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Abstract
Web sites must forecast Web page views in order to plan computer resource allocation and estimate
upcoming revenue and advertising growth. In this paper, we focus on extracting trends and seasonal
patterns from page view series, two dominant factors in the variation of such series. We investigate
the Holt-Winters procedure and a state space model for making relatively short-term prediction. It
is found that Web page views exhibit strong impulsive changes occasionally. The impulses cause
large prediction errors long after their occurrences. A method is developed to identify impulses and
to alleviate their damage on prediction. We also develop a long-range trend and season extraction
method, namely the Elastic Smooth Season Fitting (ESSF) algorithm, to compute scalable and
smooth yearly seasons. ESSF derives the yearly season by minimizing the residual sum of squares
under smoothness regularization, a quadratic optimization problem. It is shown that for long-
term prediction, ESSF improves accuracy significantly over other methods that ignore the yearly
seasonality.
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1. Introduction

This is a machine learning application paper about a prediction task that is rapidly growing in im-
portance: predicting the number of visitors to a Web site or page over the coming weeks or months.
There are three reasons for this growth in importance. First, hardware and network bandwidth need
to be provisioned if a site is growing. Second, any revenue-generating site needs to predict its rev-
enue. Third, sites that sell advertising space need to estimate how many page views will be available
before they can commit to a contract from an advertising agency.

1.1 Background on Time Series Modeling

Time series are commonly decomposed into “trend”, “season”, and “noise”:

Xt = Lt + It +Nt , (1)
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where Lt is trend, It is season, and Nt is noise. For some prediction methods, Lt is more than a global
growth pattern, in which case it will be referred to as “level” to distinguish from the global pattern
often called trend. These components of a time series need to be treated quite differently. The noise
Nt is often modeled by stationary ARMA (autoregressive moving average) process (Brockwell and
Davis, 2002; Wei, 2006). Before modeling the noise, the series needs to be “detrended” and “desea-
soned”. There are multiple approaches to trend and season removal (Brockwell and Davis, 2002).
In the well-known Box-Jenkins ARIMA (autoregressive integrated moving average) model (Box
and Jenkins, 1970), the difference between adjacent lags (i.e., time units) is taken as noise. The dif-
ferencing can be applied several times. The emphasis of ARIMA is still to predict noise. The trend
is handled in a rather rigid manner (i.e., by differencing). In some cases, however, trend and season
may be the dominant factors in prediction and require methods devoted to their extraction. A more
sophisticated approach to compute trend is by smoothing, for instance, global polynomial fitting,
local polynomial fitting, kernel smoothing, and exponential smoothing. Exponential smoothing is
generalized by the Holt-Winters (HW) procedure to include seasonality. Chatfield (2004) provides
practical accounts on when ARIMA model or methods aimed at capturing trend and seasonality
should be used.

Another type of model that offers the flexibility of handling trend, season, and noise together
is the state space model (SSM) (Durbin and Koopman, 2001). The ARIMA model can be cast into
an SSM, but SSM includes much broader non-stationary processes. SSM and its computational
method—the Kalman filter were developed in control theory and signal processing (Kalman, 1960;
Sage and Melsa, 1971; Anderson and Moore, 1979). For Web page view series, experiments suggest
that trend and seasonality are more important than the noise part for prediction. We thus investigate
the HW procedure and an SSM emphasizing trend and seasonality. Despite its computational sim-
plicity, HW has been successful in some scenarios (Chatfield, 2004). The main advantages of SSM
over HW are (a) some parameters in the model are estimated based on the series, and hence the
prediction formula is adapted to the series; (b) if one wants to modify the model, the general frame-
work of SSM and the related computational methods apply the same way, while HW is a relatively
specific static solution.

1.2 Web Page View Prediction

Web page view series exhibit seasonality at multiple time scales. For daily page view series, there
is usually a weekly season and sometimes a long-range yearly season. Both HW and SSM can
effectively extract the weekly season, but not the yearly season for several reasons elaborated in
Section 4. For this task, we develop the Elastic Smooth Season Fitting (ESSF) method. It is observed
that instead of being a periodic sequence, the yearly seasonality often emerges as a yearly pattern
that may scale differently across the years. ESSF takes into consideration the scaling phenomenon
and only requires two years of data to compute the yearly season. Experiments show that the
prediction accuracy can be improved remarkably based on the yearly season computed by ESSF,
especially for forecasting distant future.

To our best knowledge, existing work on forecasting Internet access data is mostly for network
traffic load. For short-term traffic, it is reasonable to assume that the random process is stationary,
and thus prediction relies on extracting the serial statistical dependence in the seemingly noisy
series. Stationary ARMA models are well suited for such series and have been exploited (Basu et
al., 1996; You and Chandra, 1999). A systematic study of the predictability of network traffic based
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on stationary traffic models has been conducted by Sang and Li (2001). For long-term prediction
of large-scale traffic, because trends often dominate, prediction centers around extracting trends.
Depending on the characteristics of trends, different methods may be used. In some cases, trends
are well captured by growth rate and the main concern is to accurately estimate the growth rate,
for instance, that of the overall Internet traffic (Odlyzko, 2003). Self-similarity is found to exist
at multiple time scales of network traffic, and is exploited for prediction (Grossglauser and Bolot,
1999). Multiscale wavelet decomposition has been used to predict one-minute-ahead Web traffic
(Aussem and Murtagh, 2001), as well as Internet backbone traffic months ahead (Papagiannaki et
al., 2005). Neural networks have also been applied to predict short-term Internet traffic (Khotanzad
and Sadek, 2003). An extensive collection of work on modeling self-similar network traffic has
been edited by Park and Willinger (2000).

We believe Web page view series, although closely related to network traffic data, have particular
characteristics worthy of a focused study. The contribution of the paper is summarized as follows.

1. We investigate short-term prediction by HW and SSM. The advantages and disadvantages of
the two approaches in various scenarios are analyzed. It is also found that seasonality exists
at multiple time scales and is important for forecasting Web page view series.

2. Methods are developed to detect sudden massive impulses in the Web traffic and to remedy
their detrimental impact on prediction.

3. For long-term prediction several months ahead, we develop the ESSF algorithm to extract
global trends and scalable yearly seasonal effects after separating the weekly season using
HW.

1.3 Application Scope

The prediction methods in this paper focus on extracting trend and season at several scales, and are
not suitable for modeling stationary stochastic processes. The ARMA model, for which mature off-
the-shelf software is available, is mostly used for such processes. The trend extracted by HM or SSM
is the noise-removed non-season portion of a time series. If a series can be compactly described by a
growth rate, it is likely better to directly estimate the growth rate. However, HW and SSM are more
flexible in the sense of not assuming specific functional form for the trend on the observed series.
HW and SSM are limited for making long-term prediction. By HW, the predicted level term of the
page view at a future time is assumed to be the current level added by a linear function of the time
interval, or simply the current level if linear growth is removed, as in some reduced form of HW. If a
specifically parameterized function can be reliably assumed, it is better to estimate parameters in the
function and apply extrapolation accordingly. However, in the applications we investigated, there
is little base for choosing any particular function. The yearly season extraction by ESSF is found
to improve long-term prediction. The basic assumption of ESSF is that the time series exhibits a
yearly pattern, possibly scaled differently across the years. It is not intended to capture event driven
pattern. For instance, the search volume for Batman surges around the release of every new Batman
movie, but shows no clear yearly pattern.

In particular, we have studied two types of Web page view series: (a) small to moderate scale
Web sites; (b) dynamic Web pages generated by Google for given search queries. Due to the fast
changing pace of the Internet, page view series available for small to moderate scale Web sites
are usually short (e.g., shorter than two years). Therefore, the series are insufficient for exploiting
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yearly seasonality in prediction. The most dramatic changes in those series are often the news-
driven surges. Without side information, such surges cannot be predicted from the page view series
alone. It is difficult for us to acquire page view data from Web sites with long history and very high
access volume because of privacy constraints. We expect the page views of large-scale Web sites to
be less impulsive in a relative sense because of their high base access. Moreover, large Web sites
are more likely to have existed long enough to form long-term, for example, yearly, access patterns.
Such characteristics are also possessed by the world-wide volume data of search queries, which we
use in our experiments.

The rest of the paper is organized as follows. In Section 2, the Holt-Winters procedure is in-
troduced. The effect of impulses on the prediction by HW is analyzed, based on which methods of
detection and correction are developed. In Section 3, we present the state space model and discuss
the computational issues encountered. Both HW and SSM aim at short-term prediction. The ESSF
algorithm for long-term prediction is described in Section 4. Experimental results are provided in
Section 5. We discuss predicting the noise part of the series by AR (autoregressive) models and
finally conclude in Section 6.

