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Abstract

Large-scale logistic regression arises in many applinatisuch as document classification and
natural language processing. In this paper, we apply a teggdn Newton method to maximize
the log-likelihood of the logistic regression model. Theprsed method uses only approximate
Newton steps in the beginning, but achieves fast conveggenitie end. Experiments show that it
is faster than the commonly used quasi Newton approach fstio regression. We also extend
the proposed method to large-scale L2-loss linear suppetbv machines (SVM).

Keywords: logistic regression, newton method, trust region, coriggadient, support vector
machines

1. Introduction

The logistic regression model is useful for two-class classification.rGie¢ex and weightgw, b),
it assumes the following probability model

1
1+ exp(—y(w'x+b))’
wherey is the class label. If training instances age = 1,...,| and labels arg; € {1,—1}, one
estimategw, b) by minimizing the negative log-likelihood:

P(y = +1jx,w) =

|
i log(1+ e Wxitb)y,
m? i; og(l+e )

There are numerous applications of logistic regression. It can be extéad multi-class classifi-
cation model, which is a special case of conditional random fields, andisalled the maximum
entropy model in the natural language processing community.

To have a simpler derivation without considering the bias terrone often augments each
instance with an additional dimension:

x| —x,1 whe[w' . 1)
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Moreover, to obtain good generalization abilities, one adds a regularizetiow™w/2, so in this
paper we consider the following form of regularized logistic regression:

w

|
min f(w) = %WTW+C Zlog(l+e‘V‘WTX‘), )
i=

whereC > 0 is a parameter decided by users so that the two terms in (2) are balanced:a®
easily check that (2) is twice continuously differentiable.

There are many methods for training logistic regression models. In fact, .mosenstrained
optimization techniques can be considered. Those which have been usegeiscale scenarios
are, for example, iterative scaling (Darroch and Ratcliff, 1972; Pietah ,€1997; Goodman, 2002;
Jin et al., 2003), nonlinear conjugate gradient, quasi Newton (in pantitioited memory BFGS)
(Liu and Nocedal, 1989; Benson and Moi2001), and truncated Newton (Komarek and Moore,
2005). All these optimization methods are iterative procedures, Whichaj;eruesequencl[a/v"}ﬁ":1
converging to the optimal solution of (2). One can distinguish them accotditige following two
extreme situations of optimization methods:

Low cost per iteration; High cost per iteration;
slow convergence. fast convergence.

For instance, iterative scaling updates one component af a time, so the cost per iteration is
low but the number of iterations is high. In contrast, Newton method, whichgsresive at each
iteration, has very fast convergence rates. Many have attempted to othpae methods for
logistic regression. Minka (2003) experiments with small data sets, and M&002) has done
an extensive comparison for large-scale sets. Currently, most amgué¢himited memory BFGS
method is the most efficient and effective (e.g., Malouf, 2002; Sutton ac@dallum, 2006) and
references therein). In this article, we aim at situations for which b@tlhmber of instances) and
n (number of features) are very large. In addition, the data instatices, x| are sparse (i.e., many
feature values are zero). Many recent applications from documessification and computational
linguistics are of this type.

Truncated Newton methods have been an effective approach fordeadg unconstrained op-
timization, but their use for logistic regression has not been fully exploitbdugh Komarek and
Moore (2005) have considered this type of methods, their implementatiomdoéslow rigorous
optimization derivations, and hence may not be guaranteed to obtain the minimtbhenreegative
log-likelihood. In Section 2, we discuss an efficient and robust trudddévton method for logis-
tic regression. This approach, called trust region Newton method, ngesgproximate Newton
steps in the beginning, but takes full Newton directions in the end for éastergence.

In Sections 3 and 4, we discuss some existing optimization methods for logistessemnr
and conduct comparisons. As Newton method uses the exact Hessiandskerivative), it has
guadratic convergence near the optimum. Results indicate that our pdopmtbod converges
much faster than quasi-Newton methods, which use only an approximataieSgection 5 in-
vestigates a variant of our proposed method by using preconditiongdgete gradients in the
trust region framework. In Section 6, we extend the proposed trusirregethod to solve L2-loss
support vector machines. Finally, Section 7 gives conclusions.

All sources used in this paper are available at

http://lwww.csie.ntu.edu.tw/ ~ cjlinfliblinear

A preliminary version of this work appears in a conference paper (Lah. £2007).
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2. Trust Region Newton Methods

In this section, we briefly discuss Newton and truncated Newton methodsargerscale logistic
regression, we then propose a trust region Newton method, which is atypecated Newton
approach.

2.1 Newton and Truncated Newton Methods

To discuss Newton methods, we need the gradient and Hessfdw oif

Of(w) = W+Ci2(0(yinxi)—l)yixi, (3)
O2f(w) = I+CX_TDX, (4)
wherel is the identity matrix,
O(ywTx;) = (1+e W)t

D is a diagonal matrix with

Dii = o(yiw' i) (1— o(yiw'x;)), andX =
X7
[
is anl x n matrix. The Hessian matrix? f (w) is positive definite, so (2) is strictly convex. We can
further prove the following theorem.

