.1) and the same cooling schedule
in both cases (see Lücke and Sahani, 2007). The additional noise introduced by the online updates
of R-MCANN had only a negligible effect. For larger learning rates the situation was different, how-
ever. For later comparison to noisy neural network algorithms, we used a version of R-MCANN

with a relatively high learning rate ofε = 1.0. Furthermore, instead of a cooling schedule, we
used a fixed temperatureT = 16 and added Gaussian noise (σ = 0.02) at each parameter update:
∆Wid = εgi yd +ση. With these learning parameters, R-MCANN learned very rapidly, requiring
fewer than 1000 pattern presentations in the majority of trials. Ten plots of likelihoods against
number of presented patterns are shown for R-MCANN in Figure 6 (inset figure, black lines) for the
sameN = 500 patterns as used for the batch-mode algorithms. Because of the additional noise in
W, the final likelihood values were somewhat lower than those of the generating weights. Using
R-MCANN with the same parameters but without added noise (σ = 0), final likelihood values were
often higher (inset axes, gray lines) but the algorithm also converged tolocal optima more often. In
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Reliability
Model noisy no noise

MCA3 90% 81%
R-MCA2 98% 96%

R-MCANN >99% >99%

Reliability
Model no noise reference

noisy-or 27% Saund, 1995
competitive 69%∗ Dayan/Zemel, 1995

LOCOCODE 96% Hochreiter/Schmidhuber, 1999

Table 1: Comparison of MCA algorithms with other systems in the standard bars test with b = 10
bars (D = 5×5,π = 2

10, N = 500). For the MCA algorithms reliability values are computed
on the basis of 100 trials. Values for these algorithms are also given for thesame bars test
with Poisson noise. Reliability values for the other systems are taken from the literature.
For instance, the model of Hochreiter and Schmidhuber (1999) is reported to fail to extract
all bars in one of 25 trials. Two systems, back-propagation (BP) and GeneRec, that are
described by O’Reilly (2001) have also been applied to this bars test. In their standard
versions, BP and GeneRec achieve 10% and 60% reliability, respectively. Hochreiter and
Schmidhuber (1999) report that ICA and PCA extract only subsets of all bars. ∗Trained
without bar overlap.

contrast, R-MCANN with noise avoided local optima in all 100 trials. In the following, R-MCANN

will therefore refer to the noisy version withσ = 0.02 unless otherwise stated.

6.5 Comparison to Other Algorithms—Noiseless Bars

To compare the component extraction results of MCA to that of other algorithmsreported in the
literature, we used a standard version of the bars benchmark test, in whichthe bars appear with no
noise. The competing algorithms do not necessarily employ probabilistic semantics, and may not
be explicitly generative; thus, we cannot compare performance in terms oflikelihoods, nor in terms
of the accuracy with which generative parameters are recovered. Instead, we adopt a commonly
used measure, which asks howreliably all the different bars are identified (see, e.g., Hochreiter and
Schmidhuber, 1999; O’Reilly, 2001; Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; Spratling, 2006). For each model, an internal variable (say the activities of the hidden units,
or the posterior probabilities of each source being active) is identified as the response to an image.
The responses evoked in the learned model by each of the possible single-bar images are then
considered, and the most active unit or most probable source corresponding to each bar is identified.
If the mapping from single-bar images to the most active internal variable is injective—that is, for
each single bar a different hidden unit or source is the most active—thenthis instance of the model
is said to have represented all of the bars. The reliability is the frequency with which each model
represents all possible bars, when started from random initial conditions, and given a random set
of images generated with the same parameter settings. For the MCA algorithms, theresponses are
defined to be the approximated posterior values for each possible sourcevector with only one active
source, evaluated at the final parameter values after learning:q(~sh;Θ) ≈ p(~sh |~ybar,W).

The reliabilities of MCA3, R-MCA2, and R-MCANN as well as some other published component-
extraction algorithms are shown in Table 1. These experiments used a configuration of the bars test
much as above (D = 5× 5, b = 10, andπgen = 2

10) which is perhaps the most commonly used
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in the literature, (e.g., Saund, 1995; Dayan and Zemel, 1995; Hochreiter and Schmidhuber, 1999;
O’Reilly, 2001). The bars have a fixed and equal gray-value. We generatedN = 500 patterns ac-
cording to these settings and normalized the input patterns~y(n) to lie in the interval[0,10] (i.e., bar
pixels have a value of 10 and the background is 0). We considered both the case with Poisson noise
(which has been discussed above) and the standard noiseless case. Experiments were run starting
from 100 different randomly initialized parametersW. The same algorithms and the same cooling
schedule were used (the same fixedT in the case of R-MCANN) to fit patterns with and without
noise.

Without noise, MCA3 with H = 10 hidden variables found all 10 bars in 81 of 100 experiments.
R-MCA2 with H = 10 found all bars in 96 of 100 experiments. Using the criterion of reliability,
R-MCANN performed best and found all bars in all 100 of 100 experiments. This seems likely to
result from the fact that the added Gaussian noise, as well as noise introduced by the online updates,
combined to drive the system out of shallow optima. Furthermore, R-MCANN was, on average,
faster than MCA3 and R-MCA2 in terms of required pattern presentations. It took fewer than 1000
pattern presentations to find all bars in the majority of 100 experiments,1 although in a few trials
learning did take much longer.

On the other hand, MCA3 and R-MCA2 achieved better likelihoods and recovered generative
parameters closer to the true values. These algorithms also have the advantage of a well defined
stopping criterion. MCA3 learns the parameters of the prior distribution whereas R-MCA2 uses
a fixed value. R-MCA2 does, however, remain highly reliable, even when the fixed parameterπ
differs significantly from the true valueπgen.

Figure 7: A common local optimum found by MCA3 in the standard bars test. Two weight patterns
reflect the same hidden cause, while another represents the superposition of two causes.

As was the case for the noisy bars, the R-MCA algorithms avoided local optimamore often.
This may well be a result of the smaller parameter space associated with the restricted model. A
common local optimum for MCA3 is displayed in Figure 7, where the weights associated with two
sources generate the same horizontal bar, while a third source generates a weaker combination of
two bars. This local solution is suboptimal, but the fact that MCA3 has parameters to represent
varying probabilities for each cause being present, means that it can adjust the corresponding rates
to match the data. The fixed setting ofπ for R-MCA would introduce a further likelihood penalty
for this solution.

Many component-extraction algorithms—particularly those based on artificialneural networks—
use models with more hidden elements than there are distinct causes in the input data (e.g., Charles
et al., 2002; L̈ucke and von der Malsburg, 2004; Spratling, 2006). If we useH = 12 hidden vari-
ables, then all the MCA-algorithms (MCA3, R-MCA2, and R-MCANN) found all of the bars in all
of 100 trials.