2. The Holt-Winters Procedure

Let the time series be {x1,x2, ...,xn}. The Holt-Winters (HW) procedure (Chatfield, 2004) decom-
poses the series into level Lt , season It , and noise. The variation of the level after one lag is assumed
to be captured by a local linear growth term Tt . Let the period of the season be d. The HW procedure
updates Lt , It , and Tt simultaneously by a recursion:

Lt = ζ(xt − It−d)+(1−ζ)(Lt−1 +Tt−1), (2)

Tt = κ(Lt −Lt−1)+(1−κ)Tt−1, (3)

It = δ(xt −Lt)+(1−δ)It−d (4)

where the pre-selected parameters 0 ≤ ζ ≤ 1, 0 ≤ κ ≤ 1, and 0 ≤ δ ≤ 1 control the smoothness of
updating. This is a stochastic approximation method in which the current level is an exponentially
weighted running average of recent season-adjusted observations. To better see this, let us assume
the season and linear growth terms are absent. Then Eq. (2) reduces to

Lt = ζxt +(1−ζ)Lt−1 (5)

= ζxt +(1−ζ)ζxt−1 +(1−ζ)2Lt−2

...

= ζxt +(1−ζ)ζxt−1 +(1−ζ)2ζxt−2 + · · ·+(1−ζ)t−1ζx1 +(1−ζ)tL0.

Suppose L0 is initialized to zero, the above equation is an on the fly exponential smoothing of the
time series, that is, a weighted average with the weights attenuating exponentially into the past. We
can also view Lt in Eq. (5) as a convex combination of the level indicated by the current observation
xt and the level suggested by the past estimation Lt−1. When the season is added, xt subtracted by
the estimated season at t becomes the part of Lt indicated by current information. At this point of
recursion, the most up-to-date estimation for the season at t is It−d under period d. When the linear
growth is added, the past level Lt−1 is expected to become Lt−1 + Tt−1 at t. Following the same
scheme of convex combination, Eq. (5) evolves into (2). Similar rationale applies to the update
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Figure 1: Holt-Winters prediction for time series with abrupt changes. (a) Impulse effect on a
leveled signal: slow decaying tail; (b) Impulse effect on a periodic signal: ripple effect;
(c) Response to a step signal.

of Tt and It in Eqs. (3) and (4). Based on past information, Tt and It are expected to be Tt−1 and
It−d under the implicit assumption of constant linear growth and fixed season. On the other hand,
the current xt and the newly computed Lt suggest Tt to be Lt −Lt−1, and It to be xt −Lt . Applying
convex combination leveraging past and current information, we obtain Eqs. (3) and (4).

To start the recursion in the HW procedure at time t, initial values are needed for Lt−1, Tt−1,
and It−τ, τ = 1,2, ...,d. We use the first period of data {x1,x2, ...,xd} for initialization, and start the
recursion at t = d +1. Specifically, linear regression is conducted for {x1,x2, ...,xd} versus the time
grid {1,2, ...,d}. That is, xτ and τ, τ = 1, ...,d, are treated as dependent variable and independent
variable respectively. Suppose the regression function obtained is b1τ+b2. We initialize by setting
Lτ = b1τ+b2, Tτ = 0, and Iτ = xτ −Lτ, τ = 1,2, ...,d.

The forecasting of h time units forward at t, that is, the prediction of xt+h based on {x1,x2, ...,xt},
is

x̂t+h = Lt +hTt + It−d+h mod d ,

where mod is the modulo operation. The linear function of h, Lt +hTt , with slope given by the most
updated linear growth Tt , can be regarded as an estimation for Lt+h; while It−d+h mod d , the most
updated season at the same cyclic position as t +h, which is already available at t, is the estimation
for It+h.

Experiments using the HW procedure show that the local linear growth term, Tt , helps little in
prediction. In fact, for relatively distant future, the linear growth term degrades performance. This
is because for the Web page view series, we rarely see any linear trends visible over a time scale
from which the gradient can be estimated by HW. We can remove the term Tt in HW conveniently
by initializing it with zero and setting the corresponding smoothing parameter κ = 0.

Web page view series sometimes exhibit impulsive surges or dips. Such impulsive changes last
a short period of time and often bring the level of page views to a magnitude one or several orders
higher than the normal range. For instance, in Figure 5(a), the amount of page views for an example
Web site jumps tremendously at the 404th day and returns to normal one day later. Impulses are
triggered by external forces which are unpredictable based on the time series alone. One such
common external force is a news launch related to the Web site. Because it is extremely difficult if
possible at all to predict the occurrence of an impulse, we focus on preventing its after effect.
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The influence of an impulse on the prediction by the HW procedure is elaborated in Figure 1. In
Figure 1(a), a flat leveled series with an impulse is processed by HW. The predicted series attempts
to catch up with the impulse after one lag. Although the impulse is over after one lag, the predicted
series attenuates slowly, causing large errors several lags later. The stronger the impulse is, the
slower the predicted series returns close to the original one. The prediction error consumes a positive
value and then a negative one, both of large magnitudes. Apparently, a negative impulse will result
in a reversed error pattern. Figure 1(b) shows the response of HW to an impulse added to a periodic
series. The prediction error still yields the pattern of switching signs and large magnitudes. To
reduce the influence of an impulse, it is important that we differentiate an impulse from a sudden
step-wise change in the series. When a significant step appears, we want the predicted series to
catch up with the change as fast as possible rather than hindering the strong response. Figure 1(c)
shows the prediction by HW for a series with a sudden positive step change. The prediction error
takes a large positive value and reduces gradually to zero without crossing into the negative side.

Based on the above observations, we detect an impulse by examining the co-existence of errors
with large magnitudes and opposite signs within a short window of time. In our experiments, the
window size is s1 = 10. The extremity of the prediction error is measured relatively with respect
to the standard deviation of prediction errors in the most recent past of a pre-selected length. In
the current experiment, this length is s2 = 50. The time units of s1 and s2 are the same as that
of the time series in consideration. Currently, we manually set the values of s1,2. The rationale for
choosing these values is that s1 implies the maximum length of an impulse; and s2 balances accurate
estimation of the noise variance and swift adaptation to the change of the variance over time. We
avoid setting s1 too high to ensure that a detected impulse is a short-lived, strong, and abrupt change.
If a time series undergoes a real sudden rising or falling trend, the prediction algorithm will capture
the trend but with a certain amount of delay, as shown by the response of HW to a step signal in
Figure 1(c). In a special scenario when an impulse locates right at the boundary of a large rising
trend, the measure taken to treat the impulse will further slow down the response to, but not prevent
the eventual catch-up of the rise.

At time t, let the prediction for xt based on the past series up to t − 1 be x̂t , and the prediction
error be et = xt − x̂t . We check whether an impulse has started at t ′, t−s1 +1 ≤ t ′ ≤ t−1, and ended
at t by the following steps.

1. Compute the standard deviation with removed outliers, σt−1, for the prediction errors
{et−s2 ,et−s2+1, ...,et−1}, which are known by time t. The motivation for removing the outliers
is that at any time an impulse exists, the prediction error will be unusually large, and hence
bias the estimated average amount of variation. In our experiments, 10% of the errors are
removed as outliers.

2. Compute the relative magnitude of et by θt = |et |
σt−1

.

3. Examine θt ′ in the window t ′ ∈ [t − s1 +1, t]. If there is a t ′, t − s1 +1 ≤ t ′ ≤ t −1, such that
θt ′ > ∆1 and θt > ∆2 and sign(et ′) 6= sign(et), the segment [t ′, t] is marked as an impulse. If et ′

is positive while et negative, the impulse is a surge; the reverse is a dip. The two thresholds
∆1 and ∆2 determine the sensitivity to impulses and are chosen around 2.5.

If impulse is not detected, the HW recursion is applied at the next time unit t +1. Otherwise, Lt , Tt ,
and It ′ for t ′ ∈ [t − s1 + 1, t], are revised as follows to reduce the effect of the impulse on the future
Lτ, Tτ, and Iτ, τ > t. Once the revision is completed, the HW recursion resumes at t +1.
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Figure 2: The schematic diagrams for the forecasting algorithms: (a) Holt-Winters with impulse
detection; (b) GLS; (c) ESSF.

1. For t ′ = t − s1 + 1, ..., t, set It ′ = It ′−d sequentially. This is equivalent to discarding the sea-
son computed during the impulse segment and using the most recent season right before the
impulse.

2. Let Lt = 1
2 Lt−s1 + 1

2(xt − It), where Lt−s1 is the level before the impulse and It is the already
revised season at t.

3. Let Tt = 0.

In this paper, we constrain our interest to reducing the adverse effect of an impulse on later predic-
tion after it has occurred and been detected. Predicting the arrival of impulses in advance using side
information, for instance, scheduled events impacting Web visits, is expected to be beneficial, but is
beyond our study here. A schematic diagram of the HW procedure is illustrated in Figure 2(a).

Holt-Winters and our impulse-resistant modification have the merit of being very cheap to up-
date and predict, requiring only a handful of additions and multiples. This may be useful in some
extremely high throughput situations, such as network routers. But in more conventional settings, it
leads to the question: can we do better with more extensive model estimation at each time step?

