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Abstract

We study a generative model in which hidden causes combimgetitively to produce observa-
tions. Multiple active causes combine to determine theesaftan observed variable through a max
function, in the place where algorithms such as sparse gpalidependent component analysis, or
non-negative matrix factorization would use a sum. This mde& can represent a more realistic
model of non-linear interaction between basic componemsany settings, including acoustic and
image data. While exact maximum-likelihood learning of tlaegmeters of this model proves to
be intractable, we show that efficient approximations toeetgtion-maximization (EM) can be
found in the case of sparsely active hidden causes. One g #gproximations can be formulated
as a neural network model with a generalized softmax aaivdtinction and Hebbian learning.
Thus, we show that learning in recent softmax-like neurédvoeks may be interpreted as approxi-
mate maximization of a data likelihood. We use the bars bmiack test to numerically verify our
analytical results and to demonstrate the competitiveoEt®e resulting algorithms. Finally, we
show results of learning model parameters to fit acousticvésighl data sets in which max-like
component combinations arise naturally.

Keywords: component extraction, maximum likelihood, approximate,E@mpetitive learning,
neural networks

1. Introduction

In recent years, algorithms such as independent components an&BAjsQomon, 1994; Bell
and Sejnowski, 1997), sparse coding (SC; Olshausen and Field), 1886 non-negative matrix
factorization (NMF; Lee and Seung, 1999) have been used to deshélstatistics of the natural
environment, and the components extracted by these methods have beendis&asory neuronal
response properties. Stated in the language of probabilistic generatiedsni®ek, e.g., Dayan and
Abbott, 2001; Rao et al., 2002) these systems describe sensory dataearasuperposition of
learned components. For many types of data, including images, this assussdclimperation
between generative causes is unrealistic. Alternative, more competitieesgige models have also
been proposed: for instance, Saund (1995) suggests a model inhithidn causes are combined
by a noisy-or rule, while Dayan and Zemel (1995) suggest a yet manpetitive scheme. Here,
we formulate an extreme case of competition, in which the strongest gereirstivence on an
observed variable (e.g., an image pixel) alone determines its value. Sulehresithe property of
selecting, for each observed variable, a single generative caustetmde that variable’s value.
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This form of combination emerges naturally in the context of spectrotempwasking in mixed
audio signals. For image data, occlusion leads to a different combinatigrbutlene that shares
the selection property in that, under constant lighting conditions, the agpEsaof each observed
pixel is determined by a single object.

In parallel to this development of generative approaches, a numbeifafia neural network
architectures have been designed to tackle the problem of non-lineabnentgextraction, mostly
in artificial data (e.g., Spratling and Johnson, 2002cke and von der Malsburg, 2004iitke and
Bouecke, 2005; Spratling, 2006), although sometimes in natural imagesHargur and Prager,
1996; Charles et al., 2002;iicke, 2007). These models often perform quite well with respect to
various benchmark tests. However, the relationship between them andrtsiéydnodels that are
implicit or explicit in the generative approach has not, thus far, been made dVe show here
that inference and learning in a restricted form of our novel generaiivdel correspond closely in
form to the processing and plasticity rules used in such neural netwprkaghes, thus bringing
together these two disparate threads of investigation.

The organization of the remainder of this article is as follows. In Section 2efinalthe novel
generative model and then proceed to obtain the associated parameter el in Section 3. In
Section 4 we derive computationally efficient approximations to these updeate in the context of
sparsely active hidden causes—that is, when a small number of hiddsescgenerally suffices to
explain the data. In Section 5 we relate a restricted form of the generatifel tmoneural network
learning rules with Hebbian plasticity and divisive normalization. Results wigrical experiments
in Section 6 show the component extraction performance of the genesatiegnes as well as a
comparison to other algorithms. Finally, in Section7, we discuss our analgiichhumerical
results.

2. A Generative Model with Maximum Non-linearity

We consider a generative model fDrobserved variablegy, (d = 1,...,D), in which H hidden
binary causes,, (h=1,...,H), each taking the value 0 or tpmpeteto determine the value of
each observation (see Figure 1). Associated with each(faify), is a weightW,q. Given a set of
active causes (i.e., those taking the value 1), the distribution @&f determined by thé&argestof
the weights associated with the active causesyand

Much of our discussion will apply generally to all models of this causal &iracirrespective
of the details of the distributions involved. For concreteness, howewefpaus on a particular
choice, in which the hidden variables are drawn from a multivariate Bdruidstribution; and the
observed variables are non-negative, integer-valued and, giweatises, conditionally independent
and Poisson-distributed. Thus, collecting all the causes into a single vieetiyrs € {0,1}", and
all the observed variables into an integer ve@teerE we have:

H
p(s|T) = r!‘||0(sh|nh), p(sh|Th) = 4" (1—15) 1, (1)
=1
sW) — [ Wy (S W _ W 2
pPYISW) = Dlp(ydl a(SW)), p(ydIW)—ﬁe : 2)

Here, Tt € [0,1]" parameterizes the prior distribution &while the weight matrixv ¢ RH*P
parameterizes the influence of the hidden causes on the distributipnitodvill be convenient to

1228



MAXIMAL CAUSES

1 S

Y1 - e - Vb

Figure 1: A generative model witHl = 3 hidden variables anD = 5 observed variables. The
valuesyy of the observed variables are conditionally independent given thes/loie
the hidden variables. The valyg is drawn from a distribution which is determined by
the parameterdhy, Woq, andWagy. For a given binary vecta@these parameters combine
competitively according to the functidy (5, W) = max,{shWha}-

group these parameters together iBte- (Tt W). The functionWy(3,W) in (2) gives theeffective
weightonyy, resulting from a particular pattern of cause3 hus, in the model considered here,

Wa(SW) = max{sViha}- 3

It is useful to place the model (1)—(3) in context. Models of this genegd,tin which the obser-
vations are conditionally independent of one another given a set ofémicauses, are widespread.
They underlie algorithms such as ICA, SC, principal components anaR€i8) factor analysis
(see, e.g., Everitt, 1984), and NMF. In these five cases, and indeee majority of such models
studied, the effective weight&/y(5,W) are formed by a linear combination of all the weights that
link hidden variables to the observation; thatié; (S,W) = ¥, ssWhg. Some other models, notably
those of Saund (1995) and Dayan and Zemel (1995), have implementectampetitive combina-
tion rules, where larger individual weights dominate the effective combmafibe present model
takes this competition to an extreme, so that only the single largest weight (atribage associ-
ated with active hidden variables) determines the output distribution. TheseWwCA, PCA, SC,
or NMF use a sum, we use a max. We refer to this new generative model Eaxmmal Causes
Analysis (MCA) model.

Figure 2 illustrates the difference between linear superposition and competitnbination us-
ing (3). Let us suppose that noise-free observations are genesatedses in the form of horizontal
and vertical objects with the same gray-value, on a dark (black) baskdr@ee Figure 2). If these
objects occlude one-another, they may generate an observed imagasdhett illustrated in Fig-
ure 2B. However, if we were to use the actual causes and weights ireR2guibut instead combine
them linearly, we would obtain the (different) input pattern of Figure 2Ghis case, competitive
combination using the max-rule of Equation (3) would result in the corretténma This is not,
of course, generally true, but for monochrome objects with small variatiotieeir gray-values it
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Figure 2: An illustration of non-linear versus linear combination of hidderseswA Four exam-
ples of hidden causes with gray-value 2@0The input image that may result if sources
occlude one another. In this case, the correct funatigs,W) (see Figure 1) to combine
the hidden causes is the max-operatiGrilhe input image that results if the four causes
combine linearly (gray-values are scaled to fill the interval [0,255]). Gothe correct
functionWy(S,W) is linear super-position.

holds approximately. More generally, the maximum combination rule is alwagsircto the result
of occlusion than is the simple sum implied by models such as ICA.

As stated above, although in this paper we focus on the specific distribgfiversin (1) and
(2), much of the analytical treatment is independent of these specificesholtus, update rules
for learning the weight®V from data will be derived in a general form, that can accommodate
alternative, non-factored distributions for the binary hidden variabldss general form is also
preserved if the Poisson distribution is replaced, for example, by a @aud3oisson variability
represents a reasonable choice for the non-negative data codsid#ris paper, and resembles the
cost function introduced by Lee and Seung (1999) for NMF.

3. Maximum Likelihood

,,,,,

a stationary process, we seek parameter vafifes (7", W*) that maximize the likelihood of the
data under the generative model of Equations (1) to (3):

O = argmax{L(®)} with L(e):log(p(yﬂ),...y(N)\e)).

We use Expectation-Maximization (EM; Dempster et al. 1977; see also Neadfliaton 1998, for

the formulation that appears here) to maximize the likelihood in this latent varialdelm®o do

so, we introduce the free-enerdy(©,q)—a data-dependent function of the parame®@msnd an
unknown distributiorg(s™, ..., sN)) over the hidden data or variables—that is always equal to or
less than the likelihood evaluated at the same parameter values. For inelefhengenerated data
vectorsy", the distributiong may be taken (without loss of generality) to factor over the hidden
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vectorsq(8W,...,5N)) = M,an(S™™). Then the free-energy is defined as:

[Z an(s) [log (p(Y™[$0)) +log (p(s]©))] | +H(@) < £(©), (4

whereH(q) = S H(0h(5)) = — 31 Ysan(S)log(an(S)) is the Shannon entropy of The iterations

of EM alternately increasg with respect to the distributiorgg, while holding® fixed (the E-step),
and with respect t® while holding theq, fixed (the M-step). Thus, if we consider a pair of steps
beginning from paramete@’, the E-step first finds new distributiong that depend o®’ and the
observations/(™, which we write aqy(S;@'). Ideally, these distributions maximizg for fixed

@, in which case it can be shown thi{(s; @) = p(8|y™, @) and F (&', qn(5;@')) = L(@') (Neal
and Hinton, 1998). In practice, computation of this exact posterior mayttzetable, and it is often
replaced by an approximation. After choosing th& in the E-step, we maximiz& with respect

to © in the M-step while holding the, distributions fixed. Thus the free-energy can be re-written
in terms of® and®':

F@.0) = 5|3 @S9 [Iog(p@(m\se))+Iog(p<§re>)H + H(©). ()

whereH (@) = ¥,H(an(5;©)). A necessary condition to achieve this maximum with respect to
Wy € O, is that (see Appendix A for details):

d ) ) d
e F(0,0) zzqn§e<w

Unfortunately, under the max-combination rule of Equation \{@y),is not differentiable. Instead,
we define a smooth functi(WS that converges t&/y asp approaches infinity:

WYY
— yd —Wd(§,W) 1
(§W))W e ©

H 3
WiEswW) - (hzl@vvhd)p) = lim WE(SW) = Wa(SW) )

and replace the derivative 84 by the limiting value of the derivative GWS which we write as
Aiq (see Appendix A for details):

, 0 —p ) s (Wa)?
Aig (S, W) = lim W5 (W) | = lim 8
o(sW) = fim (Ge-wWesw) ) = im ST ®
Armed with this definition, a rearrangement of the terms in (6) yields (see#ipéd.):
z< a(SW))g, y<”)
Wy = , 9
n
where(Aiq (S, W)),, is the expectation oflig (S, W) under the distribution)(s; ©'):
3
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Equation (9) represents a set of non-linear equations (one forégcthat defines the necessary
conditions for an optimum oft with respect taV. The equations do not represent straightforward
update rules foWMy because the right-hand-side does not depend only on the old Wallue©'.
They can, however, be used as fixed-point iteration equations, by sewalyating the derivatives
;4 atW’ instead ofW. Although there is no guarantee that these iterations converge, if they do
converge the corresponding parameters must lie at a stationary poietfoé#energy. Numerical
experiments described later confirm that this fixed-point approach &c¢inrbbust and convergent.
Note that the denominator in (9) vanishes onlgifs; @) 4iq(5,W) = 0 for all Sandn (assuming
positive weights), in which case (6) is already satisfied, and no updstei®fequired.

