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Abstract

We argue that when objects are characterized by many attributes, clustering them on the basis of
a random subset of these attributes can capture information on the unobserved attributes as well.
Moreover, we show that under mild technical conditions, clustering the objects on the basis of such
a random subset performs almost as well as clustering with the full attribute set. We prove finite
sample generalization theorems for this novel learning scheme that extends analogous results from
the supervised learning setting. We use our framework to analyze generalization to unobserved fea-
tures of two well-known clustering algorithms: k-means and the maximum likelihood multinomial
mixture model. The scheme is demonstrated for collaborative filtering of users with movie ratings
as attributes and document clustering with words as attributes.

Keywords: clustering, unobserved features, learning theory, generalization in clustering, informa-
tion bottleneck

1. Introduction

Data clustering can be defined as unsupervised classification of objects into groups based on their
similarity (see, for example, Jain et al., 1999). Often, it is desirable to have the clusters match some
labels that are unknown to the clustering algorithm. In this context, good data clustering is expected
to have homogeneous labels in each cluster, under some constraints on the number or complexity
of the clusters. This can be quantified by mutual information (see, for example, Cover and Thomas,
1991) between the objects’ cluster identity and their (unknown) labels, for a given complexity of
clusters. However, since the clustering algorithm has no access to the labels, it is unclear how it can
optimize the quality of the clustering. Even worse, the clustering quality depends on the specific
choice of the unobserved labels. For example, good document clustering with respect to topics is
very different from clustering with respect to authors.

In our setting, instead of attempting to cluster by some arbitrary labels, we try to predict un-
observed features from observed ones. In this sense our target labels are simply other features that
happened to be unobserved. For example, when clustering fruits based on their observed features
such as shape, color and size, the target of clustering is to match unobserved features such as nutri-
tional value or toxicity. When clustering users based on their movie ratings, the target of clustering
is to match ratings of movies that were not rated, or not even created as yet.

In order to theoretically analyze and quantify this new learning scheme, we make the following
assumptions. Consider a very large set of features, and assume that we observe only a random
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Figure 1: The learning scheme. The clustering algorithm has access to a random subset of features
(Xqp, ---» Xq,) OF m instances. The goal of the clustering algorithm is to assign a class label
t; to each instance, such that the expected mutual information between the class labels
and a randomly selected unobserved feature is maximized.

subset of n features, called observed features. The other features are called unobserved features.
We assume that the random selection of observed features is made from some unknown distribution
D and each feature is selected independently.*

The clustering algorithm has access only to the observed features of m instances. After cluster-
ing, one of the unobserved features is randomly selected to be the target label. This selection is done
using the same distribution, 9, of the observed feature selection. Clustering performance is mea-
sured with respect to this feature. Obviously, the clustering algorithm cannot be directly optimized
for this specific feature.

The question is whether we can optimize the expected performance on the unobserved features,
based only on the observed features. The expectation is over the random selection of the unobserved
target features. In other words, can we find the clustering that is most likely to match a randomly
selected unobserved feature? Perhaps surprisingly, for a large enough number of observed features,
the answer is yes. We show that for any clustering algorithm, the average performance of the
clustering with respect to the observed and unobserved features is similar. Hence we can indirectly
optimize clustering performance with respect to unobserved features by analogy with generalization
in supervised learning. These results are universal and do not require any additional assumptions
such as an underlying model or a distribution that created the instances.

In order to quantify these results, we define two terms: the average observed information and
the expected unobserved information. Let T be the variable which represents the cluster for each
instance, and {Xi,...,X_} (L — ) the set of discrete random variables which denotes the features.
The average observed information, denoted by lqp, is the average mutual information between T
and each of the observed features. In other words, if the observed features are {Xi,...,Xn} then
lob = %Z?zl I(T;X;). The expected unobserved information, denoted by ln, is the expected value
of the mutual information between T and a new randomly selected feature, that is, Eq.n {1(T;Xq) }-
We are interested in cases where this new selected feature is most likely to be one of the unobserved
features, and therefore we use the term unobserved information. Note that whereas lq, can be
measured directly, this paper deals with the question of how to infer and maximize I .

1. For simplicity, we also assume that the probability of selecting the same feature more than once is near zero.
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Our main results consist of two theorems. The first is a generalization theorem. It gives an
upper bound on the probability of a large difference between Iq, and Iy, for all possible partitions.
It also states a uniform convergence in probability of |lop — Iyn| as the number of observed features
increases. Conceptually, the average observed information, I, is analogous to the training error in
standard supervised learning (Vapnik, 1998), whereas the unobserved information, Iy, is similar to
the generalization error.

The second theorem states that under constraints on the number of clusters, and a large enough
number of observed features, one can achieve nearly the best possible performance, in terms of
lun. Analogous to the principle of Empirical Risk Minimization (ERM) in statistical learning theory
(Vapnik, 1998), this is done by maximizing lqp.

We use our framework to analyze clustering by the maximum likelihood of multinomial mixture
model (also called Naive Bayes Mixture Model, see Figure 2 and Section 2.2). This clustering as-
sumes a generative model of the data, where the instances are assumed to be sampled independently
from a mixture of distributions, and for each such distribution all features are independent. These
assumptions are quite different from our assumptions of fixed instances and randomly observed fea-
tures.? Nevertheless, in Section 2.2 we show that this clustering achieves nearly the best possible
clustering in terms of information on unobserved features.

In Section 3 we extend our framework to distance-based clustering. In this case the measure
of the quality of clustering is based on some distance function instead of mutual information. We
show that the k-means clustering algorithm (Lloyd, 1957; MacQueen, 1967) not only minimizes the
observed intra-cluster variance, but also minimizes the unobserved intra-cluster variance, that is, the
variance of unobserved features within each cluster.

Table 1 summarizes the similarities and differences of our setting to that of supervised learning.
The key difference is that in supervised learning, the set of features is fixed and the training instances
are assumed to be randomly drawn from some distribution. Hence, the generalization is to new
instances. In our setting, the set of instances is fixed, but the set of observed features is assumed to
be randomly selected. Hence, the generalization is to new features.

Our new theorems are evaluated empirically in Section 4, on two different data sets. The first
is a movie ratings data set, where we cluster users based on their movie ratings. The second is
a document data set, with words as features. Our main point in this paper, however, is the new
conceptual framework and not a specific algorithm or experimental performance.

Section 5 discusses related work and Section 6 presents conclusions and ideas for future re-
search. A notation table is available in Appendix B.

2. Feature Generalization of I nformation

In this section we analyze feature generalization in terms of mutual information between the clusters
and the features. Consider a fixed set of m instances denoted by {x[1],...,x[m]}. Each instance is
represented by a vector of L features {xi,...,X_}. The value of the qth feature of the jth instance
is denoted by xq[j]. Out of this set of features, n features are randomly and independently selected
according to some distribution 9. The n randomly selected features are the observed features (vari-
ables) and their indices are denoted by § = (qs,...,0n), Where g; ~ D. The ith observed feature of
the jth instance is denoted by xq [j]. After selecting the observed features, we also select unobserved

2. Note that in our framework, random independence refers to the selection of observed features, not to the feature
values.
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Prediction of unobserved features

| Supervised learning

Information \ Distance-based

Training set Randomly selected n randomly selected features (ob-
instances served features)
Test set Randomly selected Randomly selected unobserved

unlabeled instances

features

Hypothesis class

Class of functions from
instances to labels

All possible partitions of m in-
stances into k clusters

Output of learning

Select hypothesis

Cluster the instances into k clus-

algorithm function ters
Goal Minimize expected error | Maximize Minimize
on test set expected expected
information on intra-cluster
unobserved variance of
features unobserved
features
Assumption Training and test Observed and unobserved fea-
instances are randomly | tures are randomly and indepen-
and independently dently selected using the same
drawn from the same distribution
distribution
Strategy Empirical Risk Observed Minimize
Minimization (ERM) Information observed
Maximization intra-cluster
(OIM) variance
Related clustering Maximum k-means
algorithm likelihood
multinomial
mixture model
(Figure 2)
Good The training and test The observed and | The observed and
generalization errors are similar unobserved unobserved
information are intra-cluster
similar variance are
similar

Table 1: Analogy with supervised learning
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features according to the same distribution . For simplicity, we assume that the total number of
features, L, is large and the probability of selecting the same feature more than once is near zero
(as in the case where L >> n?, where D is uniform distribution). This means that we can assume
that a randomly selected unobserved feature is not one of the n observed features. It is important to
emphasize that we have a fixed and finite set of instances; that is, we do not need to assume that the
m instances were drawn from any distribution. Only the features are randomly selected.