3. State Space Model

A state space model (SSM) assumes that there is an underlying state process for the series {x1, ...,xn}.
The states are characterized by a Markov process, and xt is a linear combination of the states added
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with Gaussian noise. In general, an SSM can be represented in the following matrix form:

xt = Ztαt + εt , εt ∼ N(0,Ht), (6)

αt+1 = Ttαt +Rtηt , ηt ∼ N(0,Qt) , t = 1, ...,n,

α1 ∼ N(a1,P1)

where {α1,α2, ...,αn} is the state process. Each state is an m-dimensional column vector. Although
in our work, the observed series xt is univariate, SSM treats generally p-dimensional series. The
noise terms εt and ηt follow Gaussian distributions with zero mean and covariance matrices Ht and
Qt respectively. For clarity, we list the dimension of the matrices and vectors in (6) below.

observation xt p×1 Zt p×m
state αt m×1 Tt m×m
noise εt p×1 Ht p× p
noise ηt r×1 Rt m× r

Qt r× r
initial state mean a1 m×1 P1 m×m

We restrict our interest to time invariant SSM where the subscript t can be dropped for Z, T,
R, H, and Q. Matrices Z, T and R characterize the intrinsic relationship between the state and
the observed series, as well as the transition between states. They are determined once we decide
upon a model. The covariance matrices H and Q are estimated based on the time series using the
Maximum Likelihood (ML) criterion.

Next, we describe the Level with Season (LS) model, which decomposes xt in the same way as
the HW procedure in Eq. (2)∼(4), with the linear growth term removed. We discard the growth
term because, as mentioned previously, this term does not contribute in the HW procedure under
our experiments. However, if necessary, it would be easy to modify the SSM to include this term.
We then describe the Generalized Level with Season (GLS) model that can explicitly control the
smoothness of the level.

3.1 The Level with Season Model

Denote the level at t by µt and the season with period d by it . The LS model assumes

xt = µt + it + εt ,

it = −
d−1

∑
j=1

it− j +η1,t , (7)

µt = µt−1 +η2,t

where εt and η j,t , j = 1,2, are the Gaussian noises.
Comparing with the HW recursion equations (2)∼(4), Eq. (7) is merely a model specifying

the statistical dependence of xt on µt and it , both of which are unobservable random processes.
The Kalman filter for this model, playing a similar role as Eqs. (2)-(4) for HW, will be computed
recursively to estimate µt , it , and to predict future. Details on the Kalman filter are provided in
Appendix A. In its simplest form, with both the linear growth and season term removed, HW reduces
to exponential smoothing with recursion Lt = ζxt + (1− ζ)Lt−1. It can be shown that if we let
Lt = E(µt | x1, ...,xt−1), the recursion for Lt in HW is the same as that derived from the Kalman
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filter for the LS model without season. The smoothing parameter ζ is determined by the parameters
of the noise distributions in LS. When season is added, there is no complete match between the
recursion of HW and that of the Kalman filter. In the LS model, it is assumed that ∑d

τ=1 it+τ = 0
up to white noise, but HW does not enforce the zero sum of one period of the season terms. The
decomposition of xt into level µt and season it by LS is however similar to that assumed by HW.

We can cast the LS model into a time invariant SSM following the notation of (6). The matrix
expansion according to (6) leads to the same set of equations in (7):

αt =















it
it−1
...
it−d+2

µt















, ηt =

(

η1,t

η2,t

)

,

Z = (1,0,0, · · · ,0,1)
d ×1

,
R =



















1 0
0 0
0 0
...

...
0 0
0 1



















d ×3

,
T =



















−1 −1 −1 · · · −1 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · 1 0 0
0 0 · · · 0 0 1



















d ×d

.

3.2 Generalized Level with Season Model

We generalize the above LS model by imposing different extent of smoothness on the level term µt .
Specifically, let

xt = µt + it + εt , (8)

it = −
s−1

∑
j=1

it− j +η1,t ,

µt =
1
q

q

∑
j=1

µt− j +η2,t .

Here q≥ 1 controls the extent of smoothness. The higher the q, the smoother the level {µ1,µ2, ...,µn}.
We experiment with q = 1,3,7,14.

Again, we cast the model into an SSM. The dimension of the state vector is m = d −1+q.

αt =





















it
...
it−d+2

µt
...
µt−q+1





















, ηt =

(

η1,t

η2,t

)

.
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We describe Z, R, T by the sparse matrix format. Denote the (i, j)th element of a matrix, for
example, T, by T(i, j) (one index for vectors). An element is zero unless specified.

Z = [Z(i, j)]1×m, Z(1) = 1, Z(d) = 1,

R = [R(i, j)]m×2, R(1,1) = 1, R(d,2) = 1,

T = [T(i, j)]m×m, T(1, j) = −1, j = 1,2, ...,d−1,

T(1+ j, j) = 1, j = 1,2, ...,d−2,

T(d,d −1+ j) =
1
q
, j = 1, ...,q,

T(d + j,d −1+ j) = 1, j = 1,2, ...,q−1, if q > 1.

We compare the LS and GLS models in Section 5 by experiments. It is shown that for distant
prediction, imposing smoothness on the level can improve performance.

In practice, the prediction of a future xt+h based on {x1,x2, ...,xt} comprises two steps:

1. Estimate H and Q in GLS (or SSM in general) using the past series {x1, ...,xt}.

2. Estimate xt+h by the conditional expectation E(xt+h | x1,x2, ...,xt) under the estimated model.

We may not need to re-estimate the model with every new coming xt , but update the model once
every batch of data. We estimate the model by the ML criterion using the EM algorithm. The
Kalman filter and smoother, which involve forward and backward recursion respectively, are the
core of the EM algorithm for SSM. Given an estimated model, the Kalman filter is used again to
compute E(xt+h | x1,x2, ...,xt), as well as the variance Var(xt+h | x1,x2, ...,xt): a useful indication for
the prediction accuracy. Details on the algorithms for estimating SSM and making prediction based
on SSM are provided in the Appendix. A thorough coverage on the theories of SSM and related
computational methods is referred to Durbin and Koopman (2001).

Because treating impulses improves prediction, as demonstrated by the experiments in Sec-
tion 5, it is conducted for the GLS approach. In particular, we invoke the impulse detection embed-
ded in HW. For any segment of time where an impulse is marked, the observed data xt are replaced
by Lt + It computed by HW. This modified series is then input to the GLS estimation and prediction
algorithms. The schematic diagram for forecasting using GLS is shown in Figure 2(b).

4. Long-range Trend and Seasonality

Web page views sometimes show long-range trend and seasonality. In Figure 7(a), three time series
over a period of four years are shown. Detailed description of the series is provided in Section 5.
Each time series demonstrates apparently a global trend and yearly seasonality. For instance, the
first series, namely amazon, grows in general over the years and peaks sharply every year around
December. Such long-range patterns can be exploited for forecasting, especially for distant future.
To effectively extract long-range trend and season, several needs ought to be addressed:

1. Assume the period of the long-range season is a year. Because the Internet is highly dynamic,
it is necessary to derive the yearly season using past data over recent periods and usually only
a few (e.g., two) are available.
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2. A mechanism to control the smoothness of the long-range season is needed. By enforcing
smoothness, the extracted season tends to be more robust, a valuable feature especially when
given limited past data.

3. The magnitude of the yearly season may vary across the years. As shown in Figure 7(a),
although the series over different years show similar patterns, the patterns may be amplified
or shrunk over time. The yearly season thus should be allowed to scale.

The HW and GLS approaches fall short of meeting the above requirements. They exploit mainly
the local statistical dependence in the time series. Because HW (and similarly GLS) performs
essentially exponential smoothing on the level and linear growth terms, the effect of historic data
further away attenuates fast. HW is not designed to extract a global trend over multiple years.
Furthermore, HW requires a relatively large number of periods to settle to the intended season; and
importantly, HW assumes a fixed season over the years. Although HW is capable of adjusting with
a slowly changing season when given enough periods of data, it does not directly treat the scaling
of the season, and hence is vulnerable to the scaling phenomenon.

In our study, we adopt a linear regression approach to extract the long-range trend. We inject
elasticity into the yearly season and allow it to scale from a certain yearly pattern. The algorithm
developed is called Elastic Smooth Season Fitting (ESSF). The time unit of the series is supposed
to be a day.

4.1 Elastic Smooth Season Fitting

Before extracting long-range trend and season, we apply HW with impulse detection to obtain the
weekly season and the smoothed level series Lt , t = 1, ...,n. Recall that the HW prediction for
the level Lt+h at time t is Lt , assuming no linear growth term in our experiments. We want to
exploit the global trend and yearly season existing in the level series to better predict Lt+h based on
{L1,L2, ...,Lt}.

We decompose the level series Lt , t = 1, ...,n, into a yearly season, yt , a global linear trend ut ,
and a volatility part nt :

Lt = ut + yt +nt , t = 1,2, ...,n .