Thus far, we have not made explicit reference to the form of priorc®distribution, and
so the result of Equation (9) is independent of this choice. For ourechBgrnoulli distribution
(1), the M-step is obtained by setting the derivativefofwith respect tar to zero, giving (after
rearrangement):

M= Sl it (8)g, = T (SO, ay

Parameter values that satisfy Equations (9) and (11), maximize the feegyayiven the distribu-
tions gy, = gn(S;©’). As stated before, the optimum with respectéand therefore, exact opti-
mization of the likelihood, since the optimal settingoiorces the free-energy bound to be tight) is
obtained by setting they, to the posterior distributions:

(S 0) = pEly", o) = (12)

wherep(s,y" |@') = p(3|T) p(y"™ |SW’), and with the latter distributions given by (1) and (2),
respectively.

Equations (9) to (12) thus represent a complete set of update rules fminag the data
likelihood under the generative model. The only approximation made to this igdiotuse the
old valuesW’ on the right-hand-side of the M-step equation in (9). We therefore tefibis set of
updates as a pseudo-exact learning rule and call the algorithm theg N&TiA.,, with the subscript
for exact We will see in numerical experiments that MgAloes indeed maximize the likelihood.

4. E-Step Approximations

The computational cost of finding the exact sufficient statistitig(s,W)), , with d, equal to the
posterior probability (12), is intractable in general. It grows exponentiallthe smaller of the
number of hidden causés, and the number of observed variabl2¢see Appendix B for details).

A practical learning algorithm, then, must depend on finding a computationatiiatsle approxi-
mation to the true expectation. One approach, a form of variational metboth@et al., 1999),
would be to optimize the, within a constrained class of distributions; for example, distributions
that factor over the sources. Unfortunately, this conventional factoring approach provides lim-
ited benefit here, as the form dfiy (S,W) resists straightforward evaluation of the expected value
with respect to the individual sources. Instead, we base our apprtiairaan an assumption of
sparsity—that only a small number of active hidden sources is needegltireany one observed
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data vector (note that sparsity here refers toieberof active hidden sources, rather than to their
proportion). The resulting expressions relate to those that would be found by dieagahopti-
mization constrained to distributions that are sparse in the sense aboweee gt identical. The
relationship will be explored further in the Discussion.

To develop the sparse approximations, consider grouping the terms inpbketed value of
Equation (10) according to the number of active sources in the vector

(Aa(BW))q, = 5 pEIY", ) A (BW) (13)
S

=3 PE&Y".0) A (EHW) + S|V, 0) (G W) + Y -
a ab

a,b,c
a<b a<b<c

where & :=(0,...,0,1,0,...,0) withonlys;=1
S = (0,...,0,1,0,...,0,1,0,...,0) withonlys;=1,s,=1,a#Db,
andSyyc etc. are defined analogously.

Note thatjzlid(f),W) = 0 because of (7) and (8). Now, each of the conditional probabilities
p(s|y™, @) implicitly contains a similar sum ovetfor normalization:

psly.0) = sy @), zi= Y pEy"|e), (14
S

and the terms of this sum may be grouped in the same way

2:=pOy" @)+ 3 pE&I" )+ T pEnI" @)+ PSbe ™ |O)+...
a ab

) ab,c
a<b a<b<c

Combining (13) and (14) yields:
<“qid (ng»qn = (15)
TaP(E, 7" @) Aig(3,W) + 3 ah P(Sab, Y [ ©') Aig (Sap, W) + ..
PO,y @)+ 3P, YV [O)+3 ah P(Sab, YV [©) +...

A similar grouping of terms is possible for the expectatis),, .

If we now assume that the significant posterior probability mass will coratenemn vectors
with only a limited number of non-zero entries, the expanded sums in both niomana denomi-
nator of (15) may be truncated without significant loss. The accuratheapproximation depends
both on the sparsity of the true generative process, and on the distaheecarrent model param-
eters (in the current EM iteration) from the true ones. In general, pedvidat the true process is
indeed sparse, a truncated approximation will become more accurate asithated parameters
approach their maximum likelihood values. The convergence propertiescanracy of algorithms
based on this form of approximation will be tested numerically in Section 6.

Different choices of the truncation yield approximate algorithms with diffepeoperties. Two
of these will be considered here.
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4.1 MCA3

In the first approximation, we truncate all but one of the sums that appehe iexpansions of
(Aid(SW))g, and(s),, after the terms that include three active sources, while truncating the nu-
merator of(Aiq(S,W)),, after the two-source terms (see Appendix C for details):

mexp(l”) + Y Tareexp(1) H (W —Wea)

c(C#i)
(Aid (W) =~ (16)
L erhexp(lé”)) + 33 emexplly) + 1 TuTbmexp(1iny)
a,b a,b,c
a#b a#b#c
ﬁequi Z ﬁﬁCeXp(llc %z TiTHTC equmc)
and  (s) c(c#i) b.c(b7ci) (17)
0~ 1+Zn’hexp(l +%Z exp(Ii) + %Zﬁafrbﬁcexp(I;E)C)
a a,b,c
aZzb#c
where

Vg = maxWag Who). = ¥ (logg®)yg" —ig?) (18

W30C = max(Wag, Wh, Wed), |;§E)c ; <|09 (WE29) yd Wc?bc) 7

W =

and whereH (x) = 1 forx > 0; % forx=0; Oforx <0 is the Heaviside function. The above
equations have been simplified by dividing both numerator and denominaterrag that do not
depend org, for example, b){‘|iH:1(1— T%) (see Appendix C). Approximations (16) and (17) are used
in the fixed-point updates of Equations (9) and (11), where the paresiibtg appear on the right-
hand-side are held at their current values. Thus all parameters fiedragn the right-hand-side of
the approximations take values@ = (77,W').

The early truncation of the numerator in (16) improves performance inriexpets, partly by
increasing competition between causes further, and partly by reducingpitigbution of more
complex data patterns that are better fit, given the current parameter sdtfirigee active sources
than by two. By contrast, the three-source terms are kept in the numefdtof)o In this case,
neglecting complex input patterns as in (16) would lead to greater errorg iestimated source
activation probabilitiest. Indeed, even while keeping these termstend to be underestimated
if the input data include many patterns with more than three active sourcesonipensate, we
introduce a factor oft > 1 multiplying the three-source term in (17) (so that 1 corresponds to
the actual truncated sum), which is updated as described in Appendixi<sdrteme yields good
estimates off, even if more than three sources are often active in the input data.

The M-step Equations (9) and (11) together with E-step approximatiopsuith(17) represent
a complete set of update equations for the MCA generative model. The tatiopal cost of one
parameter update grows polynomially in the total number of causes, with ldfdéFhe algorithm
that is defined by these updates will therefore be referred to asgVICA
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4.2 R-MCA;

In the second place, we consider a restriction of the generative moddliam \{i) all s, are dis-
tributed according to the same prior distribution with fixed paranetér) the weightsWy associ-
ated with each source variablare constrained to sum to a const@nt

Vie{l,...,H}: m=m and CZ_W,d:C; (29)

and (iii) on average, the influence of each hidden source is homogdpemmvered by the other
sources. This third restriction means that each non-zero generatingt\)\fdgg@” associated with
cause can be covered by the same numbef" > W™

WE">0 = 3 AW —Wg™) ~ b, (20)
Cc#
where#{ is the Heaviside function arg is the number of causes that can cover causeure 3 il-

'ﬂ'ﬁ'ﬁ'ﬂ'
<IJII:III:III:ID

<EIEIIUIEI>
<«gORORDRD>
| 28 28 28

Figure 3: A and B show patterns of weights that satisfy the uniformity condition (20) whereas
weights inC violate it. Each hidden cause is symbolized by an ellipse, with the gray-
level of the ellipse representing the valMig of each weight within the ellipse. Weights
outside the ellipse for each cause are zero (black). The black sqodieste the 4-by-4
grid of observed pixels.

lustrates this condition. Figure 3A,B show weight patterns associated witarhmilises for which
the condition is fulfilled; for instance in Figure 38 = 0 for all causes with horizontal weight pat-
terns, whileb; = 1 for the vertically oriented cause. In Figure 3C the condition is violatedgRlgu
these conditions guarantee that all hidden causes have equal agfeag® on the generated data
vectors. They make the development of a more efficient approximate Igaafgjorithm possible
but, despite their role in the derivation, the impact of these assumptions is limitegliticg, in the
sense that the resulting algorithm can perform well even when the inpusdaviolates assump-
tions (19) and (20). This is demonstrated in a series of numerical expésimetailed below.

Update rules for the restricted generative model can again be deyiaapboximate expectation-
maximization (see Appendix C). Using both the sum constraint of (19) andsiemption of ho-
mogeneous coverage of causes, we obtain the M-step update:

S (Aa(EW))g, Yy
Wy = C—" . (21)

33 (Aa(EW), Yy
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Empirically, we find that the restricted parameter space of this model meamgthah approximate
the sufficient statisticg2iq (S, W)),, by @ more severe truncation than before, now keeping two-
source terms in the denominator, but only single-source terms in the numefatioe expansion
(15). This approximation, combined with the fact that any zero-valuedrobd patterns (i.e., those
with 4 y&”) = 0) do not affect the update rule (21) and so can be neglected, yieléxpihession
(see Appendix C):

)
(A (W) ~ expll; ) M= T (22)

o Zexp(l,(]”)) +7 Zexp(lgt?) ’ 1-m
a,b

a%b

with abbreviations given in (18). Equations (21) and (22) are upd#s far the MCA generative
model, subject to the conditions (19) and (20). They define an algorithtwihavill refer to as
R-MCA; with R for restrictedand with2 indicating a computational cost that grows quadratically
with H.

5. Relation to Neural Networks

We now relate component extraction as learned within the MCA framework tcatieeved by
a family of artificial neural networks. Consider the network of Figure 4dcltonsists oD input
variables (ownits) with valuesy, ..., yp andH hidden units with valuegy, . ..,gy. An observation
y is represented by the values @xtivitieg of the input units, which act througtonnectiongpa-
rameterized by 7}y ) to determine the activities of the hidden units througlaetivation function
g = gi(Y, ”). These paramete(st}y) are known as the network (or synaptiegights

Figure 4: Architecture of a two layer neural network. Input is repre by values; to yp of
D input units (small black circles). These values combine with synaptic weights
determine the activities of the hidden uniisto gy (big black circles). The dotted hor-
izontal arrows symbolize lateral information exchange that may be requiregmpute
the functiongy; to g4 . After theg; are computed the parametéf8iy) are modified using
alA-rule.

Learning in such a neural network involves adjusting the weightg response to a series of
input patterns, using a rule that is heuristically designed to extract somefatructure from these
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inputs. A standard choice is the Hebbi&mule with divisive normalization:

MWa + AWy
Sa (Mo +DWyr)’
The normalization step is needed to prevent weights from growing withautdy@nd the divisive
form used here is most common. Here, the constadéfines the value at whicfiy Wy is held
constant; it will be related below to th& appearing in Equation 19. Many neural networks with
the structure depicted in Figure 4, and that use a learning rule identidatitargo (23), have been
shown to converge to weight values that identify clusters in, or extrattibsomponents from, a
set of input patterns (O'Reilly, 2001; Spratling and Johnson, 200@gYand Geiger, 2003; licke
and von der Malsburg, 2004 1icke, 2004; licke and Bouecke, 2005; Spratling, 2006).