Theorem 1 (2) attains a unique global optimal solution.

The proofis in Appendix A.
Since?f (wK) is invertible, the simplest Newton method updatesy the following way

Wit — wk &€ (5)

wherek is the iteration index ang’, the Newton direction, is the solution of the following linear
system:
02 f (WK)s¢ = —OF (wk). (6)

However, there are two issues in using this update rule:

1. The sequencwX} may not converge to an optimal solution. In fact, even the function value
may not be guaranteed to decrease.

2. While we assume that the data matfiis sparseX ' DX is much denser. The Hessian matrix
is then too large to be stored. Thus, solving the linear system (6) is an isdue#ds careful
consideration.
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Optimization researchers address the first issue by adjusting the length Nettton direction.
Two techniques are often used: line search and trust region.

For the second issue, there are two major types of methods for solving fipgt@ms: direct
methods (e.g., Gaussian elimination), and iterative methods (e.g., Jacolrgndate gradient).
The main operation of certain iterative methods is the product between tisgaHResatrix and a
vectors:

02f(w)s= (I +CX'DX)s
= s+C-XT(D(Xs)). (7)

As we assume spar¥e (7) can be efficiently calculated without storing the Hessian magi(wk).
Therefore, for large logistic regression, iterative methods are morebkuitaan direct methods,
which require the whole Hessian matrix. Among iterative methods, currentiyigate gradients
are the most used ones in Newton methods. The optimization procedure ghénchkyers of
iterations: at each outer iteration an inner conjugate gradient proctddsehe Newton direction.
Unfortunately, conjugate gradient methods may suffer from lengthy it@satiocertain situations.
To save time, one may use only an “approximate” Newton direction in the eaggsstd the outer
iterations. Such a technique is called truncated Newton method (or inexatbiNmethod).

Komarek and Moore (2005) are among the first to apply truncated Newtthrod®efor logistic
regressiort. They approximately solve (6) by conjugate gradient procedures an¢byiso update
wK. They terminate the conjugate gradient procedure if the relative differeflog likelihoods
between two consecutive conjugate gradient iterations is smaller thanlaglokeddowever, they do
not provide a convergence proof. In fact, when we tried their cogefownd that| 0 f (W) may
not approach zero and henpe*} may not converge to an optimum.

Optimization researchers have well addressed the above two issuestodéthy devise the
procedure of outer iterations, and specify stopping conditions for ttex iterations. The overall
framework guarantees the convergence to the global minimum. The trunoatoof the inner al-
gorithm is important as one should stop after a sufficiently good directiobdesfound. A survey
of truncated Newton methods is by Nash (2000). Some comparisons bdimied memory quasi
Newton and truncated Newton are by Nocedal and Nash (1991) andtZ2du(1993).

2.2 A Trust Region Newton Method

We consider the trust region method (Lin and Kot999), which is a truncated Newton method to
deal with general bound-constrained optimization problems (i.e., variatdes eertain intervals).
We simplify the setting to unconstrained situations, so the algorithm is close ta eastiesuch as
Bouaricha et al. (1997) and Steihaug (1983).

At each iteration of a trust region Newton method for minimizir{gv), we have an iterate/,
a size/\x of the trust region, and a quadratic model

ak(s) = Of (WX)Ts+ %STDZf (wW)s

1. They minimize only the negative log likelihood without the regularization tefrw/2.
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Algorithm 1 A trust region algorithm for logistic regression
1. Givenw?.

2. Fork=0,1,... (outer iterations)

o If Of(wK) =0, stop.
Find an approximate soluticsf of the trust region sub-problem

msin 0k(s) subject to||s|| < Ax. (11)

Computepi via (8).

UpdatewX to w**1 according to (9).

ObtainAy. 1 according to (10).

as the approximation of the valugwX +s) — f(wX). Next, we find a stejs* to approximately
minimize gk (S) subject to the constraitjs]| < Ax. We then update andAy by checking the ratio
f (WK 84 — f(wk
= e ) 21 ®)
Ok(S°)
of the actual reduction in the function to the predicted reduction in the qli@dradel. The direc-
tion is accepted ipy is large enough:

k .
W {W +€if pk>no, ©

o wK if pk <no,

whereng > 0 is a pre-specified value.

From Lin and Moé (1999), updating rules fdxx depend on positive constanfg andn such
thatni < n2 < 1, while the rate at whiclh, is updated relies on positive constanotso,, andos
such thao; < 02 < 1 < 03. The trust region bound is updated by the rules

Dyi1 € [ormin{ |||, A}, 0204]  if < N1,
Dyi1 € [010k, 030] if pke(ni,n2), (10)
D11 € [Dk, 030 if pk>ne.

