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Abstract
This paper presents a new method of model selection for regression problems using the modulus
of continuity. For this purpose, we suggest the prediction risk bounds of regression models using
the modulus of continuity which can be interpreted as the complexity of functions. We also present
the model selection criterion referred to as the modulus of continuity information criterion (MCIC)
which is derived from the suggested prediction risk bounds. The suggested MCIC provides a risk
estimate using the modulus of continuity for a trained regression model (or an estimation function)
while other model selection criteria such as the AIC and BIC use structural information such as the
number of training parameters. As a result, the suggested MCIC is able to discriminate the perfor-
mances of trained regression models, even with the same structure of training models. To show the
effectiveness of the proposed method, the simulation for function approximation using the multi-
layer perceptrons (MLPs) was conducted. Through the simulation for function approximation, it
was demonstrated that the suggested MCIC provides a good selection tool for nonlinear regression
models, even with the limited size of data.
Keywords: regression models, multilayer perceptrons, model selection, information criteria, mod-
ulus of continuity

1. Introduction

The task of learning from data is to minimize the expected risk (or generalization error) of a re-
gression model (or an estimation function) under the constraint of the absence of a priori model of
data generation and with the limited size of data. For this learning task, it is necessary to consider
nonparametric regression models such as artificial neural networks, as the functional form of the
target function is usually unknown. Furthermore, a mechanism to minimize the expected risk from
the limited size of data is required. In this context, the model selection is an important issue in
the selection of a reasonable network size in order to minimize the expected risk. However, the
proper network size (or number of parameters) of a regression model is difficult to choose, as it is
possible to obtain the empirical risk only in the case of the limited size of data while the expected
risk of a regression model should be measured for the entire data distribution. For the expected risk
of a regression model, the loss function of the error square is usually measured, and the expecta-
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tion of the loss function for the entire data distribution is considered. This expected risk can be
decomposed by the bias and variance terms of the regression models. If the number of parameters
is increased, the bias term is decreased while the variance term is increased, and the opposite also
applies. If the number of parameters is exceedingly small and the performance is thus not optimal
due to a large bias term, a situation known as under-fitting of the regression models arises. If the
number of parameters is especially large and the performance is thus not optimal due to a large
variance term, over-fitting of the regression models arises. Hence, a trade-off exists between the
under-fitting and over-fitting of regression models. Here, an important issue is measuring the model
complexity associated with the variance term. Related to this issue, the statistical methods of model
selection use a penalty term for the measurement of model complexity. Well known criteria using
this penalty term are the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian informa-
tion criterion (BIC) (Schwartz, 1978), the generalized cross-validation (GCV) (Wahba et al., 1979),
the minimum description length (MDL) (Rissanen, 1986; Barron et al., 1998), and the risk inflation
criterion (RIC) (Foster and George, 1994). These methods can be well fitted with linear regression
models when enough samples are available. However, they suffer the difficulty of selecting the op-
timal structure of the estimation networks in the case of nonlinear regression models and/or a small
number of samples. For more general forms of regression models, Vapnik (1998) proposed a model
selection method based on the structural risk minimization (SRM) principle. One of the charac-
teristics of this method is that the model complexity is described by structural information such as
the VC dimension of the hypothesis space associated with estimation networks, which indicates the
number of samples that can be shattered, in other words, which can be completely classified by the
given structure of estimation networks. This method can be applied to nonlinear models and also
regression models trained for a small number of samples. For this problem, Chapelle et al. (2002),
Cherkassky (1999), and Cherkassky and Ma (2003) showed that the SRM-based model selection
is able to outperform other statistical methods such as AIC or BIC in regression problems with the
limited size of data. On the other hand, these methods require the actual VC dimension of the hy-
pothesis space associated with the estimation functions, which is usually not easy to determine in
the case of nonlinear regression models. In this context, we consider the bounds on the expected
risks using the modulus of continuity representing a measure of the continuity for the given function.
Lorentz (1986) applied the modulus of continuity to function approximation theories. In the pro-
posed method, this measure is applied to determine the bounds on the prediction risk. To be exact,
it seeks the expected risk of an estimation function when predicting new observations. To describe
these bounds, the modulus of continuity is analyzed for both the target and estimation functions, and
the model selection criterion referred to as the modulus of continuity information criterion (MCIC)
is derived from the prediction risk bounds in order to select the optimal structure of regression mod-
els. One of the characteristics in the suggested MCIC is that it can be estimated directly from the
given samples and a trained estimation function. Through the simulation for function approximation
using multi-layer perceptrons (MLPs), it is demonstrated that the suggested MCIC is effective for
nonlinear model selection problems, even with the limited size of data.

This paper is organized as follows: in Section 2, we introduce the model selection criteria based
on statistics such as the AIC and BIC, the model selection criteria based on Shannon’s information
theory such as the MDL, and the VC dimension based criteria. Section 3 describes the suggested
model selection method referred to as the MCIC method starting from the definition of the modulus
of continuity for continuous functions. We also describe how we can estimate the modulus of
continuity for the regression models with different type of kernel functions. Section 4 describes
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the simulation results for regression problems for various benchmark data using model selection
methods including the suggested MCIC method. Finally, Section 5 presents the conclusion.

2. Model Selection Criteria for Regression Models

For the selection of regression models, the proper criteria for the decision methods are required.
Here, various criteria used for the selection of regression models are described. First, let us consider
a regression problem of estimating a continuous function f in C(X ,R) where X ⊂ R

m (m > 1) and
C(X ,R) is a class of continuous functions. The observed output y for x ∈ X can be represented by

y(x) = f (x)+ ε, (1)

where f (x) represents the target function and ε represents random noise with a mean of zero and a
variance of σ2

ε . Here, for regression problems, a data set D = {(xi,yi)| i = 1, · · · ,N}, where (xi,yi)
represents the ith pair of input and output samples, is considered. It is assumed that these pairs of
input and output samples are randomly generated according to the distribution P(x), x ∈ X ; that is,

yi = f (xi)+ εi, xi ∈ X , (2)

where εi, i = 1, · · · ,N represent independent and identically distributed (i.i.d.) random variables
having the same distribution with ε. For these samples, our goal of learning is to construct an
estimation function fn(x) ∈ Fn (the function space with n parameters) that minimizes the expected
risk

R( fn) =
Z

X×R

L(y, fn(x))dP(x,y) (3)

with respect to the number of parameters n, where L(y, fn(x)) is a given loss functional, usually the
square loss function L(y, fn(x)) = (y− fn(x))2 for regression problems. In general, an estimation
function fn can be constructed as a linear combination of kernel functions; that is,

fn(x) =
n

∑
k=1

wkφk(x), (4)

where wk and φk represent the kth weight value and kernel function, respectively.
To minimize the expected risk (3), it is necessary to identify the distribution P(x,y); however,

this is usually unknown. Rather, we usually find fn by minimizing the empirical risk Remp( fn)
evaluated by the mean of loss function values for the given samples; that is,

Remp( fn) =
1
N

N

∑
i=1

L(yi, fn(xi)). (5)

Here, if the number of parameters n is increased, the empirical risk of (5) is decreased so that the bias
of the estimation function is decreased while the variance of the estimation function is increased, or
vice versa. Therefore, a reasonable trade-off must be made between the bias and variance in order
to minimize the expected risk. One way of solving this problem is to estimate the expected risks
for the given parameters of regression models. In statistical regression models, a popular criterion
is the Akaike information criterion (AIC), in which an estimate of the expected risk is given by