We further assume that each of the features is a discrete variable with no more than s different
values.® The clustering algorithm clusters the instances into k clusters. The clustering is denoted
by the function t : [m] — [k| that maps each of the m instances to one of the k clusters. The cluster
label of the jth instance is denoted by t(j). Our measures for the quality of clustering are based
on Shannon’s mutual information. Let random variable Z denote a number chosen uniformly at
random from {1,...,m}. We define the quality of clustering with respect to a single feature, g, as
| (t(Z);%q[Z]), that is, the empirical mutual information between the cluster labels and the feature.

Our measure of performance assumes that the number of clusters is predetermined. There is
an obvious tradeoff between the preserved mutual information and the number of clusters. For
example, one could put each instance in a different cluster, and thus get the maximum possible
mutual information for all features. Obviously all clusters will be homogeneous with respect to all
features but this clustering is pointless. Therefore, we need to have some constraints on the number
of clusters.

Definition 1 The average observed information of a clustering t and the observed features is de-
noted by lon(t,q) and defined by

lop (t,8) = zll )i X [Z

The expected unobserved information of a clustering is denoted by Iy, (t) and defined by

lun(t) = Equn {1 (t(Z);xq[Z]) } -

In general, lop is higher when clusters are more coherent; that is, elements within each cluster
have many identical observed features. Iy, is high if there is a high probability that the clusters are
informative on a randomly selected feature g (where q ~ D). In the special case where the distri-
bution D is uniform and L > n?, I, can also be written as the average mutual information between
the cluster label and the unobserved features set; that is, Iy ~ ﬁ Y a¢{aq,...an} | (1(Z);%q[Z])- Recall
that L is the total number of features, both observed and unobserved.

The goal of the clustering algorithm is to cluster the instances into k clusters that maximize the
unobserved information, l,,. Before discussing how to maximize l,,, we first consider the problem
of estimating it. Similar to the generalization error in supervised learning, I, cannot be calculated
directly in the learning algorithm, but we may be able to bound the difference between the observed
information Ig,—our “training error”—and the unobserved information I,,—our “generalization
error”. To obtain generalization, this bound should be uniform over all possible clusterings with
a high probability over the randomly selected features. The following lemma argues that uniform
convergence in probability of Iq, to Iy, always occurs.

3. Since we are exploring an empirical distribution of a finite set of instances, dealing with continuous features is not
meaningful.
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Lemma 2 With the definitions above,

pr sup  [lop (£,§) — lun ()] > € b < 20~ 2n%/(logk*+mlogk e ¢
4=(01,+-an) | t:[m]—[K]

Proof For any q,
0 <1(t(Z2);xq[Z]) <H (t(Z)) < logk.

Using Hoeffding’s inequality, for any specific (predetermined) clustering

Pr {|lop(t,d) — lun (t)] > €} < 22/ (logk)?
G=(d1,---,Gn)

Since there are at most k™ possible partitions, the union bound is sufficient to prove Lemma 2.1

Note that for any € > 0, the probability that |lop — lun| > € goes to zero, as n — co. The conver-
gence rate of lop to lyn is bounded by O ((logk)/4/n). As expected, this upper bound decreases as
the number of clusters, k, decreases.

Unlike the standard bounds in supervised learning, this bound increases with the number of
instances (m), and decreases with increasing numbers of observed features (n). This is because
in our scheme the training size is not the number of instances, but rather the number of observed
features (see Table 1). However, in the next theorem we obtain an upper bound that is independent
of m, and hence is tighter for large m.

Consider the case where n is fixed, and m increases infinitely. We can select a random subset of
instances of size m’. For large enough m’, the empirical distribution of this subset is similar to the
distribution over all instances. By fixing m’, we can get a bound which is independent of m. Using
this observation, the next theorem gives a bound that is independent of m.

Theorem 3 (Information Generalization) With the definitions above,

Pr { sup  |lop(t, &) — lun(t)| > a} < 8(logk)e "€/ (Blogk)?) +asklogk/e—loge g - o
G=(A-,Gn) | t:[m—[K

The proof of this theorem is given in appendix A.1. In this theorem, the bound does not depend
on the number of instances, but rather on s which is the maximum alphabet size of the features. The
convergence rate here is bounded by O ((logk)/¥n). However, for relatively large n one can use
the bound in Lemma 2, which converges faster.

As shown in Table 1, Theorem 3 is clearly analogous to the standard uniform convergence
results in supervised learning theory (see, for example, Vapnik, 1998), where the random sample is
replaced by our randomly selected features, the hypotheses are replaced by the clustering, and Iqp
and Iy, replace the empirical and expected risks, respectively. The complexity of the clustering (our
hypothesis class) is controlled by the number of clusters, k.

We can now return to the problem of specifying a clustering that maximizes Iy, using only the
observed features. For reference, we will first define 1., of the best possible clustering.
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Definition 4 Maximally achievable unobserved information: Let I}, be the maximum value of
lun that can be achieved by any partition into k clusters,

k= Sup lun(t).
t[m— K]
The clustering that achieves this value is called the best clustering. The average observed
information of this clustering is denoted by I, .

Definition 5 Observed information maximization algorithm: Let lobMax be any clustering algo-
rithm that, based on the values of the observed features, selects a clustering t°P% : [m] — [k] having
the maximum possible value of I, that is,

tOPLO0 — arg max lgp(t, §).
gt:[mHk] oo(t,)
Let fob’k be the average observed information of this clustering and fun’k be the expected unobserved
information of this clustering, that is,

ook (8) = |ob<t°pt’°b,c~J>7
I~un,k(q) = lun (tOpt’Ob>-

The next theorem states that lobMax not only maximizes lqp, but also maximizes Iyy,.
Theorem 6 (Achievability) With the definitions above,

P {Tink(@) < i — €} < 8(10g k)e e/ (32(10gky%) +Bslogk/e-log(e/2) e > 0. (1)
=\41,---,Un

Proof We now define a bad clustering as a clustering whose expected unobserved information satis-
fies lun < I}, — €. Using Theorem 3, the probability that |lop — lun| > €/2 for any of the clusterings
is upper bounded by the right term of Equation 1. If for all clusterings |lop — lun| < €/2, then surely
Iook = Link — €/2 (see Definition 4) and o, of all bad clusterings satisfies Iop < 1}, —€/2. Hence
the probability that a bad clustering has a higher average observed information than the best clus-

tering is upper bounded as in Theorem 6. |

For small m, a tighter bound, similar to that of Lemma 2 can easily be formulated.

As a result of this theorem, when n is large enough, even an algorithm that knows the value of
all features (observed and unobserved) cannot find a clustering which is significantly better than the
clustering found by the lobMax algorithm. This is demonstrated empirically in Section 4.

Informally, this theorem means that for a large number of features we can find a clustering that
is informative on unobserved features. For example, clustering users based on similar ratings of
current movies are likely to match future movies as well (see Section 4).

In the generalization and achievability theorems (Theorems 3, 6) we assumed that we are deal-
ing only with hard clustering. In Appendix A.2 we show that the generalization theorem is also
applicable to soft clustering; that is, assigning a probability distribution among the clusters to each
instance. Moreover, we show that soft clustering is not required to maximize Iy, since its maximum
value can be achieved by hard clustering.
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2.1 Toy Examples

In the first two examples below, we assume that the instances are drawn from a given distribution
(although this assumption is not necessary for the theorems above). We also assume that the number
of instances is large, so the empirical and the actual distributions of the instances are about the same.

Example 1 Let Xy, ..., X be Bernoulli(%) random variables, such that all variables with an even
index are equal to each other (x, = X4 = X = ...), and all variables with an odd index are indepen-
dent of each other and of all other variables. If the number of randomly observed features is large
enough we can find a clustering rule with two clusters such that I = % This is done by assigning
the cluster labels based on the set of features that are correlated, for example, t(i) = x2[i] +1 Vi,
assuming that x; is one of the observed features. | (t(Z);x;j(Z)) is one for even i, and zero for odd i.
For large n, the number of randomly selected features with odd indices and even indices* is about
the same (with high probability), and hence lgy = % For this clustering rule Iy, = % since half of
the unobserved features match this clustering (all features with an even index).

Example 2 When Xi,...,Xs are i.i.d. (independent and identically distributed) Bernoulli(%) ran-
dom variables, 1y, = 0 for any clustering rule, regardless of the number of observed features. For
a finite number of clusters, Iy will necessarily approach zero as the number of observed features
increases. More specifically, if we use two clusters, where the clustering is determined by one of
the observed features (i.e., t(i) = x;(i), where x; is an observed feature), then logp = % (because
1(t(Z2);x;(Z2)) =1and I (t(Z);x(Z)) =0 for | # j).