Thus the original series xt is decomposed into:

xt = ut + yt +nt + It +Nt , (9)

where It and Nt are the season and noise terms from HW. Let u = {u1,u2, ...,un} and y = {y1,y2, ...,yn}.
They are solved by the following iterative procedure. At this moment, we assume the ESSF algo-
rithm, to be described shortly, is available. We start by setting y(0) = 0. At iteration p, update y(p)

and u(p) by

1. Let gt = Lt − y(p−1)
t , t = 1, ...,n. Note gt is the global trend combined with noise, taking out

the current additive estimate of the yearly season.

2. Perform linear regression of g = {g1, ...,gn} on the time grid {1,2, ...,n}. Let the regressed

value at t be u(p)
t , t = 1,2, ...,n. Thus for some scalars b(p)

1 and b(p)
2 , u(p)

t = b(p)
1 t +b(p)

2 .
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3. Let zt = Lt −u(p)
t , t = 1, ...,n. Here zt is the yearly season combined with noise, taking out the

current estimate of the global trend. Apply ESSF to z = {z1,z2, ...,zn}. Let the yearly season
derived by ESSF be y(p).

It is analytically difficult to prove the convergence of the above procedure. Experiments based
on three series show that the difference in y(p) reduces very fast. At iteration p, p ≥ 2, we measure
the relative change from y(p−1) to y(p) by

||y(p)−y(p−1)||

||y(p−1)||
, (10)

where || · || is the L2 norm. Detailed results are provided in Section 5. Because ESSF always has to
be coupled with global trend extraction, for brevity, we also refer to the entire procedure above as
ESSF when the context is clear, particularly, in Section 4.2 and Section 5.

We now present the ESSF algorithm for computing the yearly season based on the trend removed
z. For notational brevity, we re-index day t by double indices (k, j), which indicates day t is the jth
day in the kth year. Denote the residue zt = Lt − ut by zk, j, the yearly season yt by yk, j (we abuse
the notation here and assume the meaning is clear from the context), and the noise term nt by nk, j.
Suppose there are a total of K years and each contains D days. Because leap years contain one more
day, we take out the extra day from the series before applying the algorithm.

We call the yearly season pattern y = {y1,y2, ...,yD} the season template. Since we allow the
yearly season yk, j to scale over time, it relates to the season template by

yk, j = αk, jy j, k = 1,2, ...,K, j = 1, ...,D,

where αk, j is the scaling factor. One choice for αk, j is to let αk, j = ck, that is, a constant within
any given year. We call this scheme step-wise constant scaling since αk, j is a step function if single
indexed by time t. One issue with the step-wise constant scaling factor is that yk, j inevitably jumps
when entering a new year. To alleviate the problem, we instead use a piece-wise linear function for
αk, j. Let c0 = 1. Then

αk, j =
j−1
D

ck +
D− j +1

D
ck−1 , k = 1,2, ...,K, j = 1, ...,D. (11)

The number of scaling factors ck to be determined is still K. Let c = {c1, ...,cK}. At the first day of
each year, αk,1 = ck−1. We optimize over both the season template y j, j = 1, ...,D, and the scaling
factors ck, k = 1, ...,K.

We now have
zk, j = αk, jy j +nk, j ,

where zk, j’s are given, while ck, y j, and nk, j, k = 1, ...,K, j = 1, ...,D, are to be solved. A natural
optimization criterion is to minimize the sum of squared residues:

min
y,c

∑
k

∑
j

n2
k, j = min

y,c
∑
k

∑
j

(zk, j −αk, jy j)
2 .

If the number of years K is small, y obtained by the above optimization can be too wiggly. We
add a penalty term to ensure the smoothness of y. The discrete version of the second order derivative
for y j is

ÿ j = y j+1 + y j−1 −2y j ,
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and ∑ j ÿ2
j is used as the smoothness penalty. Since y is one period of the yearly season, when j ′ is

out of the range [1,D], y j′ is understood as y j′mod D. For instance, y0 = yD, yD+1 = y1. We form the
following optimization criterion with a pre-selected regularization parameter λ:

min
y,c

G(y,c) = min
y,c

∑
k

∑
j

(zk, j −αk, jy j)
2 +λ∑

j

(y j+1 + y j−1 −2y j)
2 . (12)

To solve (12), we alternate the optimization of y and c. With either fixed, G(y,c) is a convex
quadratic function. Hence a unique minimum exists and can be solved by a multivariable linear
equation. The algorithm is presented in details in Appendix B.

Experiments show that allowing scalable yearly season improves prediction accuracy, so does
the smoothness regularization of the yearly season. As long as λ is not too small, the prediction
performance varies marginally for a wide range of values. The sensitivity of prediction accuracy to
λ is studied in Section 5.

A more ad-hoc approach to enforce smoothness is to apply moving average to the yearly season
extracted without smoothness regularization. We can further simplify the optimization criterion in
(12) by employing step-wise constant scaling factor, that is, let αk, j = ck, k = 1, ...,K. The jump
effect caused by the abrupt change of the scaling factor is reduced by the moving average as well.
Specifically, the optimization criterion becomes

min
y,c

G̃(y,c) = min
y,c

∑
k

∑
j

(zk, j − cky j)
2 . (13)

The above minimization is solved again by alternating the optimization of y and c. See Appendix
B for details. Comparing with Eq. (12), the optimization for (13) reduces computation significantly.
After acquiring y, we apply a double sided moving average. We call the optimization algorithm for
(13) combined with the post operation of moving average the fast version of ESSF. Experiments in
Section 5 show that ESSF Fast performs similarly to ESSF.

4.2 Prediction

We note again that ESSF is for better prediction of the level Lt obtained by HW. To predict xt , the
weekly season extracted by HW should be added to the level Lt . The complete process of prediction
is summarized below. We assume that prediction starts on the 3rd year since the first two years have
to serve as past data for computing the yearly season.

1. Apply HW to obtain the weekly season It , and the level Lt , t = 1,2, ...,n.

2. At the beginning of each year k, k = 3,4, ..., take the series of Lt’s in the past two years (year
k− 2 and k− 1) and apply ESSF to this series to solve the yearly season template y and the
scaling factors, c1 and c2 for year k− 2 and k− 1 respectively. Predict the yearly season for
future years k′ ≥ k by c2y. Denote the predicted yearly season at time t in any year k′ ≥ k by
Yt,k, where the second subscript clarifies that only the series before year k is used by ESSF.

3. Denote the year in which day t lies by ν(t). Let the yearly season removed level be L̃t = Lt −
Yt,ν(t). At every t, apply linear regression to {L̃t−2D+1, ..., L̃t} over the time grid {1,2, ...,2D}.
The slope of the regressed line is taken as the long-range growth term T̃t .
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Figure 3: Decomposition of the prediction terms for the amazon series in November and December
of 2006 based on data up to October 31, 2006: (a) The weekly season, yearly season, and
long-range linear growth terms in the prediction; (b) Comparison of the predicted series
by HW and ESSF.

Suppose at the end of day t (or beginning of day t + 1), we predict for the hth day ahead of t.
Let the prediction be x̂t+h. Also let r(t + h) be the smallest integer such that t + h− r(t + h) ·d ≤ t
(d is the weekly period). Then,

x̂t+h = L̃t +hT̃t +Yt+h,ν(t) + It+h−r(t+h)·d . (14)

Drawing a comparison between Eqs. (14) and (9), we see that L̃t + hT̃t is essentially the predic-
tion for the global linear trend term ut+h, Yt+h,ν(t) the prediction for the yearly season yt+h, and
It+h−r(t+h)·d the prediction for the weekly season It+h. The schematic diagram for forecasting by
ESSF is shown in Figure 2(c).

If day t +h is in the same year as t, Yt+h,ν(t) =Yt+h,ν(t+h) is the freshest possible prediction for the
yearly season at t +h. If instead ν(t) < ν(t +h), the yearly season at t +h is predicted based on data
more than one year ago. One might have noticed that we use only two years of data to extract the
yearly season regardless of the available amount of past data. This is purely an individual choice due
to our preference of using recent data. Experiments based on the series described in Section 5 show
that whether all the available past data are used by ESSF causes negligible difference in prediction
performance.

To illustrate the roles of the terms in the prediction formula (14), we plot them separately in
Figure 3(a) for the amazon series. The series up to October 31, 2006 is assumed to have been
observed, and the prediction is for November and December of 2006. Figure 3(a) shows that during
these two months, the predicted yearly season is much more prominent than the weekly season and
the slight linear growth. Figure 3(b) compares the prediction by ESSF and HW respectively. The
series predicted by HW is weekly periodic with a flat level, while that by ESSF incorporates the
yearly seasonal variation and is much closer to the original series, as one might have expected.
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5. Experiments

We conduct experiments using twenty six time series. As a study of the characteristics of Web
page views, we examine the significance of the seasonal as well as impulsive variations. Three
relatively short series are used to assess the performance of short-term prediction by the HW and
GLS approaches. The other twenty three series are used to test the ESSF algorithm for long-term
prediction. In addition to comparing the different forecasting methods, we also present results to
validate the algorithmic choices made in ESSF.