AIC( fn) = Remp( fn)+2 · n
N

σ2
ε (6)
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under the assumption that the noise term ε has a normal distribution. Here, the noise term σ̂2
ε can be

estimated by

σ̂2
ε =

RSS
N −DoF( fn)

, (7)

where RSS represents the sum of the square error over the training samples; that is, RSS = NRemp( fn),
and DoF( fn) represents the degree of freedom of an estimation function fn. This criterion is derived
in the sense of the maximum-likelihood estimate of the regression parameters. As an alternative to
this criterion, the Bayesian approach to model selection referred to as the Bayesian information
criterion (BIC) can be considered:

BIC( fn) = Remp( fn)+ logN · n
N

σ2
ε . (8)

Compared to the AIC, the BIC treats complex models more heavily, giving preference to simpler
models, when N > e2, in which e represents the base of natural logarithms. Here, it is important to
note that in both criteria, prior knowledge of the variance of noise term σ2

ε is needed or estimation
of this term using (7) is required. These criteria are good for linear regression models with a large
number of samples, as the AIC and BIC formulas hold asymptotically as the number of samples N
goes to infinity.

As an alternative to the AIC or BIC, a frequently used model selection criterion is the minimum
description length (MDL) criterion. In this method, for the regression model fn and the data D, the
description length l( fn,D) is described by

l( fn,D) = l(D| fn)+ l( fn),

where l( fn) represents the length of the regression model and l(D| fn) represents the length of the
data given the regression model. According to Shannon’s information theory, the description length
in number of bits is then described by

l( fn,D) = − log2 p(D| fn)− log2 p( fn),

where p( fn|D) represents the probability of the output data given the regression model and p( fn)
represents a priori model probability. For a priori model probability, Hinton and Camp (1993) used a
zero-mean Gaussian distribution for the neural network parameters. With the additional assumption
that the errors of the regression model are i.i.d. with a normal distribution, the description length of
the regression model (Cohen and Intrator, 2004) can be described by

MDL( fn) = logRemp( fn)+
n
N

(
log(2π)+ log(

1
n

n

∑
k=1

w2
k)+1

)
. (9)

This formula for the MDL shows that the description length of the regression model is composed of
the empirical risk and the complexity term, which is mainly dependent upon the ratio of the number
of parameters to the number of samples and the mean square of weight values. Here, minimizing
the description length is equivalent to maximizing the posterior probability of the regression model.
Hence the MDL method can be considered as another interpretation of the BIC method. In this
context, a regression model that minimizes the description length should be chosen.

A good measure of model complexity in nonlinear models is the VC dimension (Vapnik, 1998)
of the hypothesis space associated with estimation networks. The VC dimension can represent the
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capacity (or complexity) of the estimation network in terms of the number of samples; that is, the
maximum number of samples which can be shattered (classified in every possible way) by the es-
timation network. As the hypothesis space increases, the empirical risk can be decreased but the
confidence interval associated with the complexity of the estimation network then increases. From
this point of view, it is necessary to make a proper trade-off between the empirical risk and the
confidence interval. The structural risk minimization (SRM) principle considers both the empirical
risk and the complexity of the regression model to decide the optimal structure of the regression
model. In this approach, for the VC dimension hn measured for the hypothesis space Fn of re-
gression models and the confidence parameter δ (a constant between 0 and 1), the expected risk
satisfies the following inequality with a probability of at least 1− δ (Vapnik, 1998; Cherkassky,
1999; Cherkassky and Ma, 2003):

R( fn) 6 Remp( fn)

(
1− c

√
hn(1+ ln(N/hn))− lnδ

N

)−1

+

, (10)

where c represents a constant dependent on the norm and tails of the loss function distribution and
u+ = max{u,0}.

If the basis functions {φ1(x), · · · ,φn(x)} are orthogonal with respect to the probability measure
P(x), the form of (10) can be described in a way that is easier to calculate. For the experimental set
up, Chapelle et al. (2002) suggested the following bound with the confidence parameter δ = 0.1:

R( fn) 6 Remp( fn)TSEB(n,N), (11)

where

TSEB(n, l) =
1+n/(NK)

1− (n/N)
and

K =

(
1−
√

n(1+ ln(2N/n))+4
N

)

+

.

These risk estimates of (10) and (11) were successfully applied to the model selection of regression
problems with the limited size of data. In these risk estimates, the VC dimension of regression
models should be estimated. For the case of nonlinear regression models such as artificial neural
networks, the bounds on VC dimensions (Karpinski and Macintyre, 1995; Sakurai, 1995) can be
determined. However, in general, it is difficult to estimate the VC dimension of nonlinear regression
models accurately.

In this work, we consider a useful method for the selection of nonlinear regression models with
the limited size of data. For this problem, the AIC or BIC method may not be effective in view of the
fact that the number of samples may not be large enough to apply the AIC or BIC method. Moreover,
an estimation of the VC dimension of nonlinear regression models is generally not straightforward.
In this context, we consider to use the modulus of continuity representing a measure of continuity
for the given function. In the proposed method, this measure is applied to determine the bounds
on the prediction risk; that is, the expected risk of the estimation function when predicting new
observations. From this result, a model selection criterion referred to as the modulus of continuity
information criterion (MCIC) is suggested and it is applied to the selection of nonlinear regression
models. The backgrounds and theories related to the suggested method are described in the next
section.
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3. Model Selection Criteria Based on the Modulus of Continuity

For the description of the bounds on expected risks, the modulus of continuity defined for continuous
functions is used. In this section, starting from the definition of the modulus of continuity, the
bounds on expected risks are described and the model selection criterion referred to as the MCIC
using the described bounds is suggested.

3.1 The Modulus of Continuity for Continuous Functions

The modulus of continuity is a measure of continuity for continuous functions. First, it is assumed
that X is a compact subset of Euclidean space R

m; that is, the set X is bounded and closed in
Euclidean space R

m. Here, let us consider the case of univariate functions; that is, m = 1. Then,
the measure of continuity w( f ,h) of a function f ∈ C(X) can be described by the following form
(Lorentz, 1986):

ω( f ,h) = max
x,x+t∈X ,|t|6h

| f (x+ t)− f (x)|, (12)

where h is a positive constant. This modulus of continuity of f has the following properties:

• ω( f ,h) is continuous at h for each f ,

• ω( f ,h) is positive and increases as h increases, and

• ω( f ,h) is sub-additive; that is, ω( f ,h1 + h2) 6 ω( f ,h1)+ ω( f ,h2) for positive constants h1

and h2.

As a function of f , the modulus of continuity has the following properties of a semi-norm:

ω(a f ,h) 6 |a|ω( f ,h) for a constant a and

ω( f1 + f2,h) 6 ω( f1,h)+ω( f2,h) for f1 and f2 ∈C(X).

One famous example of the modulus of continuity of a function f is that f is defined on A = [a,b]
(b > a) and satisfies a Lipschitz condition with the constant M > 0 and the exponent α (0 < α 6 1),
denoted by LipMα; that is,

| f (a1)− f (a2)| 6 M|a1 −a2|α, a1,a2 ∈ A.

In this case, the modulus of continuity is given by

ω( f ,h) 6 Mhα.