Example 3 Clustering fruits based on the observed features (color, size, shape etc.) also matches
many unobserved features. Indeed, people clustered fruits into oranges, bananas and others (by
giving names in the language) long before vitamin C was discovered. Nevertheless, this clustering
was very informative about the amount of vitamin C in fruits, that is, most oranges have similar
amounts of vitamin C, which is different from the amount in bananas.

Based on the generalization theorem, we now suggest a qualitative explanation of why cluster-
ing into bananas and oranges provides relatively high information on unobserved features, while
clustering based on position (e.g., right/left in the field of view) does not. Clustering into bananas
and oranges contains information on many observed features (size, shape, color, texture), and thus
has relatively large lop. By the generalization theorem, this implies that it also has high Iy,. By
contrast, a clustering rule which puts all items that appeared in our right visual field in one cluster,
and the others in a second cluster, has much smaller Iq, (since it does not match many observed
features), and indeed it is not predictive about unobserved features.

Example 4 As a negative example, if the type of observed features and the target unobserved fea-
tures are very different, our assumptions do not hold. For example, when the observations are pixels
of an image, and the target variable is the label of the image, we cannot generalize from information
about the pixels to information about the label.

2.2 Feature Generalization of Maximum Likelihood Multinomial Mixture Models

In the framework of Bayesian graphical models, the multinomial mixture model is commonly used.
The assumption of this model is that all features are conditionally independent, given the value of

4. Note that the indices are arbitrary. The learning algorithm does not use the indices of the features.
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Figure 2: The Bayesian network (Pearl, 1988) of the multinomial mixture model. The observed ran-
dom variables {qu, .. ,an} are statistically independent given the parent hidden random
variable, T. This parent variable represents the cluster label. Although the basic assump-
tions of the multinomial mixture model are very different from ours, Theorem 7 tells us
that this method of clustering generalizes well to unobserved features.

some hidden variable, that is,
n
Pr(T =t,Xq,...,Xq,) =Pr(T =t) |_!Pr(xqr T=t),
r=

where T denotes the hidden variable. The Bayesian network (Pearl, 1988) of this model is given
in Figure 2. This standard model does not assume the existence of unobserved features, so we use
the notation Xgq,,...,Xq, to denote the observed features which are used by the model. The set of
instances are assumed to be drawn from such a distribution, with unknown parameters. Given the
set of instances, the goal is to learn the distributions Pr (T =t) and Pr (xq, |T =t) that maximizes the
probability of the observation, that is, values of the instances. This maximum-likelihood problem
is typically solved using an EM algorithm (Dempster et al., 1977) with a fixed number of clusters
(values of T). The output of this algorithm includes a soft clustering of all instances; that is, P(T|Y),
where Y denotes the index of the instance.

In the following theorem we analyze the feature generalization properties of soft clustering by
the multinomial mixture model. We show that under some technical conditions, it pursues nearly
the same goal as lobMax algorithm (Definition 5), that is, maximizing ¥ ;1 (t(Z); Xq;(Z)).

Theorem 7 Let lgp MLk be the observed information of clustering achieved by the maximum likeli-
hood solution of a multinomial mixture model for k clusters. Then

~ 2H(T
lobMLk = lobk — r§)7

where fob’k is the observed information achieved by the lobMax clustering algorithm (Definition 5).

Proof

Elidan and Friedman (2003) showed that learning a hidden variable can be formulated as the
multivariate information bottleneck (Friedman et al., 2001). Based on their work, in Appendix
A.3 we show that maximizing the likelihood of observed variables is equivalent to maximizing
3 7-11(T;Xg,) = I(T;Y). Using our notations, this is equivalent to maximizing lop — LI(T;Y). Since
I(T;Y) < H(T), the difference between maximizing lop and lop — 1(T;Y) is at most 2H(T)/n. W
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The meaning of Theorem 7 is that for large n, finding the maximum likelihood of mixture
models is similar to finding the maximum unobserved information. Thus the standard EM-algorithm
for maximum likelihood of mixture models can be viewed as a form of the lobMax algorithm.®

The standard mixture model assumes a generative model for generating the instances from some
distribution, and finds the maximum likelihood of this model. This model does not assume anything
about the selection of features or the existence of unobserved features. Our setup assumes that
the instances are fixed and the observed features are randomly selected and we try to maximize
information on unobserved features. Interestingly, while the initial assumptions are quite different,
the results are nearly equivalent. We show that finding the maximum likelihood of the mixture
model indirectly predicts unobserved features as well.

The maximum likelihood mixture model was used by Breese et al. (1998) to cluster users by
their voting on movies. This clustering is used to predict the rating of new movies. Our analysis
shows that for a large number of rated (observed) movies, it is nearly the best clustering method in
terms of information on new movies.

The multinomial mixture model is also used for learning with labeled and unlabeled instances,
and is considered a baseline method (see Section 2.3 in Seeger, 2002). The idea is to cluster the in-
stances based on their features. Then, the prediction of a label for an unlabeled instance is estimated
from the labels of other instances in the same cluster. From our analysis, this is nearly the best clus-
tering method for preserving information on the label, assuming that the label is yet another feature
that happened to be unobserved in some instances. This provides another interpretation regrading
the hidden assumption of this clustering scheme for labeled and unlabeled data.

3. Distance-Based Clustering

In this section we extend the framework and include analysis of feature generalization bounds for
distance-based clustering. We apply this to analyze feature generalization of the k-means clustering
algorithm (See Table 1). The setup in this section is the same as the setup defined in Section 2 except
as described below. We assume that we have a distance function, denoted by f, that measures the
distance for every two values of any of the features. We assume that f has the following properties:

OS f(XQ[jLXQ[I])SC vq)jv') (2)
f(a,a)=0 Va, 3)
f(a,b) = f(b,a) Va,b, (4)

where ¢ is some positive constant. An example of such a function is the square error, that is,
f(a,b) = (a—hb)?, where we assume that the value of all features is bounded as follows Xq[j]] <
v/€/2 (Vq, j), for some constant c. The features themselves can be discrete or continuous. Although
we do not directly use the function f in the definitions of the theorems in the following section, it is
required for their proofs (Appendix A.4).

5. Ignoring the fact that achieving a global maximum is not guaranteed.
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3.1 Generalization of Distance-Based Clustering

As in Section 2, we have a set of m fixed instances {x[1],...,x[m]}, and the clustering algorithm
clusters these instances into k clusters. For better readability, in this section the partition is denoted
by {Cu,...,Ck}. |C/| denotes the size of the rth cluster.
The standard objective of the k-means algorithm is to achieve minimum intra-cluster variance,

that is, minimize the function

k

> 3 Mil-

r=1jet

where |, is the mean point of all instances in the rth cluster.

In our setup, however, we assume that the clustering algorithm has access only to the observed
features over the m instances. The goal of clustering is to achieve minimum intra-cluster variance of
the unobserved features. To do so, we need to generalize from the observed to the unobserved intra-
class variance. To formalize this type of generalization, let’s first define these variances formally.

Definition 8 The observed intra-cluster variance Dgp {Cy, ...,Ck} of a clustering {Cy,...,Ck} is de-

fined by
Dob{C1,....Ck} = om 21 Z zl Xg [J] — K [1])"
jeCi

where iq(r] is the mean of feature g over all instances in cluster r, that is,

1

cl .2 all]-

Hg[r] = %

In other words, Dy, is the average square distance of each observed feature from the mean of
the value of the feature in its cluster. The average is over all observed features and instances. The
k-means algorithm minimizes the observed intra-cluster variance.

Definition 9 The expected unobserved intra-cluster variance Dy, {Cy, ...,Ck} is defined by

k
Dun{C1,--:Ch = 1 35 Ean L]~ belr)*
r=1j€

Dgn and Dy, are the distance-based variables analogous to lg, and Iy, defined in Section 2. In
our setup, the goal of the clustering algorithm is to create clusters with minimal unobserved intra-
class variance (Dyn). As in the case of information-based clustering, we first consider the problem
of estimating Dy,. Before presenting the generalization theorem for distance-based clustering, we
need the following definition.

Definition 10 Let a be the ratio between the size of smallest cluster and the average cluster size,
that is,
min, |C; |
a({Cy,....Ck}) = ———.
({ 1y k}) m/k
Now we are ready for the generalization theorem for distance-based clustering.
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Theorem 11 With the above definitions, if \xq[j]\ < R for every q, j then for every a. >0, € > 0,

Pr sup IDob{C1,-..,Ck} —Dun{C1,....Ck}| <€ >1-0,
} G({Cl,A..,Ck})EGC

where
5— Sike—nsz/sR“-Hog(Rz/s)‘

oF

The proof of this theorem is given in Appendix A.4. Theorem 11 is a special case of a more
general theorem (Theorem 14) that we present in the appendix. Theorem 14 can be applied to other
distance-based metrics, beyond the intra-cluster variance defined in Definition 9.