The update rule (23) depends on only one input pattern, and is usupllga@pnline, with the
weights being changed in response to each pattern in turn. If, insteachngeler the effect of
presenting a group of patterfig(™ }, the net change is approximately (see Appendix D):

Sa ", W)y
Sa ¥a G, W)y
Now, comparing (24) to (21), we see that if the activation function of aalewetwork were cho-
sen so thaty (Y, W) = (4ig (SW)),,, then the network would optimize the parameters of the
restricted MCA generative model, with' = 7/ (we drop the distinction betweer/ andW from
now on). Unfortunately, the expectatiddq (§,W))qn depends oml, and thus exact optimization
in the general case would require a modified Hebbian rule. However,uhestied approximation
of (22) is the same for all, and so the changes in each weight depend only on the activities of the
corresponding pre- and post-synaptic units. Thus, the Heldbiaite,

exp(li)
Zexp(lh) + E‘Zexp(lab)
a,b

a#b

AMy = egi(y,W)ya and WG =C (23)

W~ C 24)

AWy = egiya with g = (25)

(wherely, lap, andTtare the abbreviations introduced in Equations 18 and 22), when combitied w
divisive normalization, implements an online version of the R-M@gorithm. We refer to this
online weight update rule as R-MG# (for Neural Network).

Note that the functiomy; in (25) resembles the softmax function (see, e.g., Yuille and Geiger,
2003), but contains an additional term in the denominator. This added ¢gluces the change in
weights when an input pattern results in more than one hidden unit with signtifictvity. That is,
the system tries to explain a given input pattern using the current state ofdes parametergyv.

If one hidden unit explains the input better than any combination of two unésuttit is modified.
If the input is better explained by a combination of two units, the total learnitegsaeduced.

Soft winner-take-all (WTA) activation functions, such as the softmag,faund in many net-
works that serve to both clustandextract components from inputs, as appropriate. For clustering,
the relationship between WTA-like competition and maximume-likelihood methods is welkn
(Nowlan, 1990). The connection drawn here offers a probabilistiowtcof the effectiveness of
similar rules for component identification. If the probability of more than onesedeing active is
small (i.e.,rtis small), our activation rule fag; (25) reduces to the standard softmax, suggesting that
neural networks with activation and learning functions that resembletiBgsg25) may perform
well at both component extraction and clustering.
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6. Experiments

The MCA generative model, along with the associated learning algorithms akiatbeen intro-

duced here, are designed to extract component features from mam-fimxtures. To study their
performance, we employ numerical experiments, using artificial as well es mealistic data. The
artificial data sets are based on a widely-used benchmark for non-tinegaonent extraction, while
the more realistic data are taken from acoustic recordings in one caseoamddtural images in
the other. The goals of these experiments are (1) to establish whetheptlogiagate algorithms
do indeed increase the likelihood of the model parameters; (2) to testrgemee and asymptotic
accuracy of the algorithms; (3) to compare component extraction using td@#her component-
extraction algorithms; and (4) to demonstrate the applicability of the model anditlfge to more

realistic data where non-linear component combinations arise naturally.

6.1 The Bars Test

The data sets used in experiments on artificial data were drawn from tgadbthe “bars test”
introduced by Bldiak (1990). Each data vector represents a grayscale image, with a pan-lin
combination of randomly chosen horizontal and vertical light-colored, leash extending all the
way across a black background. Most commonly, the intensity of the bargfeerm and equal,
and the combination rule is such that overlapping regions remain at the sams&tint& his type
of data is a benchmark for the study of component extraction with non-lineaactions between
hidden causes. Many component-extraction algorithms have been app#iagtsion of the bars
test, including some with probabilistic generative semantics (Saund, 199&n@ad Zemel, 1995;
Hinton et al., 1995; Hinton and Ghahramani, 1997), as well as many witlyaoarative objective
functions (Harpur and Prager, 1996; Hochreiter and Schmidhul888;1 ee and Seung, 2001,
Hoyer, 2004) a substantial group of which have been neurally insgdiak, 1990; Fyfe, 1997;
O’Reilly, 2001; Charles et al., 2002; Spratling and Johnson, 2002ké and von der Malsburg,
2004; Liicke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 2007)

In most of the experiments described here the input data were 25-dimaingéamtors, repre-
senting a 5-by-5 grid of pixels; that iB,= 5 x 5. There werd possible single bars, some of which
were superimposed to create each image. On the 5-by-5 grid there assibl@torizontal, and 5
vertical, bar positions, so that= 10. Each bar appears independently with a probahiljtywith
areas of overlap retaining the same value as the individual bars. Fifystedbvs an example set of
noisy data vectors constructed in this way.

6.2 Annealing

The likelihood surface for the MCA generative model is potentially multimodalisT hill-climbing
algorithms based on EM may converge to local optima in the likelihood, which miiyoeveon-
siderably poorer than the global optimum. This tendency to find sub-optineal finints can be
reduced by incorporating a deterministic annealing, or relaxation, puoedtleda and Nakano,
1998; Sahani, 1999), whereby the entropy of the posterior distributigheirfree energy (4) is
artificially inflated in early iterations, with this inflation progressively redugethter iterations,
under the control of a temperature parameter. All of the experiments destirere incorporated
deterministic annealing, the details of which are given in Appendix E.
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Figure 5: Bars test data with= 10 bars onD = 5 x 5 pixels and a bar appearance probability
of = 1—20. A 24 patterns from the set ™ = 500 input patterns that were generated
according to the generative model with Poisson noBs€&€hange of the parametafg if
MCA; is used for parameter update. Learning stopped automatically after 1G®itera

in this trial (see Appendix E).

6.3 Convergence

From a theoretical standpoint, none of the four algorithms MCKICA3, R-MCA,, or R-MCAwnN,

can be guaranteed to maximize the likelihood of the MCA generative model. Atlenfi update
the parameters in the M-step using a fixed-point iteration, rather than eithemipation or a
gradient step. All but MCA also approximate the posterior sufficient statistics (10). Thus, our
first numerical experiments are designed to verify that the algorithms dactnificrease parameter
likelihood in practice, and that they do converge. For this purpose, ifogapate to use a version

of the bars test in which observations are generated by the MCA model.

Thus, we selected MCA parameters that generated noisy bar-like imagas. Wére 10 hidden
sources in the generating model, one corresponding to each bar. Stoéadsd matrix of generating
weights W9€" was 10x 25, with each row representing a horizontal or vertical bar in a 5-bixéd p
grid. The weighta\/3*" that correspond to the pixels of the bar were set to 10, the others to 0, so
thaty g W = 50. Each source was active with probabiti§" = 2, leading to an average of two
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bars appearing in each image. We generated 500 input patterns (each with 25 elements) using
Equations (1) to (3); a subset of the resulting patterns is displayed indBgur

L(©) W TEen MCAex MCA; R-MCA,

~ & ," ? I: Kd

T - ”
v S ir it AL
-
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-401 added noise
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. . 0 . 1 2 . patlterns
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Figure 6: Change of the MCA parameter likelihood under different MC Alieg algorithms. Data
were generated as in Figure 5. To allow for comparison, the same Bet=d300 input
patterns was used for all experiments shown. The likelihood of the gemgeparameters
(W79 is shown by the dotted horizontal line. The main axes show likelihood values
of the batch-mode algorithms MGA MCA3, and R-MCA as a function of EM iteration.
The inset axes shows likelihood values of the online algorithm R-MEAs a function
of number of input pattern presentations. Patterns were randomly sefiestethe set of
N = 500 inputs, and the parameters were updated for each pattern.

Figure 6 shows the evolution of parameter likelihoods, as a function of itardtipeach of the
MCA algorithms, with 5 different choices of initial parameters for each. Withakception of the
first few iterations of R-MCA, the likelihood of the parameters under the batch mode algorithms
increased at almost every iteration. The online R-M&Ahowed greater fluctuations as updates
based on individual data vectors inevitably perturbed the parameter estimate

As might be expected, given the observation of increasing likelihoodshanfdct that the like-
lihoods are bounded, each algorithm eventually converged from egichmalue used in Figure 6.
Furthermore, in each case, the likelihood of the solution found was close li&¢hhood of the ac-
tual weights used in generation (the dashed horizontal lines). The fighlhblod values for MCAx
were slightly higher than the likelihoods ofV@e", T9¢"), as is expected for an exact maximum-
likelihood algorithm in noisy data; whereas the values achieved by the@pm@tions MCA; and
R-MCA; were slightly lower. In fact, in 100 further experiments, the annealing ananpeter ini-
tialization schemes described in Appendix E, brought the likelihood close tofltae generating
weights in 98 of 100 runs using R-MGAand in 90 of 100 runs using MGA We did not run
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these more extensive tests for MgAlue to its long running time (it is also omitted from similar
guantitative analyses below).

The two basic observations, that likelihoods generally increased atiteaation and that the
batch-mode algorithms all reliably converged, held true for all of the éxgerts described here
and below, even where data were not generated from a version of @ mfodel. Thus, we
conclude that these algorithms are generally robust in practice, despitestiece of any theoretical
guarantees.

6.4 Parameter Recovery

Figure 5B shows the evolution of parametéfsunder the approximate MGfalgorithm, showing
that the estimated did indeed converge to values close to the generating pararié¢¥&tsas was
suggested by the convergence of the likelihood to values close to that @éieeative parameters.
While not shown, the convergence\&f under MCAy, R-MCA;, or R-MCAyN was qualitatively
similar to this sequence.

Clearly, if MCAg finds the global optimum, we would expect the parameters found to be close
to those used for generation. The same is not necessarily true of trexepate algorithms. How-
ever, both MCA and R-MCA did in fact find weight3/V that were very close to the generating
values whenever an obviously poor local optimum was avoided.

In MCA3 the average pixel intensity of a bar was estimated to b@#0.5 (standard deviation),
taken across all bar pixels in 90 trials where the likelihood increased to aaligh. Using R-MCA
this value was estimated to be.0& 0.8 (across all bar pixels on 98 high-likelihood trials). Note
that the Poisson distribution (2) results in a considerable variance ofxmhimiensities around the
mean of 100 (compare Figure 5A) which explains the high standard deviation aroeneldtively
precise mean value. The background pixels (original value zerostireaged to have an intensity
of 0.05+0.02 in MCAg and are all virtually zero (all are smaller than28) in R-MCA,. MCA3
also estimates the parametgr8ecause of the finite number of patterhs=£ 500) we compared the
estimates with the actual frequency of occurrence of eaclt bgr= (numb of bars in input)/N.
The mean absolute difference between the estimated the actual probability was 0006 (across
the 90 trials with high likelihood), which demonstrates the relative accurattyedolutions, despite
the approximation made in Equation (17).