In the multi-dimensional input spaces; that is, X ⊂ R
m (m > 1), there are different definitions of the

modulus of continuity for a continuous function f . The following two definitions of the modulus of
continuity are considered (Lorentz, 1986; Anastassiou and Gal, 2000):
Definition 1 Let m = 2 and X ⊂ R

m.

• Then, the modulus of continuity for f ∈C(X) is defined by

ωA( f ,h) = sup{| f (x1,y1)− f (x2,y2)|}

subject to

{
(x1,y1),(x2,y2) ∈ X and
‖(x1,y1)− (x2,y2)‖2 6 h, for h > 0.
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• Another definition of the modulus of continuity is

ωB( f ,α,β) = sup

{
| f (x1,y)− f (x2,y)|,
| f (x,y1)− f (x,y2)|

}
(13)

subject to

{
(x1,y),(x2,y),(x,y1),(x,y2) ∈ X and
|x1 − x2| 6 α, |y1 − y2| 6 β, for α,β > 0.

For f ∈ C(X) on a compact subset X ⊂ R
m, where m > 2, it is possible to define the modulus of

continuity by induction.
The main difference in these two definitions of the modulus of continuity is the direction. The

first definition measures the variation of all directions at some point x ∈ X while the second is de-
pendent upon axis directions only at some point x ∈ X . The relationship between the two definitions
of the modulus of continuity can be described by the following lemma:
Lemma 1 For f ∈C(X), two definitions of the modulus of continuity, ωA( f ,h) and ωB( f ,h,h) have
the following relationship:

ωB( f ,h,h) 6 ωA( f ,h) 6 2ωB( f ,h,h),

where h represents a positive constant.
For the proof of this lemma, refer to the Appendix A.1. Furthermore, each definition of the

modulus of continuity has the following upper bound:
Lemma 2 Let f ∈ C1(X), the class of continuous functions having continuous 1st derivative on
X, a compact subset of R

m,m > 1. Then, for h > 0, the modulus of continuity wA and wB have the
following upper bounds:

ωA( f ,h) 6 h

√
m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
and

ωB( f ,h, · · · ,h) 6 h max
16i6m

{∥∥∥∥
∂ f
∂xi

∥∥∥∥
∞

}
,

where xi represents the ith coordinate in the point x = (x1,x2, · · · ,xm) ∈ X and ‖·‖∞ represents the
supremum norm (or L∞ norm); that is, for a real- or complex-valued bounded function g(x),

‖g‖∞ = sup{|g(x)| | x ∈ Xg},

where Xg represents the domain of g.
For the proof of this lemma, refer to the Appendix A.2. From this lemma, the second definition

of the modulus of continuity wB( f ,h,h) was chosen because it has a smaller upper bound compared
to the first modulus of continuity. For our convenience, the notation w( f ,h) is used to represent
wB( f ,h, · · · ,h) in the remaining sections of this paper.

The computation of the modulus of continuity requires the value of h. First, let us consider the
following definition of a density of input samples (Tinman, 1963):
Definition 2 The density D of an input sample set {x1, · · · ,xN}⊂ X, a compact subset of R

m,m > 1,
is defined by

D(x1, · · · ,xN) = sup
x∈X

inf
16i6N

d(xi,x),
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where d(xi,x) represents the distance between xi and x ∈ X, which is explicitly any metric function
such that, for every x,y,z ∈ X, the following properties are satisfied: d(x,y) > 0 with the equality
if and only if x = y, d(x,y) = d(y,x), and d(x,z) 6 d(x,y)+d(y,z).

Let us also consider a point x0 ∈ X such that

x0 = argmax
x∈X

| f (x)− fn(x)|.

Then, the value of h can be bounded by

min
16i6N

d(xi,x0) 6 h 6 D(x1, · · · ,xN) (14)

to cover the input space X using balls B(xi,h) with centers as input samples xi and a radius of h:
B(xi,h) = {x|‖xi −x‖< h}. This range of h is considered to describe the modulus of continuity for
the target and estimation functions.

3.2 Risk Bounds Based on the Modulus of Continuity

In this subsection, the modulus of continuity for the target and estimation functions are investigated,
and the manner in which they are related to the expected risks is considered. First, let us consider
the loss function for the observed model y and the estimation function fn(x) with n parameters as
L(y, fn) = |y− fn(x)|. Then, the expected and the empirical risks are defined by the following L1

measure:
R( fn)L1 =

Z

X×R

|y− fn(x)|dP(x,y) and

Remp( fn)L1 =
1
N

N

∑
i=1

|yi − fn(xi)|.

In the first step, let us consider the case of a univariate target function; that is, f ∈C(X) with X ⊂R.
Then, with the definition of the modulus of continuity of (12) and the bound of h as described by
(14), the relationship between the expected and empirical risks is described using the modulus of
continuity as follows:

Theorem 1 Let the target function f ∈C1(X) of (1) with X, a compact subset of R, be approximated
by the estimation function fn of (4), that is, a linear combination of weight parameters wk and basis
functions φk, k = 1, · · · ,n for the given samples (xi,yi), i = 1, · · · ,N generated by (2). Then, for the
confidence parameters δ (a constant between 0 and 1), the expected risk in the L1 sense is bounded
by the following inequality with a probability of at least 1−2δ:

R( fn)L1 6 Remp( fn)L1 +
1

N2

N

∑
i, j=1

(|yi − y j|+ | fn(xi)− fn(x j)|)

+(ω( fn,h0)+C)

√
1

2N
ln

2
δ

and (15)

C = | fn(x0)− fn(x
′
0)|+2‖ f‖∞ +2σε

√
1
δ

for x0,x
′
0 ∈ {x1, · · · ,xN},

where w( fn,h0) represents the modulus of continuity of the estimation function fn and h0 represents
a constant satisfying (14).
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For the proof of this theorem, refer to the Appendix A.3. This theorem states that the expected
risk R( fn)L1 is bounded by the empirical risk Remp( fn)L1 , the second term of (15) representing the
variations of output samples and also the variations of estimation function values for the given
input samples, and the third term representing the modulus of continuity for the estimation function
w( fn,h0) and a constant C associated with target function. Here, let us consider the second term.
By investigating this term further, it can be decomposed it into the empirical risk and the term
depending on the target function. The next corollary shows the bounds on the expected risks with
this decomposition:

Corollary 1 Let Hy be the N ×N matrix in which the i j-th entry is given by |yi − y j|. Then, the
following inequality holds with a probability of at least 1−2δ:

R( fn)L1 6 3Remp( fn)L1 +
2
N

max{λi}+(ω( fn,h0)+C)

√
1

2N
ln

2
δ
, (16)

where λi represents the ith eigenvalue of the matrix Hy.

For the proof of this lemma, refer to the Appendix A.4. This corollary states that the dominant
terms related to the estimation function fn in the expected risk are the empirical risk Remp( fn) and the
modulus of continuity w( fn,h0), as the eigenvalue λi of H f is not dependent upon fn and a constant
C has little influence on the shape of expected risks as the number of parameters n increases. The
bounds on the expected risks of (16) appear to be overestimated, as the empirical risk is multiplied
by 3. However, for the purpose of determining the model selection criteria, an estimation of the tight
bound on the expected risk is not essential. Rather, the coefficient ratio between the empirical risk
and modulus of continuity terms plays an important role for model selection problems because only
these two terms are mainly dependent upon the estimation function fn. From this point of view, the
following model selection criterion referred to as the modulus of continuity information criterion
(MCIC) is suggested:

MCIC( fn) = Remp( fn)L1 +
ω( fn,h0)

3

√
1

2N
ln

2
δ
. (17)

Suppose we have fixed number of samples N. Then, as the number of parameters n increases,
the empirical risk Remp( fn) decreases while the modulus of continuity ω( fn,h0) increases, as the
estimation function fn becomes a more complex function. Accordingly, it is necessary to make a
trade-off between the over-fitting and under-fitting of regression models using the MCIC for the
optimization of the regression models.