Note that for any € > 0, the probability that |Don — Dyn| < € goes to one, as n — . The
convergence rate of Doy t0 Dy is bounded by O(1/4/n). As expected, for a fixed value of d the
upper bound on |Dq, — Dyn| decreases as the number of clusters, k, decreases.

Theorem 11 bounds the difference between observed and unobserved variances. We now use
it to find a clustering that minimizes the expected unobserved intra-cluster variance, using only the
observed features.

Theorem 12 Let {C{™,....CP™} be the clustering that achieves the minimum unobserved intra-
cluster variance under the constraint a ({Cq,...,Cx}) > o for some constant 0 < a. < 1, that is,

COoPt . COP\ _gr min Dy {Cy.....C
{ 1 » » >k } g{cl,...,OK}IGZGC un{ 1, ) k}?

and let DA the best unobserved intra-cluster variance, be defined by DJR' = Dyn {C{™, ...,CP™'}.

Let {C™,...,CP™} be the clustering with the minimum observed intra-cluster variance, under
the same constraint on a ({Cq,...,Ck}), that is,

CoP LMY —ar min D {Cy,...,C
{ 1 s vk } gG({C, Col) >0 Ob{ 1ye0 k}7

1,-,Ck})
and let D3F' be the unobserved intra-cluster variance of this clustering, that is, D35 = Dun {CP7, ...,
Pl
For any € > 0,
Pr {DOP' <D 4el>1-3,
{ql7~~7qn}{ o= an } o

where

5— gkefnsz/\%ZR‘Urlog(Rz/s). (5)

O¢

Proof We now define a bad clustering as a clustering whose expected unobserved intra-cluster vari-
ance satisfies Dy, > DOF' + . Using Theorem 11, the probability that Do, — Dun| < €/2 for all
possible clusterings (under the constraint on o) is at least 1 — 8, where & defined in Equation 5. If
for all clusterings [Dob — Dun| < €/2, then surely Do {C™,...,CP } < DGh +€/2 and Dy, of all
bad clusterings satisfies Dgp > DR +¢€/2. Hence the probability that any of the bad clusterings has
a lower observed intra-cluster variance than the best clustering is upper bounded by 8. Therefore,
with a probability of at least 1 — & none of the bad clusterings is selected by an algorithm that selects
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the clustering with the minimum Dy, |

We cannot directly calculate the unobserved intra-cluster variance. However, Theorem 12 means
that an algorithm that selects the clustering with the minimum observed intra-cluster variance indi-
rectly finds the clustering with nearly minimum unobserved intra-cluster variance.

In general, minimizing observed intra-cluster variance is the optimization objective of k-means.
Hence, k-means indirectly minimizes the unobserved intra-cluster variance. This means that in
our context, k-means can be viewed as an analog to the empirical risk minimization (ERM) in the
standard supervised learning context. We minimize the observed variance (training error) in order
to indirectly minimize the expected unobserved variance (test error).

k-means is used in collaborative filtering such as movie rating predictions for grouping users
based on similar ratings (see, for example, Marlin, 2004). After clustering, we can predict ratings
of a new movie based on the ratings of a few users for this movie. If the intra-cluster variance of
a new, previously unobserved movie is small, then we can estimate the rating of one user from the
average ratings of other users in the same cluster.

An experimental illustration of the behavior of the observed and unobserved intra-cluster vari-
ances for k-means is available in Section 4.1.

4. Empirical Evaluation

In this section we test experimentally the generalization properties of lobMax and the k-means
clustering algorithm for a finite number of features. For lobMax we examine the difference between
lopb and Iy, as a function of the number of observed features, and number of clusters used. We
also compare the value of Iy, achieved by the lobMax algorithm to 13,, which is the maximum
achievable I, (see Definition 4). Similarly, for distance-based clustering we use k-means to examine
the behavior of the observed and unobserved intra-cluster variances (see Definitions 8, 9).

The purpose of this section is not to suggest new algorithms for collaborative filtering or com-
pare it to other methods, but simply to illustrate our new theorems on empirical data.

4.1 Collaborative Filtering

In this section, our evaluation uses a data set typically employed for collaborative filtering. Collab-
orative filtering refers to methods of making predictions about a user’s preferences, by collecting
the preferences of many users. For example, collaborative filtering for movie ratings can make pre-
dictions about the rating of movies by a user given a partial list of ratings from this user and many
other users. Clustering methods are used for collaborative filtering by clustering users based on the
similarity of their ratings (see, for example, Marlin, 2004; Ungar and Foster, 1998).

In our setting, each user is described as a vector of movie ratings. The rating of each movie is
regarded as a feature. We cluster users based on the set of observed features, that is, rated movies.
In our context, the goal of the clustering is to maximize the information between the clusters and
unobserved features, that is, movies that have not yet been rated by any of the users. These can be
movies that have not yet been made. By Theorem 6, given a large enough number of rated movies,
we can achieve the best possible clustering of users with respect to unseen movies. In this region, no
additional information (such as user age, taste, rating of more movies) beyond the observed features
can improve the unobserved information, I,,, by more than some small €.
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For distance-based clustering, we cluster the users by the k-means algorithm based on a subset
of features (movies). As we show in Section 3.1 the goal of k-means is to minimize the observed
intra-cluster variance. From Theorem 12, this indirectly minimizes the unobserved intra-cluster
variance as well. Here we empirically evaluate this type of generalization.

Data set. We use MovieLens (www.movielens.umn.edu), which is a movie rating data set. It
was collected and distributed by GroupLens Research at the University of Minnesota. It contains
approximately 1 million ratings of 3900 movies by 6040 users. Ratings are on a scale of 1 to 5. We
use only a subset consisting of 2400 movies rated by 4000 users (or 2000 by 2000 for distance-based
clustering). In our setting, each instance is a vector of ratings (X, ..., X2400) by a specific user. Each
movie is viewed as a feature, where the rating is the value of the feature.

Experimental Setup. We randomly split the 2400 movies into two groups, denoted by “A” and
“B”, of 1200 movies (features) each. We use a subset of the movies from group “A” as observed
features and all movies from group “B” as the unobserved features. The experiment was repeated
with 20 random splits and the results averaged. We estimate I, by the mean information between
the clusters and ratings of movies from group “B”. We use a uniform distribution of feature selection
(D), and hence Iy, can be estimated as the average information on the unobserved features, that is,
lun = % Yieal (T;Xj). A similar setup is used for the distance-based clustering (with two groups
of 1000 movies).

Handling Missing Values. In this data set, most of the values are missing (not rated). For in-
formation based-clustering, we handle this by defining the feature variable as 1,2,...,5 for the ratings
and 0 for a missing value. We maximize the mutual information based on the empirical distribu-
tion of values that are present, and weight it by the probability of presence for this feature. Hence,
lob = 3 —1 P(Xj # 0)I(T;X;j|Xj # 0) and lun = Ej {P(X; # 0)I(T;Xj[X;j # 0) }. The weighting pre-
vents overfitting to movies with few ratings. Since the observed features are selected at random, the
statistics of missing values of the observed and unobserved features are the same. Hence, all our
theorems are applicable to these definitions of Iy and Iy, as well.

In order to verify that the estimated mutual information is not just an artifact of the finite sample
size, we tested the mutual information after random permutation of ratings of each movie among
users. Indeed, the resulting mutual information was significantly lower in the case of random per-
mutation.

For the distance based clustering, we handle missing data by defining a default square distance
between a feature and the cluster center where one (or two) of the values is missing. We select this
default square distance to be the average variance of movie ratings (which is about 0.9).

4.2 Greedy lobMax Algorithm

For information-based clustering, we cluster the users using a simple greedy clustering algorithm
(see Algorithm 1). The input to the algorithm is all users, represented solely by the observed fea-
tures. Since this algorithm can only find a local maximum of Iop, we ran the algorithm 10 times
(each used a different random initialization) and selected the results that had a maximum value of
lob-

In our experiment, the number of observed features is large. Therefore, based on Theorem 7, the
greedy lobMax can be replaced by the standard EM-algorithm which finds the maximum likelihood
for multinomial mixture models. Although, in general, this algorithm finds soft clustering, in our
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Figure 3: Feature generalization as a function of the number of training features (movies) and the
number of clusters. (a) (b) and (e) show the observed and unobserved information for
various numbers of features and clusters (high is good). The overall mean information is
low, since the rating matrix is sparse. (c) (d) and (f) shows the observed and unobserved
intra-cluster variance (low is good). In these figures, the variance is only calculated on
values which are not missing. Figures (e) and (f) show the effect of the number of clusters
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case the empirical result clusterings are not soft, that is, one cluster is assigned to each instance (see
Appendix A.2). As expected, the results of both algorithms are nearly the same.