Similar rules are used in most modern trust region methods. A descriptionrdfust region
algorithm is given in Algorithm 1. The main difference between our algorithdithose by Steihaug
(1983) and Bouaricha et al. (1997) is on the rule (10) for updaling

The conjugate gradient method to approximately solve the trust regiorrsbkem (11) is given
in Algorithm 2. The main operation is the Hessian-vector prodifdtw¥)d', which is implemented
using the idea in Eq. (7). Note that only one Hessian-vector produceeackeat each conjugate
gradient iteration. Since

= —0Of (W) — 02 f (WS,

the stopping condition (12) is the same as

| — O (WX) — O (W)S|| < &) OF(WH)],
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Algorithm 2 Conjugate gradient procedure for approximately solving the trust regibsproblem
(11)
1. Given&y < 1,A¢ > 0. Let® = 0,r% = —Of (wk), andd® = r°.

2. Fori=0,1,... (inner iterations)
o |f
Ir']] < &llOf (W]l (12)
then outpus® = & and stop.
o = [|r'[[2/((d")TO2f (wh)d").
o ST1—=d +qid'.
If ||§+1|| > Ay, computer such that

IS +1d'|| = Ay, (13)

then outpus = § 4 1d' and stop.
o ritl—yi —GiDZf(Wk)di.
Bi = [Ir2/|Ir12.
di+l _ ri+1+ Bidi-

which implies thas' is an approximate solution of the linear system (6). However, Algorithm 2
is different from standard conjugate gradient methods for linear sysisrifge constrainfs|| < A
must be taken care of. It is known that (Steihaug, 1983, Theorem ZH¥Ww= 0, we have

IS < I8+, v,

so in a finite number of conjugate gradient iterations, either (12) is satisf@tllosiolates the trust
region constraint. In the latter situation, (13) finds a point on the trustmdgiandary as

k(S +1d) < gk(3).

The whole procedure is a careful design to make sure that the approdimaten direction is good
enough and the trust region method converges.

Next, we discuss convergence properties of the trust region Newtomdetost results can be
traced back to Steihaug (1983). However, here we follow Lin and&Md®99) as our algorithmic
settings are closer to it. For the sequed&} to have at least one limit poiftsince f (wX) is
decreasing, it suffices to show that the level get| f(w) < f(w?)} is closed and bounded. This
result has been explained in the proof of Theorem 1. To have this limit poim the minimum,
Theorem 2.1 of Lin and Mdr (1999) requires thdf?f (wX) is uniformly bounded. We have this
property as1?f (w) is continuous in this bounded level set.

Eqg. (12) is a relative stopping condition in solving a linear system. The paeafeffectively
controls the efforts associated with the inner iterations. The following theewemmarizes the
convergence of Algorithm 1.

2. That s, the sequent{wk} has at least one convergent sub-sequence.
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Theorem 2 The sequence {wX} generated by Algorithm 1 globally converges to the unique mini-
mum of (2). If § < 1, then the trust region method Q-linearly converges:

i HWk+l — W H

—_ <1 14
A e 4

where w* is the unique optimal solution of (2). If
&k — 0ask — oo,

then the limit in (14) becomes zero, so we have Q-superlinear convergence.

We do not provide a proof here as it follows from Theorem 5.4 of Lin siwdé (1999). Since
the Hessian matrixl?f (w) is continuously differentiable;)?f (w) is Lipschitz continuous around
the optimal solution. Hence, as explained by Lin and M(t999)? if & < ko|/Of(wX)]|| for a
positive constanty, then at final iterations, our algorithm has quadratic convergence:

i HWk_H' — W H

T < L
o w2

Regarding the computational complexity, the cost per iteration is

O(nn2) for 1 function and 0/1 gradient evaluations
+ O(nnz) x number of conjugate gradient iterations (15)

where nnz is the number of nonzero elements in the sparse nfathiote that ifwX is not updated
in (9), then the gradient is the same for the next iteration.

3. Related Methods and Implementation Issues

In this section, we discuss a general limited memory quasi Newton implementatioar{tl No-
cedal, 1989). Many consider it to be very efficient for training logistgression. We also discuss
implementation issues of the proposed trust region Newton method.

3.1 Limited Memory Quasi Newton Method

We briefly introduce the approach by Liu and Nocedal (1989). Quasitdbh methods use certain
techniques to obtain an approximate inverse Heddjaand can easily update it tdc. ;. One of
the most popular updates is BFGS. The approach by Liu and Noced®#l)(ils9almost the same as
BFGS, but restricts the update to use omlyectors from the previous iterations. The mattxis
not formed explicitly and there is an efficient way to compHi&l f (WX). This property is useful
for large logistic regression as we cannot afford to skiweThe procedure is sketched in Algorithm
3.

Regarding the convergence rate, Assumption 7.1 of Liu and Noced9)i€quires:

1. f(w) is twice continuously differentiable.