This far, univariate continuous functions are addressed. At this point, let us consider the case of
X ⊂R

m with m > 1; that is, the case of multivariate continuous functions. Here, it is possible to show
that the prediction risk bounds take a similar form to those of univariate continuous functions. The
following theorem of the prediction risk bounds for multivariate continuous functions is suggested
using the definition of the modulus of continuity (13):

Theorem 2 Let f ∈C1(X) with X, a compact subset of R
m (m > 1), and h0 be a constant satisfying

(14). Then, for the confidence parameter δ (a constant between 0 and 1), the expected risk in L1

sense is bounded by the following inequality with a probability of at least 1−δ:

R( fn)L1 6 Remp( fn)L1 +

{
ω( f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ

}√
1

2N
ln

2
δ
,
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where w( f − fn,h0) represents the modulus of continuity of the function f − fn, h0 represents a
constant satisfying (14), and xi0 represents an element of an input sample set {x1, · · · ,xN}.

For the proof of this theorem, refer to the Appendix B.1. In this theorem, w( f − fn,h0) can be
replaced with w( f ,h0)+ w( fn,h0); that is, the sum of the modulus of continuity for the target and
estimation functions because the following inequalities always hold:

ω( fn,h0)−ω( f ,h0) 6 ω( f − fn,h0) 6 ω( fn,h0)+ω( f ,h0).

The suggested theorem states that the expected risk is mainly bounded by the empirical risk Remp( fn),
the modulus of continuity for the target function w( f ,h0), and also the modulus of continuity for
the estimation function w( fn,h0). As the number of parameters n varies, the empirical risk, the
modulus of continuity for the estimation function, and the term | f (xi0)− fn(xi0)| are changed while
other terms remain constant. Here, in order to find the optimal model complexity n = n∗ that mini-
mizes expected risk R( fn), these varying terms should be considered. In this case, the effect of the
term | f (xi0)− fn(xi0)| is small compared with the other two terms, as the regression model becomes
well fitted to the samples as the number of parameters n increases. This implies that the model
selection criteria for multivariate estimation functions have the same form as (17) except with a
coefficient 1/3 of ω( fn,h0). In practice, the performance of MCIC for model selection problems is
not so sensitive to this coefficient. Summarizing the properties of the suggested MCIC, the distinct
characteristics are described as follows:

• The suggested MCIC is dependent upon the modulus of continuity for the trained estimation
function.

• The suggested MCIC is also dependent upon the value of h0 which varies according to the
sample distribution.

Considering these characteristics, for model selection problems, the MCIC is a measure sensitive to
the trained estimation function using a certain learning algorithm and also sensitive to the distribu-
tion of samples while other model selection criteria such as the AIC and BIC depend on structural
information such as the number of parameters. For the computation of the suggested MCIC, the
modulus of continuity of the trained estimation function should be evaluated, as explained in the
next subsection.

3.3 The Modulus of Continuity for Estimation Functions

The modulus of continuity for the estimation function w( fn,h) is dependent upon the basis func-
tion φk in (4). Here, examples of computing w( fn,h) according to the type of basis functions are
presented:

• A case of the estimation function fn with algebraic polynomials on X = [a,b] ⊂ R:

φk(x) = xk for k = 0,1, · · · ,n.

Applying the mean value theorem to φk, we get

ω(φk,h) 6
∥∥φ′

k

∥∥
∞ ·h

6 kh ·max
{
|a|k−1, |b|k−1

}
, k = 1, · · · ,n.
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Therefore, the modulus of continuity for fn has the following upper bound:

ω( fn,h) 6

n

∑
k=1

kh|wk| ·max
{
|a|k−1, |b|k−1

}
.

• A case of the estimation function fn with trigonometric polynomials φk(x) on X ⊂ R:

φk(x) =





1/2 if k = 0
sin((k +1)x/2) if k = odd number
cos(kx/2) if k = even number

for k = 1, · · · ,n. Applying the mean value theorem to φk, we get

ω(φk,h) 6 ‖φ′
k‖∞h

6

⌊
k
2

⌋
h, for k = 1, · · · ,n.

Therefore, the modulus of continuity for fn has the following upper bound:

ω( fn,h) 6

n

∑
k=0

h|wk| ·
⌊

k
2

⌋
.

• A case of the estimation function fn with sigmoid function φk(x) = φk(x1, · · · ,xm) on X ⊂R
m:

fn(x) =
n

∑
k=1

wkφk(x1, · · · ,xm)+w0,

where

φk(x1, · · · ,xm) = tanh

(
m

∑
j=1

vk jx j + vk0

)
.

Applying the mean value theorem to φk with respect to each coordinate x1, · · · ,xm, we get

| fn(· · · ,x j, · · ·)− fn(· · · ,x j −h, · · ·)| 6 h ·
∥∥∥∥

∂ fn

∂x j

∥∥∥∥
∞

for j = 1, · · · ,m.

Therefore, the modulus of continuity for fn has the following upper bound:

ω( fn,h) 6 h · max
16 j6m

∥∥∥∥
∂ fn

∂x j

∥∥∥∥
∞

6 h · max
16 j6m

∥∥∥∥∥
n

∑
k=1

wkvk j ·
(

1− tanh2

(
m

∑
i=1

vkixi + vk0

))∥∥∥∥∥
∞

6 h · max
16 j6m

n

∑
k=1

∣∣wkvk j
∣∣ . (18)
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As shown in these examples, the modulus of continuity for the estimation function fn is dependent
upon the trained parameter values associated with fn and h0 whose range is given by (14). However,
the proper value of h0 satisfying (14) requires the intensive search of the input space. From this
point of view, in practice, the value of h0 is considered as the half of the average distance between
two adjacent samples. Assuming a uniform distribution of input samples, the value of h0 can be
determined from the range of data values in each coordinate. For example, for m dimensional input
patterns, h0 can be determined by

h0 =
1
2

(
1
m

m

∑
i=1

maxi−mini

N −1

)1/m

, (19)

where maxi and mini represent the maximum and minimum values of the samples in the ith coordi-
nate.

After the value of h0 is determined, the computation of the modulus of continuity requires access
to all the parameter values of fn which are obtained after the learning of training samples. In this
context, the computational complexity of the modulus of continuity is proportional to the number
of parameters n in the estimation function, that is, in big-O notation, O(n). This computational
complexity is not so heavy compared to the calculation of the empirical risk term, as it requires
the computational complexity of O(N) and in general, N � n. Hence, in total, the computational
complexity of MCIC is described by O(N) which is equivalent to the computational complexity of
the AIC or BIC.

Once the modulus of continuity is determined, the MCIC can be determined by (17). Then, the
model with the smallest value of MCIC will then be selected. Here, n̂ is selected such that

n̂ = argmin
n

MCIC( fn).

The validity of the suggested MCIC is shown in the next section through the simulation for nonlinear
model selection problems.