For the neural network algorithm R-MG# given by (25) we observed virtually the same be-
havior as for R-MCA when using a small learning rate (e g= 0.1) and the same cooling schedule
in both cases (seelicke and Sahani, 2007). The additional noise introduced by the onlirsgagyd
of R-MCAnn had only a negligible effect. For larger learning rates the situation wasetitignow-
ever. For later comparison to noisy neural network algorithms, we usedssom of R-MCAN
with a relatively high learning rate af = 1.0. Furthermore, instead of a cooling schedule, we
used a fixed temperatuiie = 16 and added Gaussian noige=f 0.02) at each parameter update:
AWy =€giyg+0on. With these learning parameters, R-MGflearned very rapidly, requiring
fewer than 1000 pattern presentations in the majority of trials. Ten plots of ldadi against
number of presented patterns are shown for R-MG M Figure 6 (inset figure, black lines) for the
sameN = 500 patterns as used for the batch-mode algorithms. Because of the additigse in
W, the final likelihood values were somewhat lower than those of the gergraéiights. Using
R-MCAnN With the same parameters but without added naise Q), final likelihood values were
often higher (inset axes, gray lines) but the algorithm also convergeddboptima more often. In
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Reliability Reliability
Model noisy no noise Model no noise reference
MCA3 90% 81% noisy-or 27% Saund, 1995
R-MCA, 98% 96%/| | competitive 699%" Dayan/Zemel, 1995
R-MCANN >99% >99% | | LOCOCODE 96% | Hochreiter/Schmidhuber, 1999

Table 1: Comparison of MCA algorithms with other systems in the standard lsansite b = 10
bars D=5x5,1= 1—20, N =500). For the MCA algorithms reliability values are computed
on the basis of 100 trials. Values for these algorithms are also given feathe bars test
with Poisson noise. Reliability values for the other systems are taken from tfauie.
For instance, the model of Hochreiter and Schmidhuber (1999) is rejgortail to extract
all bars in one of 25 trials. Two systems, back-propagation (BP) ane &) that are
described by O’Reilly (2001) have also been applied to this bars test. imsthedard
versions, BP and GeneRec achieve 10% and 60% reliability, respecti@tpreiter and
Schmidhuber (1999) report that ICA and PCA extract only subsett baes. *Trained
without bar overlap.

contrast, R-MCAn with noise avoided local optima in all 100 trials. In the following, R-MGA
will therefore refer to the noisy version with= 0.02 unless otherwise stated.

6.5 Comparison to Other Algorithms—Noiseless Bars

To compare the component extraction results of MCA to that of other algoritepwted in the
literature, we used a standard version of the bars benchmark test, intivaiblars appear with no
noise. The competing algorithms do not necessarily employ probabilistic semjaritt may not
be explicitly generative; thus, we cannot compare performance in terlikelifioods, nor in terms
of the accuracy with which generative parameters are recoveretbathsve adopt a commonly
used measure, which asks haeliably all the different bars are identified (see, e.g., Hochreiter and
Schmidhuber, 1999; O’'Reilly, 2001; Spratling and Johnson, 2002ké& and von der Malsburg,
2004; Spratling, 2006). For each model, an internal variable (say tivitias of the hidden units,
or the posterior probabilities of each source being active) is identifiedceag$iponse to an image.
The responses evoked in the learned model by each of the possiblelsingleages are then
considered, and the most active unit or most probable source conaisg to each bar is identified.
If the mapping from single-bar images to the most active internal variable istivge—that is, for
each single bar a different hidden unit or source is the most active—thieimstance of the model
is said to have represented all of the bars. The reliability is the frequeitleywliich each model
represents all possible bars, when started from random initial condimasgiven a random set
of images generated with the same parameter settings. For the MCA algorithmesibases are
defined to be the approximated posterior values for each possible segtoe with only one active
source, evaluated at the final parameter values after leamigg©) ~ p(sh |y*>,W).

The reliabilities of MCA;, R-MCA,, and R-MCA\\ as well as some other published component-
extraction algorithms are shown in Table 1. These experiments used aueatifig of the bars test
much as above = 5 x 5, b = 10, andm®®" = 1—20) which is perhaps the most commonly used
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in the literature, (e.g., Saund, 1995; Dayan and Zemel, 1995; Hochradesehmidhuber, 1999;
O’Reilly, 2001). The bars have a fixed and equal gray-value. WergéedN = 500 patterns ac-
cording to these settings and normalized the input patgfso lie in the interval0,10] (i.e., bar
pixels have a value of 10 and the background is 0). We considered lgotiasle with Poisson noise
(which has been discussed above) and the standard noiseless xpsdmEnts were run starting
from 100 different randomly initialized paramet&i% The same algorithms and the same cooling
schedule were used (the same fixednh the case of R-MCAy) to fit patterns with and without
noise.

Without noise, MCA with H = 10 hidden variables found all 10 bars in 81 of 100 experiments.
R-MCA; with H = 10 found all bars in 96 of 100 experiments. Using the criterion of reliability,
R-MCAnN performed best and found all bars in all 100 of 100 experiments. Thimsdkely to
result from the fact that the added Gaussian noise, as well as noistuicgabby the online updates,
combined to drive the system out of shallow optima. Furthermore, R-MCWas, on average,
faster than MCA and R-MCA in terms of required pattern presentations. It took fewer than 1000
pattern presentations to find all bars in the majority of 100 experinfeaithough in a few trials
learning did take much longer.

On the other hand, MCAand R-MCA achieved better likelihoods and recovered generative
parameters closer to the true values. These algorithms also have the gdwaingawell defined
stopping criterion. MCA learns the parameters of the prior distribution whereas R-MGges
a fixed value. R-MCA does, however, remain highly reliable, even when the fixed parameter
differs significantly from the true valug®®".

Figure 7: A common local optimum found by MGAn the standard bars test. Two weight patterns
reflect the same hidden cause, while another represents the supenpafsitio causes.

As was the case for the noisy bars, the R-MCA algorithms avoided local optiona often.
This may well be a result of the smaller parameter space associated with tifiaégnodel. A
common local optimum for MCAis displayed in Figure 7, where the weights associated with two
sources generate the same horizontal bar, while a third source gsreera&aker combination of
two bars. This local solution is suboptimal, but the fact that MG@®s parameters to represent
varying probabilities for each cause being present, means that it cest #ujLcorresponding rates
to match the data. The fixed settingmfor R-MCA would introduce a further likelihood penalty
for this solution.

Many component-extraction algorithms—particularly those based on artifeisbl networks—
use models with more hidden elements than there are distinct causes in theaitap{et.d., Charles
et al., 2002; liicke and von der Malsburg, 2004; Spratling, 2006). If we ldse 12 hidden vari-
ables, then all the MCA-algorithms (MGAR-MCA,, and R-MCAy\) found all of the bars in all
of 100 trials.

1. Note that, according to the definition above, all bars are often alrepiggented at intermediate likelihood values.
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Figure 8: Experiments with increased bar overlapAlbar overlap is increased by increasing the
bar appearance probability 18" = % (an average of three bars per pattern)Blbar
overlap is varied using different bar widths (two one-pixel-wide bacsare three-pixel-
wide bar for each orientation). In the bars tesCithere are 8 (two-pixel-wide) horizontal
bars and 8 (two-pixel-wide) vertical bars oa= 9 x 9 pixel grid. Each bar appears with
probability m¥¢" = 1—26 (two bars per input pattern on average). Each experimental data set
is illustrated by 14 typical input patterns. Farto C the parameterg/ of a typical trial
are shown if MCA is used for learning. The vectorg = (Wi, ..., Wip) appear in order
of decreasing learned appearance probalilityn D the parametefd/ for a typical trial
using R-MCAyn are shown.
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6.6 Comparison to Other Algorithms—Bar Overlap

For most component-extraction algorithms that have been tested againstrghbemchmark, it
is difficult to know how specialized they are to the form of this test. The algostimight, for
example, depend on the fact that all bars appear with the same probabilitgt they have the same
width. Different versions of the bars test have therefore been intextito probe how generally
the different algorithms might succeed. In particular, there has beesidewable recent interest
in studying robustness to varying degrees of overlap between barsege, liicke and von der
Malsburg, 2004; Licke, 2004; Spratling, 2006). This is because it is the non-linear cotidrina
within the regions of overlap that most distinguishes the bars test imagedfiean superpositions
of sources. In three different experiments we varied the degreeeofagvin three different ways.
Following Spratling (2006), in all experiments the MCA model had twice as masgiple sources
as there were bars in the generative input. In all experiments we usedntieeadgorithms, initial
conditions, and cooling schedules as described above and in Appenfigakh, each trial used
a newly generated set of training patterns and a different randomlyragjedematrixW. In the
following, reliability values are computed on the basis of 25 trials each.

The most straightforward way to increase the degree of bar overlap settha standard bars
test with an average of three instead of two bars per image, that isntak% for an otherwise
unchanged bars test with= 10 bars onD = 5 x 5 pixels (see Figure 8A for some examples).
When usingH = 20 hidden variables, MCAextracted all bars in 92% of 25 experiments. Thus the
algorithm works well even for relatively high degrees of superposifigre values oW found in a
typical trial are shown in Figure 8A. The parameﬁﬂ& (W1, ..., Wp) that are associated with a
hidden variable or unit are sorted according to the learned appegrarizabilitiesrs. Like MCAg3,
both R-MCA, and R-MCAyn were run without changing any parameters. In the restricted case, this
meant that the assumed value for the source probabitity %) was different from the generating
value "= 1—30). Nevertheless, the performance of both algorithms remained better thaof tha
MCA3, with R-MCA; and R-MCA\ finding all 10 bars in 96% and 100% of 25 trials, respectively.

We can also choose unequal bar appearance probabilities ckeland von der Malsburg,
2004). For example, half the bars appeared with probabif{y) = (1+y) 4 and the other hadf
appeared with probability”" = (1—y) &, MCA; extracted all bars in all of 25 experiments for
y=0.5. Fory= 0.6 (when half the bars appeared 4 times more often than the other half) sl bar
were extracted in 88% of 25 experiments. ket 0.6 R-MCA; and R-MCAyn found all bars in
96% and 100% of 25 experiments respectively. Reliability values for R-MC#tarted to decrease
for y= 0.7 (92% reliability).

As suggested byiicke and von der Malsburg (2004), we also varied the bar overlapaoand
experiment by choosing bars of different widths. For each orientatmnsed two one-pixel wide
bars and one three-pixel-wide bar. Thus, for this databset6 andD = 5 x 5. The bar appearance
probability wasrm = %, so that an input contained, as usual, two bars on average. Figuro8B s
some examples. MCextracted all bars in 84% of 25 experiments for this test. Reliability values
decreased for more extreme differences in the bar sizes. R-M@GA R-MCAyn both found all
bars in all 25 trials each. Thus, although the unequal bar sizes violatedshenptiory jWy =C
that was made in the derivation of R-MGAnd R-MCA\n, the algorithms’ performance in terms
of reliability seemed unaffected.

2. If bars are numbereld = 1 to 5 for the horizontal antd = 6 to 10 for the vertical, we chose the ones with even
numbers to appear with the higher probability.
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Figure 9: Comparison of MCA R-MCA,, and R-MCAn with other systems in the bars test with
increased occlusion (compare Figure 8C and Figure 2). Bars teshe@s areD =
9%x9,b=16,T1= 1—26 andN = 400. Data for the non-MCA algorithms are taken from
Spratling (2006). The bar heights represent the average numbexsratted bars in
25 trials. Error bars indicate the largest and the lowest number of bansl fio a trial.
The algorithms NN-DI and DI are feed-forward neural networks oftyipe depicted in
Figure 4. All other (non-MCA) algorithms are versions of NMF with diffierebjectives
and constraints (see Appendix E and Spratling, 2006, for details).