1. Note that, according to the definition above, all bars are often already represented at intermediate likelihood values.
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B Input patterns with different bar sizes

W after learning (MCA3)

D W after learning (R-MCANN)

C

W after learning (MCA3)

Input patterns with overlapping parallel bars

W after learning (MCA3)

Input patterns with 3 bars on averageA

Figure 8: Experiments with increased bar overlap. InA bar overlap is increased by increasing the
bar appearance probability toπgen= 3

10 (an average of three bars per pattern). InB bar
overlap is varied using different bar widths (two one-pixel-wide bars and one three-pixel-
wide bar for each orientation). In the bars test inC there are 8 (two-pixel-wide) horizontal
bars and 8 (two-pixel-wide) vertical bars on aD = 9×9 pixel grid. Each bar appears with
probabilityπgen= 2

16 (two bars per input pattern on average). Each experimental data set
is illustrated by 14 typical input patterns. ForA to C the parametersW of a typical trial
are shown if MCA3 is used for learning. The vectors~Wi = (Wi1, . . . ,WiD) appear in order
of decreasing learned appearance probabilityπi . In D the parametersW for a typical trial
using R-MCANN are shown.
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6.6 Comparison to Other Algorithms—Bar Overlap

For most component-extraction algorithms that have been tested against the bars benchmark, it
is difficult to know how specialized they are to the form of this test. The algorithms might, for
example, depend on the fact that all bars appear with the same probability, or that they have the same
width. Different versions of the bars test have therefore been introduced to probe how generally
the different algorithms might succeed. In particular, there has been considerable recent interest
in studying robustness to varying degrees of overlap between bars (see, e.g., L̈ucke and von der
Malsburg, 2004; L̈ucke, 2004; Spratling, 2006). This is because it is the non-linear combination
within the regions of overlap that most distinguishes the bars test images fromlinear superpositions
of sources. In three different experiments we varied the degree of overlap in three different ways.
Following Spratling (2006), in all experiments the MCA model had twice as many possible sources
as there were bars in the generative input. In all experiments we used the same algorithms, initial
conditions, and cooling schedules as described above and in Appendix E. Again, each trial used
a newly generated set of training patterns and a different randomly generated matrixW. In the
following, reliability values are computed on the basis of 25 trials each.

The most straightforward way to increase the degree of bar overlap is to use the standard bars
test with an average of three instead of two bars per image, that is, takeπ = 3

10 for an otherwise
unchanged bars test withb = 10 bars onD = 5× 5 pixels (see Figure 8A for some examples).
When usingH = 20 hidden variables, MCA3 extracted all bars in 92% of 25 experiments. Thus the
algorithm works well even for relatively high degrees of superposition.The values ofW found in a
typical trial are shown in Figure 8A. The parameters~Wi = (Wi1, . . . ,WiD) that are associated with a
hidden variable or unit are sorted according to the learned appearanceprobabilitiesπi . Like MCA3,
both R-MCA2 and R-MCANN were run without changing any parameters. In the restricted case, this
meant that the assumed value for the source probability (π = 2

10) was different from the generating
value (πgen = 3

10). Nevertheless, the performance of both algorithms remained better than that of
MCA3, with R-MCA2 and R-MCANN finding all 10 bars in 96% and 100% of 25 trials, respectively.

We can also choose unequal bar appearance probabilities (cf., Lücke and von der Malsburg,
2004). For example, half the bars appeared with probabilityπgen

h = (1+ γ) 2
10 and the other half2

appeared with probabilityπgen
h = (1− γ) 2

10, MCA3 extracted all bars in all of 25 experiments for
γ = 0.5. Forγ = 0.6 (when half the bars appeared 4 times more often than the other half) all bars
were extracted in 88% of 25 experiments. Forγ = 0.6 R-MCA2 and R-MCANN found all bars in
96% and 100% of 25 experiments respectively. Reliability values for R-MCANN started to decrease
for γ = 0.7 (92% reliability).

As suggested by L̈ucke and von der Malsburg (2004), we also varied the bar overlap in a second
experiment by choosing bars of different widths. For each orientation we used two one-pixel wide
bars and one three-pixel-wide bar. Thus, for this data set,b = 6 andD = 5×5. The bar appearance
probability wasπ = 2

6, so that an input contained, as usual, two bars on average. Figure 8B shows
some examples. MCA3 extracted all bars in 84% of 25 experiments for this test. Reliability values
decreased for more extreme differences in the bar sizes. R-MCA2 and R-MCANN both found all
bars in all 25 trials each. Thus, although the unequal bar sizes violated theassumption∑dWid = C
that was made in the derivation of R-MCA2 and R-MCANN, the algorithms’ performance in terms
of reliability seemed unaffected.

2. If bars are numberedh = 1 to 5 for the horizontal andh = 6 to 10 for the vertical, we chose the ones with even
numbers to appear with the higher probability.
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Figure 9: Comparison of MCA3, R-MCA2, and R-MCANN with other systems in the bars test with
increased occlusion (compare Figure 8C and Figure 2). Bars test parameters areD =
9×9, b = 16, π = 2

16, andN = 400. Data for the non-MCA algorithms are taken from
Spratling (2006). The bar heights represent the average numbers of extracted bars in
25 trials. Error bars indicate the largest and the lowest number of bars found in a trial.
The algorithms NN-DI and DI are feed-forward neural networks of thetype depicted in
Figure 4. All other (non-MCA) algorithms are versions of NMF with different objectives
and constraints (see Appendix E and Spratling, 2006, for details).

In the third experiment we changed the degree of bar overlap more substantially, using a bars
test that included overlapping parallel bars as introduced by Lücke (2004). We used eight horizontal
and eight vertical bars, each two pixels wide, on a 9-by-9 grid. Thus, two parallel neighboring bars
had substantial overlap. Figure 8C shows some typical input patterns. Note that the introductory
example of Figure 2A,B is also of this type. To allow for a detailed comparison withother systems
we adopted the exact settings used by Spratling (2006), that is, we considered 25 runs of a system
with H = 32 hidden variables using bars test parametersD = 9×9, πgen= 2

16, andN = 400. For
these data, MCA3 found all 16 bars in all of 25 experiments. The same is true for R-MCA2 whereas
R-MCANN missed one bar in one of the 25 trials. Figure 9 shows a quantitative comparison with
other algorithms that have been applied to this version of the bars test. Of the ten algorithms stud-
ied by Spratling (2006) just one, namely non-negative sparse coding (NN-SC; Hoyer, 2002, with
sparseness parameterλ = 1), is as reliable as MCA3 and R-MCA2. The other systems, including
forms of NMF both with and without a sparseness constraint, fail partly or entirely in extracting
the actual hidden causes. For a typical trial using MCA3 the final parametersW are displayed in
Figure 8C. Again the~Wi ’s associated with the different hidden variables are sorted according totheir
learned parametersπi . A qualitatively different set of~Wi ’s was obtained when R-MCANN was used
for learning. Figure 8D shows a typical outcome (~Wi ’s are not sorted). In this case, only the actual
causes are clearly represented whereas the~Wi ’s of the supernumerary units remain unspecialized.
The same feature is reported by Spratling (2006) for the algorithms NN-DI and DI used in this same
test. Convergence to a representation that contains just the true hidden causes and leaves super-
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numerary units unspecialized can improve the interpretability of the result. When using a higher
fixed temperature for R-MCANN all the hidden units represented bars, with some bars represented
by more than one unit. However, hidden units that represented more composite inputs, as seen for
MCA3, were rarely observed. On the other hand, the parameters found by MCA3 provide an indi-
cation of significance of each weight pattern in the appearance probabilities πi . Thus, in Figure 8C
the appearance probabilities for the first 16 sources are much higher than for the others. The later
sources may be interpreted as capturing some of the higher-order structure that results from a finite
set of input patterns. In contrast to R-MCA, such higher-order representations need not adversely af-
fect the data likelihood because the corresponding appearance probabilities can be relatively small.

A Generating causes B Input patterns

C W after learning (MCA3)

Figure 10: Experiments with more causes and hidden variables than observed variables.A The
12 patterns used to generate the data. Each is a 1-by-2 pixel bar on a 3-by-3 grid
(D = 9). B Ten examples of the 500 input patterns generated using the causes shown
in A. C ParametersW found in a typical run of MCA3 with H = 24. The vectors
~Wi = (Wi1, . . . ,WiD) appear in order of decreasing learned appearance probabilityπi .