4. Simulation

The simulation for function approximation was performed using the multilayer perceptrons (MLPs)
composed of the input, hidden, and output layers. For this simulation, the number of sigmoid units
n in the hidden layer was increased from 1 to 50. Here, fn was denoted as the MLP with a hidden
layer including n sigmoid units with the m dimensional input. The functional form of the estimation
function is given by

fn(x) =
n

∑
k=1

wk tanh(
m

∑
j=1

vk jx j + vk0)+w0,

where vk j and wk represent the input and output weights, respectively, that are associated with
the kth sigmoid unit, and vk0 and w0 represent the bias terms of the kth sigmoid unit and of the
estimation function, respectively. In this regression model, the conjugate gradient method was used
for the training of the input and output weights of the MLPs. As for the different type of kernel
functions, we presented the model selection method using the suggested MCIC for the regression
model with trigonometric polynomials (Koo and Kil, 2006) and showed the effectiveness of the
MCIC compared to other model selection criteria.
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As the benchmark data for this simulation of function approximation, the target functions given
by Donoho and Johnstone (1995) were used: they are Blocks, Bumps, Heavysine, and Doppler
functions, as illustrated in Figure 1. To generate the data for each target function from D-J (Donoho
and Johnstone), the input values xi, i = 1, · · · ,N were generated from a uniform distribution within
the interval of [0,2π]. Here, for the normalization of D-J data, the outputs were adjusted to have
the mean square value of 1 within the interval of [0,2π]. The noise terms were also generated from
a normal distribution with a mean of zero and a standard deviation of σε = 0.2 or 0.4. They were
then added to the target values computed from the randomly generated input values. For these
target functions, 100 sets of N (= 200) training samples were generated randomly to train the MLP.
In addition to the training samples, 1000 test samples were also generated separately according to
identical input and noise distributions.

As for another application of the MCIC, simulations for the target functions with binary output
values were considered using the benchmark data suggested by Hastie et al. (2003): the target value
is defined by

y(x) =

{
1 if∑10

j=1 x j > 5
0 otherwise,

where x is uniformly generated in [0,1]20. For the training of this target function, 100 sets of 50
samples were generated. In addition to the training samples, 500 test samples were also generated
separately. The noise terms were also generated from a normal distribution with a mean of 0 and a
standard deviation of σε = 0.0 or 0.2. They were then added to the target values computed from the
randomly generated input values.

For the simulation of selecting regression models with multi-dimensional input data, the bench-
mark data suggested by Chang and Lin (2001) were also used: they are Abalone, CPU Small, MG,
and Space GA data sets as described in Table 1. For each data set, 30 sets of 500 samples were
randomly generated as the training samples and the remaining samples in each set were used as the
test samples; that is, 30 sets of test samples were also generated. For these data sets, the range of
input and output was normalized between -1 and 1.

Data Set Description No. of Features No. of Data

Abalone predicting the age of abalone 8 4177
CPU Small predicting a computer system activity 12 8192

MG predicting the Mackey-Glass time series 6 1385
Space GA election data on 3107 US counties 6 3107

Table 1: The benchmark data sets for regression problems

For our experiments, various model selection methods such as the AIC, BIC, MDL, and the sug-
gested MCIC-based methods were tested. Once the MLP was trained, the empirical risk Remp( fn)
evaluated by the training samples was obtained, and the estimated risk R̂( fn) value could then be
determined by the AIC, BIC, MDL, and MCIC-based methods. In the cases of the AIC and BIC
methods, we selected the estimation function fn̂ which gives the smallest value of information cri-
terion described as (6) and (8), respectively. In these criteria, we assume that the noise variance
σ2

ε value was known. In the case of MDL, we selected the estimation function f n̂ which gives the
smallest value of the description length of (9). In the suggested method, we used the following form
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Figure 1: Target functions from Donoho and Johnstone (1995): (a), (b), (c), and (d) represent the
Blocks, Bumps, Heavysine, and Doppler functions respectively.

of MCIC for MLPs using the modulus of continuity described as (18):

MCIC( fn) = Remp( fn)L1 +
h0

3
max

16 j6m

n

∑
k=1

∣∣wkvk j
∣∣
√

1
2N

ln
2
δ
, (20)

where h0 was set to the half of the average distance between two adjacent samples using (19) and δ
was set to 0.05. In our case, we selected fn̂ which gave the smallest value of (20).

To compare the performance of the model selection methods, the risks for the selected f n̂ were
evaluated by the test samples and the results were compared with the minimum risk among all risks
for fn, n = 1, · · · ,50. Quantitatively, the log ratio rR of two risks Rtest( fn) and minn R( fn) were
computed:

rR = log
Rtest( fn̂)

minn Rtest( fn)
, (21)

where Rtest represents the empirical risk for the squared error loss function evaluated by the test
samples. This risk ratio represents the quality of the estimated distance between the optimal and the
estimated optimal risks.
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Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0255 0.0262 0.0416 0.0411 0.1459 0.0763 0.0371 0.0395
Bumps 0.0393 0.0697 0.0507 0.0718 0.1646 0.1294 0.0458 0.0426

Heavysine 0.0420 0.0537 0.1059 0.1147 0.1071 0.1225 0.0107 0.0160
Doppler 0.0343 0.0523 0.0932 0.0973 0.2318 0.1345 0.0222 0.0359

Table 2: Risk ratios for the regression of the four D-J target functions with σε = 0.2.

Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0441 0.0350 0.0853 0.0509 0.1146 0.0563 0.0262 0.0302
Bumps 0.0511 0.0572 0.0804 0.0699 0.1451 0.0810 0.0516 0.0433

Heavysine 0.0846 0.0616 0.1483 0.0773 0.1458 0.0762 0.0130 0.0151
Doppler 0.0801 0.0728 0.1421 0.0860 0.2225 0.1164 0.0218 0.0311

Table 3: Risk ratios for the regression of the four D-J target functions with σε = 0.4.

After all experiments had been repeated for the given number of training sample sets, the means
and standard deviations of the risk ratios of (21) for each target function were presented. First, in
the case of D-J data sets, the simulation results of the model selection using the AIC, BIC, MDL,
and MCIC based methods are presented in Tables 2 and 3. These simulation results showed that
the suggested MCIC method provided the top level performances in all cases except the blocks and
bumps target functions when σε = 0.2 in which the AIC method showed the best performances.
This was mainly due to the fact that the known noise standard deviation of σε was used in the AIC
method. To clarify this fact, another simulation for these target functions in which the AIC and BIC
methods with the estimation of noise variances using (7) were used. These simulation results are
presented in Table 4. In this simulation, as we expected, the suggested MCIC method showed the
best performance.

We also observed the dependency of the number of samples during the selection of regression
models. For this simulation, the numbers of samples were set to N = 100, 200, 400, and 800 for
the regression of the Doppler target function with a noise standard deviation of σε = 0.4. The
simulation results are presented in Table 5. Here, note that the complexity of the doppler target
function increases as the input value decreases. These results showed that the performances of the
AIC, BIC, MDL, and MCIC methods were improved as the number of samples becomes larger as
shown in Table 5. Among these model selection methods, the MCIC method always showed the
better performances compared to other model selection methods, even in the smaller numbers of
samples. This is mainly due to the fact that in the MCIC method, the modulus of continuity, which
can be interpreted as the complexity of the estimation function was computed for each trained
estimation function directly.