2. The level sefw | f(w) < f(w°)} is bounded.

3. See the explanation given in that paper after the proof of Theo#m 5.
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Algorithm 3 Limited memory BFGS
1. Givenw® H° and a small integam.

2. Fork=0,1,...

o If Of(WK) =0, stop.

e Usingmvectors from previous iterations to calculte] f (WX), whereH is an approx-
imate inverse Hessian.

e Searchuy so that
f (WX — aH O (WX))
satisfies certain sufficient decrease conditions.
e UpdateHy to Hy 1.

3. There are positive constamiy andM- such that

M ||s||? < sTO2f (w)s< My||s]|?, Vs

The function we are minimizing satisfies the first condition. The second conditilows from our
proof of Theorem 1 (see Eq. 29). The third condition follows from chiog

M1 =1 andMy = 1+C||XT||[|X]|.
Then Algorithm 3 is R-linearly convergent. That is, there is a constani such that
FWH) — F(w) < e (f(wP) - f(w")), (16)

wherew* is the unique optimal solution of (2). Note that (14) implies (16), so Algorithnmag h
a stronger convergence property than Algorithm 3. While truncated Memtethods find an ap-
proximate direction, they still use the exact Hessian matrix. In contrast, limited meqouasi
Newton methods consider only approximate Hessian matrices, so we cart thqiet has slower
convergence.

The cost per iteration is

O(nn2) for function/gradient evaluations in line search
+ O(nm) for H O (WX) and updatindHy to H 1. (17)
As generallynm < nnz, function/gradient evaluations take most computational time. Moreover,
compared to (15), the cost per iteration is less than that for our trustregithod. However, as we
will show in experiments,BFGS'’ total training time is longer due to its lengthy iterations.

In this paper, we usea= 5, which is the default choice in th8FGS software (Liu and Nocedal,
1989).

3.2 Implementation Issues of Trust Region Newton Method

We give details of parameters in the proposed Algorithms 1 and 2. All settirgdraost the same
as theTRON software (Lin and Mag, 1999).
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Problem | #Positive # Negative n  #nonzeros
a%a 32,561 7,841 24,720 123 451,592
real-sim 72,309 22,238 50,071 20,958 3,709,083
news20 19,996 9,999 9,997 1,355,191 9,097,916
yahoo-japan | 176,203 15,937 160,266 832,026 23,506,415
rcvl 677,399 355,460 321,939 47,236 49,556,258
yahoo-korea | 460,554 145,831 314,723 3,052,939 156,436,656

Table 1: Data statisticd: is the number of instances ands the number of features. # nonzeros
indicates the number of nonzeros amadngn values.

We set the initialg = |0 (W) | and takeng = 10~ in (9) to updaten. For changingy to
Dy 1, We use

N1 =0.25n2 =0.75,
01 = 0.25, O = 0.5, O3 = 4.0.

As (10) specifies only the interval in whidk 1 should lie, there are many possible choices of the
update rules. We use the same rules as given by Lin an@ 1&®99). In the conjugate gradient
procedure, we usg = 0.1 in the stopping condition (12). One may wonder how the above numbers
are chosen. These choices are considered appropriate followiresteach on trust region methods

in the past several decades. It is unclear yet if they are the besugistitoregression problems, but
certainly we would like to try custom settings first.

4. Experiments

In this section, we compare our approach with a quasi Newton implementatitygfstic regres-
sion. After describing data sets for experiments, we conduct detailedasmops and discuss
results.

4.1 Data Sets

We consider six data sets from various sources. Table 1 lists the nunfiliestaoces (# positive, #
negative), features, and nonzero feature values. Details of da@setsscribed below.
a%a: This set is compiled by Platt (1998) from the UCI “adult” data set (Asumeind New-

man, 2007). Itis available attp://www.csie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/datasets/
hinary/a9a
real-sim: This set is from the web site
http://people.cs.uchicago.edu/ ~ vikass/datasets/Iskm/svml/ . It, originally compiled by

Andrew McCallum, includes Usenet articles from four discussion grdopsimulated auto racing,
simulated aviation, real autos, and real aviation.
news20: This is a collection of news documents. We use the data processed kiynikaed

DeCoste (2005). They consider binary term frequencies and nornegcteinstance to unit length.
This set is available at

http:/iwww.csie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/datasets/binary/news20.binary.bz2
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TRON LBFGS TRON LBFGS TRON LBFGS

C CV Time Time CV Time| Time CV Time| Time

0.25/84.69% 1 1 95.85% 17 89.74% 2 78

1/84.71% 2 2 96.97% 34 93.36% 3 181

4184.72% 4 4 97.41% 1 52 95.49% 5 331

16|84.71% 7 9 97.51% 1 126 96.30% 8 614
(a)a9a (b) real-sim (c) news20

TRON LBFGS TRON LBFGS TRON LBFGS

C CV Time Time CV Time| Time CV Time| Time

0.25/91.91% 28 94 97.18% 3 106 81.34% 221 1066
1/92.50% 42 185 97.56% 6 427 84.03% 385 2165
4192.81% 64 326 97.72% 9 615 85.75% 773 3480
16/92.86% 113 534 97.69% 11 821 86.40% 1883 6329