6.7 More Causes than Observed Variables

In the experiments described above, the number of hidden causes was always smaller than the
number of observed variables. We next briefly studied the “over-complete” case where data were
generated, and models were fit, using more hidden causes than observedvariables. We generated
N = 500 patterns on a 3-by-3 grid (D = 9), using sparse combinations of 12 hidden causes corre-
sponding to 6 horizontal and 6 vertical bars, each 1-by-2 pixels in size and thus extending across
only a portion of the image (Figure 10A). As in the bars tests above, black was assigned to a value
of 0 and white to 10. Patterns were generated without noise, with an average of two bars appearing
in each (π = 2

12). Ten such patterns are shown in Figure 10B.
Figure 10C shows the weights learned during a typical run using MCA3 with the same parameter

settings as above and twice as many hidden variables than observed ones (H = 24). Weights are
sorted in order of decreasing inferred appearance probabilitiesπi . All 12 causes were identified,
with many represented more than once. A few hidden variables, with lower inferred probabilities of
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appearance, were associated with more composite patterns. MCA3 extracted all causes in all of 25
trials. R-MCA2 also extracted all causes in all of 25 trials, and never represented composite patterns.
R-MCANN only extracted all causes when run at fixed temperatures that were lowerthan those used
for the bars tests above (e.g.,T = 3), in which case it did so in all of 25 trials. This requirement
for a lower temperature was consistent with the observation that a lower datadimensionD leads to
a decrease in the critical temperatures associated with the algorithms (see Appendix E). For larger
values ofT (e.g.,T = 16) R-MCANN did not extract single causes.

6.8 Violations of Model Assumptions

To optimize the likelihood of the data under the MCA generative model, each of the approximate
learning algorithms relies on the fact that, under the Bernoulli prior (1), some number of the ob-
served data vectors will be generated by only a small number of active sources. To highlight this
point we explicitly removed such sparse data vectors from a standard bars test, thereby violating
the Bernoulli prior assumption of the generative model. We used bars tests as described above,
with b = 10 orb = 16 bars andπ = 2

b, generatingN = 500 (or more) patterns, in each case by first
drawing causes from the Bernoulli distribution (1) and then rejecting patterns in which fewer thanm
causes were active. As might be expected, whenm was 3 or greater the approximate algorithms all
failed to learn the weights associated with single causes. However, when only patterns with fewer
than 2 bars had been removed, MCA3 was still able to identify all the bars in many of the runs.
More precisely, using data generated as above withb= 10,m= 2 andN = 500, MCA3 with H = 10
hidden variables found all causes in 69 of 100 trials with noisy observations and in 37 of 100 trials
without noise (the parameters for MCA3 and the associated annealing schedule were unchanged).
Note that in these experiments the average number of active causes per input vector is increased by
the removal of sparse data vectors. An increase in reliability in the noisy case is consistent with our
other experiments. The relatively low reliability seen for noiseless bars in thisexperiment may be
due to the combined violation of both the assumed prior and noise distributions.

As long as the data set did contain some vectors generated by few sources, the learning algo-
rithms could all relatively robustly identify the causes given sufficient data, even when the average
observation contained many active sources. For instance, in a standardnoiseless bars test with
b = 16 bars on an 8×8 grid, andN = 1000 patterns with an average of four active causes in each
(π = 4

16), all three algorithms still achieved high reliability values, using twice as many hidden vari-
ables as actual bars (H = 32), and using the same parameters as for the standard bars test above.
MCA3 found all causes in 20 of 25 trials in these data (80% reliability). Reliabilities of R-MCA2

and R-MCANN (25 trials each) were 76% and 100%, respectively. The reliabilities of all algorithms
fell when the data set contained fewer patterns, or when the average number of bars per pattern was
larger.

6.9 Applications to More Realistic Data

We study two examples of component extraction in more realistic settings, applying the MCA algo-
rithms to both acoustic and image data.

Acoustic data.Sound waveforms from multiple different sources combine linearly, and soare con-
ventionally unmixed using algorithms such as ICA applied to simultaneous recordings from mul-
tiple microphones. The situation is different, however, forspectrogramrepresentations of natural
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Figure 11: Application to acoustic data.A Pressure waveforms of six phonemes spoken by a male
voice. Axes here, and for the waveform inC, are as shown for [a0] (A is a normalized
amplitude).B The log-spectrograms of the phonemes inA. We use 50 frequency chan-
nels and nine time windows (t̃ = 1, . . . ,9). Axes of all log-spectrograms in the figure
are as shown for [a0]. C Waveform of the linear mixture of phonemes [a0] and [k], and
the log-spectrogram of this linear mixture.D Six examples of theN = 500 data vectors
that were used for the experiments. Each data vector is the log-spectrogram of a linear
mixture of the phoneme waveforms inA. The data sets for the experiments used an av-
erage of two waveforms per data vector.E ParametersW found by MCA3 with H = 12,
using 500 mixture log-spectrograms. The parameter vectors~Wi = (Wi1, . . . ,WiD) appear
in order of decreasing learned appearance probabilityπi and are linearly scaled to fill
the gray scale.
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sound. The power of natural sounds in individual time-frequency binsvaries over many orders of
magnitude, and so is typically measured logarithmically and expressed in units ofdecibels, giving
a representation that is closely aligned with the response of the cochlea to thecorresponding sound.
In this representation, the combination of log-spectrograms of the different sources may be well
approximated by the max rule (R. K. Moore, 1983, quoted by Roweis, 2003). In particular, the
logarithmic power distribution, as well as the sub-linear power summation due to phase misalign-
ment, both lead to the total power in a time-frequency bin being dominated by the single largest
contribution to that bin (see Discussion).

To study the extraction of components from mixtures of sound by MCA, we based the following
experiment on six recordings of phonemes spoken by a male voice (see Figure 11A). The phoneme
waveforms were mixedlinearly to generateN = 500 superpositions, with each phoneme appearing
in each mixture with probabilityπ = 2

6. Thus each mixture comprised two phonemes on average,
with a combination rule that resembled the MCA max-rule in the approximate sense described
above.

We applied the MCA algorithms to the log-spectrograms of these mixtures. Figure11B shows
the log-spectrograms of the individual phonemes and Figure 11C shows the log-spectrogram of an
example phoneme mixture. We used 50 frequency channels and 9 time bins to construct the log-
spectrograms. The resulting values were thresholded and then rescaledlinearly so that power-levels
across all phonemes filled the interval[0,10], as in the standard bars test. For more details see
Appendix E.

The MCA algorithms were used with the same parameter settings as in the bars testsabove,
except that annealing began at a lower initial temperature (see Appendix E). As in the bars tests
with increased overlap, we used twice as many hidden variables (H = 12) as there were causes in
the input. Figure 11E shows the parametersW learned in one run using MCA3. The parameter
vectors~Wi = (Wi1, . . . ,WiD) are displayed in decreasing order of the corresponding learned valueof
πi . As can be seen, the first six such vectors converged to spectrogramrepresentations similar to
those of the six original phonemes. The six hidden variables associated withlower values ofπi ,
converged to weight vectors that represented more composite spectrograms. This result is represen-
tative of those found with MCA3. R-MCA2 also converged to single spectrogram representations,
but tended to represent those single spectrograms multiple times rather than representing more com-
posite patterns with the additional components. Results for R-MCANN were very similar to those
for R-MCA2 when we used a high fixed temperature (see Appendix E for details). For intermedi-
ate fixed temperatures, results for R-MCANN were similar to those of the bars test in Figure 8D in
that each cause was represented just once, with additional hidden units displaying little structure in
their weights. For lower fixed temperatures (starting fromT ≈ 40) R-MCANN failed to represent all
causes.

In general, the reliability values of all three algorithms were high. These were measured as
described for the bars tests above, by checking whether, after learning, inference based on each
individual phoneme log-spectrogram led to a different hidden cause being most probable. MCA3
found all causes in 21 of 25 trials (84% reliability), R-MCA2 found all causes in all of 25 trials; as
did R-MCANN (with fixed T = 70). Reliability for MCA3 improved to 96% with a slower cooling
procedure (θ∆W = 0.25×10−3; see Appendix E).