In the third experiment we changed the degree of bar overlap more stiayausing a bars
test that included overlapping parallel bars as introducediaké (2004). We used eight horizontal
and eight vertical bars, each two pixels wide, on a 9-by-9 grid. Thusptwvallel neighboring bars
had substantial overlap. Figure 8C shows some typical input patterrte. that the introductory
example of Figure 2A,B is also of this type. To allow for a detailed comparisonathiter systems
we adopted the exact settings used by Spratling (2006), that is, we etz runs of a system
with H = 32 hidden variables using bars test parameiers9 x 9, n¥¢" = 1—26 andN = 400. For
these data, MCAfound all 16 bars in all of 25 experiments. The same is true for R-M®@Aereas
R-MCAnN missed one bar in one of the 25 trials. Figure 9 shows a quantitative conpario
other algorithms that have been applied to this version of the bars test. Ohthklyteithms stud-
ied by Spratling (2006) just one, namely non-negative sparse codiNgS@ Hoyer, 2002, with
sparseness paramelee 1), is as reliable as MCAand R-MCA. The other systems, including
forms of NMF both with and without a sparseness constraint, fail partlynoredy in extracting
the actual hidden causes. For a typical trial using M@#e final parameterd/ are displayed in
Figure 8C. Again th&\'s associated with the different hidden variables are sorted accordihgito
learned parameters. A qualitatively different set of\i’s was obtained when R-MG#\ was used
for learning. Figure 8D shows a typical outcorvé’é are not sorted). In this case, only the actual
causes are clearly represented whereadifteeof the supernumerary units remain unspecialized.
The same feature is reported by Spratling (2006) for the algorithms NNwiDDhused in this same
test. Convergence to a representation that contains just the true hiddsss @nd leaves super-
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numerary units unspecialized can improve the interpretability of the result.n\W$iag a higher
fixed temperature for R-MC#y all the hidden units represented bars, with some bars represented
by more than one unit. However, hidden units that represented more cibenippsits, as seen for
MCA3, were rarely observed. On the other hand, the parameters found By [di@vide an indi-
cation of significance of each weight pattern in the appearance probalijiti€hus, in Figure 8C

the appearance probabilities for the first 16 sources are much higimefothidne others. The later
sources may be interpreted as capturing some of the higher-order strtiEtresults from a finite

set of input patterns. In contrast to R-MCA, such higher-ordeesgitations need not adversely af-
fect the data likelihood because the corresponding appearancéijtitadszacan be relatively small.
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Figure 10: Experiments with more causes and hidden variables than etiseiables.A The
12 patterns used to generate the data. Each is a 1-by-2 pixel bar ory-& g+
(D =9). B Ten examples of the 500 input patterns generated using the causes shown
in A. C Parameter$V found in a typical run of MCA with H = 24. The vectors
W = (W1,...,Wp) appear in order of decreasing learned appearance probatility
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6.7 More Causes than Observed Variables

In the experiments described above, the number of hidden causeswas amaller than the
number of observed variables. We next briefly studied the “over-cdsiptase where data were
generated, and models were fit, using more hidden causes than obganaddes. We generated
N = 500 patterns on a 3-by-3 gridD(= 9), using sparse combinations of 12 hidden causes corre-
sponding to 6 horizontal and 6 vertical bars, each 1-by-2 pixels in sideglas extending across
only a portion of the image (Figure 10A). As in the bars tests above, blaslassigned to a value
of 0 and white to 10. Patterns were generated without noise, with an avefago bars appearing
in each ft= 132). Ten such patterns are shown in Figure 10B.

Figure 10C shows the weights learned during a typical run using M@tk the same parameter
settings as above and twice as many hidden variables than observedHoae®4|. Weights are
sorted in order of decreasing inferred appearance probabititiedll 12 causes were identified,
with many represented more than once. A few hidden variables, with lowereaf probabilities of
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appearance, were associated with more composite patternsg Ei@racted all causes in all of 25
trials. R-MCAp also extracted all causes in all of 25 trials, and never represented sienpatterns.
R-MCAnN only extracted all causes when run at fixed temperatures that werettoavethose used
for the bars tests above (e.d@.,= 3), in which case it did so in all of 25 trials. This requirement
for a lower temperature was consistent with the observation that a lowedidsgasionD leads to

a decrease in the critical temperatures associated with the algorithms (seedbpR). For larger
values ofT (e.g., T = 16) R-MCAyn did not extract single causes.

6.8 Violations of Model Assumptions

To optimize the likelihood of the data under the MCA generative model, eacte@ghroximate
learning algorithms relies on the fact that, under the Bernoulli prior (Ihesoumber of the ob-
served data vectors will be generated by only a small number of activeesouTo highlight this
point we explicitly removed such sparse data vectors from a standasddsdy thereby violating
the Bernoulli prior assumption of the generative model. We used bars teslssaribed above,
with b =10 orb = 16 bars andti= % generatindN = 500 (or more) patterns, in each case by first
drawing causes from the Bernoulli distribution (1) and then rejecting patteiwhich fewer tham
causes were active. As might be expected, winavas 3 or greater the approximate algorithms all
failed to learn the weights associated with single causes. However, whepaiterns with fewer
than 2 bars had been removed, M{Was still able to identify all the bars in many of the runs.
More precisely, using data generated as above i 0,m= 2 andN = 500, MCAg with H = 10
hidden variables found all causes in 69 of 100 trials with noisy obsengéind in 37 of 100 trials
without noise (the parameters for MGAnd the associated annealing schedule were unchanged).
Note that in these experiments the average number of active causesuiericior is increased by
the removal of sparse data vectors. An increase in reliability in the noigyisasnsistent with our
other experiments. The relatively low reliability seen for noiseless bars irxipsriment may be
due to the combined violation of both the assumed prior and noise distributions.

As long as the data set did contain some vectors generated by few sahecésarning algo-
rithms could all relatively robustly identify the causes given sufficient,datan when the average
observation contained many active sources. For instance, in a stamulaedess bars test with
b =16 bars on an & 8 grid, andN = 1000 patterns with an average of four active causes in each
(= %), all three algorithms still achieved high reliability values, using twice as mardenidari-
ables as actual barsl(= 32), and using the same parameters as for the standard bars test above.
MCA3 found all causes in 20 of 25 trials in these data (80% reliability). Reliabilities-BfEGA»
and R-MCAun (25 trials each) were 76% and 100%, respectively. The reliabilities ofgalighms
fell when the data set contained fewer patterns, or when the averag®enof bars per pattern was
larger.

6.9 Applications to More Realistic Data

We study two examples of component extraction in more realistic settings, api@MCA algo-
rithms to both acoustic and image data.

Acoustic dataSound waveforms from multiple different sources combine linearly, aratesgon-
ventionally unmixed using algorithms such as ICA applied to simultaneous regerffom mul-
tiple microphones. The situation is different, however, $pectrogranrepresentations of natural
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Figure 11: Application to acoustic datA. Pressure waveforms of six phonemes spoken by a male
voice. Axes here, and for the waveform@ are as shown for [g (A is a nhormalized
amplitude).B The log-spectrograms of the phoneme#inWe use 50 frequency chan-
nels and nine time windows & 1,...,9). Axes of all log-spectrograms in the figure
are as shown for [g§. C Waveform of the linear mixture of phonemesJand [K], and
the log-spectrogram of this linear mixtur@.Six examples of th&l = 500 data vectors
that were used for the experiments. Each data vector is the log-specirofa linear
mixture of the phoneme waveformsAn The data sets for the experiments used an av-
erage of two waveforms per data vectarParameterg/ found by MCAg with H = 12,
using 500 mixture log-spectrograms. The parameter Ve%fS(WL ...,Wp) appear
in order of decreasing learned appearance probalilignd are linearly scaled to fill
the gray scale.

1249



LUCKE AND SAHANI

sound. The power of natural sounds in individual time-frequency \rni&s over many orders of
magnitude, and so is typically measured logarithmically and expressed in udiggibkls, giving
a representation that is closely aligned with the response of the cochleactwrteégponding sound.
In this representation, the combination of log-spectrograms of the ditfsoemces may be well
approximated by the max rule (R. K. Moore, 1983, quoted by Roweis,)20@3particular, the
logarithmic power distribution, as well as the sub-linear power summation dusasepmisalign-
ment, both lead to the total power in a time-frequency bin being dominated by tjle fngest
contribution to that bin (see Discussion).

To study the extraction of components from mixtures of sound by MCA, wedthe following
experiment on six recordings of phonemes spoken by a male voice (see EiA). The phoneme
waveforms were mixetinearly to generaté = 500 superpositions, with each phoneme appearing
in each mixture with probabilityt= 2. Thus each mixture comprised two phonemes on average,
with a combination rule that resembled the MCA max-rule in the approximate sesseiltbd

above.

We applied the MCA algorithms to the log-spectrograms of these mixtures. HijBrehows
the log-spectrograms of the individual phonemes and Figure 11C shevusgispectrogram of an
example phoneme mixture. We used 50 frequency channels and 9 time binsstoucbthe log-
spectrograms. The resulting values were thresholded and then rdsuedely so that power-levels
across all phonemes filled the interv@l 10|, as in the standard bars test. For more details see
Appendix E.

The MCA algorithms were used with the same parameter settings as in the baabtmsts
except that annealing began at a lower initial temperature (see Appehdistn the bars tests
with increased overlap, we used twice as many hidden variaHles 12) as there were causes in
the input. Figure 11E shows the parametfdearned in one run using MGA The parameter
vectorsW = (W1,...,Wp) are displayed in decreasing order of the corresponding learnedafalue
5. As can be seen, the first six such vectors converged to spectrogpresentations similar to
those of the six original phonemes. The six hidden variables associatetbwih values ofrg,
converged to weight vectors that represented more composite spaatdrhis result is represen-
tative of those found with MCA R-MCA; also converged to single spectrogram representations,
but tended to represent those single spectrograms multiple times rathergheserging more com-
posite patterns with the additional components. Results for R-MO#ere very similar to those
for R-MCA, when we used a high fixed temperature (see Appendix E for details). teomiedi-
ate fixed temperatures, results for R-MG@GQAwere similar to those of the bars test in Figure 8D in
that each cause was represented just once, with additional hiddenigplesythg little structure in
their weights. For lower fixed temperatures (starting frbry 40) R-MCAw failed to represent all
causes.

In general, the reliability values of all three algorithms were high. These werasured as
described for the bars tests above, by checking whether, after lgainfarence based on each
individual phoneme log-spectrogram led to a different hidden cause Ibeost probable. MCA
found all causes in 21 of 25 trials (84% reliability), R-Mg#found all causes in all of 25 trials; as
did R-MCAnN (with fixed T = 70). Reliability for MCAg improved to 96% with a slower cooling
procedure@ay = 0.25x 10~3; see Appendix E).

Visual data.Finally, we consider a data set for which the exact hidden sources ainarixing rule
are unknown. The data were taken from a single 250-by-250 pixgtigvel image of grass taken
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Figure 12: Application to visual dataA The 250-by-250 pixel image used as basis for the ex-
periments. The image is taken from the van Hateren database of naturaki(sage
Appendix E). For visualization we have brightened the image (we let valubs iower
half of the light intensity range fill the range of gray values from zero ®&% clamped
values in the upper half to value 255). Without brightening, the image woyldap
unnaturally dark on a finite gray scale because of a small number of pibis/ary
high values B 35 examples taken from the 5000 10-by-10 pixel patches that were used
for numerical experiments. The patches represent light intensities lindaslyvisu-
alization, each patch has been scaled to fill the range of gray valli®arameter§V
resulting from a typical run of R-MCAwith H = 50 hidden variables and = 5000
image patches. For visualization, each parameter vidter (W1,...,Wp) has been
linearly scaled to fill the range of gray valud3.Patches generated using the restricted
generative model and weights asGr(patches have been scaled a8iandC).
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from the van Hateren database (Figure 12A) and linearly rescaledtsuitehintensities filled the
interval [0,10]. Each data vector was a 10-by-10 pixel patch drawn from a randaitiggoin the
image (see Figure 12B for some examples).