(d) yahoo-japan (e)rcvi (f) yahoo-korea

Table 2: The comparison betweZRON andLBFGS. Here time (in seconds) is the total training
time in the CV procedure. ASRON andLBFGS minimize the same formulation and their CV
accuracy values are almost the same, we present only the re3&®00f. The number of CV folds
is five for small problems, and is two for larger ongahpo-japan, rcvl, yahoo-korea). Note that
the CV values do not increase usi@g- 16.

yahoo-japan: This set, obtained from Yahoo!, includes documents in hundreds cfedadVe
consider the class with the largest number of instances as positive ardnalining instances as
negative. We use binary term frequencies and normalize each instamui¢ length.

rcvl: This set (Lewis et al., 2004) is an archive of manually categorizedwigw/stories from
Reuters Ltd. Each vector is a cosine normalization of a log transforme®FHRterm frequency,
inverse document frequency) feature vector. The news documenits athierarchical structure of
classes. We split the data to positive/negative by using the two branches finsthayer of the
hierarchy. Data which are multi-labeled (i.e., in both branches) are ngidemed. The set used
here can be found at
http://www.csie.ntu.edu.tw/ ~ ¢jlinflibsvmtools/datasets/binary/rcvl_test.binary. bz2.

yahoo-korea: This set, from Yahoo!, includes documents in a hierarchy of classesonsider
the largest branch from the root node (i.e., the branch including thestangenber of classes) as
positive, and all others as negative.

Clearly, except9a, all other sets are from document classification. We find that normalizations
are usually needed so that the length of each instance is not too largewi@&evhen the number
of features is largay"x; may be huge and cause difficulties in solving optimization problems (For
good performance also, past experiences show that such normakzateosually needed). After
normalization, we include the bias term using (1).

All data sets are quite balanced. It is known that unbalanced sets usaallplshorter training
time. Therefore, problems used in this article are more challenging in termgrifgrdme.
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Figure 1. A comparison betwedRON (blue solid line) and.BFGS (red dotted line). Thg-axis
shows the difference to the optimal function value. kkexis (training time) is in seconds. We use
the training set from the first training/validation split of the CV procedursatiC = 4.
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set from the first training/validation split of the CV procedure andset4.
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4.2 Comparisons

We compare two logistic regression implementations:
e TRON: the trust region Newton method discussed in Section 2.2.

e LBFGS: the limited memory quasi Newton implementation (Liu and Nocedal, 1989). See the
discussion in Section 3.1. The source code is available online at

http://lwww.ece.northwestern.edu/ ~ nocedal/lbfgs.html

We do not consider the code by Komarek and Moore (2005) becaus@akasons. First, we
have mentioned its convergence problems in Section 2.1. Second, fee fzda, it handles only
problems with 0/1 feature values, but most our data have real-numbetedes.

These methods are implemented in high-level languages such as C/C++ dRAORFor
easier experiments, we use their Matlab interfaces. Experiments arectetidun an Intel Core2
Quad (2.66GHz) computer with 8 GB RAM. All sources used for this comparisn be found at

http://lwww.csie.ntu.edu.tw/ ~ cjlinfliblinear

We set the initialw® = 0.

We conduct two types of experiments. For the first one, we simulate thiégalacse of logistic
regression by setting a stopping condition and checking the prediction aMlitst unconstrained
optimization software use gradient information to terminate the iterative proeestuwe use

|0F (W*)]|eo < 1073 (18)

as the stopping condition. We then report cross-validation (CV) acgurac the larger setyhoo-
japan, rcvl, andyahoo-korea), we use two-fold CV. For others, five-fold CV is conducted. We do
not consider other measurements such as AUC (Area Under CurvejneaBure as all problems
are rather balanced, and CV accuracy is suitable. Moreover, diffeadues of the regularization
parameteC may affect the performance as well as training time. So we try four diff€@emlues:
0.25, 1, 4, and 16. Table 2 presents the result of comparisons. WeGW@gcuracy and the total
training time in the CV procedure.

On training time,TRON is better tharLBFGS, so truncated Newton methods are effective for
training logistic regression. One may wonder if any implementation-specifidsletaise unfair
timing comparisons. Indeed we have made the experimental environmentsasaslpossible. For
the methods compared here, we store the sparse métioix the same compressed row format.
Section 4.3 discusses that different sparse formats may lead to dissimilantediopal time. For
LBFGS, one main cost is on function/gradient evaluations, which are providasséss. We im-
plement the same code TRON andLBFGS for function/gradient evaluations. Thus, our timing
comparison is quite fair.