Visual data.Finally, we consider a data set for which the exact hidden sources and their mixing rule
are unknown. The data were taken from a single 250-by-250 pixel gray-level image of grass taken
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C W after learning (R-MCA2)

Input patchesA BOriginal image

D Generated patches after learning

Figure 12: Application to visual data.A The 250-by-250 pixel image used as basis for the ex-
periments. The image is taken from the van Hateren database of natural images (see
Appendix E). For visualization we have brightened the image (we let values inthe lower
half of the light intensity range fill the range of gray values from zero to 255 and clamped
values in the upper half to value 255). Without brightening, the image would appear
unnaturally dark on a finite gray scale because of a small number of pixels with very
high values.B 35 examples taken from the 5000 10-by-10 pixel patches that were used
for numerical experiments. The patches represent light intensities linearly.For visu-
alization, each patch has been scaled to fill the range of gray values.C ParametersW
resulting from a typical run of R-MCA2 with H = 50 hidden variables andN = 5000
image patches. For visualization, each parameter vector~Wi = (Wi1, . . . ,WiD) has been
linearly scaled to fill the range of gray values.D Patches generated using the restricted
generative model and weights as inC (patches have been scaled as inB andC).
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from the van Hateren database (Figure 12A) and linearly rescaled so that pixel intensities filled the
interval [0,10]. Each data vector was a 10-by-10 pixel patch drawn from a random position in the
image (see Figure 12B for some examples).

The image comprised stems and blades of grass which occluded each other.As discussed above
(see, e.g., Figure 2), the combination rule for such objects may be well approximated by the max
rule of the MCA generative model (at least for the lighting conditions that appear to prevail in
Figure 12A). Thus, the MCA learning algorithms may be expected to converge to parametersW
that represent intensity images of ‘grass’-like object parts. However,each blade of grass might
appear at many different positions within the image patches, rather than at afixed set of possible
locations as in the bars test. Thus to recover these grass-like elements in the MCA causal weights
requires the use of models with large numbers of hidden variables (and, correspondingly, many data
vectors). For the number of patches and hidden variables required, thecubic cost of MCA3 led
to impractically long execution times. In experiments with smaller patch sizes and smallH (e.g.,
H = 10 orH = 20) some weight patterns did converge to represent ‘grass’-like objects, but many
converged to less structured configurations.

The computational cost of R-MCA2 is smaller and we evaluated trials usingH = 50 hidden vari-
ables andN = 5000 10-by-10 patches. R-MCA2 was used with the same parameter setting as for
the bars tests above, except for lower initial and final temperatures for annealing (see Appendix E).
Figure 12C shows a typical outcome obtained when cooling fromT = 4.0 toT = 1.0. A large num-
ber of weight vectors have converged to represent ‘grass’-like object parts, whereas others represent
more extensive causes that might be interpreted as capturing background noise. Many of the weight
patterns have an orientation similar to the dominant orientation in the original image.Figure 12D
shows a selection of patches generated using the learned weights. We used a higher value ofC
during generation than during learning (the parameter is not learned with R-MCA2), thus globally
rescaling the learned weights, so as to reduce the apparent noise level. In experiments where anneal-
ing was terminated atT = 1.5 (as in the bars test), the resulting weights were generally similar to the
ones in Figure 12C, but with a larger proportion of weight vectors showing little structure. Learning
with slower annealing did not result in significantly different weights. With fewer thanN = 5000
patches for training, the weight patterns were less smooth, presumably reflecting overfitting to the
subset of data used.

In experiments applying the online algorithm R-MCANN to a set of 5000 10-by-10 patches as
above, we found that it would converge to ‘grass’-like weight patternsprovided the learning rate
(ε in Equation 25) was set to a much lower value than had been used in the bars tests. A lower
learning rate corresponds to effectively averaging over a much largerset of input patterns. With
ε = 0.02 (instead of 1.0 as above), and with noise on the weights (σ) scaled down by the same factor,
R-MCANN converged to weights similar to those shown in Figure 12C (for R-MCA2), although a
larger number of hidden units showed relatively uniform weight structure. For R-MCANN we used
a fixed temperature ofT = 2.0.

7. Discussion

We discuss the applicability of the MCA learning algorithms, and the generality ofthe MCA frame-
work, before relating the new algorithms to previous methods and neural network systems.
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7.1 Applicability of the Model

The MCA generative model and associated learning algorithms are designed to extract causal com-
ponents from input data in which the components combine non-linearly. Moreprecisely, the genera-
tive model assumes that the single active cause with the strongest influenceon a particular observed
variable alone determines its observed value—something we have referredto here as the max-rule
for combination. This stands in contrast to other feature extraction models such as PCA, ICA, NMF,
or SC, in which the influences of the different causes are summed.

One context in which data with a superposition property very close to the max-rule arise natu-
rally is the psychoacoustic combination of sounds. The perception of sound is largely driven by the
logarithm of the time-varying intensity within each of a bank of narrow-band frequency channels.
The narrow-band, short-time intensity of natural sounds may vary over many orders of magnitude.
Further, sounds from different sources may have unrelated phases, and so intensities within each
channel will generally add sub-linearly. Thus, even though soundwaveformsfrom different sources
combine linearly, the time- and frequency-localintensities, expressed logarithmically (in decibels),
are dominated by the loudest of the sounds within each time-frequency bin. Indeed, even if two
sounds are of equal loudness, the intensity of the sum is greater than each of them by at most 3 dB.
Here, then, the max-rule is a very good approximation to the true generativecombination. This
observation motivated our use of acoustic data in the experiments shown in Figure 11.

In the image domain, the max-rule’s relevance comes from the fact that it matches the true
occlusive combination rule more closely than does the more commonly used sum. This is true
both quantitatively (see Figure 2 and the discussion thereof), and also qualitatively, in the sense that
both occlusion and the max-rule share a property of exclusiveness—that is, only one of the hidden
causes determines the value of each pixel. Numerical experiments on raw image data (Figure 12)
demonstrate that plausible generative causes are extracted using the MCAapproach. The weight
patterns associated with the extracted causes resemble images of the single object parts (blades
and stems of grass in our example) that combine non-linearly to generate the image. The MCA
approach also holds some potential for component extraction in more low-level image processing,
for example, if we assume that each input pixel is generated exclusively by one edge instead of a
whole object or object part. The application of MCA might, however, be lessstraight-forward in
this case and presumably requires image preprocessing and perhaps a different noise model.

7.2 Generality of the Framework

Many of the details of the algorithms presented here, as well as many of the experiments, have been
based on a specific model in which the hidden variables are drawn from a multivariate Bernoulli dis-
tribution (1), and the observations are then Poisson, conditioned on thesevalues (2). These choices
are natural ones for non-negative data generated from binary sources (cf., NMF; Lee and Seung,
1999, 2001). However, while the details have largely been omitted for brevity, it is straightforward
to incorporate alternative generative distributions within the same framework, and with the same
approximations.

Thus, the equations that define the M-step (9), as well as the expansion (15) used to approx-
imate the E-step, would hold for any well-behaved prior over binary variables. In particular, the
sources need not be marginally independent. This generality contrasts withthe key assumption of
independence that underlies many linear combination models. It suggests that an extension to a
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hierarchical model, in which higher-order statistics in the source distributionwere captured by a
further parametric model, might be straightforward.

The general formalism also remains unchanged for different noise distributions. Thus, if the
conditional distribution of observations given sources, here Poisson,were instead Gaussian, all of
the derivations and approximations would essentially remain unchanged, withone exception being
the definitions ofI (n)

i , I (n)
ab , and I (n)

abc in Equation (18). Approximate learning for the additional
variance parameter of a Gaussian distribution would also be straightforward, largely following the
arguments developed for the parametersW and~π. If suited to the data set under consideration,
distributions other than Poisson and Gaussian may also be used within this same framework, and
combined with different dependent or independent prior distributions.