The image comprised stems and blades of grass which occluded eactisttimcussed above
(see, e.g., Figure 2), the combination rule for such objects may be wethapyated by the max
rule of the MCA generative model (at least for the lighting conditions thaeapto prevail in
Figure 12A). Thus, the MCA learning algorithms may be expected to coavergarameterg/
that represent intensity images of ‘grass’-like object parts. Howeaah blade of grass might
appear at many different positions within the image patches, rather thafixatlagset of possible
locations as in the bars test. Thus to recover these grass-like elements i€headdsal weights
requires the use of models with large numbers of hidden variables (amesgondingly, many data
vectors). For the number of patches and hidden variables requiredultie cost of MCA led
to impractically long execution times. In experiments with smaller patch sizes andidnjeld.,
H =10 orH = 20) some weight patterns did converge to represent ‘grass’-like tsbjeat many
converged to less structured configurations.

The computational cost of R-MCGAs smaller and we evaluated trials usidg= 50 hidden vari-
ables andN = 5000 10-by-10 patches. R-MGAwvas used with the same parameter setting as for
the bars tests above, except for lower initial and final temperaturesifi@ading (see Appendix E).
Figure 12C shows a typical outcome obtained when cooling ffoe4.0toT = 1.0. A large num-
ber of weight vectors have converged to represent ‘grass’-lijecbparts, whereas others represent
more extensive causes that might be interpreted as capturing bactigroise. Many of the weight
patterns have an orientation similar to the dominant orientation in the original inkéagere 12D
shows a selection of patches generated using the learned weights. &lVa higher value o€
during generation than during learning (the parameter is not learned WAL R>), thus globally
rescaling the learned weights, so as to reduce the apparent noiserexgletiments where anneal-
ing was terminated &t = 1.5 (as in the bars test), the resulting weights were generally similar to the
ones in Figure 12C, but with a larger proportion of weight vectors shplitife structure. Learning
with slower annealing did not result in significantly different weights. WithdethanN = 5000
patches for training, the weight patterns were less smooth, presumablstirefloverfitting to the
subset of data used.

In experiments applying the online algorithm R-MG#\to a set of 5000 10-by-10 patches as
above, we found that it would converge to ‘grass’-like weight patt@nosided the learning rate
(¢ in Equation 25) was set to a much lower value than had been used in the $iarsAdower
learning rate corresponds to effectively averaging over a much lagjesf input patterns. With
€ =0.02 (instead of D as above), and with noise on the weiglasgcaled down by the same factor,
R-MCAnN converged to weights similar to those shown in Figure 12C (for R-MCAlthough a
larger number of hidden units showed relatively uniform weight structooe R-MCAyn We used
a fixed temperature of = 2.0.

7. Discussion

We discuss the applicability of the MCA learning algorithms, and the generalibhed?CA frame-
work, before relating the new algorithms to previous methods and neuvedrkesystems.
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7.1 Applicability of the Model

The MCA generative model and associated learning algorithms are deés@extract causal com-
ponents from input data in which the components combine non-linearly. peoisely, the genera-
tive model assumes that the single active cause with the strongest infareagearticular observed
variable alone determines its observed value—something we have refeireck as the max-rule
for combination. This stands in contrast to other feature extraction modg#iasiPCA, ICA, NMF,
or SC, in which the influences of the different causes are summed.

One context in which data with a superposition property very close to therubevarise natu-
rally is the psychoacoustic combination of sounds. The perception otisslargely driven by the
logarithm of the time-varying intensity within each of a bank of narrow-baaduency channels.
The narrow-band, short-time intensity of natural sounds may vary ovey wraers of magnitude.
Further, sounds from different sources may have unrelated presgso intensities within each
channel will generally add sub-linearly. Thus, even though sewmdformgrom different sources
combine linearly, the time- and frequency-loaaknsities expressed logarithmically (in decibels),
are dominated by the loudest of the sounds within each time-frequencyraeed, even if two
sounds are of equal loudness, the intensity of the sum is greater tHanfehem by at most 3 dB.
Here, then, the max-rule is a very good approximation to the true genecatimbination. This
observation motivated our use of acoustic data in the experiments showrune Eiy

In the image domain, the max-rule’s relevance comes from the fact that it esatbh true
occlusive combination rule more closely than does the more commonly used shishis True
both quantitatively (see Figure 2 and the discussion thereof), and afitatjuely, in the sense that
both occlusion and the max-rule share a property of exclusivenessis;tbaly one of the hidden
causes determines the value of each pixel. Numerical experiments on rae datg(Figure 12)
demonstrate that plausible generative causes are extracted using thepp@rach. The weight
patterns associated with the extracted causes resemble images of the sjegieatis (blades
and stems of grass in our example) that combine non-linearly to generate the. ihe MCA
approach also holds some potential for component extraction in more l@lHiesge processing,
for example, if we assume that each input pixel is generated exclusiyeind edge instead of a
whole object or object part. The application of MCA might, however, be $ésgght-forward in
this case and presumably requires image preprocessing and perhfipeeatthoise model.

7.2 Generality of the Framework

Many of the details of the algorithms presented here, as well as many offibaraents, have been
based on a specific model in which the hidden variables are drawn frortigariate Bernoulli dis-
tribution (1), and the observations are then Poisson, conditioned onviless (2). These choices
are natural ones for non-negative data generated from binarges(of., NMF; Lee and Seung,
1999, 2001). However, while the details have largely been omitted foityris straightforward
to incorporate alternative generative distributions within the same framewodkwith the same
approximations.

Thus, the equations that define the M-step (9), as well as the expad&poged to approx-
imate the E-step, would hold for any well-behaved prior over binary vimsabin particular, the
sources need not be marginally independent. This generality contrastthevitey assumption of
independence that underlies many linear combination models. It suggdssnthatension to a
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hierarchical model, in which higher-order statistics in the source distributeEne captured by a
further parametric model, might be straightforward.

The general formalism also remains unchanged for different noisebdisbns. Thus, if the
conditional distribution of observations given sources, here Poisseng instead Gaussian, all of
the derivations and approximations would essentially remain unchangedywatbxception being

the definitions ofl”, 11 and1?) in Equation (18). Approximate learning for the additional
variance parameter of a Gaussian distribution would also be straightthrisegely following the
arguments developed for the parameMtand Tt If suited to the data set under consideration,
distributions other than Poisson and Gaussian may also be used within thisraameavdrk, and

combined with different dependent or independent prior distributions.

7.3 Relationship to Variational Approximations

A now standard approach to approximate learning in intractable models iddoedpe true poste-
rior distribution of equation (12) by an approximaggthat is obtained by minimizing the Kullback-
Leibler divergencekL[gn| p(S|¥™,@")] within a constrained class of functions. This provides a
form of variational learning (Jordan et al., 1999), which provablyeases a lower bound on the
likelihood at every iteration. A common choice of a constrained family might leevdrich factors
over the latent variables. Unfortunately, this common choice is of little bendfititMCA gener-
ative model, as the costs of evaluation of the expected values of thettesvaq (S,W), given in
(8), grows exponentially even under factored distributions.

An alternative approach would be to constrgjnto place mass only on source configurations
where a limited number of causes are active. The minimum Kullback-Leiblergéwnce under
this constraint would then be achieved when the probability of such spardegyurations under
On Was proportional to the corresponding true posterior values. Revisitingrgument leading to
equation (15), itis clear that such an approximation would correspongitcating the sums in both
numerator and denominator of (15), as well as the correspondingsm’qnne‘or(sﬁqn, at the same
point. Our experience has been that the algorithms described here, in fehier terms are kept
in the numerator of (15) than in the denominator, always perform betterthigatrict variational
approach.

7.4 The Different MCA Algorithms

The computational cost of exact expectation-maximization learning (i.e., d)@Athe MCA gen-
erative model grows exponentially in the smaller of the number of obsenitioensions and the
number of hidden variables (miD, H)), and is thus generally intractable. We have introduced three
approximations, all based on early truncation of the expanded sums itiég(Eb). One of these,
MCA3, with cubic computational complexity, learns all the parameters of the fullrgéinwe model,
including the prior source probabilities. However, if the sums over salistebutions are truncated
further, to yield an algorithm with quadratic complexity, experimental perfoeaf an otherwise
unconstrained algorithm suffers. This difficulty is avoided in the restriegegion of the generative
model, in which the prior probabilities are held fixed and equal, and the wedghtsciated with
the sources satisfy a homogeneous coverage property. In this restriotel, the quadratic-cost
algorithm becomes effective, and we have studied both a batch-modétatgdR-MCA,, and an
online version R-MCAN. Experiments showed that these restricted algorithms remained effective
in terms of identifying generative weight vectors, even when the data gesrerated with prior
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source probabilities that were substantially different from that assum#telalgorithms (see, e.g.,
the experiments of Figure 8A or the discussion of violations of model assumsptidcxperiments).
Furthermore, the R-MCA algorithms were also robust to violations of thengsthon of homoge-
neously distributed hidden causes (20). In some situations, the R-MCAitatge succeeded in
extracting the true causes where Mg£did not. We have observed that this is particularly true
for bars with large differences in intensity. For this type of data, R-M@ppears to be the most
robust of the algorithms (sedicke and Sahani, 2007). The R-MCA algorithms may also be more
robust to greater differences in bar widths than those that we havedgtutie. Overall, in terms of
the reliability with which hidden sources are recovered, R-M@Ad R-MCAyn may outperform
MCA3 even in experiments in which the assumptions used to derive them are vidlagse results
suggest that constrained optimization can improve measures such as rela@b@igyning time (in
terms of pattern presentations), even when the constraint is not exdaly Approximately valid
constraints may make it easier to avoid local optima, and to learn from fewwer@gs. However,
the more severe approximation of R-MgAnd R-MCAyn can affect the likelihood of the param-
eters found. In this sense, MGAs the more successful algorithm. One approach to increasing the
speed of convergence might be to use R-MAo provide initial values to MCA, thus reducing

the number of cubic-complexity iterations required for final convergeS8ceh a hybrid algorithm
would provide a learning system with relatively short learning times, highlfkedihoods and high
reliability.

7.5 Relationship to Previous Algorithms

It is helpful to divide the algorithms that have previously been proposeddmponent extraction
into three groups: generative models with linear superposition, competéiverative models, and
neural network models in which assumptions about the data are implicit in thenkettvucture
and learning algorithm.

7.5.1 LUNEAR SUPERPOSITIONMODELS

The functional difference between linear superposition and the maasléeen discussed above.
Despite the mismatch in the generative process, linear superposition modelsdeavused within
non-linear component extraction contexts, with some success. In partibelamon-negativity con-
straints of NMF have helped to identify constructively combined features éind Seung, 1999).

For non-negative data, the specific algorithms developed here GVIEMCA,, and R-MCAN)
can all be regarded as explicitly non-linear alternatives to the diffemstons of NMF. In particu-
lar, the Poisson noise distribution matches one of the cost functions oftdwith NMF (Lee and
Seung, 1999). The basic methodology of our MCA development is, hmwmdependent of the
assumption of non-negativity.