Algorithm 1 A simple greedy lobMax algorithm

1. Assign a random cluster to each of the instances.

2. Forr =1to R (where R is the upper limit on the number of iterations)

(a) For each instance,

i. Calculate lgp, for all possible clustering assignments of the current instance.
ii. Choose the clustering that maximizes lop.

(b) Exit if the clusters of all documents do not change.

In order to estimate I, 5 (see Definition 4), we also ran the same algorithm when all the features
were available to the algorithm (i.e., also features from group “B”). In this case the algorithm tries
directly to find the clustering that maximizes the mean mutual information on features from group
1181’.

4.3 Results

The results are shown in Figure 3. It is clear that as the number of observed features increases, lop
decreases while I, increases (see Figure 3(a,b)). When there is only one feature, two clusters can
contain all the available information on this feature (e.g., by assigning t(j) = Xq,[j]), S0 lon reaches
its maximum value (which is H (Xg, [Z])). As the number of observed features increases, we cannot
preserve all the information on all the features in a few clusters, so the observed mutual informa-
tion (lop) decreases. On the other hand, as the number of observed features increases, the cluster
variable, T =t(Z), captures the structure of the distribution (users’ tastes), and hence contains more
information on unobserved features. The generalization theorem (Theorem 3) tells us that the dif-
ference between Iy, and Iy Will approach zero as the number of observed features increases. This is
similar to the behavior of training and test errors in supervised learning. Informally, the achievabil-
ity theorem (Theorem 6) tells as that for a large enough number of observed features, even though
our clustering algorithm is based only on observed features, it can achieve nearly the best possible
clustering, in terms of I,. This can be seen in Figures 3 (a,b), where 1, approaches 1 j,, which is the
unobserved information of the best clustering (Definition 4). As the number of clusters increases,
both lgp, lun increase (Figure 3e), but the difference between them also increases.

Similar results were obtained for distance based clustering. The goal here is to minimize the
unobserved intra-cluster variance (Dyn), and this is done by minimizing the observed intra-cluster
variance (Dgp). As discussed in Section 3.1, this can be achieved by k-means.® Again, for a small
numbers of features (n) the clustering overfits the observed features, that is, the Dgy, is relatively
low but Dy, is large. However, for large n, Dy, and Dgy approach each other and both of them
approach the unobserved intra-cluster variance of the best possible clustering (Dﬁﬁt) as expected

6. Since k-means does not necessarily find the global optimum, we ran it 20 times with different initialization points,
and chose the results with minimal observed intra-cluster variance. This does not guarantee a global optimum, but no
other tractable algorithm is available today to achieve global optima.
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Figure 4: lgp, lun and 13, per number of training words and clusters. In (a) and (b) the number of
words is variable, and the number of clusters is fixed. In (c) the number of observed words
is fixed (1200), and the number of clusters is variable. The overall mean information is
low, since a relatively small number of words contributes to the information (see Table 2)

from Theorem 12. When the number of clusters increases, both Do, and Dy, decrease, but the
difference between them increases.

4.4 \Words and Documents

In this section we repeat the information-based clustering experiment, but this time for document
clustering with words as features. We show how clustering which is based on a subset of words
(observed words) is also informative about the unobserved words. The obtained curves of informa-
tion vs. number of features are similar to those in the previous section. However, in this section we
also examine the resulting clustering (Table 2) to get a better intuition as to how this generalization
occurs.

Data set. We use the 20-newsgroups (20NG) corpus, collected by Lang (1995). This collection
contains about 20,000 messages from 20 Usenet discussion groups, some of which have similar
topics.

Preprocessing. In order to prevent effects caused by different document lengths, we truncate
each document to 100 words (by randomly selecting 100 words), and ignore documents which
consist of fewer than 100 words. We use the “bag of words” representation: namely we convert each
document into a binary vector (x1, Xz, ...), where each element in the vector represents a word, and
equals one if the word appears in the document and zero otherwise. We select the 2400 words whose
corresponding X; has maximum entropy,” and remove all other words. After this preprocessing each
document is represented by a vector (X1, ...,X2400)-

Experimental setup. We randomly split the 2400 words into two groups of 1200 words (fea-
tures) each. The groups were called “A” and “B”. We use a variable number of words (1 to 1200)
from group “A” as observed features. All the features from group “B” are used as the unobserved
features. We repeat the test with 10 random splits and present the mean results.

7. In other words, the probability of the word appearing in a document is not near zero or near one.
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Word t=1 t=2 t=3
he 0.47 0.04 0.25
game 0.23 0.01 0
team 0.20 0 0
By x 001 015 001
& 5 hockey 0.11 0 0
o 2 jesus 0.01 0 0.09
chrigtian 0 0 0.08
use 0.04 0.21 0.09
file 0 0.08 0.01
3 god 002 00l 015
> o players 0.13 0 0
B S basehal 010 0 0
o = window 0 0.10 0
- server 0 0.06 0

Table 2: Probability of a word appearing in a document from each cluster. Each column in the
table represents a cluster (total of three clusters), and the numbers are the probabilities
that a document from a cluster will contain the word (e.g., The word “he” appears in 47%
of the documents from cluster 1). The results presented here are for learning from 1200
observed words, but only a few of the most informative words appear in the table.

4.5 Results

The results are shown in Figure 4 and Table 2. The qualitative explanation of the figure is the same
as for collaborative filtering (see Section 4.1 and Figure 3). Table 2 presents a list of the most in-
formative words, and their appearance in each cluster. This helps understand the way clustering
learned from observed words matches unobserved words. We can see, for example, that although
the word “player” is not part of the inputs to the clustering algorithm, it appears much more in the
first cluster than in other clusters. Intuitively this can be explained as follows. The algorithm finds
clusters that are informative on many observed words together, and thus matches the co-occurrence
of words. This clustering reveals the hidden topics of the documents (sports, computers and reli-
gious), and these topics contain information on the unobserved words. We see that generalization
to unobserved features can be explained from a standpoint of a generative model (a hidden vari-
able which represents the topics of the documents) or from a statistical point of view (relationship
between observed and unobserved information). In Section 6 we further discuss this dual view.

5. Related Work

In the framework of learning with labeled and unlabeled data (see, for example, Seeger, 2002),
a fundamental issue is the link between the marginal distribution P(x) over instances x and the
conditional P(y|x) for the label y (Szummer and Jaakkola, 2003). From this point of view our
approach assumes that the label, y, is a feature in itself.
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In the context of supervised learning, Ando and Zhang (2005) proposed an approach that re-
gards features in the input data as labels in order to improve prediction in the target supervised
problem. Their idea is to create many auxiliary problems that are related to the target supervised
problem. They do this by masking some features in the input data, that is, making them unobserved
features, and training classifiers to predict these unobserved features from the observed features.
Then they transfer the knowledge acquired from these related classification tasks to the target su-
pervised problem. A similar idea was used by Caruana and de Sa (1997) in supervised training of a
neural net. The authors used some features as extra outputs of the neural net, rather than inputs, and
show empirically that this can improve the classifier performance. In our framework, this could be
interpreted as follows. We regard the label as a feature, and hence we can learn from prediction of
these features to the prediction of the label. Loosely speaking, if we successfully predict many such
features by the classifier, we expect to generalize better to the target feature (label).

The idea of an information tradeoff between complexity and information on target variables is
similar to the idea of the information bottleneck (Tishby et al., 1999). But unlike the bottleneck
method, here we are trying to maximize information on unobserved variables, using a finite sample.

In a recent paper, von Luxburg and Ben-David (2005) discuss the goal of clustering in two very
different cases. The first is when we have complete knowledge about our data generating process,
and the second is how to approximate an optimal clustering when we have incomplete knowledge
about our data. In most current analyses of clustering methods, incomplete knowledge refers to
getting a finite sample of instances rather than the distribution itself. Then, we can define the desired
properties of a good clustering. An example of such a property is the stability of the clustering
with respect to the sampling process, for example, the clusters do not change significantly if we
add some data points to our sample. In our framework, even if the distribution of the instances is
completely known, we assume that there are other features that we might not be aware of at the time
of clustering. Another way to view this is that in our framework, incomplete knowledge refers to the
existence of unobserved features rather than to an unknown distribution of the observed features.
From this point of view, further research could concentrate on analyzing the feature stability of a
clustering algorithm, for example, stability with respect to the adding of new features.

Another interesting work which addresses the difficulty of defining good clustering was pre-
sented by Kleinberg (2002). In this work the author states the desired properties a clustering algo-
rithm should satisfy, such as scale invariances and richness of possible clusterings. Then he proves
that it is impossible to construct a clustering that satisfies all the required properties. In his work the
clustering depends on pairwise distances between data points. In our work, however, the analysis
is feature oriented. We are interested in the information (or distance) per feature. Hence, our basic
assumptions and analysis are very different.