7.3 Relationship to Variational Approximations

A now standard approach to approximate learning in intractable models is to replace the true poste-
rior distribution of equation (12) by an approximateqn that is obtained by minimizing the Kullback-
Leibler divergenceKL[qn‖p(~s|~y(n),Θ′)] within a constrained class of functions. This provides a
form of variational learning (Jordan et al., 1999), which provably increases a lower bound on the
likelihood at every iteration. A common choice of a constrained family might be one which factors
over the latent variables. Unfortunately, this common choice is of little benefit inthe MCA gener-
ative model, as the costs of evaluation of the expected values of the derivativesA id(~s,W), given in
(8), grows exponentially even under factored distributions.

An alternative approach would be to constrainqn to place mass only on source configurations
where a limited number of causes are active. The minimum Kullback-Leibler divergence under
this constraint would then be achieved when the probability of such sparseconfigurations under
qn was proportional to the corresponding true posterior values. Revisiting the argument leading to
equation (15), it is clear that such an approximation would correspond to truncating the sums in both
numerator and denominator of (15), as well as the corresponding expression for〈sh〉qn

, at the same
point. Our experience has been that the algorithms described here, in which fewer terms are kept
in the numerator of (15) than in the denominator, always perform better thanthis strict variational
approach.

7.4 The Different MCA Algorithms

The computational cost of exact expectation-maximization learning (i.e., MCAex) in the MCA gen-
erative model grows exponentially in the smaller of the number of observationdimensions and the
number of hidden variables (min(D,H)), and is thus generally intractable. We have introduced three
approximations, all based on early truncation of the expanded sums in Equation (15). One of these,
MCA3, with cubic computational complexity, learns all the parameters of the full generative model,
including the prior source probabilities. However, if the sums over sourcedistributions are truncated
further, to yield an algorithm with quadratic complexity, experimental performance of an otherwise
unconstrained algorithm suffers. This difficulty is avoided in the restrictedversion of the generative
model, in which the prior probabilities are held fixed and equal, and the weightsassociated with
the sources satisfy a homogeneous coverage property. In this restricted model, the quadratic-cost
algorithm becomes effective, and we have studied both a batch-mode algorithm, R-MCA2, and an
online version R-MCANN. Experiments showed that these restricted algorithms remained effective
in terms of identifying generative weight vectors, even when the data weregenerated with prior
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source probabilities that were substantially different from that assumed by the algorithms (see, e.g.,
the experiments of Figure 8A or the discussion of violations of model assumptions in Experiments).
Furthermore, the R-MCA algorithms were also robust to violations of the assumption of homoge-
neously distributed hidden causes (20). In some situations, the R-MCA algorithms succeeded in
extracting the true causes where MCA3 did not. We have observed that this is particularly true
for bars with large differences in intensity. For this type of data, R-MCA2 appears to be the most
robust of the algorithms (see Lücke and Sahani, 2007). The R-MCA algorithms may also be more
robust to greater differences in bar widths than those that we have studied here. Overall, in terms of
the reliability with which hidden sources are recovered, R-MCA2 and R-MCANN may outperform
MCA3 even in experiments in which the assumptions used to derive them are violated.These results
suggest that constrained optimization can improve measures such as reliabilityor learning time (in
terms of pattern presentations), even when the constraint is not exactly valid. Approximately valid
constraints may make it easier to avoid local optima, and to learn from fewer examples. However,
the more severe approximation of R-MCA2 and R-MCANN can affect the likelihood of the param-
eters found. In this sense, MCA3 is the more successful algorithm. One approach to increasing the
speed of convergence might be to use R-MCANN to provide initial values to MCA3, thus reducing
the number of cubic-complexity iterations required for final convergence. Such a hybrid algorithm
would provide a learning system with relatively short learning times, high final likelihoods and high
reliability.

7.5 Relationship to Previous Algorithms

It is helpful to divide the algorithms that have previously been proposed for component extraction
into three groups: generative models with linear superposition, competitive generative models, and
neural network models in which assumptions about the data are implicit in the network structure
and learning algorithm.

7.5.1 LINEAR SUPERPOSITIONMODELS

The functional difference between linear superposition and the max-rulehas been discussed above.
Despite the mismatch in the generative process, linear superposition models have been used within
non-linear component extraction contexts, with some success. In particular, the non-negativity con-
straints of NMF have helped to identify constructively combined features (Lee and Seung, 1999).

For non-negative data, the specific algorithms developed here (MCA3, R-MCA2, and R-MCANN)
can all be regarded as explicitly non-linear alternatives to the different versions of NMF. In particu-
lar, the Poisson noise distribution matches one of the cost functions often used with NMF (Lee and
Seung, 1999). The basic methodology of our MCA development is, however, independent of the
assumption of non-negativity.

It is worth noting that non-negativity may be better suited to finding featural sub-parts (cf., Lee
and Seung, 1999; Wersing and Körner, 2003) of generative components (as was, in fact, originally
proposed) than the entire components. In the bars test (withb = 16) Spratling (2006) showed that
at least some NMF algorithms succeed in extracting all of the bars. However, if the bar overlap
is increased (as in the test depicted in Figure 2 and Figure 8C), most NMF algorithms fail. For
such input data, NMF only succeeds if its objective function is extended byan additional term that
enforces a form of sparseness. MCA3 and R-MCA2 perform better on these data than all other
algorithms tested (see Figure 9 for results) except for one sparse-NMFversion (NN-SC; Hoyer,
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2002) that performs equally well. However, for this and other sparse versions of NMF the sparseness
parameter (or parameters) must be chosen either based on prior knowledge about the input, or by
trial-and-error (see Spratling, 2006, for a critical discussion).

In contrast, thegenerative modelunderlying MCA does not assume sparseness. Instead, the
notion of sparseness was introduced in the discussion of learning, to justify the tractable approx-
imate learning algorithms MCA3, R-MCA2, and R-MCANN. The truncated approximations that
underlie these algorithms are more accurate when the input causes are sparsely active; but this does
not incorporate an explicit prior for sparsity in the way that SC, ICA, or sparse-NMF do, and does
not enforce a pre-specified degree of sparseness in the learned generative model. Indeed, the MCA
algorithms were found to robustly optimize the data likelihood, even for input causes that were not
sparsely active on average. It is possible, however, that if data weregenerated by a process that
was substantially different from that assumed by MCA, the approximate algorithms might well in-
troduce a bias towards a sparser solution. These differences in approach to sparsity between MCA
and models such as SC, ICA, and sparse-NMF, suggest that MCA might provide a good basis from
which to study the relationship between non-linear component combinations and sparsity assumed
in learning algorithms.

7.5.2 COMPETITIVE GENERATIVE MODELS

Models that use an explicitly non-linear generative combination rule include those of Saund (1995),
which uses a noisy-or rule for binary observations, and of Dayan andZemel (1995), where the com-
bination scheme is more competitive. The MCA model may be viewed as taking this competition
to an extreme, by selecting just one hidden variable to be responsible for each observed one.

Competitive generative models have proven challenging from a learning standpoint, in that pub-
lished algorithms often converge to local optima. In the bars test (b = 10, N = 500) the noisy-or
algorithm (Saund, 1995) finds all bars in just 27% of trials. The more competitive scheme (Dayan
and Zemel, 1995) only extracts all bars if bar overlap is excluded for training, that is, if training
patterns only contain parallel bars. In this simplified case the system achieves 69% reliability.

For comparison, the MCA learning algorithms MCA3, R-MCA2, and R-MCANN all show sig-
nificantly higher values of reliability in the same bars test (see Table 1), at least when combined
with an annealing procedure. The reliability can be boosted further in two ways—either by adding
Poisson noise to the input (Table 1), or by adding more hidden variables orunits to the model (in
which case all three MCA algorithms find all 10 bars in all of our experiments).