In the case of Hastie et al.’s benchmark data, the MDL model selection methods showed some
merits in performances compared to other model selection methods as shown in Table 6. One of
the reasons why the MCIC method does not show the better performances in this target function
compared to other model selection methods is that this target function can be properly solved by
the classification problem (not regression problem) in which the discriminant function is linear.
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Target AIC BIC MDL MCIC
Functions mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Blocks 0.0718 0.0612 0.1117 0.0744 0.1459 0.0763 0.0371 0.0395
Bumps 0.1107 0.0933 0.1558 0.1395 0.1646 0.1294 0.0458 0.0426

Table 4: Risk ratios for the regression of blocks and bumps functions with σε = 0.2 using the AIC
and BIC methods with the estimation of noise variances using (7), and the MDL and MCIC
methods.

AIC BIC MDL MCIC
N mean s. dev. mean s. dev. mean s. dev. mean s. dev.

100 0.1072 0.0820 0.1552 0.1119 0.3205 0.1710 0.0794 0.0696
200 0.0801 0.0728 0.1421 0.0860 0.2225 0.1164 0.0218 0.0311
400 0.0477 0.0478 0.1028 0.0670 0.1588 0.0759 0.0077 0.0135
800 0.0174 0.0275 0.0610 0.0565 0.0860 0.0774 0.0035 0.0107

Table 5: The variation of risk ratios for the regression of Doppler function with σε = 0.4 using the
AIC, BIC, MDL, and MCIC methods according to the number of samples N = 100, 200,
400, and 800.

However, even in this case, if the sample size is reduced, the proposed method can have the merits
in performances since the MCIC includes the complexity term of the estimation function using
the modulus of continuity and for smaller number of samples, this complexity term has the high
influence on the bounds on the expected risk. To clarify this fact, we made another simulation
results for the number of samples reduced by half; that is, N = 25 and compared with the previous
simulation results as shown in Table 7. These simulation results showed that the MCIC method
demonstrated the better performances compared to other model selection methods by reducing the
sample size.

AIC BIC MDL MCIC
σε mean s. dev. mean s. dev. mean s. dev. mean s. dev.

0.0 0.3161 0.2197 0.3161 0.2197 0.3100 0.2273 0.4307 0.2624
0.2 0.3400 0.5028 0.3115 0.4658 0.1881 0.1175 0.3034 0.1503

Table 6: Risk ratios for the regression of the binary target function using the AIC, BIC, MDL, and
MCIC methods when the number of samples N is 50.

The simulation results for the selection of regression models with multi-dimensional input data
are summarized in Table 8. These simulation results showed that the suggested MCIC method
achieved top or second level performances compared to other model selection methods. As shown
in the previous case; that is, the regression problem of Hastie et al.’s benchmark data, the MCIC
method is more effective when the sample size is small. To see the effect on smaller number of
samples, we also made another simulation results for the number of samples reduced by half; that is,

2622



MODEL SELECTION FOR REGRESSION

AIC BIC MDL MCIC
σε mean s. dev. mean s. dev. mean s. dev. mean s. dev.

0.0 0.3620 0.1977 0.3620 0.1977 0.3430 0.1855 0.2652 0.1589
0.2 1.7428 0.9582 1.7428 0.9582 0.3169 0.1816 0.2716 0.1743

Table 7: The variation of risk ratios for the regression of the binary target function when the number
of samples is reduced by half; that is, N = 25.

N = 250 and compared with the previous simulation results as shown in Table 9. These simulation
results showed that the MCIC method demonstrated the top level performances compared to other
model selection methods. All of these observations support that the suggested MCIC method is
quite effective for nonlinear regression models especially for smaller number of samples. This is
mainly due to the fact that the complexity term as a form of the modulus of continuity of the trained
regression model provides high influence on selecting the regression model especially for smaller
number of samples. This can be explained by the following observations:

• Once the estimation function is trained, the estimation function provides accurate values for
the training samples. In this estimation function, the variation of the predicted values for the
unobserved data with respect to the function values for the known data (or training samples)
can be described by the modulus of continuity, as presented in the definition of the modulus
of continuity.

• If the number of samples decreases, the density of input space becomes low and it makes a
big value of h. Then, in the suggested MCIC, this makes high influence of the modulus of
continuity compared to the empirical risk which usually has a small value.

• If there are enough number of samples for the target function, the opposite phenomenon of
the above case happens.

In summary, through the simulation for function approximation using the MLPs, we have shown
that the suggested MCIC provides performance advantages for the selection of regression models
compared to other model selection methods in various situations of benchmark data. Compared
to other model selection methods, the MCIC methods provides the considerable merits in perfor-
mances especially when no knowledge of noise variances for the given samples is available and also
when not enough number of samples considering the complexity of target function is available.

5. Conclusion

We have suggested a new method of model selection in regression problems based on the modulus
of continuity. The prediction risk bounds are investigated from a view point of the modulus of
continuity for the target and estimation functions. We also present the model selection criterion
referred to as the MCIC which is derived from the suggested prediction risk bounds. The suggested
MCIC is sensitive to the trained regression model (or estimation function) obtained from a specific
learning algorithm and is also sensitive to the distribution of samples. As a result, the suggested
MCIC is able to discriminate the performances of the trained regression models, even with the
same structure of regression models. To verify the validity of the suggested criterion, the selection
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AIC BIC MDL MCIC
Data Set mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Abalone 0.0428 0.0586 0.0496 0.0410 0.0477 0.0493 0.0324 0.0303
CPU Small 0.1646 0.1578 0.1212 0.1158 0.0940 0.0941 0.0941 0.1076

MG 0.0665 0.0442 0.0649 0.0371 0.0523 0.0470 0.0449 0.0343
Space GA 0.0851 0.0612 0.1597 0.0869 0.1039 0.0626 0.0870 0.0526

Table 8: The variation of risk ratios for the regression of the benchmark data sets using the AIC,
BIC, MDL, and MCIC methods when the number of samples N is 500.

AIC BIC MDL MCIC
Data Set mean s. dev. mean s. dev. mean s. dev. mean s. dev.

Abalone 0.1385 0.1947 0.0668 0.1019 0.0618 0.0966 0.0307 0.0418
CPU Small 0.2832 0.2906 0.2864 0.2646 0.2828 0.2929 0.1942 0.2219

MG 0.1451 0.1037 0.0816 0.0947 0.0887 0.0934 0.0456 0.0508
Space GA 0.0768 0.0618 0.1466 0.0872 0.0801 0.0651 0.0659 0.0518

Table 9: The variation of risk ratios for the regression of the benchmark data sets when the number
of samples is reduced by half; that is, N = 250.

of regression models using the MLPs that were applied to function approximation problems was
performed. Through the simulation for function approximation using the MLPs, it was shown that
the model selection method using the suggested MCIC has the advantages of risk ratio performances
over other model selection methods such as the AIC, BIC, and MDL methods in various situations of
benchmark data. Compared to other model selection methods, this merit of regression performances
is significant especially when not enough number of samples considering the complexity of target
function is available. Furthermore, the suggested MCIC method does not require any knowledge of a
noise variance of samples which is usually given or estimated in other model selection methods. For
regression models with other types of estimation functions that have some smoothness constraints,
the suggested MCIC method can be easily extended to the given regression models by evaluating
the modulus of continuity for the corresponding estimation functions.
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Appendix A.