5.1 Data Sets

We conduct experiments based on the time series described below.

1. The Auton series records the daily page views of the Auton Lab, headed by Andrew Moore,
in the Robotics Institute at the Carnegie Mellon University (http://www.autonlab.org). This
series spans from August 14, 2005 to May 1, 2007, a total of 626 days.

2. The Wang series records the daily page views of the Web site for the research group headed by
James Wang at the Pennsylvania State University (http://wang.ist.psu.edu). This series spans
from January 1, 2006 to February 1, 2008, a total of 762 days.

3. The citeseer series records the hourly page views to citeseer, an academic literature search
engine currently located at http://citeseer.ist.psu.edu. This series spans from 19 : 00 on Septem-
ber 6, 2005 to 4 : 00 on September 25, 2005, a total of 442 hours.

4. We acquired 23 relatively long time series from the site http://www.google.com/trends. This
Web site provides search volumes for user specified phrases. We treat the search volumes as
an indication of the page views to dynamically generated Web pages by Google. The series
record daily volumes from Jan, 2004 to December 30, 2007 (roughly four full years), a total
of 1460 days. The volumes for each phrase are normalized with respect to the average daily
volume of that phrase in the month of January 2004. The normalization will not affect the
prediction accuracy, which is measured relatively with respect to the average level of the
series. We also call the series collectively the g-trends series.

5.2 Evaluation

Let the prediction for xt be x̂t . Suppose prediction is provided for a segment of the series,
{xt0+1,xt0+2, ...,xt0+J}, where 0 ≤ t0 < n. We measure the prediction accuracy by the error rate
defined as

Re =

√

RSS
SSS

where RSS, the residual sum of squares is

RSS =
t0+J

∑
t=t0+1

(x̂t − xt)
2 (15)

and SSS, the series sum of squares is

SSS =
t0+J

∑
t=t0+1

x2
t . (16)
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We call Re the prediction error rate. It is the reciprocal of the square root of the signal to noise ratio
(SNR), a measure commonly used in signal processing. We can also evaluate the effectiveness of a
prediction method by comparing RSS to SPV , the sum of predictive variation:

SPV =
t0+J

∑
t=t0+1

(xt − xt)
2 , xt =

∑t−1
τ=1 xτ

t −1
.

We can consider xt , the mean up to time t−1, as the simplest prediction of xt using past data. We call
this scheme of prediction Mean of Past (MP). SPV is essentially the RSS corresponding to the MP
method. The Re of MP is

√

SPV/SSS. We denote the ratio between the Re of a prediction method
and that of MP by Qe =

√

RSS/SPV , referred to as the error ratio. As a measure on the amount of
error, in practice, Re is more pertinent than Qe for users concerned with employing the prediction in
subsequent tasks. We thus use Re as the major performance measure in all the experimental results.
For comparison with baseline prediction methods, we also show Re of MP as well as that of the
Moving Average (MA). In the MA approach, considering the weekly seasonality, we treat Monday
to Sunday separately. Specifically, if a day to be predicted is a Monday, we forecast by the average
of the series on the past 4 Mondays. Similarly for the other days of a week. For the hourly page
view series with daily seasonality, MA predicts by the mean of the same hours in the past 4 days.

As discussed previously, Web page views exhibit impulsive changes. The prediction error during
an impulse is extraordinarily large, skewing the average error rate significantly even if impulses
only exist on a small fraction of the series. The bias caused by the outlier errors is especially strong
when the usual amount of page views is low. We reduce the effect of outliers by removing a small
percentage of large errors, in particular, 5% in our experiments. Without loss of generality, suppose
the largest (in magnitude) 5% errors are x̂t − xt at t0 +1 ≤ t ≤ t1. We adjust RSS and SSS by using
only x̂t − xt at t > t1 and compute the corresponding Re. Specifically,

RSSad j =
t0+J

∑
t=t1+1

(x̂t − xt)
2 , SSSad j =

t0+J

∑
t=t1+1

x2
t , Rad j

e =

√

RSSad j

SSSad j
.

We report both Re and Rad j
e to measure the prediction accuracy for the series Auton, Wang, and

citeseer. For the twenty three g-trends series, because there is no clear impulse, we use only
Re.

Because the beginning portion of the series with a certain length is needed for initialization in
HW, SSM, or ESSF, we usually start prediction after observing t0 > 0 time units. Moreover, we may
predict several time units ahead for the sum of the series over a run of multiple units. The ground
truth at t is not necessarily xt . In general, suppose prediction starts after t0 and is always for a stretch
of w time units that starts h time units ahead. We call w the window size of prediction and h the unit
ahead.

Let the whole series be {x1,x2, ...,xn}. In the special case when h = 1 and w = 1, after observing
the series up to t −1, we predict for xt , t = t0 +1, ...,n. The ground truth at t is xt . If h ≥ 1, w = 1,
we predict for xt , t = t0 + h, ...,n, after observing the series up to t − h. Let the predicted value be
x̂t,−h, where the subscript −h emphasizes that only data h time units ago are used. If h ≥ 1, w ≥ 1,
we predict for

x̃t =
t+w−1

∑
τ=t

xτ, t = t0 +h, ...,n−w+1,
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after observing the series up to t −h. The predicted value at t is

ˆ̃xt =
t+w−1

∑
τ=t

x̂τ,−h .

To compute the error rate Re, we adjust RSS and SSS in Eq. (15) and (16) according to the ground
truth:

RSS =
n−w+1

∑
t=t0+h

( ˆ̃xt − x̃t)
2 , SSS =

n−w+1

∑
t=t0+h

x̃2
t .

For the series Auton, Wang, and citeseer, t0 = 4d, where d is the season period. The segment
{x1, ...,x4d} is used for initialization by both HW and SSM. For the g-trends series, t0 = 731. That
is, the first two years of data are used for initialization. Two years of past data are needed because
the ESSF algorithm requires at least two years of data to operate.

5.3 Results

For the series Auton, Wang, and citeseer, we focus on short-term prediction no greater than 30
time units ahead. Because the series are not long enough for extracting long-range trend and season
by the ESSF algorithm, we only test the HW procedure with or without impulse detection and the
GLS approach. For the twenty three g-trends series, we compare ESSF with HW for prediction
up to half a year ahead.

5.3.1 SHORT-TERM PREDICTION

Web page views often demonstrate seasonal variation, sometimes at multiple scales. The HW pro-
cedure given by Eq. (2)∼(4) and the GLS model specified in Eq. (8) both assume a season term
with period d. In our experiments, for the daily page view series Auton and Wang, d = 7 (a week),
while for the hourly series citeseer, d = 24 (a day). As mentioned previously, the local linear
growth term in Eq. (3) is removed in our experiments because it is found not helpful. The smooth-
ing parameters for the level and the season terms in Eq. (2) and (4) are set to ζ = 0.5 and δ = 0.25.
Because HW has no embedded mechanism to select these parameters, we do not aggressively tune
them and use the same values for all the experiments reported here.

To assess the importance of weekly (or daily) seasonality for forecasting, we compare HW
and and its reduced form without the season term. Similarly as the linear growth term, the season
term can be deleted by initializing it to zero and setting its corresponding smoothing parameter δ
in Eq. (4) to zero. The reduced HW procedure without the local linear growth and season terms
is essentially Exponential Smoothing (ES) (Chatfield, 2004). Figure 4(a) compares the prediction
performance in terms of Re and Rad j

e for the three series by HW and ES. Results for two versions of
HW, with and without treating impulses, are provided. The comparison of the two versions will be
discussed shortly. Results obtained from the two baseline methods MA and MP are also shown. For
each of the three series, HW (both versions), which models seasonality, consistently outperforms
ES, reflecting the significance of seasonality in these series. We also note that for the auton series,
Re is almost twice as large as Rad j

e although only 5% of outliers are removed. This dramatic skew
of the error rate is caused by the short but strong impulses occurred in this series.

To evaluate the impulse-resistant measure, described in Section 2, we compare HW with and
without impulse detection in Figure 4(a). Substantial improvement is achieved for the Auton series.
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Figure 4: Compare the prediction performance in terms of Rad j
e and Re on the three series Auton,

Wang, and citeseer using different methods: HW with or without impulse detection, ES
without season, MA, and MP. (a) The error rates. (b) The box plots for the differences of
page views at adjacent time units.

The decrease in error rate for the other two series is small, a result of the fact there is no strong
impulse in them. To directly demonstrate the magnitude of the impulses, we compute the differences
in page view between adjacent time units, {x2 − x1,x3 − x2, ...,xn − xn−1}, and show the box plots
for their distributions in Figure 4(b). The stronger impulses in Auton are evident from the box plots.
Comparing with the other two series, the middle half of the Auton data (between the first and third
quartiles), indicated by the box in the plot, is much narrower relative to the overall range of the data.
In another word, the outliers deviate more severely from the majority mass of the data.