For C > 16, the CV accuracy does not improve. One can clearly see that the graimia is
higher asC increases. One reason is that the second term of (4) plays a more inipoltaand
hence the Hessian matrix is more ill-conditioned. Another reason is that éc®)ries a stricter
condition. In (3), the second term éfw) is proportional toaC. Hence, practically one may use a
stopping condition relative tG.
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Figure 3: A comparison betwed®RON (blue solid line) andsVvMlin (red dotted line) for L2-SVM.
The y-axis shows the difference to the optimal function value. Xkaxis (training time) is in
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For the second experiment, we check the convergence speed of botidmetigure 1 presents
the results of time versus the difference to the optimal function value. We edgathing set from
the first training/validation split of the CV procedure and Get 4. In Figure 2, we check time
against||Cf (w)|l». Both figures indicate thatRON more quickly decreases the function as well
as the gradient values thaBFGS. This result is consistent with the faster theoretical convergence
rate of TRON.

4.3 Row and Column Formats in StoringX

A sparse matrix can be represented by many ways. Two commonly useden&sompressed
column” and “compressed row” formats (Duff et al., 1989). For exarmiple,

X -10 0 -20 04’

~ |3 0 0 1
then its compressed column format is by three arrays:
Xval =[-10,30,—20,10], Xrowind =[1,2,1,2], Xcolptr =[1,3,3,4,5],

whererowind means row indices antblptr means column pointefs.Alternatively, compress
row format has

Xval =[-10,—20,30,10], Xcolind =][1,3,1,4], Xrowptr =[1,3,5].

There are two important properties: Fir¥ts column (row) format isX™’s row (column) format.
Second, using the column (row) format férleads to easy accesses of all values of one column
(row). For data classification, the column (row) format thus lets us easigsacany particular
feature (any particular instance).

The main conjugate gradient operation (7) involves two matrix-vector pteddone is with
XT, and the other is witl. In using the column format, there are ways so that for both operations,
sequentiallyX’'s columns are accessed. Similarly, if using the row format, we only neeccasac
X’s rows. Thus, one may think that using the two (row and column) spars®fe does not cause
many differences. Table 3 presents a comparison. Surprisingly, fioe pooblems the difference is
huge. One possible reason is the different number of nonzero engrieslpmn and per row iX.
During the matrix-vector product, as a column (or a row) is used at a time, iteals should be
put in the higher level of the computer memory hierarchy. If the number of@ms in a column
is significantly larger than those in a row, very likely a column cannot be fitthiasame memory
level as that for a row. We think that this situation occurséet, for which the number of instances
is significantly larger than the number of features.

Of course the practical behavior depends on the computer architeatwesl as how nonzero
elements are distributed across rows and columns. We do not intend to fdllgsadthis issue
here, but would like to point out the importance of implementation details in contpbaamning
algorithms. In Table 2, both methods are implemented using the row format. Wiibimgf careful
on such details, very easily we may get misleading conclusions.

4. This way of using three arrays is common in FORTRAN programs, wdhid not support pointers. One can imple-
ment this format using pointers, where each pointer associates witls\aidendices of a row.
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Problem Row Column
a9a 7 7

real-sim 14 22

news20 82 55
yahoo-japan | 113 127
rcvl 118 226
yahoo-korea | 1888 2060

Table 3: Total training time (in seconds) in the CV procedure by staXing compress row and
column formats. We usé = 16 ande = 0.001.

5. Preconditioned Conjugate Gradient Methods

To reduce the number of conjugate gradient iterations, in the truncatetbhemethod one often
uses preconditioned conjugate gradient procedures. Instead ofgstie Newton linear system
(6), we consider a preconditioner which approximately factorizes theiatematrix

02 f (wWK) ~ PPT (19)
and then solve a new linear system
(P12 f (WP~ T8 = —P~ 10 (WX),

whered=PTs. If the approximate factorization (19) is good enought?f (wX)P~T is close to the
identity and less conjugate gradient iterations are needed. However reesed extra efforts to firfél
and the cost per conjugate iteration is higher, a smaller number of conjugdier iterations may
not lead to shorter training time. Thus, finding suitable preconditioners &lyslifficult. Popular
preconditioners include, for example, diagonal matrix of the Hessian amwiplete Cholesky
factorization.

Our situation differs from other unconstrained optimization applications in spe&s. First,
lengthy conjugate gradient iterations often occur at final outer stepf&rmachine learning appli-
cations the algorithm may stop before reaching such a stage. Thus we imagnedit from using
preconditioners. Second, preconditioners are more easily obtainesbyag that the whole Hes-
sian matrix(J? f (wX) is available. As we never multiptT DX out, 0?f (w¥) is not stored and the
selection of preconditioners may be more restricted. In this section, waicbagperiments by
using the simple diagonal preconditioner

P =P’ = ,/Diag(02f (wk)).

|
sz(Wk)ii =1+C ZLXjZiDjj,
J:

Since

one goes through all’s nonzero elements once for finding diagonal elements. The cost afiivigia
the preconditioner is thus no more than that of one conjugate gradient iteratio