7.5.3 NEURAL NETWORK MODELS

High reliability in component extraction in the bars test is not a feature exclusive to the new al-
gorithms presented. Other highly reliable systems include some that optimize a non-probabilistic
objective function (e.g., Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; Charles et al.,
2002) as well as neural network models (Spratling and Johnson, 2002;Lücke and von der Malsburg,
2004; L̈ucke, 2004; L̈ucke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 2007). While
the probabilistic generative approach has the advantage of a principled framework, which makes
clear the assumptions being made about the data, it has been criticized (Hochreiter and Schmid-
huber, 1999; Spratling and Johnson, 2002; Lücke and von der Malsburg, 2004) for not working
reliably—that is, for often failing to extract the true causes.
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The models and algorithms introduced here show that a generative approach can indeed be made
robust. The R-MCANN algorithm shows that generative and neural network approaches cancome
together in the form of a competitive neural network model that is both reliableand probabilisti-
cally interpretable. Using a high learning rate and additional noise, the network model R-MCANN

avoids local optima and needs few pattern presentations for learning (lessthan 1000 in the majority
of trials). The same is reported for other network models (Spratling and Johnson, 2002; L̈ucke and
von der Malsburg, 2004; Spratling, 2006) which fit into the framework ofEquation (23) and Fig-
ure 4. The appropriate activation rule for a network to optimize the data likelihood under our genera-
tive model turns out to be a generalization of the softmax rule (see Equation 25). For input generated
by very sparsely active causes, this generalization reduces to the usual softmax, which is commonly
used for clustering (see, e.g., McLachlan and Peel, 2000). The generalized rule (25) therefore offers
an explanation for why some networks (Spratling and Johnson, 2002; Lücke and von der Malsburg,
2004; L̈ucke, 2004) can also be successfully applied to clustering tasks. However, R-MCANN and
standard neural network algorithms can differ in the details of their behavior. On the one hand,
for data involving substantial overlap between components (e.g., Figure 9), R-MCANN seems to be
more robust than the DI and NN-DI networks discussed by Spratling (2006). On the other hand, DI
and the network of L̈ucke and von der Malsburg (2004) seem to be more robust to larger differences
in component sizes.

A distinguishing feature of our model is the use of the max function. In neural modeling this
function has also been used in other contexts and for other purposes. Among other models (e.g.,
Grzywacz and Yuille, 1990) it has been used as an activation function for hidden units in a feed-
forward model for visual object recognition (Riesenhuber and Poggio, 1999). However this use in
the recognition model should not be confused with our use of the max function in the generative
process. Indeed, inference within the MCA model shows that the appropriate activation function
of hidden units, for example, (16) or (22), is necessarily more complex. The extraction of input
components, for example, in the bars test, fails if a simple max is used for inference instead. How-
ever, for input without superposition (and for recognition after learning) a max function as used by
Riesenhuber and Poggio (1999) may be interpreted as a further approximation of the generalized
softmax in the neural network approximation of R-MCANN.

7.6 Conclusion

To conclude, we have formulated a novel class of generative models thatcompetitively combines
hidden causes. In place of the linear superposition of prominent models likePCA, ICA, SC, and
NMF, we use the max-operation. We have shown how a new technique for posterior approximation
in such models can provide efficient parameter update rules if the input causes are sparsely active.
Making specific choices for prior and noise distributions, we obtain efficient algorithms that per-
formed well on artificial and natural non-linear mixtures, and are found tobe competitive with the
best current performance on standard non-linear benchmarks.
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L ÜCKE AND SAHANI

Appendix A. Maximum Likelihood

To maximizeF (Θ,Θ′) in (5) with respect toWid we require that:

∂
∂Wid

F (Θ,Θ′)
!
= 0

⇒ ∑
n

∑
~s

qn(~s;Θ′)∑
d′

(

∂
∂Wid

log
(

p(y(n)
d′ |Wd′(~s,W))

)

)

!
= 0

⇒ ∑
n

∑
~s

qn(~s;Θ′)

(

∂
∂Wid

Wd(~s,W)

)

f (y(n)
d ,Wd(~s,W))

!
= 0, (26)

where f (y,w) =
∂

∂w
log(p(y|w)) , (27)

with p(y|w) given in (2). Now, for any well-behaved functiong, and largeρ:

A
ρ
id(~s,W)g(Wd(~s,W)) ≈ A

ρ
id(~s,W)g(Wid) , whereAρ

id(~s,W) :=
∂

∂Wid
W

ρ
d(~s,W). (28)

Equation (28) holds becauseAρ
id(~s,W) ≈ 0 wheneverWd(~s,W) 6= Wid . Hence it follows from (26)

that:

∑
n

∑
~s

qn(~s;Θ′)A
ρ
id(~s,W) f (y(n)

d ,Wid)
!
≈ 0, (29)

⇒ ∑
n

∑
~s

qn(~s;Θ′)A
ρ
id(~s,W)

(

y(n)
d − Wid

)

!
≈ 0. (30)

Equation (9) is obtained in the limit of largeρ. To be more precise, we might have usedA
ρ
id(~s,W)

instead ofA id(~s,W) in the main text. However, we abstained from doing so for the sake of readabil-
ity, and because only the limitρ → ∞ is needed to derive the learning algorithms. The expression
for this limit given in Equation (8) is found from (7), with the derivative ofW

ρ
d given by:

∂
∂Wid

W
ρ
d(~s,W) =

(

si (Wid)ρ

∑hsh(Whd)
ρ

)

(∑h sh(Whd)
ρ)

1
ρ

si Wid
. (31)

In the limit ρ → ∞ this reduces to (8) because the second factor on the right-hand-side converges to
1 whenever the first term is nonzero.

Note that (29) is true for any type of conditionally independent noise distribution. Only in the
final step, from Equation (29) to (30), is the specific form of the Poissondistribution needed, where
it appears in the derivative (27).

Appendix B. Intractability of Sufficient Statistics

To compute the exact sufficient statistics in (10) requires the evaluation of sums over all possible
hidden states~s, suggesting a computational complexity of 2H . In some cases, however, there may be
multiple different source configurations, all of which result in the same effective weightsWd(~s,W)
for all dimensionsd ∈ {1, . . . ,D}. In such cases, it might be possible to group these equal terms in
each of the sums together, thereby reducing the complexity of the sum to scalewith the number of
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such groups, rather than with the number of source configurations. In fact, we show below that the
complexity of computing these expected values in general scales at least asfast as 2min(H,D).

We examine three cases individually:

H = D Consider parametersW for which, corresponding to each observed noded, there is a
hidden nodei such thatWid > Wjd for all j 6= i (beyond this restriction, the entries in
W may have arbitrary values). ForH = D this condition can be satisfied, and if it is,
then for any two hidden vectors~s and~s′ there is ad such thatWd(~s,W) 6= Wd(~s′,W).
In other words: any change of the hidden vector~s results in a change of the pre-
noise output vector(W1(~s,W), . . . ,WD(~s,W)). Hence, each summand in the partition
function in (12) contributes a potentially different value, and they must be evaluated
one-by-one. Thus, in this case the computational cost scales as 2H .

H < D Consider a subset ofH of theD observed nodes and apply the argument above. Thus,
the computational cost scales as 2H . Note that for fixedH and random parametersW
the existence ofH (or approximatelyH) hidden nodes for which the above condition
is fulfilled becomes increasingly likely with increasingD.

H > D On the one hand, if we just considerD of theH hidden nodes and apply the argument
above, we can infer that the computational complexity grows with at least 2D. On the
other hand, we can obtain at mostHD +1 different vectors(W1(~s,W), . . . ,WD(~s,W))
and thus at mostHD +1 groups to sum over. The computational complexity thus lies
between 2D andHD +1 in this case.