In this appendix, we prove the lemmas 1 and 2 in Section 3.1. We also prove the theorem 1 and
corollary 1 in Section 3.2; that is, the case of univariate target functions.
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A.1 Proof of Lemma 1

Since ωA( f ,h) are considered all directions on h-ball on X , the following inequality always holds:

ωB( f ,h,h) 6 ωA( f ,h).

From the triangular inequality, the following inequality holds:

| f (x1,y1)− f (x2,y2)| 6 | f (x1,y1)− f (x1,y2)|+ | f (x1,y2)− f (x2,y2)|.
Let ‖(x1,y1)− (x2,y2)‖ 6 h. Then, |x1 − x2| 6 h and |y1 − y2| 6 h. Therefore, from the definition
of the modulus of continuity, we obtain

ωA( f ,h) 6 2ωB( f ,h,h).

�

A.2 Proof of Lemma 2

• Upper bound of wA( f ,h): Let x ∈ X and x−h ∈ X satisfying ‖h‖ 6 h. Then,

| f (x)− f (x−h)| 6 |∇ f (x−ξh) ·h| for some ξ ∈ (0,1)

6 ‖h‖‖∇ f (x−ξh)‖
(because of Cauchy-Schwartz inequality)

= ‖h‖
√

m

∑
i=1

∣∣∣∣
∂ f
∂xi

(x−ξh)

∣∣∣∣
2

6 ‖h‖
√

m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
.

Since the last term of the above equation is independent of x ∈ X , we can conclude that

ωA( f ,h) 6 h

√
m

∑
i=1

∥∥∥∥
∂ f
∂xi

∥∥∥∥
2

∞
.

• Upper bound of wB( f ,h,h): Let α ∈ R and |α| 6 h. Here, let us define ei as a vector on R
m

whose i-th coordinate is 1 and the others are 0. Then, there exists ξ ∈ (0,1) such that

| f (x)− f (x−hei)| 6
∣∣∣∣

∂ f
∂xi

(x−ξαei)

∣∣∣∣ |h| for i = 1, · · · ,m.

This implies that

max
i

{| f (x)− f (x−αei)|} 6 |α| max
16i6m

{∣∣∣∣
∂ f
∂xi

(x−ξαei)

∣∣∣∣
}

.

Therefore, we can conclude that

ωB( f ,h, · · · ,h) 6 h max
16i6m

{∥∥∥∥
∂ f
∂xi

∥∥∥∥
∞

}
.

�
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A.3 Proof of Theorem 1

Before the description of main proof, let us introduce the Hoeffding inequality (Hoeffding, 1963):
Given i.i.d. random variables Y1, . . . ,YN , let us define a new random variable

SN =
1
N

N

∑
i=1

Yi

and we assume that there exist real numbers ai and bi for i = 1, . . . ,N such that
Pr{Yi ∈ [ai,bi]} = 1. Then, for any ε > 0, we have

Pr{E[SN ]−SN > ε} 6 exp

(
− 2ε2N2

∑N
i=1(bi −ai)2

)
.

First, let us consider the noiseless case; that is, y = f (x) in (1). For the input samples x1, · · · ,xN ,
an event A is defined by

1
N

N

∑
i=1

Z

X
| fn(x)− fn(xi)|dP(x)− 1

N

N

∑
j=1

1
N

N

∑
i=1

| fn(x j)− fn(xi)| > ε,

where the first and second terms represent the average over the expectation of | fn(x)− fn(xi)| and
the unbiased estimator of the first term respectively.

Then, from the Hoeffding inequality, the probability of an event A is bounded by

Pr{A} 6 exp

(
−2ε2N

(
maxx∈X

1
N ∑N

i=1 | fn(x)− fn(xi)|
)2

)
.

For the denominator in the argument of the exponent, we can consider the following inequality:

max
x∈X

1
N

N

∑
i=1

| fn(x)− fn(xi)| 6
1
N

N

∑
i=1

max
x∈X

| fn(x)− fn(xi)|

6 max
i

max
x∈X

| fn(x)− fn(xi)|.

Let x′i = argmaxx∈X | fn(x)− fn(xi)|, xi′ = argmin j d(x j,x′i), and hi = d(x′i,xi′) where d(x,y) repre-
sents the distance measure defined by d(x,y) = |x− y|. Then,

max
x∈X

1
N

N

∑
i=1

| fn(x)− fn(xi)| 6 max
i

(
| fn(x

′
i)− fn(xi′)|+ | fn(xi′)− fn(xi)|

)

6 max
i

(ω( fn,hi)+ | fn(xi′)− fn(xi)|)

6 ω( fn,h0)+ | fn(x
′
0)− fn(x0)|,

where h0 ∈ {h1, . . . ,hN} and x0,x′0 ∈ {x1, . . . ,xN} satisfy

ω( fn,hi)+ | fn(xi)− fn(x j)| 6 ω( fn,h0)+ | fn(x0)− fn(x
′
0)| for i, j = 1, · · · ,N.

For the illustration of this concept, refer to Figure 2.
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0

|fn(x′

i) − fn(xi′)| ≤ ω(fn, hi)

xi xi′ x′

i

hi

|fn(x) − fn(xi)|

x· · ·· · · xi′−1 xi′+1

Figure 2: The plot of | fn(x)− fn(xi)| versus x: the value of | fn(x)− fn(xi)| is maximum at x′i and
this maximum value is decomposed by two factors: one is the value of | fn(x)− fn(xi)| at
a sample point xi′ and another is the modulus of continuity ω( fn,hi) with respect to hi.
The value hi is chosen by the distance d(x′i,xi′).

Thus, the probability of an event A is bounded by

Pr{A} 6 exp

( −2ε2N
(ω( fn,h0)+ | fn(x0)− fn(x′0)|)2

)
.

Here, let us set

δ1

2
= exp

( −2ε2N
(ω( fn,h0)+ | fn(x0)− fn(x′0)|)2

)
.

Then, with a probability of at least 1−δ1/2, we have

1
N

N

∑
i=1

Z

X
| fn(x)− fn(xi)|dP(x) 6

1
N2

N

∑
i, j=1

| fn(xi)− fn(x j)|

+

√
1

2N
ln

2
δ1

(
ω( fn,h0)+ | fn(x0)− fn(x

′
0)|
)
. (22)

On the other hand, for the target function f , we can apply a similar method. As a result, with a
probability of at least 1−δ1/2, the following inequality holds:

1
N

N

∑
i=1

Z

X
| f (x)− f (xi)|dP(x) 6

1
N2

N

∑
i, j=1

| f (xi)− f (x j)|+2‖ f‖∞

√
1

2N
ln

2
δ1

. (23)
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Let us consider the difference between the expected and empirical errors of | f (x)− fn(x)|:
Z

X
| f (x)− fn(x)|dP(x) − 1

N

N

∑
i=1

| f (xi)− fn(xi)|

=
1
N

N

∑
i=1

Z

X
(| f (x)− fn(x)− f (xi)+ fn(xi)+ f (xi)− fn(xi)|

−| f (xi)− fn(xi)|)dP(x)

6
1
N

N

∑
i=1

Z

X
| f (x)− fn(x)− f (xi)− fn(xi)|dP(x)

6
1
N

N

∑
i=1

Z

X
(| f (x)− f (xi)|+ | fn(x)− fn(xi)|)dP(x).