It is worth noting that non-negativity may be better suited to finding featutalmarts (cf., Lee
and Seung, 1999; Wersing an@iQer, 2003) of generative components (as was, in fact, originally
proposed) than the entire components. In the bars test bwitli6) Spratling (2006) showed that
at least some NMF algorithms succeed in extracting all of the bars. Howétlee bar overlap
is increased (as in the test depicted in Figure 2 and Figure 8C), most NMFtlafgs fail. For
such input data, NMF only succeeds if its objective function is extendehtadditional term that
enforces a form of sparseness. M{and R-MCA perform better on these data than all other
algorithms tested (see Figure 9 for results) except for one sparseadksion (NN-SC; Hoyer,
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2002) that performs equally well. However, for this and other spanstores of NMF the sparseness
parameter (or parameters) must be chosen either based on prior kgevaledut the input, or by
trial-and-error (see Spratling, 2006, for a critical discussion).

In contrast, thegenerative modelinderlying MCA does not assume sparseness. Instead, the
notion of sparseness was introduced in the discussion of learning, ty jtrstitractable approx-
imate learning algorithms MCA R-MCA,, and R-MCAn. The truncated approximations that
underlie these algorithms are more accurate when the input causesraedysaetive; but this does
not incorporate an explicit prior for sparsity in the way that SC, ICA,garse-NMF do, and does
not enforce a pre-specified degree of sparseness in the leamectiye model. Indeed, the MCA
algorithms were found to robustly optimize the data likelihood, even for inpugessithat were not
sparsely active on average. It is possible, however, that if data gesrerated by a process that
was substantially different from that assumed by MCA, the approximateitigs might well in-
troduce a bias towards a sparser solution. These differences ireapgdmsparsity between MCA
and models such as SC, ICA, and sparse-NMF, suggest that MCA nightle a good basis from
which to study the relationship between non-linear component combinatidrspansity assumed
in learning algorithms.

7.5.2 GOMPETITIVE GENERATIVE MODELS

Models that use an explicitly non-linear generative combination rule include thicSaund (1995),
which uses a noisy-or rule for binary observations, and of DayaZanl (1995), where the com-
bination scheme is more competitive. The MCA model may be viewed as taking thizetition
to an extreme, by selecting just one hidden variable to be responsiblecfoobaerved one.

Competitive generative models have proven challenging from a learnimgysiant, in that pub-
lished algorithms often converge to local optima. In the bars test 10, N = 500) the noisy-or
algorithm (Saund, 1995) finds all bars in just 27% of trials. The more ctitivgescheme (Dayan
and Zemel, 1995) only extracts all bars if bar overlap is excluded foritiginthat is, if training
patterns only contain parallel bars. In this simplified case the system asl@@¥%ereliability.

For comparison, the MCA learning algorithms MgAR-MCA,, and R-MCA\ all show sig-
nificantly higher values of reliability in the same bars test (see Table 1), sttwdgen combined
with an annealing procedure. The reliability can be boosted further in tws-waither by adding
Poisson noise to the input (Table 1), or by adding more hidden variabl@sitsrto the model (in
which case all three MCA algorithms find all 10 bars in all of our experiments)

7.5.3 NEURAL NETWORK MODELS

High reliability in component extraction in the bars test is not a feature exelusithe new al-
gorithms presented. Other highly reliable systems include some that optimize@otmbilistic
objective function (e.g., Charles and Fyfe, 1998; Hochreiter and Sc¢hubét, 1999; Charles et al.,
2002) as well as neural network models (Spratling and Johnson, RO0Re and von der Malsburg,
2004; Liicke, 2004; licke and Bouecke, 2005; Spratling, 2006; Butko and Triesch, 200T)le
the probabilistic generative approach has the advantage of a principleéwork, which makes
clear the assumptions being made about the data, it has been criticizedditercand Schmid-
huber, 1999; Spratling and Johnson, 2008¢cke and von der Malsburg, 2004) for not working
reliably—that is, for often failing to extract the true causes.
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The models and algorithms introduced here show that a generative epgaraindeed be made
robust. The R-MCAy algorithm shows that generative and neural network approachesooas
together in the form of a competitive neural network model that is both reletdieprobabilisti-
cally interpretable. Using a high learning rate and additional noise, the fetmadel R-MCAn
avoids local optima and needs few pattern presentations for learningh#s3000 in the majority
of trials). The same is reported for other network models (Spratling anisdoh2002; Licke and
von der Malsburg, 2004; Spratling, 2006) which fit into the frameworkEgfiation (23) and Fig-
ure 4. The appropriate activation rule for a network to optimize the data likadibader our genera-
tive model turns out to be a generalization of the softmax rule (see Equé&lioR@ input generated
by very sparsely active causes, this generalization reduces to tHesafoex, which is commonly
used for clustering (see, e.g., McLachlan and Peel, 2000). Thealeedrrule (25) therefore offers
an explanation for why some networks (Spratling and Johnson, 2@@kgland von der Malsburg,
2004; Liicke, 2004) can also be successfully applied to clustering tasks. ldgWwRWCAyn and
standard neural network algorithms can differ in the details of their beha@a the one hand,
for data involving substantial overlap between components (e.g., FiguReMICAnn Seems to be
more robust than the DI and NN-DI networks discussed by Spratlings{2@h the other hand, DI
and the network of licke and von der Malsburg (2004) seem to be more robust to largeratitfes
in component sizes.

A distinguishing feature of our model is the use of the max function. In heoodeling this
function has also been used in other contexts and for other purposesngfother models (e.g.,
Grzywacz and Yuille, 1990) it has been used as an activation functromidden units in a feed-
forward model for visual object recognition (Riesenhuber and Pod§i©9). However this use in
the recognition model should not be confused with our use of the max fanictithe generative
process. Indeed, inference within the MCA model shows that the appt@@ctivation function
of hidden units, for example, (16) or (22), is necessarily more complére ektraction of input
components, for example, in the bars test, fails if a simple max is used fornotenmestead. How-
ever, for input without superposition (and for recognition after leanamax function as used by
Riesenhuber and Poggio (1999) may be interpreted as a further apptmn of the generalized
softmax in the neural network approximation of R-MGA

7.6 Conclusion

To conclude, we have formulated a novel class of generative modelsdimgetitively combines
hidden causes. In place of the linear superposition of prominent modelB@ke ICA, SC, and
NMF, we use the max-operation. We have shown how a new techniquedtarjpr approximation
in such models can provide efficient parameter update rules if the inpsiesaue sparsely active.
Making specific choices for prior and noise distributions, we obtain effiaégorithms that per-
formed well on artificial and natural non-linear mixtures, and are fourimetoompetitive with the
best current performance on standard non-linear benchmarks.
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Appendix A. Maximum Likelihood
To maximize¥ (©,@') in (5) with respect t&W\y we require that:

0 N
s F(©0) = 0
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0
/
= ;gqr&@ §<0W.d
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where  f(y,w) = - log(p(y|w)), (27)

ow
with p(y|w) given in (2). Now, for any well-behaved functignand largep:

0 W5(EW). (28)
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A% (SW)g(Wq(3W)) ~ 48 (3W)g(Wg), whereal (SW) =

Equation (28) holds becaus%‘;-?j (8,W) ~ 0 wheneveWy(5,W) # Wqy. Hence it follows from (26)
that:

3T n(S0)A5EW) fy We) ~ O, (29)
n s

N ;% on(S:0) AL (W) (v —~Wa) ~ O (30)

Equation (9) is obtained in the limit of large To be more precise, we might have us@@(iW)
instead of4;4 (5,W) in the main text. However, we abstained from doing so for the sake ofidada
ity, and because only the limit — « is needed to derive the learning algorithms. The expression
for this limit given in Equation (8) is found from (7), with the derivativeWﬁ given by:

Dl

0
OWg

p(sw):< S (Wa)P ) (3 sh(VWha)?)? (31)

> hSh(Wha)? s Wq

In the limit p — oo this reduces to (8) because the second factor on the right-hand-sickrges to
1 whenever the first term is nonzero.

Note that (29) is true for any type of conditionally independent noise digioif. Only in the
final step, from Equation (29) to (30), is the specific form of the Poiskstnibution needed, where
it appears in the derivative (27).

Appendix B. Intractability of Sufficient Statistics

To compute the exact sufficient statistics in (10) requires the evaluatioimud sver all possible
hidden states, suggesting a computational complexity &f.2n some cases, however, there may be
multiple different source configurations, all of which result in the samecétfe weightdVy(3W)

for all dimensionsd € {1,...,D}. In such cases, it might be possible to group these equal terms in
each of the sums together, thereby reducing the complexity of the sum tonsttatee number of
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such groups, rather than with the number of source configurationactyvie show below that the
complexity of computing these expected values in general scales at Iéast as 2"(H.D)
We examine three cases individually:

H =D Consider parametek¥ for which, corresponding to each observed nddéhere is a
hidden node such thatMy > Wijq for all j # i (beyond this restriction, the entries in
W may have arbitrary values). Féf = D this condition can be satisfied, and if it is,
then for any two hidden vectogands' there is ad such thatVy (W) # Wy (8',W).
In other words: any change of the hidden vedaesults in a change of the pre-
noise output vectofW;(S,W),...,Wp(5,W)). Hence, each summand in the partition
function in (12) contributes a potentially different value, and they mustvatuated
one-by-one. Thus, in this case the computational cost scalés as 2

H < D Consider a subset ¢f of theD observed nodes and apply the argument above. Thus,
the computational cost scales d& Note that for fixedH and random parameteve
the existence ofl (or approximatelyH) hidden nodes for which the above condition
is fulfilled becomes increasingly likely with increasiby

H > D On the one hand, if we just considerof theH hidden nodes and apply the argument
above, we can infer that the computational complexity grows with at |€asba the
other hand, we can obtain at ma$? + 1 different vector§Wy (S W), ..., Wp(§W))
and thus at mogt® + 1 groups to sum over. The computational complexity thus lies
between 2 andHP + 1 in this case.

Appendix C. MCA 3 and R-MCA ,—Details of the Derivations

The update rules that define the algorithms MGC#d R-MCA follow directly from (12) and
(15) using the distributions (1) and (2). Note that in (15) the joint probabiligy™ |@’) can
be replaced by any functiof satisfyingF (3 y",@) = %, whereA is any well-behaved

function not depending o& For the update rules of MGfand R-MCA we have used:
FEy",0) = <|-| Trf) exp(l™), 1 = Z(Iog(wd(iW))y&”) ~Wa(sW)).
[

C.1 MCA3

The first term in the sum over statgés the denominator of (16) and (17) only contributes signifi-
cantly ify(™ =0, that is, ifF (0,y(",®) = 1 (given Poisson noise). In all other cases its contribution
is negligible. To derive the numerator of (16) we have used the property:

Aid(5,W) = 8h,  Aid (Sap, W) = Sia H (Wig —Wha) + b H (Wg —Wad) , (32)

where# is the Heaviside function. Note that instead of (32) we also could have &igé¢sh, W)
and Aiq (S, W) directly or the corresponding expressionsAf} (S, W) in (31) with highp. By
using (32) we can simplify the expression of the numerator of (16), hewev

The derivation of the numerator of (17) (with= 1) is straightforward. For less sparse input we
have to correct for neglecting input patterns which were generatedursyf more hidden causes.
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We do so by updating using a consistency argument. On the one hand, using the same arguments
as for the derivation of (16) and (17), we can estimate the total numbepuwff patterns generated
by less than three causes:

H(§- gyé'”) +ymexpl™) +3Y  Tamexply)
[ a,b(a#b)

A (Y,0) ~ . (33)
Z 1+ Znhexp(lr(ln)) + %Zﬁaﬁbexp(lég)) +5> Tampreexp(ll)
ab ab,c
a#b a#£b#c

On the other hand, the same number can be estimated using the prior distribidivers

AW = N (H(l—ﬂi)> <1+Zﬂh+% b(z b)“a"b)- (34)
I a,b(a#

If the parameterst are underestimated using approximation (17), the estimate (33) is smaller

than the estimate (34). We changeafter each EM iteration until both estimates are consistent
<2 ~ <2,

(N (Y,0) = AL (T):

€ ~ <2, <2

(A - A (v.9)).