To illustrate the gain from treating impulses, we also show the predicted series for Auton in
Figure 5(a). For clarity of the plot, only a segment of the series around an impulse is shown. The
predicted series by HW with impulse detection returns close to the original series shortly after the
impulse, while that without ripples with large errors over several periods afterward. In the sequel,
for both HW and GLS, impulse detection is included by default.

Table 1 lists the error rates for the three series using different methods and under different pairs
of (h,w), where h is the unit ahead and w is the window size of prediction. We provide the error rate
Rad j

e in addition to Re to show the performance on impulse excluded portion of the series. For Auton
and Wang, (h,w) = (1,1),(1,7),(1,28). For citeseer, (h,w) = (1,1),(1,12),(1,24). For the GLS
model, a range of values for the smooth parameter q are tested. As shown by the table, when
(h,w) = (1,1), the performance of HW and that of GLS at the best q are close. When predicting
multiple time units, for example, w = 7,28 or w = 12,24, GLS with q > 1 achieves better accuracy.
For Wang and citeseer, at every increased w, the lowest error rates are obtained by GLS with
an increased q. This supports the heuristic that when predicting for a more distant time, smoother
prediction is preferred to reduce the influence of local fluctuations.

We compare the predicted series for Auton by GLS with q = 1 and q = 7 in Figure 5(b). Here,
the unit ahead h = 1, and the window size w = 7. The fluctuation of the predicted series obtained
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Figure 5: Compare predicted series for Auton: (a) Results obtained by HW with and without im-
pulse detection. The unit ahead h and window size w of prediction are 1; (b) Results
obtained by GLS with q = 1 and q = 7. The unit ahead is 1, and window size is 7 (a
week).
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Error rate GLS
Re (%) HW q=1 q=3 q=7 q=14

Auton: 1 Day 38.60 41.46 40.05 41.10 41.74
7 Days 34.52 36.78 34.70 30.33 28.41
28 Days 32.34 34.63 32.60 25.80 21.93

Wang: 1 Day 26.99 26.19 26.24 26.51 26.77
7 Days 19.95 16.19 16.09 16.27 16.48
28 Days 21.11 16.44 16.30 16.31 16.05

citeseer: 1 Hour 13.55 13.18 14.01 15.00 16.29
12 Hours 15.04 14.63 13.66 12.96 13.10
24 Hours 15.47 15.87 14.88 14.00 13.80

Error rate GLS
Rad j

e (%) HW q=1 q=3 q=7 q=14
Auton: 1 Day 16.76 18.02 17.45 16.53 18.14

7 Days 15.60 15.63 14.55 12.94 13.45
28 Days 17.32 17.49 16.68 15.03 15.31

Wang: 1 Day 20.77 20.41 20.64 20.98 20.99
7 Days 16.29 13.52 13.38 13.44 13.55
28 Days 16.83 13.65 13.49 13.45 13.26

citeseer: 1 Hour 8.80 8.17 8.95 10.38 12.16
12 Hours 12.53 10.74 10.70 10.97 11.45
24 Hours 12.98 12.14 11.98 11.89 11.82

Table 1: The prediction error rates Re and Rad j
e for the three series Auton, Wang, and citeseer

obtained by several methods. The window size of prediction takes multiple values, while
the unit ahead is always 1. HW and the GLS model with several values of q are compared.

by q = 1 is more volatile than that by q = 7. The volatility of the predicted series by q = 7 is much
closer to that of the true series. As shown in Table 1, the error rate Rad j

e achieved by q = 7 is 12.94%,
while that by q = 1 is 15.63%.

Based on the GLS model, the variance of xt conditioned on the past {x1, ...,xt−1} can be com-
puted. The equations for the conditional mean E(xt | x1, ...,xt−1) (i.e., the predicted value) and
variance Var(xt | x1, ...,xt−1) are given in (19). Since the conditional distribution of xt is Gaussian,
we can thus calculate a confidence band for the predicted series, which may be desired in certain
applications to assess the potential deviation of the true values. Figure 6 shows the 95% confidence
band for citeseer with (h,w) = (1,1). The confidence band covers nearly the entire original series.

GLS is more costly in computation than HW. We conduct the experiments using Matlab codes on
2.4GHz Dell computer with Linux OS. At (h,w) = (1,28) for Auton and Wang, and (h,w) = (1,24)
for citeseer, the average user running time for sequential prediction along the whole series is
respectively 0.51, 56.38, 65.87, 72.10, and 86.76 seconds for HW, and GLS at q = 1,3,7,14. In
our experiments, the GLS models are re-estimated after every 4d units, where d is the period. The
computation in GLS is mainly spent on estimating the models and varies negligibly for different
pairs of (h,w).
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Figure 6: The predicted 95% confidence band for citeseer obtained by GLS with q = 1. The unit
ahead h and window size w are 1.

5.3.2 LONG-TERM PREDICTION—A COMPREHENSIVE STUDY

We now examine the performance of ESSF based on the g-trends series. The first three series
are acquired by the search phrases amazon, Renoir (French impressionism artist), and greenhouse
effect, which will be used as the names for the series in the sequel. A comprehensive study with
detailed results is first presented using these three series. Then, we expand the experiments to twenty
additional g-trends series and present results on prediction accuracy and computational speed.

The original series of amazon, Renoir, and greenhouse effect averaged weekly are shown
in Figure 7(a). Due to the weekly season, without averaging, the original series are too wiggly for
clear presentation. Figure 7(c) and (d) show the yearly season templates extracted by ESSF from
year 2004 and 2005 with smoothing parameter λ = 0, 1000 respectively. As expected, at λ = 1000,
the yearly seasons are much smoother than those obtained at λ = 0, especially for the series Renoir
and greenhouse effect. Figure 7(b) shows the scaling factors of the yearly seasons obtained by
applying ESSF to the entire four years.

We compare the prediction obtained by ESSF with HW and the MA approach as a baseline.
For ESSF, we test both λ = 0 and 1000, and its fast version with moving average window size 15.
Prediction error rates are computed for the unit ahead h ranging from 1 to 180 days. We fix the
prediction window size w = 1.

The error rates Re obtained by the methods are compared in Figure 8(a), (b), (c) for amazon,
Renoir, greenhouse effect respectively. Comparing with the other methods, the difference in
the performance of HW and MA is marginal. When the unit ahead h is small, HW outperforms MA,
but the advantage diminishes when h is large. For Renoir and greenhouse effect, HW becomes
even inferior to MA when h is roughly above 60. ESSF with λ = 1000 and ESSF Fast perform
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Figure 7: Extract the yearly seasons by ESSF for the g-trends series amazon, Renoir, and
greenhouse effect: (a) The weekly averaged original series; (b) The scaling factor
for the yearly season; (c) The yearly season extracted without smoothing at λ = 0; (d)
The yearly season extracted with smoothing at λ = 1000.
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Figure 8: Compare prediction error rates Re for three g-trends series using several methods. Pre-
diction is performed for the unit ahead h ranging from 1 to 180, and a fixed the window
size w = 1. Error rates obtained by MA, HW, ESSF with λ = 1000, 0, and the fast version
of ESSF with moving average window size 15, are shown for the three series (a) amazon,
(b) Renoir, (c) greenhouse effect respectively. The yearly season in ESSF is scal-
able. (d) Error rates obtained for the three series by ESSF, with λ = 1000, assuming a
scalable yearly season versus fixed season.
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Figure 9: The effect of the number of iterations in the ESSF algorithm: (a) The change ratio in the
extracted yearly season over the iterations; (b) Compare the error rates Re obtained by
ESSF with 1 iteration and 5 iterations respectively.

nearly the same, both achieving error rates consistently lower than those by HW. The gap between
the error rates of ESSF and HW widens quickly with an increasing h. In general, when h increases,
the prediction is harder, and hence the error rate tends to increase. The increase is substantially
slower for ESSF than HW and MA. ESSF with λ = 0 performs considerably worse than λ = 1000
for Renoir and greenhouse effect, and closely for amazon. This demonstrates the advantage
of imposing smoothness on the yearly season. We will study more thoroughly the effect of λ on
prediction accuracy shortly.

Next, we experiment with ESSF under various setups and demonstrate the advantages of several
algorithmic choices. First, recall that the fitting of the yearly season and the long-range trend is
repeated multiple times, as described in Section 4.1. To study the effect of the number of iterations,
we plot in Figure 9(a) the ratio of change in the yearly season after each iteration, as given by Eq.
(10). For all the three series, the most prominent change occurs between iteration 1 and 2 and falls
below 1% for any later iterations. We also compare the prediction error rates for h = 1, ...,180
achieved by using only 1 iteration (essentially no iteration) versus 5 iterations. The results for the
three series are plotted in Figure 9(b). The most obvious difference is with amazon for large h.
At h = 180, the error rate obtained by 5 iterations is about 2% lower than by 1 iteration. On the
other hand, even with only 1 iteration, the error rate at h = 180 is below 10%, much lower than the
nearly 25% error rate obtained by HW or MA. For greenhouse effect, the difference is almost
imperceptible.