Appendix C. MCA 3 and R-MCA2—Details of the Derivations

The update rules that define the algorithms MCA3 and R-MCA2 follow directly from (12) and
(15) using the distributions (1) and (2). Note that in (15) the joint probabilityp(~s,~y(n) |Θ′) can

be replaced by any functionF satisfyingF(~s,~y(n),Θ′) = p(~s,~y(n) |Θ′)

A(~y(n),Θ′)
, whereA is any well-behaved

function not depending on~s. For the update rules of MCA3 and R-MCA2 we have used:

F(~s,~y(n),Θ) =

(

∏
i

πsi
i

)

exp(I (n)) , I (n) = ∑
d

(

log(Wd(~s,W))y(n)
d − Wd(~s,W)

)

.

C.1 MCA3

The first term in the sum over states~s in the denominator of (16) and (17) only contributes signifi-
cantly if~y(n) =~0, that is, ifF(~0,~y(n),Θ) = 1 (given Poisson noise). In all other cases its contribution
is negligible. To derive the numerator of (16) we have used the property:

A id(~sh,W) = δih , A id(~sab,W) = δia H (Wid −Wbd)+δib H (Wid −Wad) , (32)

whereH is the Heaviside function. Note that instead of (32) we also could have usedA id(~sh,W)
andA id(~sab,W) directly or the corresponding expressions ofA

ρ
id(~s,W) in (31) with high ρ. By

using (32) we can simplify the expression of the numerator of (16), however.
The derivation of the numerator of (17) (withα = 1) is straightforward. For less sparse input we

have to correct for neglecting input patterns which were generated by four or more hidden causes.
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We do so by updatingα using a consistency argument. On the one hand, using the same arguments
as for the derivation of (16) and (17), we can estimate the total number of input patterns generated
by less than three causes:

N
≤2

(Y,Θ) ≈ ∑
n

H (1
2 −∑

d

y(n)
d ) + ∑

i

πi exp(I (n)
i ) + 1

2 ∑
a,b(a6=b)

πaπbexp(I (n)
ab )

1+∑
h

πhexp(I (n)
h ) + 1

2 ∑
a,b

a 6= b

πaπbexp(I (n)
ab ) + 1

6∑
a,b,c

a 6= b 6= c

πaπbπcexp(I (n)
abc)

. (33)

On the other hand, the same number can be estimated using the prior distributionsalone:

Ñ
≤2

(~π) = N

(

∏
i

(1−πi)

)(

1 + ∑
h

πh + 1
2 ∑

a,b(a6=b)

πa πb

)

. (34)

If the parametersπi are underestimated using approximation (17), the estimate (33) is smaller
than the estimate (34). We changeα after each EM iteration until both estimates are consistent
(N

≤2
(Y,Θ) ≈ Ñ

≤2
(~π)):

α = αold +
εα

N

(

Ñ
≤2

(~π) − N
≤2

(Y,Θ)
)

.

Note that the additional computational cost to inferα is small. Computations in (34) scale quadrat-
ically with H, and the terms in (33) have to be computed for (17) anyway. In experimentswe use
εα = 1.

C.2 R-MCA2

If we optimize (5) under the constraint∑dWid = C in (19), we obtain:

∑
n
〈A id(~s,W)〉qn

y(n)
d − Wid

Wid
+ µi = 0.

The elimination of the Lagrange multipliersµi results in:

Wid =
∑n 〈A id(~s,W)〉qn

y(n)
d

1
C ∑n,d′ 〈A id′(~s,W)〉qn

y(n)
d′ − ∑n

(

(∑d′ 〈A id′(~s,W)〉qn

Wid′

C ) − 〈A id(~s,W)〉qn

) .

If the model parametersW fulfill condition (20), which can be expected at least close to the max-
imum likelihood solution, we obtain after the rearrangement of terms, the approximate M-step of
Equation (21). To derive the sufficient statistics (22) note that given theupdate rule (21) we have:

Wid = C
∑
n
〈A id(~s,W)〉qn

y(n)
d

∑
d′

∑
n
〈A id′(~s,W)〉qn

y(n)
d′

= C

∑
n∈N>0

〈A id(~s,W)〉qn
y(n)

d

∑
d′

∑
n∈N>0

〈A id′(~s,W)〉qn
y(n)

d′

,

whereN
>0

is the set of all non-zero input patterns. To approximate〈A id(~s,W)〉qn
we can therefore

assume input statistics that follow from Equations (1) to (3), but in which all inputs exactly equal
to zero are omitted. For such modified input statistics, Equation (15) remains unchanged except for
the partition functionZ in (14) whose termp(~0,~y(n) |Θ′) now equals zero. If we truncate the sum
in (15) after terms of order two, we obtain Equation (22).
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Appendix D. Neural Network Details

Here we show that the online neural network update rule (23) approaches the batch rule (24) for
large data sets and small learning rates. LetW (n) be the weight matrix at thenth update, and for
convenience define the Hebbian correlation signal to beG(n)

id = gi(~y(n),W (n))y(n)
d , and the weight

renormalization term to bez(n)
i = C−1 ∑d′

(

W
(n)
id′ + εG(n)

id′

)

= (1+ ε
C ∑d′ G(n)

id′ ) (where we have used

the fact that∑d′W
(n)
id′ = C). Then we can rewrite (23) as

W
(n)
id =

W
(n−1)
id + εG(n−1)

id

z(n−1)
i

,

and by applyingN updates starting from initial stept find that

W
(t+N)
id =

W
(t)
id + ε ∑N

n=1G(t+N−n)
id ∏N

k=n+1z(t+N−k)
i

∏N
k=1z(t+N−k)

i

,

where the empty product atn = N is taken equal to 1.
We now make approximations based on the assumptions thatN is large,ε is small, and that

W (t) is drawn from the equilibrium distribution over weights. First, as eachz(n)
i is (slightly) larger

than 0, the sum will be dominated by the leading terms (wheren is small). The coefficients of these
terms can be approximated, assuming thatε is small, by a logarithmic transform and the weak law
of large numbers:∏N

k=n+1z(t+N−k)
i ≈ exp

(

(N− n) ε
C ∑d′ Gid′

)

, whereGid is the expected value of

G(n)
id , which is taken to be stationary by the equilibrium assumption.

Inserting this expression into (35), taking the expected value of the right-hand-side, and sum-
ming the resulting geometric series to infinity, we obtain:

W
(t+N)
id ≈ e−Nε∑d′ Gid′/CW

(t)
id + εGid

(

1

1−e−ε∑d′ Gid′/C
−1

)

.

Finally, assumingNε to be large enough for the first term to be negligible, expanding the second,
and keeping only terms that do not scale withε we obtain

W
(t+N)
id ≈ C

Gid

∑d′ Gid′

≈ C
∑N

n=1 gi(~y(n),W (t))y(n)
d

∑d′ ∑N
n=1 gi(~y(n),W (t))y(n)

d′

.

This equivalence of the online and batch rules at equilibrium shows that theaverage fixed points of
R-MCANN equal fixed points of R-MCA2. The equivalence becomes inexact away from equilib-
rium, although our experiments suggest that the behaviour during convergence may nonetheless be
similar (Lücke and Sahani, 2007).