Then, from (22) and (23), the difference between the true and empirical risks is bounded by the
following inequality with a probability of at least 1−δ1:

Z

X
| f (x)− fn(x)|dP(x)− 1

N

N

∑
i=1

| f (xi)− fn(xi)|

6
1

N2

N

∑
i, j=1

(| f (xi)− f (x j)|+ | fn(xi)− fn(x j)|)

+

√
1

2N
ln

2
δ1

(ω( fn,h0)+ | fn(x0)− fn(y0)|+2‖ f‖∞) . (24)

Second, let us consider the noisy condition; that is, y = f (x)+ ε. Here, we assume that for the
output samples y1, · · · ,yN , the noise terms ε1, . . . ,εN are i.i.d. random variables with a mean of 0
and a variance of σ2

ε . We will define the event B as

|ε| > a, (25)

where a is a positive constant. Then, from the Chebyshev inequality,

Pr{B} 6
σ2

ε
a2 .

Let us set

δ2 =
σ2

ε
a2 .

Then, with a probability of at least 1−δ2,

|ε| 6 σε

√
1
δ2

.

This implies that with a probability of at least 1−δ2,

|y| 6 | f (x)|+ |ε| 6 ‖ f‖∞ +σε

√
1
δ2

.
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Here, let us define the event E as

1
N

N

∑
i=1

Z

R

|y− yi|dP(y)− 1
N

N

∑
i=1

1
N

N

∑
j=1

|y j − yi| > ε.

Then, from the Hoeffding inequality, we obtain

Pr{E|Bc} 6 exp

{
−2ε2N

(
maxy∈R

1
N ∑N

i=1 |y− yi|
)2

}

6 exp

{
−ε2N

2(‖ f‖∞ +σε
√

1/δ2)2

}
.

Let us set
δ1

2
= exp

{
−ε2N

2(‖ f‖∞ +σε
√

1/δ2)2

}
.

Then, with a probability of at least 1−δ1/2−δ2,

1
N

N

∑
i=1

Z

|y− yi|dP(y)− 1
N2

N

∑
i, j=1

|yi − y j| 6
√

2
N

ln
2
δ1

(
‖ f‖∞ +σε

√
1
δ2

)
(26)

since

Pr{Ec} > Pr{Ec,Bc}
> Pr{Ec|Bc}Pr{Bc}

>

(
1− δ1

2

)
(1−δ2)

> 1− δ1

2
−δ2.

Similar to (24), the difference between the expected and empirical risks of |y− fn(x)| is bounded by
Z

X×R

|y− fn(x)|dP(x,y) − 1
N

N

∑
i=1

|yi − fn(xi)|

6
1
N

N

∑
i=1

Z

X×R

|y− yi|+ | fn(x)− fn(xi)|dP(x,y).

Here, let us set δ1 = δ2 = δ. This is possible by controlling the value of a in (25). Then, finally,
from (22) and (26), with a probability of at least 1−2δ

Z

X×R

|y− fn(x)|dP(x,y) − 1
N

N

∑
i=1

|yi − fn(xi)|

6
1

N2

N

∑
i, j=1

(|y j − yi|+ | fn(x j)− fn(xi)|)

+(ω( fn,h0)+C)

√
1

2N
ln

2
δ
, (27)

where C = | fn(x0)− fn(y0)|+2‖ f‖∞ +2σε
√

1/δ. �
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A.4 Proof of Corollary 1

Let Hy be a matrix in which the i jth element is given by |yi − y j| and an N dimensional vector a be
given by

a =
1√
N

(1, · · · ,1)T .

Then,
1
N

N

∑
i, j=1

|yi − y j| = aT Hya. (28)

Here, the matrix Hy can be decomposed by

Hy = EΛET =
N

∑
i=1

λieieT
i , (29)

where E represents a matrix in which the ith column vector is the ith eigenvector ei and Λ represents
the diagonal matrix in which the ith diagonal element is the ith eigenvalue λi. Then, from (28) and
(29),

1
N

N

∑
i, j=1

|yi − y j| =
N

∑
i=1

λi(aT ei)
2
6 max

i
{λi}.

Now, let us consider the following inequality:

1
N2

N

∑
i, j=1

| fn(xi)− fn(x j)| 6
1

N2

N

∑
i, j=1

| fn(xi)− yi|

+
1

N2

N

∑
i, j=1

|yi − y j|+
1

N2

N

∑
i, j=1

|y j − fn(x j)|

= 2Remp( fn)L1 +
1

N2

N

∑
i, j=1

|yi − y j|

6 2Remp( fn)L1 +
1
N

max
i
{λi}.

Therefore, from the above inequality and (27), the following inequality holds with a probability of
at least 1−2δ:

R( fn) 6 3Remp( fn)+
2
N

max
i
{λi}+(ω( fn,h0)+C)

√
1

2N
ln

2
δ
.

�

Appendix B.

In this appendix, we prove the theorem 2 in Section 3.2; that is, the case of multivariate target
functions.
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B.1 Proof of Theorem 2

First, let us consider noise free target function; that is,

y = f (x).

The probability that the difference between the expected and empirical risks is larger than a positive
constant ε can be described by

Pr{R( fn)L1 −Remp( fn)L1 > ε} 6 exp

{ −2ε2N
(maxx∈X |y− fn(x)|)2

}
(30)

from the Hoeffding inequality (Hoeffding, 1963). Here, there exist x0 ∈ X and xi0 ∈ {x0, · · · ,xN}
such that

x0 = argmax
x∈X

| f (x)− fn(x)| and d(xi0 ,x0) 6 h0

because f − fn ∈ C(X) and X is a compact subset of R
m. Thus, from the dominator term of the

righthand side of (30), we have

max
x∈X

| f (x)− fn(x)| 6 | f (x0)− fn(x0)− f (xi0)+ fn(xi0)|+ | f (xi0)− fn(xi0)|

6 ω( f − fn,h0)+ | f (xi0)− fn(xi0)|. (31)

Here, we set the bound on the probability of (30) as

exp

{ −2ε2N
(maxx∈X | f (x)− fn(x)|)2

}
6 exp

{ −2ε2N
(ω( f − fn,h0)+ | f (xi0)− fn(xi0)|)2

}

6
δ
2
. (32)

Therefore, from (30), (31), and (32), the following inequality holds with a probability of at least
1−δ/2:

R( fn)L1 6 Remp( fn)L1 +{ω( f − fn,h0)+ | f (xi0)− fn(xi0)|}
√

1
2N

ln
2
δ
. (33)

Second, let us consider the noisy target function; that is,

y = f (x)+ ε.

From Chebyshev inequality, the following inequality always holds:

Pr{|ε| > a} 6
σ2

ε
a2 , (34)

where a represents a positive constant. In this case, from the triangular inequality, |y− fn(x)| has
the following upper bound:

max
x∈X

|y− fn(x)| 6 max
x∈X

| f (x)− fn(x)|+ |ε|. (35)

Let us set the bound on the probability of (34) as

σ2
ε

a2 =
δ
2
. (36)
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Then, from (31), (35), and (36), the following inequality holds with a probability of at least 1−δ/2:

max
x∈X

|y− fn(x)| 6 max
x∈X

| f (x)− fn(x)|+σε

√
2
δ

6 ω( f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ
. (37)

Therefore, from (33) and (37), the following inequality holds with a probability of at least 1−δ:

R( fn)L1 6 Remp( fn)L1 +

{
ω( f − fn,h0)+ | f (xi0)− fn(xi0)|+σε

√
2
δ

}√
1

2N
ln

2
δ
.

�
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