The idea of generalization to unobserved features by clustering was first presented in a short
version of this paper (Krupka and Tishby, 2005).

6. Discussion

We introduce a new learning paradigm: clustering based on observed features that generalizes to
unobserved features. Our main results include two theorems that tell us how, without knowing the
value of the unobserved features, one can estimate and maximize information between the clus-
ters and the unobserved features. Using this framework we analyze feature generalization of the
Maximum Likelihood Multinomial Mixture Model (Figure 2). The multinomial mixture model is a
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generative probabilistic model which approximates the probability distribution of the observed data
(x), from a finite sample of instances. Our model does not assume any distribution that generated the
instances, but instead assumes that the set of observed features is simply a random subset of features.
Then, using statistical arguments we show that we can cluster by the unobserved features. Despite
the very different assumptions of these models, we show that clustering by multinomial mixture
models is nearly optimal in terms of maximizing information on unobserved features. However, to
analyze and quantify this generalization our framework is required.

This dual view on the multinomial mixture model can also be applied to two different ap-
proaches that may explain our “natural clustering” of objects in the world (e.g., assigning object
names in language). Let’s return to our clustering of bananas and oranges (Example 3). From the
generative point of view, we find a model with the cluster labels bananas and oranges as values of a
hidden variable that created the distribution. This means that we have a mixture of two distributions,
each related to one object type that is assigned to a different cluster. Since we have two types of
objects (distributions), we expect that their unobserved features will correspond to these two types
as well. However, the generative model does not quantify this expectation. In our framework, we
view fruits in the world, and cluster them based on some kind of lobMax algorithm; that is, we
find a representation (clustering) that contains significant information on as many observed features
as possible, while still remaining simple. From our generalization theorem (Theorem 3), such a
representation is expected to contain information on other rarely viewed salient features as well.
Moreover, we expect this unobserved information to be similar to the information we have on the
clustering on the observed features.

In addition to information-based clustering, we present similar generalization theorems for
distance-based clustering, and use these to analyze generalization properties of k-means. Under
some assumptions, k-means is also known as a solution for the maximum likelihood Gaussian mix-
ture model. Analogous to what we show for information based clustering and multinomial mixture
models, we show that this optimization goal of k-means is also optimal in terms of generalization to
unobserved features.

The key assumption that enables us to prove these theorems is the random independent selection
of the observed features. Note that a contrary assumption to random selection would be that given
two instances {x[1],x[2]}, there is a correlation between the distance of a feature |x4[1] —xq[2]| and
the probability of observing this feature; for example, the probability of observing features that
are similar is higher. If no such correlation exists, then the selection can be considered random
in our context. Hence, we believe that in practice the random selection assumption is reasonable.
However, in many cases, the assumption of complete independence in the selection of features is
less natural. Therefore, we believe that further research on the effects of dependence in selection is
required.

Another interpretation of the generalization theorem, without using the random independence
assumption, might be combinatorial. The difference between the observed and unobserved informa-
tion is large only for a small portion of all possible partitions into observed and unobserved features.
This means that almost any arbitrary partition generalizes well.

The value of clustering which preserves information on unobserved features is that it enables us
to learn new—previously unobserved—attributes from a small number of examples. Suppose that
after clustering fruits based on their observed features (Example 3), we eat a chinaberry® and thus,

8. Chinaberries are the fruits of the Melia azedarach tree, and are poisonous.

358



GENERALIZATION TO UNOBSERVED FEATURES

we “observe” (by getting sick), the previously unobserved attribute of toxicity. Assuming that in
each cluster, all fruits have similar unobserved attributes, we can conclude that all the fruits in the
same cluster, that is, all chinaberries are likely to be poisonous.

Clustering is often used in scientific research, when collecting measurements on objects such
as stars or neurons. In general, the quality of a theory in science is measured by its predictive
power. Therefore, a reasonable measure of the quality of clustering, as used in scientific research,
is its ability to predict unobserved features, or measurements. This is different from clustering that
merely describes the observed measurements, and supports the rationale for defining the quality of
clustering by its predictivity on unobserved features.

6.1 Further Research

Our clustering maximizes expected information on randomly selected features. Although on aver-
age this information may be high, there might be features the clustering has no information about.
To address this problem, we could create more than one clustering, in such a way that each cluster-
ing contains information on other features. To achieve this, we want each new clustering to discover
new information, that is, not to be redundant with previously created clusterings. This can be done
based on the works of Gondek and Hofmann (2004) and Chechik and Tishby (2002) in the context of
the Information Bottleneck. Another alternative is to represent each instance by a low dimensional
vector, and then use this vector to predict unobserved features. Blitzer et al. (2005) represented
words in a model called Distributed Binary Latent Variables, and used this representation to predict
another word. Adopting this idea in our context, we can replace cluster labels by a vector of binary
variables assigned to each instance, where each such variable encodes an independent aspect of the
instance. Generalization in this case refers to the ability to predict unobserved features from these
latent variables.

Our framework can also be extended beyond clustering by formulating a general question. Given
the (empirical) marginal distribution of a random subset of features P(Xg,, . . ., Xq,), What can we say
about the distribution of the full set P(Xy,...,X.)? In this paper we proposed a clustering based on
a subset of features, and analyzed the information that the clustering yielded on features outside this
subset. It would be useful to find more sophisticated representations than clustering, and analyze
other theoretical aspects of the relationship between the distribution of the subset to that of the
full set. This type of theoretical analysis can help in deriving prediction algorithms, where there
are many instances for some of the variables (features), but other variables are rarely viewed, as in
collaborative filtering. By relating the distribution of some variables to the distribution of others, we
can also analyze and improve the estimation of p(x) from a finite sample, even without assuming
the existence of unobserved features. In a different context, Han (1978) analyzed the relationship
between the average (per variable) entropy of random subsets of variables. He showed that the
average entropy of a random subset of variables monotonically decreases with the size of the subset
(see also Cover and Thomas, 1991). These results were developed in the context of information
theory and compression, but may be applicable to learning theory as well.

In this paper, we assumed that we do not have additional prior information on the features.
In practice, we often do have such information. For instance, in the movie ratings data set, we
have some knowledge about each of the movies (genre, actors, year, etc.). This knowledge about
the features can be regarded as meta-features. A possible extension of our framework is to use
this knowledge to improve and analyze generalization as a function of the meta-features of the
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unobserved features. The idea of learning along the features axis by using meta-features was im-
plemented by Krupka et al. (submitted) for feature selection. They propose a method for learning
to select features based on the meta-features. Using the meta-features we can learn what types of
features are good, and predict the quality of unobserved features. They show that this is useful for
feature selection out of a huge set of potentially extracted features; that is, features that are functions
of the input variables. In this case all features can be observed, but in order to measure their quality
we must calculate them for all instances, which might be computationally intractable. By predicting
feature quality without calculating it, we can focus the search for good features on a small subset
of the features. In a recent paper (Krupka and Tishby, 2007), we propose a method for learning the
weights of a linear classifier based on meta-features. The idea is to learn weights as a function of the
meta-features just as we learn labels as a function of features. Then, we can learn from feature to
feature and not only from instance to instance. As shown empirically, this can significantly improve
classification performance in the standard supervised learning setting.

In this work we focused on a new feature generalization analysis. Another research direction is
to combine standard instance generalization with feature generalization. In problems like collabora-
tive filtering or gene expression, there is an inherent symmetry between features and instances that
have been used before in various ways (see, for example, Ungar and Foster, 1998). In the context
of supervised learning, a recent work by Globerson and Roweis (2006) addresses the issue of han-
dling differences in the set of observed features between training and test time. However, a general
framework for generalization to both unobserved features and unobserved instances is still lacking.
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Appendix A. Proofs
This appendix contains the proofs of Theorem 3 and Theorem 11. It also contains additional tech-
nical details that were used in the proof of Theorem 7.

A.1 Proof of Theorem 3

We start by introducing the following lemma, which is required for the proof of Theorem 3.

Lemma 13 Consider a function g of two independent discrete random variables (U,V ). We assume
that g(u,v) <c, Vu,v, where c is some constant. If Pr{g(U,V) > &} < g, then

c
€

Pr{Eug(uV)) 26} < =28, Ve>E

Proof of lemma 13: Let 1 be the set of values of V, such that for every v’ € 11, E, (g(y,V')) >
€. For every such v/ we get,

g <Eu(g(u,v)) <cPr{gU,v) >EV =V} +EPr{gU,V) <&V =V}.
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(VH

Hence, Pr{g(U,V) > €|V =V} > &£, From the complete probability formula,

mz

d0>Pr{gU,\V)>¢€} = y-Pr{gU,Vv) > EV =V}P(v)
> EESvivey P(V)
= E£Prv{Eu(g(u,V)) >¢}.
Lemma 13 follows directly from the last inequality. O

We first provide an outline of the proof of Theorem 3 and then provide a detailed proof.