Appendix E. Experimental Details

This appendix gives details of the training procedures used for the MCA algorithms, provides more
information about the other algorithms used for comparison, and gives particulars of the acoustic
and visual data used.
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E.1 Initialization

We initialized the parametersW by drawing eachWid from a Gaussian distribution with unit mean
and standard deviation of1

3. Thereafter we normalized such that the average over allWid wasWinit .
For MCA3 we usedWinit = 4 and for the R-MCA algorithms we usedWinit = 2 (for this choice
the sum,∑dWid = 50, corresponds to the sum of the parameters used to generate the data).The
parameters of the prior distribution were initialized to beπi =

1
H for MCA3, that is, half the value of

the generatingπgen
i = 2

H in the standard bars test. For R-MCA2 and R-MCANN we initialized with
valuesπi = π = 2

H . The reliability of both R-MCA algorithms is only marginally affected by the
exact choices ofπ andWinit . Reliability values remained about the same even if the assumed values
of π differed significantly from the generating valuesπgen

i (see, e.g., the experiments of Figure 8 or
the paragraph on ‘Violations of model assumptions’ in Experiments).

E.2 Annealing

In Equations (16) and (18) we make the following substitutions:

H (x) → ST(x) =
(

1 + exp
(

− λ
T−1x

))−1
, (35)

πi → (πi)
β , I (n)

i → β I (n)
i , I (n)

ab → β I (n)
ab , I (n)

abc → β I (n)
abc, with β = 1

T . (36)

while making only the substitutions of (36) in Equation (33). Here,T plays the role of a ‘temper-
ature’. In the limit ofT = 1, β is equal to one and the sigmoidal functionST(x) converges to the
Heaviside function, that is, we recover the original Equations (16) and (17). A temperatureT > 1
has the effect of leveling the differences between the parameter updatesto a certain extent. For a
high temperatureT ≫ 1, the differences between the parameters associated with different hidden
variables vanish after a few iterations.

Smoothing the Heaviside function in (35) is a technique frequently used, forexample, in the
context of perceptrons, and the substitutions in (36) correspond to the standard annealing procedure
for EM (Ueda and Nakano, 1998; Sahani, 1999). The slope of the sigmoidal functionST(x) atx= 0
is parameterized byλ whose value is set toλ = 0.2.

In experiments for MCA3 and R-MCA2 we started learning at a relatively high temperature
T1 > 1 and cooled to a valueTo close to one. A final temperatureTo > 1 makes the system more
robust and counteracts over-fitting (Weiss, 1998). Experimental results on artificial data remained
essentially the same when we usedTo = 1 but the cooling procedure needed to be slower to avoid
numerical instabilities in this case. If not otherwise stated, we usedTo = 1.5. For MCA3 and
R-MCA2 we cooled fromT1 to To in steps of∆T = T1−To

50 after each iteration. However, we did
not change the temperature if the parametersW still changed significantly. More precisely, we only
decreased the temperature if the change inWid fell below a thresholdθ∆W for all i = 1, . . . ,H. In
formulas:

(∀i : ∆Wi < θ∆W) ⇒ Tnew = Told − ∆T , (37)

where ∆Wi =

√

∑d(W
old
id − Wnew

id )2

∑dWold
id

. (38)

Cooling conditioned on small parameter changes in this way allows the use of larger cooling
steps∆T and thus leads to learning in fewer iterations. For all trials we used a threshold of
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θ∆W = 2.5×10−3, except for the application to more realistic data for which we ran additional
trials with θ∆W = 0.25×10−3.

In experiments it was observed that a given system had a critical temperatureTc above which the
weights did not specialize to different patterns after random initialization. Instead the parameters
converged to about the same values for all hidden variables (compare Sahani, 1999; L̈ucke, 2004). A
natural choice of an initial temperatureT1 > 1 is therefore a value close to this critical temperature.
Experiments on different versions of the bars test showed a roughly linear dependence between
the critical temperatureTc and the number of input dimensionsD. Thus, in all versions of the
bars test we usedT1 = 0.4D + 1 andT1 = 0.7D + 1 for MCA3 and R-MCA2, respectively. In the
experiments on acoustic and visual data, the critical temperatures are lowerthan those measured
in bars tests with sameD, presumably due to more homogeneous distributions of input values in
those cases (generating weights in the bars test were all either 0 or 10, whereas generating weights
in the naturally-derived data could take on any value in[0,10]). Thus, experiments on phoneme
data started at an initial temperature ofT1 = 70 for MCA3 andT1 = 100 for R-MCA2; and those on
visual data started atT1 = 2 for MCA3 (8-by-8 patches,H = 20) andT1 = 4 for R-MCA2 (10-by-
10 patches,H = 50). In all experiments the temperature was maintained atT1 during the first ten
iterations. After the system had cooled toTo using (37) and (38) learning was terminated once all
∆Wi remained smaller thanθ∆W for 20 iterations.

For R-MCANN we used a fixed temperature ofT = 16 if not otherwise stated, and stopped after
all single causes were represented by the same hidden variables for 4000 pattern presentations. In a
given trial, the first pattern presentation after which the representation didnot change was taken as
the learning time of R-MCANN. For the acoustic data set we usedT = 70 and additionally report
results forT = 50 and valuesT ≤ 40. For the visual data we usedT = 2.

For MCAex in Figure 6 we have used a relatively fast and fixed cooling schedule.

E.3 Algorithms for the Comparison in Figure 9

For the comparison in Figure 9 we have reproduced data reported by Spratling (2006). While we
have adopted the same abbreviations as were used there, we repeat themin Table 2 for the conve-
nience of the reader.

Algorithm Description
NN-SC non-negative sparse coding (λ = 1)

SC-NMFA NMF with a sparseness constraint of 0.5 on the basis vectors
SC-NMFAY NMF with a sparseness constraint of 0.5 on the basis vectors

and 0.7 on the activations
DI dendritic inhibition network

NN-DI dendritic inhibition network with non-negative weights
SC-NMFY NMF with a sparseness constraint of 0.7 on the activations

S-NMF sparse-NMF (α = 1)
NMFdiv NMF with divergence objective
NMFmse NMF with Euclidean objective
L-NMF local NMF

Table 2: Description of the algorithms used for the comparison in Figure 9.
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E.4 Acoustic Data

The data used to study component extraction in the acoustic domain were generated from recordings
of three vowels (two of them diphthongs), [a0], [i:], and [ cI] and three consonants [k], [t], [p]. The
phonemes were spoken by a male voice and recorded at 8000Hz. The data were taken from a pub-
licly accessible data base (Sunsite, 1997). To construct spectrograms we used 1000 samples for each
of the phonemes, which required truncation in three cases and padding withzeros in the other three
cases. The waveformsz(t) were normalized in power such that1

T ∑t(z(t))
2 = 1. The waveforms

were then linearly mixed (zmix(t) = z(t)+ z′(t)+ . . .) to produceN = 500 observed spectrograms.
The probability of a phoneme of appearing in a mixed waveform was set to2

6. The spectrograms
of these mixtures were computed using short-time Fourier transforms with 50 frequency channels
ranging from 100 to 4000Hz, with logarithmic scaling of center frequencies(see Figure 11D). We
used 9 Hamming windows of 200 samples each, with successive windows overlapping by 100 sam-
ples. We then took the logarithms of the magnitudes of the 50-by-9 spectrogram entries, and lin-
early rescaled the top 42.8dB of dynamic range to lie between 0 and 10, with magnitudes more than
42.8dB below the highest intensity being clipped to 0.

E.5 Visual Data

The image that was used for the experiments on visual data has been taken from the publicly
available image database of the van Hateren group athlab.phys.rug.nl/imlib/. Images of the
database represent light intensities linearly, which results in most images appearing relatively dark
if displayed using a finite gray scale (see van Hateren and van der Schaaf, 1998, for details). We
have used image number 2338 (deblurred), cut out a segment of 500-by-500 pixels in the lower left
corner and scaled it down to a resolution of 250-by-250 pixels.
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J. Lücke. A dynamical model for receptive field self-organization in V1 cortical columns. In
Proceedings of the International Conference on Artificial Neural Networks, LNCS 4669, pages
389–398. Springer, 2007.
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