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Abstract
In this JMLR volume, Ye (2008) demonstrates the essential equivalence of two sets of solutions to
a generalized Fisher criterion used for linear dimensionality reduction (see Ye, 2005; Loog, 2007).
Here, I point out the basic flaw in this new contribution.
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1. Introduction

Some time ago, Ye (2005) studied an optimization criterion for linear dimensionality reduction and
tried to characterize the family of solutions to this objective function. The description, however,
merely covers a part of the full solution set and is therefore, in fact, not at all a characterization.
Loog (2007) has corrected this mistake, giving the proper, larger set of solutions. In this volume,
Ye (2008) now demonstrates that the two solution sets are essentially equivalent.

In principle, Ye (2008) is correct and the two sets of dimension reducing transforms can indeed
be considered equivalent. At the base of this fact is that mathematically speaking anything can
be equivalent to anything else. The point I would like to convey, however, is that the equivalence
considered is not essential and, as a result, the two sets are in fact essentially different. The main
question in this is what is ‘essential’ in the context of supervised linear dimensionality reduction?

2. Essential Equivalence

Concerned with classification tasks, the performance of every dimensionality reduction criterion
should primarily be discussed in relation to the Bayes error (see Fukunaga, 1990, Chapter 10). As
such, transformations might be considered essentially equivalent if their Bayes errors in the reduces
spaces are equal. A closely related definition is to consider transformations A and B equivalent if
there is a nonsingular transformation T such that A = T ◦B (see Fukunaga, 1990). The latter is more
restrictive than the former as the existence of T implies an equal Bayes error for A and B, but the
implication in the other direction does not necessarily hold. When A and B are linear and there is
such a transform T , both of them span the same subspace of the original feature space, obviously
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resulting in the equality of the Bayes errors. Based on the foregoing, two linear transformations are
also considered essentially equivalent if they span the same subspace.

Now, without providing any rationale, Ye (2008) declares two linear transformations A and B
to be equivalent if there is a vector v such that A(xi − v) = B(xi − v) for all feature vectors xi in the
training set. The following very simple examples demonstrate, however, why the latter definition of
equivalence is flawed.

Let x1 = (0,0)t and x2 = (1,0)t be two training samples, A = (1,0), B = (−1,0), C = (1,1), D =
(0,0), and E = (0,1) be linear transformations, and let v equal to (v1,v2)

t. Now, firstly, one cannot
have both −v1 = A(x1 − v) = B(x1 − v) = v1 and 1− v1 = A(x2 − v) = B(x2 − v) = −1 + v1, and
therefore A is not equivalent to B even thought A = −B. That is, two transforms that trivially define
the same subspace are apparently not equivalent. Secondly, D(xi − v) = 0 = E(xi − v) shows that
transforms spanning subspaces of different dimensions can be equivalent. Finally, a straightforward
calculation shows that A and C are equivalent, that is, two transforms that obviously span different
subspaces, and therefore most probably result in different Bayes errors, are considered equivalent.

3. In Conclusion

Maintaining that the equivalence relation in Ye (2008) is flawed, it directly follows that it cannot be
concluded that the different sets of solutions as given by Loog (2007) and Ye (2005) are essentially
equivalent. In fact, as should be obvious from Loog (2007), they are essentially different. Given that
x1 and x2 (as defined above) come from two different classes, one can easily check that the solution
set by Ye (2005) is given by {(a,0)|a ∈ R\0}, that is, nondegenerate multiples of A = (1,0), while
the true set also contains transformations like C = (1,1). Both define different subspaces and,
generically, lead to different Bayes errors.
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