Theorem 3—Proof outline: For the given m instances and any clustering t, draw uniformly and
independently m” instances (repeats allowed). For any feature index g, we can estimate | (t(Z);xq[Z])
from the empirical distribution of (t,xq) over the m’ instances. This empirical distribution is
p(t(Z'),xq[Z']) where Z’ is a random variable denoting the index of instance chosen uniformly
from the m’ instances (defined formally below). The proof is built up from the following up-
per bounds Which are independent of m, but depend on the choice of m’. The first bound is on
E{|1(t( —1(t(Z');xq[2"])|}, where q is fixed and the expectation is over random se-
lection of the m mstances From this bound we derive an upper bound on |l — (Iob)| and
[lun — E(lun)|, where iop, Iy are the estimated values of lop, Iyn based on the subset of m’ in-
stances, that is, the empirical distribution. The last required bound is on the probability that
sUPgm - |E (fob) —E (Iun) | > €1, for any €1 > 0. This bound is obtained from Lemmas 2 and
13. The choice of m’ is independent of m. Its value should be large enough for the estimations iop,
lun to be accurate, but not too large, so as to limit the number of possible clusterings over the m’
instances.

Note that we do not assume the m instances are drawn from a distribution. The m’ instances are
drawn from the empirical distribution over the m instances. O

Theorem 3—Detailed proof: Let T= (l1,...,l ) be indices of m’ instances, where each index
is selected randomly, uniformly and independently from {1,...,m}. Let random variable Z’ denote
a number chosen uniformly at random from {1,...,m’}. For any feature index g, we can estimate
| (t(Z);xq[Z]) from I (t(lz/); Xq[lz’]) as follows. The maximum likelihood estimation of entropy given
a discrete empirical distribution (p1,..., pn), is defined as Hwvie = —ZiN:1 pi log fi. Note that N is
the alphabet size of our discrete distribution. From Paninski (2003) (Proposition 1) the bias between
the empirical and actual entropy H(p) is bounded as follows:

—log <1—|-Nm_/1> < E(QMLE(ﬁ)) —H(p) <0.

where the empirical estimation HuLe is based on m’ instances drawn from the distribution p.
The expectation is over random sampling of these m’ instances. Since |(t(Z);XqZ]) =
—H (t(2),%q[Z]) +H (t(Z)) +H (Xxq(Z)), we can upper bound the bias between the actual and the
empirical estimation of the mutual information as follows:

i N 2D =1 (0l <tog (14550 <2 @

m/
Recall that s is t~he upper boqnd on the alphabet size of xq.
Let lon(t, &, 1) and Iy (t,1) be the estimated values of lon(t, &), lun(t) based on (ly,...,ln), that
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lun(t,T) = Equn {1 (t(12):Xq[l2]) } -
From Equation 6 we obtain,
b (t,8) — Ej (Tob (t.8,1)) |, [lun (t) — Ej (Iun (£.1)) | < ks/m’,

and hence,

1)) = Ej (Iun (£1))] + 2ks/m’ (7)

1) —lun (t,1)]) +2ks/m'".

“ob (taQ) — lun (t) \

IA A

Using Lemma 2 we have an upper bound on the probability that

sup Jion (t.8,1) — lun (£,T)| > €
tim [

over the random selection of features, as a function of m’. However, the upper bound we need is on
the probability that

sup  {Ej(lob (t,8,1)) — Ej (iun (t.1)) } > &1.

tm—]

Note that the expectations E|(fob), E|(fun) are done over a random selection of the subset of m’
instances, for a set of features that is randomly selected once. In order to link these two probabilities,
we use Lemma 13.

From Lemmas 2 and 13 it is easy to show that

PreEp| sup |lon (t,8.1) —lun (tT)] | > &1 gMe‘”ﬁ/(z('ogk)zwm"’gk. (8)
q t:[m]—[K] €1

Lemma 13 is used, where V represents the random selection of features, U represents the random
selection of m’ instances, g(U,V) = SUP¢.j_. i [lob — lunl, ¢ = logk, and € = &; /2. Since

t:[m—[K t:[ml— K]

ET < Sup “Aob (t7 an) - IAUI’I (t7T) ‘) 2 sup ET (‘ IAOb (t7(j7T) - IAUI’\ (th) D ’
and from Equations 7 and 8 we obtain

Pr wp|@aﬂy4mﬂﬂ>&+§$ gigﬁymwwwWHmWK

a | tim—[K m &

By selecting €1 = €/2, m" = 4ks/¢, we obtain Theorem 3. O

Note that the selection of m’ depends on s (maximum alphabet size of the features). This reflects
the fact that in order to accurately estimate | (t(Z);Xq[Z]), we need a number of instances, m’, which
is much larger than the product of k and the alphabet size of .
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A.2 Information Generalization for Soft Clustering

In Section 2 we assumed that we are dealing with hard clustering. Here we show that the general-
ization theorem (Theorem 3) is also applicable to soft clustering. Nevertheless, we also show that
soft clustering is not required, since the maximum value of I, can be achieved by hard clustering.
Hence, although lobMax, as appears in Definition 5, is a hard clustering algorithm, it also achieves
maximum lg, (and nearly maximum I,) of all possible soft clusterings.

Theorem 3 is applicable to soft clustering from the following arguments. In terms of the distri-
butions P (t(Z),xq(Z)), assigning a soft clustering to an instance can be approximated by a second
empirical distribution, P, achieved by duplicating each of the instances, and then using hard clus-
tering. Consider, for example, a case where we create a new set of instances by duplicating each
of the original instances by 100 identical instances. Using hard clustering on the x 100 larger set
of instances, can approximate any soft clustering of the original set with quantization of P (T |X) in
steps of 1/100. Obviously, for any € > 0 we can create P that satisfies max }P — I5\ <E.

Now we show that for any soft clustering of an instance, we can find a hard clustering of the
same instance that has the same or a higher value of I, (without changing the cluster identity of
other instances). This is enough to show that soft clustering is not required to achieve the maximum
value of Iy, since any soft clustering can be replaced by hard clustering instance by instance. Let
Py (T [Xg, - - -, Xq,) define the distribution of any soft clustering. It can be written as the weighted
sum of k distributions as follows

k . k
F%UVw~wMJ=§3PHTVW~wMJaOékﬁﬂyZN=1~
1= 1=

where I5ij is created by keeping the same soft clustering of instances {1,...,j—1,j+1,...,m},
and replacing the soft clustering of the jth instance by a hard clustering t(j) = i. Since I(T;Xq) isa
convex function of P(T |Xq) for a fixed P(Xq) for any q (Cover and Thomas, 1991), we get

k
|P}\ (T;Xq) < -Z)\illﬁij (T;Xq).

Taking the sum over all observed features (g1, ...0n), we get
k
ZMUM@§ZNZ@UM@
q =1 T

and hence at least one of the distributions I51j,...,I5kj has the same or higher I, then Py. In other
words, we can replace the soft clustering of any instance j by a hard clustering without decreasing

Iob.

A.3 Maximum Likelihood Mixture Model and lobMax

In the proof of Theorem 7 we claimed that maximizing the likelihood of observed variables is equiv-
alent to maximizing _; 1(T;X;) — I (T;Y). In this section we show this based on the work of Eli-
dan and Friedman (2003). For the purpose of better readability in the context of their paper, we use
the same notations as in their paper, and review them briefly here. LetY be a variable that denotes
the instance identity, that is, Y [i] = i where i € {1,...,m}. Let Q(Y, X) be the empirical distribution
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of the features X in the instances, augmented by the distribution of Y. Let P (X, T ) be the maximum
likelihood mixture model of the joint distribution Q(X), that is, P(X,T) =P (T ) [;Pr(x; [T ).

From Propositions 4.1, 4.3 in Elidan and Friedman (2003), finding local maxima of the likeli-
hood function is equivalent to minimizing the following Lagrangian

Lem = 1o(T;Y) — (Eq[logP(X,T)] — Eq[log Q(T)]),

as a function of Q(T|Y ) and P(X, T). In the stationary point of the EM-algorithm (see Propositions
4.4 and 4.5 in Elidan and Friedman, 2003), Q(x;,T) = P(xj,T). Minimizing Lgym is equivalent to
minimizing | (T;Y)— > I (T;X;) as shown below:

Lem = lo(TiY) - (EqllogP(X,T)] - Eq[logQ(T)])
= IQ(T;Y)—gQ(X,T)Iog [P(T) HP(xj|T)] —H(T)
= i
P(vaT)

= IQ(T;Y)+H(T)—ZZQ(xj,T)Iog P(T) —H(T)
11X

= 1(TY)= 3 5 Q0 T)log g 5t + 5 5 Q. T)logP (1)
11X

J ',Xj
= lo(T:Y) =3 (T Xj)+ Y H(X)).
J J

Since ¥ jH (Xj) is independent of Q(T[Y), and P(T,Y) = Q(T,Y) minimizing Lgw is equivalent
to maximizing

3 (TX) = 1(T:Y).
J

A.4 Proof of Theorem 11

Before proving Theorem 11, we write generalized definitions of Doy, Dyn and prove a generalization
bound for these generalized definitions (Theorem 14). Then we show that Theorem 11 is a special
case of Theorem 14.