Note that the additional computational cost to irdieis small. Computations in (34) scale quadrat-

ically with H, and the terms in (33) have to be computed for (17) anyway. In experimentse

Sq - l

old

a = o%+

C.2 R-MCA;
If we optimize (5) under the constraifiyWy = C in (19), we obtain:

(n)
_ Vg — W o
Z(ﬂl,d (§,W)>qn W +u =0.

The elimination of the Lagrange multipliepsresults in:
>n (Aid (SW))q, vy
L 3na (A EW))G V5 = 5o ((Zo (Ao (EW))g, &) — (a(SW)),,)

If the model parameteid/ fulfill condition (20), which can be expected at least close to the max-
imum likelihood solution, we obtain after the rearrangement of terms, the xppate M-step of
Equation (21). To derive the sufficient statistics (22) note that givenphate rule (21) we have:

Wq =

_ (n)
S (Aia(SW))g, Ve > O (Aid(SW)) g, e
Wy = C—" _ ¢ _neN” ,
3 3 (AW, vy > Y (Aw(sw),, yo
n neN~°

whereN ™ is the set of all non-zero input patterns. To approxinia@ (s,W)),, we can therefore
assume input statistics that follow from Equations (1) to (3), but in which plitsexactly equal
to zero are omitted. For such modified input statistics, Equation (15) remashaniged except for
the partition functionz in (14) whose ternp(0,y(™ | @) now equals zero. If we truncate the sum
in (15) after terms of order two, we obtain Equation (22).

1260



MAXIMAL CAUSES

Appendix D. Neural Network Details

Here we show that the online neural network update rule (23) appeeable batch rule (24) for
large data sets and small learning rates. ‘Udf) be the weight matrix at theth update, and for

convenience define the Hebbian correlation signal tGﬁ‘é =g (y", W(”))y&”), and the weight
renormalization term to b8"” = C-15 (W) +£GY)) = (1+ £ 54 Gly) (where we have used
the fact thaty 4 Wiérf) =C). Then we can rewrite (23) as

‘I/Viénfl) + SGi(dnfl)

(n _
(I/Vid - Zi(n_l) ’
and by applyind\ updates starting from initial steédind that
t t+N— t+N—k
N rWié) +€ ZN:lGi(ol+ " ﬂE:nJrlzi( N
d N (trN-K) ’
MNk=1%

where the empty product at= N is taken equal to 1.

We now make approximations based on the assumptions\tlstarge, e is small, and that
W is drawn from the equilibrium distribution over weights. First, as eé@h’s (slightly) larger
than 0, the sum will be dominated by the leading terms (whésesmall). The coefficients of these
terms can be approximated, assuming thiatsmall, by a logarithmic transform and the weak law
of large numbersﬂE:nHzi(t*N_k) ~ exp((N — n)% zd,Gd/), whereGyq is the expected value of
Gi(dn), which is taken to be stationary by the equilibrium assumption.

Inserting this expression into (35), taking the expected value of the reyid-kide, and sum-
ming the resulting geometric series to infinity, we obtain:

(t+N) _ ~NeSy Gy /C aqpt) | & o r
(M/id ~e v q/V'd +€Gi <1_e52d/Gid’/C )

Finally, assumingd\e to be large enough for the first term to be negligible, expanding the sgcond
and keeping only terms that do not scale wétlve obtain

(t+N) Ga Shet (", ‘W(”)yé”)
Wy ~C——— ~C Ok
200G ye T G, WO)yy
This equivalence of the online and batch rules at equilibrium shows thavérage fixed points of
R-MCAnN equal fixed points of R-MCA The equivalence becomes inexact away from equilib-
rium, although our experiments suggest that the behaviour during ggame® may nonetheless be
similar (Lucke and Sahani, 2007).

Appendix E. Experimental Details

This appendix gives details of the training procedures used for the M@#itoms, provides more
information about the other algorithms used for comparison, and givéisuars of the acoustic
and visual data used.
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E.1 Initialization

We initialized the parametel® by drawing eacWy from a Gaussian distribution with unit mean
and standard deviation éf. Thereafter we normalized such that the average ov&vallvasw™,

For MCAz we usedW™! = 4 and for the R-MCA algorithms we us&t™t = 2 (for this choice

the sum,y W4 = 50, corresponds to the sum of the parameters used to generate theTdwta).
parameters of the prior distribution were initialized torpe- % for MCAg3, that is, half the value of

the generating?*" = 2 in the standard bars test. For R-MgAnd R-MCA we initialized with
valuest; = = % The reliability of both R-MCA algorithms is only marginally affected by the
exact choices oftandW', Reliability values remained about the same even if the assumed values
of rtdiffered significantly from the generating valug&" (see, e.g., the experiments of Figure 8 or
the paragraph on ‘Violations of model assumptions’ in Experiments).

E.2 Annealing
In Equations (16) and (18) we make the following substitutions:
-1
H(x) = 510 = (1+exp(—24x)) (35)
mw— m@PF, 1V =™ Y i B with = 1. (36)

while making only the substitutions of (36) in Equation (33). Héreglays the role of a ‘temper-
ature’. In the limit of T = 1, B is equal to one and the sigmoidal functisn(x) converges to the
Heaviside function, that is, we recover the original Equations (16) A A temperaturd > 1
has the effect of leveling the differences between the parameter ugdatezrtain extent. For a
high temperaturd > 1, the differences between the parameters associated with differeenhidd
variables vanish after a few iterations.

Smoothing the Heaviside function in (35) is a technique frequently useexample, in the
context of perceptrons, and the substitutions in (36) correspond tteth@esd annealing procedure
for EM (Ueda and Nakano, 1998; Sahani, 1999). The slope of the gigirfanction$t(x) atx=0
is parameterized by whose value is set th = 0.2.

In experiments for MCA and R-MCA, we started learning at a relatively high temperature
T1 > 1 and cooled to a valu&, close to one. A final temperatufig > 1 makes the system more
robust and counteracts over-fitting (Weiss, 1998). Experimentaltsesu artificial data remained
essentially the same when we uskd= 1 but the cooling procedure needed to be slower to avoid
numerical instabilities in this case. If not otherwise stated, we Uged 1.5. For MCAg and
R-MCA, we cooled fromT; to Ty in steps ofAT = T150T° after each iteration. However, we did
not change the temperature if the parametéistill changed significantly. More precisely, we only

decreased the temperature if the chang@finfell below a threshol®ay foralli=1,...,H. In
formulas:
(Vi: AW < Bpy) = TNew—=Tod _AT, (37)
zd(vvom _,anemoz
where AW = \/ < i d . (38)
>aWig

Cooling conditioned on small parameter changes in this way allows the usegef lewoling
stepsAT and thus leads to learning in fewer iterations. For all trials we used a thdesho
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Baw = 2.5x 1073, except for the application to more realistic data for which we ran additional
trials with Bpy = 0.25x 103,

In experiments it was observed that a given system had a critical temgeFfaalbove which the
weights did not specialize to different patterns after random initializatioste&d the parameters
converged to about the same values for all hidden variables (compzaaiSE99; liicke, 2004). A
natural choice of an initial temperatufe > 1 is therefore a value close to this critical temperature.
Experiments on different versions of the bars test showed a roughly lieggendence between
the critical temperaturd@; and the number of input dimensiofls Thus, in all versions of the
bars test we useth = 0.4D + 1 andT; = 0.7D + 1 for MCA3z and R-MCA, respectively. In the
experiments on acoustic and visual data, the critical temperatures aretlamethose measured
in bars tests with samB, presumably due to more homogeneous distributions of input values in
those cases (generating weights in the bars test were all either O or &@astgenerating weights
in the naturally-derived data could take on any valuéOiriQ0]). Thus, experiments on phoneme
data started at an initial temperaturelpf= 70 for MCA3 and T, = 100 for R-MCAp; and those on
visual data started af = 2 for MCA3 (8-by-8 patchesH = 20) andT; = 4 for R-MCA; (10-by-

10 patchesH = 50). In all experiments the temperature was maintained during the first ten
iterations. After the system had cooledTpusing (37) and (38) learning was terminated once all
AW remained smaller thawy for 20 iterations.

For R-MCA\n We used a fixed temperature D= 16 if not otherwise stated, and stopped after
all single causes were represented by the same hidden variables Gopat€rn presentations. In a
given trial, the first pattern presentation after which the representatiamotlichange was taken as
the learning time of R-MCAn. For the acoustic data set we used= 70 and additionally report
results forT = 50 and value§ < 40. For the visual data we uséd= 2.

For MCAg in Figure 6 we have used a relatively fast and fixed cooling schedule.

E.3 Algorithms for the Comparison in Figure 9

For the comparison in Figure 9 we have reproduced data reported byir&p(2006). While we
have adopted the same abbreviations as were used there, we repeat Tiadxe 2 for the conve-
nience of the reader.

Algorithm Description

NN-SC non-negative sparse coding£ 1)
SC-NMFy NMF with a sparseness constraint of 0.5 on the basis vectors
SC-NMFay NMF with a sparseness constraint of 0.5 on the basis vectors

and 0.7 on the activations
DI dendritic inhibition network

NN-DI dendritic inhibition network with non-negative weights
SC-NMK~ NMF with a sparseness constraint of 0.7 on the activations

S-NMF sparse-NMF¢ = 1)

NMFgiv NMF with divergence objective

NMFmse NMF with Euclidean objective

L-NMF local NMF

Table 2: Description of the algorithms used for the comparison in Figure 9.
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E.4 Acoustic Data

The data used to study component extraction in the acoustic domain weratgerfeom recordings
of three vowels (two of them diphthongs)pfa[i:], and [01] and three consonants [K], [t], [p]. The
phonemes were spoken by a male voice and recorded at 8000Hz. fhheata taken from a pub-
licly accessible data base (Sunsite, 1997). To construct spectrogeosed 1000 samples for each
of the phonemes, which required truncation in three cases and paddingendthin the other three
cases. The waveforngt) were normalized in power such thétzt(z(t))2 = 1. The waveforms
were then linearly mixedzix(t) = z(t) +Z(t) +...) to produceN = 500 observed spectrograms.
The probability of a phoneme of appearing in a mixed waveform was %at idhe spectrograms
of these mixtures were computed using short-time Fourier transforms witle§0eincy channels
ranging from 100 to 4000 Hz, with logarithmic scaling of center frequensies Figure 11D). We
used 9 Hamming windows of 200 samples each, with successive windowappiag by 100 sam-
ples. We then took the logarithms of the magnitudes of the 50-by-9 spectragries, and lin-
early rescaled the top 42dB of dynamic range to lie between 0 and 10, with magnitudes more than
42.8dB below the highest intensity being clipped to 0.

E.5 Visual Data

The image that was used for the experiments on visual data has been takethé& publicly
available image database of the van Hateren grohpat. phys. rug.nl/imib/. Images of the
database represent light intensities linearly, which results in most imagearapgprelatively dark
if displayed using a finite gray scale (see van Hateren and van derfStB88, for details). We
have used image number 2338 (deblurred), cut out a segment ofysB06kpixels in the lower left
corner and scaled it down to a resolution of 250-by-250 pixels.
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