In ESSF, the yearly season is not assumed simply as a periodic series. Instead, it can scale
differently over the years based on the season template. To evaluate the gain, we compare ESSF
with scalable yearly seasons versus fixed seasons. Here, the fixed season can be thought of as a
special case of the scalable season with all the scaling parameters set to 1, or equivalently, the
yearly season is the plain repeat of the season template. Figure 8(d) compares the error rates under
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Figure 10: The effect of the smoothing parameter λ in ESSF on prediction accuracy. At each λ, the
average of error rates Re across the unit ahead h = 1, ...,180 are shown.

the two schemes for the three series. Better performance is achieved by allowing scalable yearly
seasons for all the three series. The advantage is more substantial when predicting the distant future.

To examine the sensitivity of the prediction accuracy to the smoothing parameter λ, we vary λ
from 0.1 to 2000, and compute the error rates for h = 1, ...,180. For concise illustration, we present
the average of the error rates across h. Note that the results of λ = 0,1000 at every h are shown in
Figure 8, where λ = 0 is inferior. The variation of the average error rates with respect to λ (in log
scale) is shown in Figure 10. For amazon, the error rates with different λ’s lie in the narrow range of
[6.2%,6.45%], while for Renoir and greenhouse effect, the range is wider, roughly [15%,18%]
and [22%,25%] respectively. For all the three series, the decrease of the error rate is most steep
when λ increases from 0.1 to 10. For λ > 10 and as large as 2000, the change in error rate is minor,
indicating that the prediction performance is not sensitive to λ as long as it is not too small.

5.3.3 LONG-TERM PREDICTION—EXTENDED STUDY ON TWENTY TREND SERIES

We collect another twenty g-trends series with query phrases and corresponding series ID listed
in Table 2. The error rates Re achieved by the four methods: MA, HW, ESSF with λ = 1000, and
ESSF Fast, over the twenty series are compared in Figure 11. The four plots in this figure each
show results for predicting a single day in advance of h days, with h = 1,30,60,90 respectively. For
most series, MA is inferior to HW at every h. However, when h increases, the margin of HW over
MA decreases. At h = 1, HW performs similarly as ESSF and ESSF Fast. At h = 30,60,90, both
versions of ESSF, which achieve similar error rates between themselves, outperform HW.

To assess the predictability of the series, we compute the variation rates at h = 1,30,60,90,
shown in Figure 12(a). The variation rate at h is defined as

√

Var(xt+h − xt)/
√

Var(xt), where
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Figure 11: Compare the error rates by MA, HW, ESSF with λ = 1000, and ESSF Fast for twenty
g-trends series. (a)-(d): The unit ahead h = 1,30,60,90.
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Figure 12: Predictability of twenty g-trends series. (a) The variation rates at h = 1,30,60,90; (b)
The average serial correlation coefficient between adjacent years.
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ID Query phrase ID Query phrase
1 American idol 11 human population
2 Anthropology 12 information technology
3 Aristotle 13 martial art
4 Art history 14 Monet
5 Beethoven 15 National park
6 Confucius 16 NBA
7 Cosmology 17 photography
8 cure cancer 18 public health
9 democracy 19 Shakespeare
10 financial crisis 20 Yoga

Table 2: The query phrases for twenty g-trends series and their IDs.

Var(·) denotes the serial variance. This rate is the ratio between the standard deviation of the
change in page view h time units apart and that of the original series. A low variation rate indicates
the series is less volatile and hence likely to be easier to predict. For example, Art history (ID 4)
and National park (ID 15) have the lowest variation rates at h = 1, and they both yield relatively
low prediction error rates, as shown by Figure 11. We also compute the variation rates for the page
views of Web sites Auton, Wang, and citeseer at h = 1. They are respectively 100.0%, 88.1%,
and 48.2%. This shows that the volatility of page views at these Web sites is in a similar range as
that of the g-trends series.

In addition to the variation rate, the yearly correlation of the time series also indicates the po-
tential for accurate prediction. For each of the twenty g-trends series, we compute the average of
the correlation coefficients between segments of the series in adjacent years (i.e., 2004/05, 05/06,
06/07). Figure 12(b) shows the results. A series with high yearly correlation tends to benefit more
in prediction from the yearly season extraction of ESSF. For instance, martial art (ID 13) has
relatively low yearly correlation. The four prediction methods perform nearly the same for this se-
ries. In contrast, for NBA (ID 16) and democracy (ID 9), which have high yearly correlation, ESSF
achieves substantially better prediction accuracy than HW and MA at all the values of h.

To compare the computational load of the prediction algorithms, we acquire the average user
running time over the twenty g-trends series for one day ahead (h = 1) prediction at all the days
in the last two years, 2006 and 2007. Again, we use Matlab codes on 2.4GHz Dell computer with
Linux OS. The average time is respectively 0.11, 0.32, 0.59, and 3.77 seconds for MA, HW, ESSF
Fast, and ESSF with λ = 1000.

6. Discussion and Conclusions

We have so far focused on extracting the trend and season parts of a time series using either HW or
GLS, and have not considered predicting the noise part, as given in Eq. (1). We have argued that the
variation in Web page view series is dominated by that of the trend and season. To quantitatively
assess the potential gain from modeling and predicting the noise term in HW, we fit AR models to
the noise. Specifically, we compute the level Lt and the season It by HW and let the noise Nt =
xt −Lt − It . We then fit AR models of order p to the noise series using the Yule-Walker estimation
(Brockwell and Davis, 2002). We let p range from 1 to 10 and select an order p by the large-sample

2243



LI AND MOORE

motivated method described in Brockwell and Davis (1991, 2002). The fitted AR models are used
to predict the noise, and the predicted noise is added to the forecasting value by HW. Suppose we
want to predict xt+1 based on {x1,x2, ...,xt}. The formula given by HW is x̂t+1 = Lt + It+1−d . The
predicted noise at t + 1 given by the AR model is N̂t+1 = φ̂1Nt + φ̂2Nt−1 + · · ·+ φ̂pNt−p+1, where
φ̂ j, j = 1, ..., p, are estimated parameters in the AR model. We then adjust the prediction of HW by
x̂t+1 = Lt + It+1−d + N̂t+1.

In our experiments, the order of the AR model chosen for each of the three series Auton, Wang,
and citeseer is 5, 6, 9 respectively. The error rates Rad j

e obtained for Auton, Wang, and citeseer
are 17.16%, 20.30%, and 8.45%. As listed in Table 1, the error rates obtained by HW are 16.76%,
20.77%, and 8.80%. We see that the error rates for Wang and citeseer are improved via noise
prediction, but that for Auton is degraded. For every series, the difference is insignificant. This
shows that the gain from predicting the noise series is minor if positive at all. It is out of the
scope of this paper to investigate more sophisticated models for the noise series. We consider it an
interesting direction for future work.

To conclude, we have examined multiple approaches to Web page view forecasting. For short-
term prediction, the HW procedure and the GLS state space model are investigated. It is shown that
seasonal effect is important for page view forecasting. We developed a method to identify impulses
and to reduce the decrease in prediction accuracy caused by them. The HW procedure, although
computationally simple, performs closely to the GLS approach for predicting a small number of
time units ahead. For predicting moderately distant future, the GLS model with smoother level
terms tends to perform better. We developed the ESSF algorithm to extract global trend and scalable
long-range season with smoothness regularization. It is shown that for predicting the distant future,
ESSF outperforms HW significantly.
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Appendix A. Algorithms for the State Space Model

Several major issues can be studied under the state space model:

1. Filtering: obtain the conditional distribution of αt+1 given Xt for t = 1, ...,n where Xt =
{x1, ...,xt}. If we consider αt as the “true” signal, filtering is to discover the signal on the fly.

2. State smoothing: estimate αt , t = 1, ...,n, given the entire series {x1, ...,xn}. This is to discover
the signal in a batch mode.

3. Disturbance smoothing: estimate the disturbances ε̂t = E(εt |y1, ...,yn), η̂t = E(ηt |y1, ...,yn).
The estimation can be used to estimate the covariance matrices of the disturbances.

4. Forecasting: given {x1, ...,xn}, forecast xn+ j for j = 1, ...,J.

5. Perform the Maximum Likelihood (ML) estimation for the parameters based on {x1, ...,xn}.
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The computation methods involved in the above problems are tightly related. Filtering is conducted
by forward recursion, while state smoothing is achieved by combining the forward recursion with
a backward recursion. Disturbance smoothing can be easily performed based on the results of
filtering and smoothing. ML estimation in turn relies on the result of disturbance smoothing. Next,
we present the algorithms to solve the above problems.

A.1 Filtering and Smoothing

Recall the SSM described by Eq. (6)

xt = Ztαt + εt , εt ∼ N(0,Ht),

αt+1 = Ttαt +Rtηt , ηt ∼ N(0,Qt) , t = 1, ...,n,

α1 ∼ N(a1,P1).