The trust region sub-problem needs to be adjusted. Here we follow thatiten of Lin and
Moré (1999) by considering a scaled version

min ak(s)  subject to||PTs|| < Ay. (20)
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Algorithm 4 Preconditioned conjugate gradient procedure for approximately sallvengrust re-
gion sub-problem (21)

1. Given&, < 1,A > 0. Let®¥ =0,r% = —§, andd® = r°.

2. Fori=0,1,... (inner iterations)

o If
Ir')l < &llall,
then outpus‘ = P~T§ and stop.
o ai = |r'[|2/((d")TAd").
o 81 -3 1 qid'.
o If |§+1]| > Ay, computer such that
I8 +1d'|| = A,

then outpus® = P~T(8 +td') and stop.
o rtl—=ri_qoHd'".
o Bi=rH3/r
° di+l: ri+1+[3idi.

With §= PTs, we transform (20) to
min Gk(S) subject to||§|| < Ay, (21)
S

where

and A
g=P'Of(W),  H=P'Of(wPT.

Eqg. (21) is in the same form as (11), the sub-problem without using pd&aaners, so the proce-
dure to approximately solve (21) is almost the same as Algorithm 2. We giviisdatalgorithm
4. Note that in practical implementations we calculd@# by a way similar to (7)

P—l(Pdei +C(XT(D(X(P7Tdi)))))'

In Table 4, we present the average number of conjugate gradient itergi@r fold in the CV
procedure. The approach of using diagonal preconditioning redireenumber of iterations for
only two problems. The number is increased for all other data sets. Thasiewmt indicates the
difficulty of doing preconditioning. Identifying effective preconditioaés thus a challenging future
research issue.
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Problem CG PCG
a%a 567 263
real-sim 104 160
news20 71 155
citeseer 113 115
yahoo-japan | 278 326
rcvl 225 280
yahoo-korea | 779 736

Table 4: Average number of conjugate gradient iterations per fold in thprG&&dure. CG: without
preconditioning. PCG: using diagonal preconditioning. WeQse16 and the stopping condition
|0f (WXl < 0.001.

6. Trust Region Method for L2-SVM

The second term in (2) can be considered as a loss function, so iegdlégistic regression is
related to other learning approaches such as Support Vector Ma¢Biviky (Boser et al., 1992).
L1-SVM solves the following optimization problem:

. 1 :
min f1(w) = éwTerCi;max(O, 1-yw'x),

while L2-SVM solves

rr\1Nin fa(w) = ;WTW+C_IZl(max(O,1—inTxi)>2, (22)

SVM is often used with a nonlinear kernel, where datare mapped to a high dimensional space.
However, for document classification, past experiments show that witlvutittonlinear mapping
gives similar performances. For the case of no nonlinear mapping, edtmrapossibility of directly
solving bigger optimization problems. We refer to such casdsnaar SVM, and considerable
efforts have been made on its fast training (e.g., Kao et al., 2004; KemrthDeCoste, 2005;
Joachims, 2006; Shalev-Shwartz et al., 2007; Smola et al., 2008). M iS¥ot differentiable, so
our method cannot be applied. For L2-SVM, the training objection func@ahié differentiable but
not twice differentiable (Mangasarian, 2002). In this section, we extentrust region method for
L2-SVM. We then compare it with an earlier Newton method for L2-SVM (Kleieaind DeCoste,
2005).

6.1 Trust Region Method

Let fo(w) be the L2-SVM function. Itis strictly convex, so a proof similar to Theoresihaws that
a unique global minimum exists. From Mangasarian (20@2)y) is continuously differentiable
with the gradient

Ofa(w) = (1+2CX".X . )w—2CX .y,

where
| ={i|1-—yw'x >0} (23)
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is an index set depending @nandX; : includesX’s rows corresponding to the setUnfortunately,
L2-SVM is not twice differentiable, so one cannot use Newton directibtmyvever, as shown by
Mangasarian (2002), this function is almost twice differentiable. Theignad f(w) is Lipschitz
continuous, so one can define temeralized Hessian matrix

B(w) = I +2CX'DX,

where
1 if 1—yw'x >0,
Dii = 4 any element if0,1] if1—yw'x; =0,
0 if 1 —yw'x; <O.

Then the trust region method (Lin and Mpr1999) can be applied by replaciiigf (w) in Section
2.2 with B(w). In other words, we use the generalized Hessian mB{fix) to obtain Newton-like
directions. AsB(w) is uniformly bounded:

1< [Bw)[ < 1+2C|XT[[IX]I, vw,

Theorem 2.1 of Lin and M@ (1999) implies the global convergence. However, we cannot apply
Theorem 5.4 of Lin and M@ (1999) to have quadratic convergence. This result requires the twice
continuous differentiability.