The quality of the clustering with respect to a single variable, Xg, is defined by a (weighted) av-
erage distance of all pairs of instances within the same cluster (large distance means lower quality).
This measure is denoted by Dq which is defined by

k
D {Cr.C} = = Z|cl| S o)
r= rjlec

Using these definitions, we define a generalized observed intra-cluster variable, denoted by f)ob, as
the average of Dq over the observed features within the cluster, that is,

~ 10
DOb{Cla "'7Ck} = H Zqui {Cl,...,Ck} :
i
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When f(a,b) = 1 (a—b)?, we get

k n 2
DM%“%::$Z§ZQM—QIMQ
r=1jeC i= Y=ol
1 N k 1 - )
N %i;r;ﬂcrhe 2, alil=xqll]

Cr

:$éié%éymmm>

1 n
ni;

= f)ob{Cl,...,Ck}, 9)

which means that Dgp is a special case of Dop.
Similarly we define the generalized unobserved intra-cluster variance, denoted by Dy, as fol-
lows:

Dun {Clv "'aCk} = EQNQ{DQ{C].?"'ka}} :
Again, when f(a,b) = 1 (a—b)?, we get
Dun{Ci,...,Ck} = Dun{Cy,...,Cx} . (10)

Theorem 14 With the above definitions, for every function, f satisfies Equations 2, 3 and 4 (see
Section 3) and for every € > 0,

- o 2k c
Pr sup |Dab{C1,....,Ck} = Dun{C1,....Ck}| > € p < L gne?/2c+log g
{a1,-.,0n} a({Cy > Oc

where a is defined in Definition 10.
Before proving Theorem 14, we introduce the following lemma that is required for the proof.

Lemma 15 Let {Z3,...,Zs} be a set of jointly S distributed random binary variables, where z; €
{0,1}. If Pr(zi = 1) < dfor every i then for any N, > 1

S S
Pr Zi > Np p < —0.
i; | Np

Lemma 15 follows directly from Markov’s inequality.

The proof of Theorem 14 (given below) is based on the observation that D, and Dy, are the
weighted average of distance functions over a subset of the pairs of instances. This subset includes
only pairs that are within the same cluster. In other words, the calculated inter-cluster variances of
a clustering is based on the weighted average of %er(:l ICr|(|Cr| — 1) pairs out of the sm(m — 1)
pairs of instances. We define “bad pairs™ as pairs of instances with a large difference between the
observed and unobserved distances. We use Hoeffding’s inequality and Lemma 15 to bound the
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probability that we have a large number of “bad pairs”. Then we show that if the number of “bad
pairs” is small, all clusterings are “good”, that is, |Dob — Dun| < €.
Proof of Theorem 14

For each pair of instances j,! (I > j) we define a random variable dj| as the difference between
the average observed distance and the expected distance,

dj = ﬁ_if(xq[ﬂaxq —Eq{f (xqil:xq[1]) }|-

We also define a binary random variable Z; (I > j) by

_ 1 ifdj|>§
= Y0 otherwise

where £ is a positive constant. In other words, zj is one for “bad” pairs, that is, pairs that
have a large difference between the average observed distance and the expected distance. From
Hoeffding’s inequality, B
Pro (zj=1) <9, 11
{er--aQH}( J ) )
where
& = 20 2/, (12)

We have m(m 1) of these random binary variables. Let Npag be the number of “bad” pairs, that
is, Nbad = Y j 1> Zji- First we calculate an upper bound on \Dob — Dun\ as a function of Npag, and
later we prove an upper bound on the probability of large Npag.

By definition of Dob,Dumd ji and the properties of f (Equations 3 and 4) we can bound the
difference between Dy, and Dy, (for any clustering) as follows

|Dob{C1,.-.Ck} —Dun{Cy,...,Ck}|

1 0 k 1 k 1 .

O S PAIINIE S L
k1

r;@j,le;bjdjl'

By defining &4 as the following function of the clustering

(oG =25 20 Y o
d 1y---50k - erl ’Cr|j,|€ > jls

<

3~

we have
IDob{C1,-.-,Ck} = Dun{C1,...,C«}| < &q. (13)

Recall that r; is the number of instances in cluster t. Now we calculate an upper bound on €4 as a
function of € and Npag. The total number of pairs in the rth cluster is 3 |C;| (|C| —1). We have Npag
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pairs with a difference above € (but not more than c, since f is bounded). The error of each of the
other pairs is upper bounded by €. Hence we get

2 K N
& < — (E+1zj(c—§))

m E; H€Q|>J
2 - Nbad(c £)
— Cr| (ICr|

= m< Z]Cr Cel (Gl —1)&+ “min, |Cr|
2 ~  NpadC

< —| = C - .

= m<2r;’ rIEJrmlnr|Cr\>

Note that 3 |C;| = m (the sum of the size of all clusters is m). Hence,

~ 2Nbad
£ —————C. 14
d mmin; |C; | (14)
Let Ny be defined as follows
Np — mmlr;rC|Cr|s (15)
If Npag < Np then g4 < 2€ (from Equations 14 and 15). Hence,
{sd > 28} = {Nbad > Np}. (16)
{ql,....q ql,...,q
From Lemma 15 and Equation 11 for any Np > 1
mm-1)x _ m*x
Npag > Npt < ——20 < — 17
{ql,u.,q { bed = NoJ < 2Np o< 2Nb6 (17
Combining Equations 15, 16, 17 and the definition of 5 (Equation 12) we get
~ 2mc 52,2
gq > 28} < d= — _e €7/, 18
{da,-.. qn}{ a> 28} < min, \Cr\s min, |C,| € (18)

By selecting € = €/2 and using Equation 13 and 18 we get

D D m —ne2/2c%+log &
Pr su Dob{C1,-.-,Ck} = Dun{C1,....,Cu}| > € p <4— g "/ Hog
{ql,...,qn}{ ({c 3 )>ac‘ o {Cs } =BG }‘ } min, |C;|

(19)

Using the definition of a we have m/min; |C| < k/a. Together with Equation 19 we get Theorem
14.
[

Now we are ready to prove Theorem 11 by showing it is a special case of Theorem 14.
Proof of Theorem 11
Let f(a,b) = (a b)2. In this case f satisfies Equation 2, 3 and 4 where ¢ = 2R? (since
0 < f(Xq[j],Xq[l]) < < 2RZ for all g, j,1). In addition, Doy = Dop @and Dy = Dyn (Equations 9 and 10).
Therefore, Theorem 11 is a special case of Theorem 14.
[ |
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Appendix B. Notation Table

The following table summaries the notation and definitions used in the paper for quick reference.

| Notation | Short Description \
m Number of instances
L Number of features (both observed and unobserved)
{X1,..., X} Random variables (features)
n Number of observed features
d=(q1,-.-,0n) | Indices of observed features
D Probability distribution of selecting features
{x[1],...,x[m]} | Instances (each instance is a vector of L elements,
where n are observed)
XqlJ] The qgth feature of the jth instance
Xqi L] The ith observed feature of the jth instance
k Number of clusters
t:[m] — [K] Function that maps instances to clusters
{Cy4,...,Ck} Clusters (C; is the set of instances in the rth cluster)
C: | Size of rth cluster
T A variable that represents the cluster label
z A random variable taking values uniformly from {1,2,...,m}
(Random selection of instance index)
S Upper bound on the number of values a discrete feature can have
lob Average observed information (Definition 1)
lun Expected unobserved information (Definition 1)
onk Maximum possible value of I, for k clusters (Definition 4)
obk Value of oy for clustering with maximum Iy, (Definition 4)
lunk Value of I, for clustering that achieves Iy k (Definition 5)
lob k Maximum possible value of Iy, for k clusters (Definition 5)
f(e,0) Distance function between two feature values
c Constant - upper bound on the distance function
Dob{Ci,...,Ck} | Observed intra-cluster variance (Definition 8)
Dun{Ci,...,Ck} | Expected unobserved intra-cluster variance (Definition 9)
Doh Minimum possible intra-cluster variance (Theorem 12)
o ({Cy,...,Cx}) | Ratio between smallest to average cluster size (Definition 10)
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