Suppose the goal is filtering, that is, to obtain the conditional distribution of αt+1 given Xt for t =
1, ...,n where Xt = {x1, ...,xt}. Since the joint distribution is Gaussian, the conditional distribution
is also Gaussian and hence is uniquely determined by the mean and covariance matrix. Moreover,
note that xt+1 is conditionally independent of Xt given αt+1. Let at = E(αt | Xt−1) and Pt = Var(αt |
Xt−1). Then αt | Xt−1 ∼ N(at ,Pt). It can be shown that at+1 and Pt+1 can be computed recursively
from at , Pt .

Let the one-step forecast error of xt given Xt−1 be vt and the variance of vt be Ft :

vt = xt −E(xt | Xt−1) = xt −Ztat ,

Ft = Var(vt) = ZtPtZt
t +Ht .

For clarity, also define

Kt = TtPtZt
tF

−1
t ,

Lt = Tt −KtZt .

Then at , Pt , t = 2, ...,n + 1 can be computed recursively by updating vt , Ft , Kt , Lt , at+1, Pt+1 as
follows. It is assumed that a1 and P1 are part of the model specification, and hence are known or
provided by initialization. Details on initialization are referred to Durbin and Koopman (2001). For
t = 1,2, ...,n,

vt = xt −Ztat , (17)

Ft = ZtPtZt
t +Ht ,

Kt = TtPtZt
tF

−1
t ,

Lt = Tt −KtZt ,

at+1 = Ttat +Ktvt ,

Pt+1 = TtPtLt
t +RtQtRt

t .

The above recursion is called Kalman filter. The dimensions for the above matrices are:
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vt p×1 ,
Ft p× p ,
Kt m× p ,
Lt m×m ,
at m×1 ,
Pt m×m .

We are concerned with univariate forecasting here with p = 1.
We now consider the smooth estimation α̂t = E(αt | x1,x2, ...,xt−1,xt , ...,xn). Note its dif-

ference from the forward estimation at = E(αt | x1,x2, ...,xt−1). The smooth estimation takes
into consideration the series after t. Let the variance of the smooth estimation be Vt = Var(αt |
x1,x2, ...,xt−1,xt , ...,xn).

We can compute α̂t and Vt by the backwards recursion specified below. At t = n, set γn = [0]m×1

and Nn = [0]m×m. For t = n,n−1, ...,1,

γt−1 = Zt
tF

−1
t vt +Lt

tγt , (18)

Nt−1 = Zt
tF

−1
t Zt +Lt

tNtLt ,

α̂t = at +Ptγt−1,

Vt = Pt −PtNt−1Pt .

Note that Zt , Ft , Lt , and Pt are already acquired by the Kalman filter (17). Eq. (17) and (18) are
referred to as Kalman filter and smoother. The Kalman filter only involves forward recursion, while
the smoother involves both forward and backward recursions.

A.2 Disturbance Smoothing

Let the smoothed disturbances be ε̂t = E(εt |x1,x2, ...,xn), η̂t = E(ηt |x1,x2, ...,xn). Suppose Ft , Kt ,
Lt , t = 1, ...,n, have been obtained by the Kalman filter, and γt , Nt have been obtained by the Kalman
smoother. Then we have

ε̂t = Ht(F−1
t vt −Kt

tγt),

Var(εt |x1,x2, ...,xn) = Ht −Ht(F−1
t +Kt

tNtKt)Ht ,

η̂t = QtRt
tγt ,

Var(ηt |x1,x2, ...,xn) = Qt −QtRt
tNtRtQt .

A.3 Forecasting

Now suppose we want to forecast xn+ j, j = 1, ...,J, given {x1, ...,xn}. Let

xn+ j = E(xn+ j | x1,x2, ...,xn),

Fn+ j = Var(xn+ j | x1,x2, ...,xn) .

First, we compute an+ j and Pn+ j, j = 1, ...,J, by forward recursion similar to the Kalman filter in
Eq. (17). The slight difference is that when j = 1, ..., J−1, set vn+ j = 0 and Kn+ j = 0. Specifically,
set an+1 = an+1, Pn+1 = Pn+1. The recursion for an+ j+1 and Pn+ j+1 for j = 1, ...,J−1 is:

an+ j+1 = Tn+ jan+ j,

Pn+ j+1 = Tn+ jPn+ jTt
n+ j +Rn+ jQn+ jRt

n+ j .
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Then we forecast

xn+ j = Zn+ jan+ j,

Fn+ j = Zn+ jPn+ jZt
n+ j +Hn+ j .

A.4 Maximum Likelihood Estimation

The parameters to be estimated in the SSM are Ht and Qt , t = 1,2, ...,n. The EM algorithm is used
to obtain the ML estimation. The missing data in EM in this case are the unobservable states αt ,
t = 1, ...,n. Denote the parameters to be estimated collectively by ψ and the parameters obtained
from the previous iteration by ψ̃. Let α = {α1,α2, ...,αn} and Xn = {x1,x2, ...,xn}. The update of
the EM algorithm comprises two steps:

1. Compute the expectation

Eψ̃,Xn [log p(α,Xn|ψ)] .

2. Maximize over ψ the above expectation.

It can be shown that

Eψ̃,Xn [log p(α,Xn|ψ)] = constant−
1
2

n

∑
t=1

[log |Ht |+ log |Qt−1|+

tr[(ε̂t ε̂t
t +Var(εt |Xn))H−1

t ]+

tr[(η̂t−1η̂t
t−1 +Var(ηt−1|Xn))Q−1

t−1] | ψ]

where ε̂t , η̂t−1, Var(εt |Xn), and Var(ηt−1|Xn) are computed by disturbance smoothing under param-
eter ψ̃. In the special case, when Ht = H, Qt = Q, the maximization can be solved analytically:

H =
∑n

t=1[ε̂t ε̂t
t +Var(εt |Xn)]

n
,

Q =
∑n

t=2[η̂t−1η̂t
t−1 +Var(ηt−1|Xn)]

n−1
.

The formula can be further simplified if H and Q are assumed diagonal. Suppose

H = diag(σ2
ε,1,σ

2
ε,2, ...,σ

2
ε,p),

Q = diag(σ2
η,1,σ

2
η,2, ...,σ

2
η,r) .

Then

σ2
ε, j =

∑n
t=1[ε̂2

t, j +Var(εt, j|Xn)]

n
, j = 1, ..., p,

σ2
η, j =

∑n
t=2[η̂2

t−1, j +Var(ηt−1, j|Xn)]

n−1
, j = 1, ...,r .
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Appendix B. The ESSF Algorithm and Its Fast Version

To solve miny,c G(y,c) in Eq. (12), we iteratively optimize over y and c. Given c, y is solved by

Ayy = by

where Ay is a D×D matrix with non-zero entries:

Ay( j, j) = ∑
k

α2
k, j +6λ , j = 1,2, ...,D,

Ay( j, j−1) = Ay( j, j +1) = −4λ , j = 1,2, ...,D,

Ay( j, j−2) = Ay( j, j +2) = λ , j = 1,2, ...,D,

and the column vector by = (∑k αk, jzk, j) j. Recall that αk, j is computed from c by Eq. (11).
Given y, c is solved by

Acc = bc

where Ac is a K ×K matrix. Define w1 = (0, 1
D , 2

D , ..., D−1
D )t and w2 = (1, D−1

D , D−2
D , ..., 1

D)t . Let
diagonal matrices W1 = diag(w1), W2 = diag(w2). Also define zk = (zk,1,zk,2, ...,zk,D)t . The non-
zero entries of Ac are:

Ac(k,k) = (W1y)tW1y+(W2y)tW2y , k = 1,2, ...,K−1,

Ac(K,K) = (W2y)tW2y,

Ac(k,k−1) = (W1y)tW2y , k = 2,3, ...,K,

Ac(k,k +1) = (W1y)tW2y , k = 1,2, ...,K−1,

and the column vector bc is given by:

bc(1) = (W1y)tz1 +(W2y)tz2 − (W1y)tW2y,

bc(k) = (W1y)tzk +(W2y)tzk+1 , k = 2,3, ...,K−1,

bc(K) = (W1y)tz1.

In summary, the ESSF algorithm iterates the following two steps with initialization c(0) = 1. At
iteration p ≥ 1:

1. Given c(p−1), compute Ay and by. Let y(p) = A−1
y by.

2. Given y(p), compute Ac and bc. Let c(p) = A−1
c bc.

For the fast version of ESSF, we need to solve miny,c G̃(y,c) in Eq. (13). We start with c(0) = 1.
Without loss of generality, we fix c1 = 1. At iteration p ≥ 1:

1. Given c(p−1), compute

y(p)
j =

∑k c(p−1)
k zk, j

‖ c(p−1) ‖2
, j = 1, ...,D.

2. Given y(p), compute

c(p)
k =

∑ j zk, jy
(p)
j

‖ y(p) ‖2
, k = 1, ...,K.
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