For experiments here, we sBf = 0 if 1 —yw'x; = 0. The Hessian-vector product in the
conjugate gradient procedure is then

B(w)s=s+2C-X".(Dy; (X :9)). (24)

6.2 Modified Newton Method for L2-SVM

The method by Keerthi and DeCoste (2005) is currently one of the mosieeffimethods to train
large-scale linear L2-SVM. Its key idea is that for any given indexX sef1,...,1}, if the optimal
solutionw* of the following problem

: 1 ¢ Ty \2
- CY (1—y i 25
min GWIWC3 (1 yw'x) (25)
satisfies

<0 ifi¢l,

thenw* is an optimal solution of the L2-SVM problem (22). Onktés fixed, (25) is a simple
regularized least square problem and can be solved by the following ps@m:

(I+2CX"X . )w =2CXy,. (26)

One then guesses this $diy (23) and solves (26). The matrix in (26) is a generalized Hessian at
so (26) intends to obtain a Newton-like direction. Keerthi and DeCostebj28 conjugate gradi-
ent methods to solve (26), and the procedure is described in Algorithimey. grove that Algorithm

5 converges to the optimal solution of (22) in a finite number of iterations. Tmgargence result
assumes that at each iteration, (26) is exactly solved. However, thayelsgive stopping condition
in practical implementations, so the convergence remains an issue. Instottteaconvergence of
our trust region method holds when the conjugate gradient procediyragproximately minimizes
the trust-region sub-problem.

>0 ifiel,
1—yi(w*)Txi{
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Algorithm 5 Modified Newton Method for L2-SVM
1. Givenw?.

2. Fork=0,1,...

o If Of(WK) =0, stop.
e Set up (26) using
lk={i | 1—yi(w)Tx; > 0}.

Solve (26) by the conjugate gradient procedure and obi4in
o LetsK=wk—wkK

Find

ok = argminf (W4 as),
a>0

and setwkt! = wK 4 o sk,

6.3 Comparisons

We compare our proposed trust region implementafi®Of) in Section 6.1 wittBVMIin
http://people.cs.uchicago.edu/ ~ vikass/svmlin.html ,

an implementation of the method by Keerthi and DeCoste (2005). To solveS\28)in considers

a relative stopping condition for the conjugate gradient procedure. ViAaliptheir convergence
result, we modifySvMIin to quite accurately solve the linear system (26): Recall in Algorithm 5
that we sequentially obtain the following items:

Wk — I — Wk

We then use
H (I + ZCXII,:XW,:)VVk - ZCX|I,Zy|k||°° < 10_3

as the stopping condition of the conjugate gradient procedus®/ifiin.

Figure 3 presents the result of time versus the difference to the optimdidnn@lue. Both
approaches spend most of their time on the operation (24) in the conjugatiergrprocedure.
Clearly, TRON more quickly reduces the function valusvMlin is slower because it accurately
solves (26) at early iterations. Hence, many conjugate gradient iteratiensasted. In contrast,
trust region methods are effective on using only approximate directionsiedHy stage of the
procedure.

7. Discussion and Conclusions

As logistic regression is a special case of maximum entropy models and coatiidsmdom fields,
it is possible to extend the proposed approach for them. The main challettgdesve the Hes-
sian matrix and efficiently calculate the Hessian-vector product. This togierdes a thorough
investigation in the future.
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One may use a different regularized term for logistic regression. Fanpbe, the two-norm
lw||?2/2 could be replaced by a one-norm tejtm||;. Then (2) becomes

|
min CS log(1+ e W, 27
il +C 3 log(1-+e ™) (27)

This formula has been used for some applications. See (Balakrishnauteatigian, 2005) and Koh
et al. (2007) and references therein. Unfortunately, (27) is naréifitiable orw. We can transform
it to a twice-differentiable bound-constrained problem by using w* —w:

n |

n
min Y w+ lej’ +C_leog(l+ e N(W W) Ty
= i=

wt w— =

subjectto  w] >0,w; >0, j=1,..,n. (28)

As the truncated Newton method by Lin and M@L999) exactly targets at such bound-constrained
problems, we can thus extend the proposed approach for (28). A csmp#o investigate if our
method is better than existing ones is an interesting direction for future work.

In summary, we have shown that a trust region Newton method is effectiteaining large-
scale logistic regression problems as well as L2-SVM. The method hasptic@zation properties
following past developments for large-scale unconstrained optimizatiois. interesting that we
do not need many special settings for logistic regression; a rather dgeaif modern trust region
techniques already yields excellent performances. From this situatiofeel¢hat many useful
optimization techniques have not been fully exploited for machine learningappns.
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Appendix A. Proof of Theorem 1

Since f (w) is strictly convex, a minimum attained is unique and global. The remaining issue is to
check if a minimum exists (as strictly convex functions l&eado not attain a minimum). It suffices
to prove that the level set is bounded:

{w | f(w) < f(wo)}, (29)

wherew? is any vector. If this property is wrong, there is a sequefve€ in the set (29) satisfying
[WK|| — 0. However,

fWH) > 2|2 — o

contradicts the fact that(wk) < f(w®), vk.
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