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Abstract

We replaced the conditional probability tables of Bayesian network nodes whose parents have
high cardinality with a multilevel empirical hierarchical Bayesian model called hierarchical pattern
Bayes (HPB).1 The resulting Bayesian networks achieved significant performance improvements
over Bayesian networks with the same structure and traditional conditional probability tables, over
Bayesian networks with simpler structures like naı̈ve Bayes and tree augmented naı̈ve Bayes, over
Bayesian networks where traditional conditional probability tables were substituted by noisy-OR
gates, default tables, decision trees and decision graphs and over Bayesian networks constructed
after a cardinality reduction preprocessing phase using the agglomerative information bottleneck
method. Our main tests took place in important fraud detection domains, which are characterized
by the presence of high cardinality attributes and by the existence of relevant interactions among
them. Other tests, over UCI data sets, show that HPB may have a quite wide applicability.

Keywords: probabilistic reasoning, Bayesian networks, smoothing, hierarchical Bayes, empirical
Bayes

1. Introduction

In most countries, imported goods must be declared by the importer to belong to one of large set of
classes (customs codes). It is important that each good is correctly classified, because each of the
customs codes implies not only different customs duties but also different administrative, sanitary,
and safety requirements. The original goal of this work was to develop a tool that, considering four
explanatory attributes: declared custom code (DCC), importer (IMP), country of production (CP)
and entry point in the receiving country (EPR), will estimate, for each new example, the probability
that it involves a misclassification. Such estimates will be used later by a larger system that allocates
human resources for different types of anti-fraud operations.

Our main study data set contains 682226 examples of correct classification (which we will call
negative examples) and 6460 examples of misclassification (positive examples). In this data set, the

1. This paper is a an extended version of a conference paper (Jambeiro Filho and Wainer, 2007).
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first attribute assumes 7608 distinct values, the second, 18846 values, the third, 161 values, and the
fourth 80 values. Thus, the domain is characterized by the presence of high cardinality attributes.

The data set is imbalanced, with only 0.93% of positive examples. This is usually handled with
different resampling strategies (Chawla et al., 2002). However, resampling requires retraining the
classifiers for each different assignment of costs for false positives and false negatives. In our con-
text, such costs are not known in advance (priorities change according to other anti-fraud demands)
and they vary from example to example (not all false negatives cost the same). These facts make
the use of resampling techniques unattractive.

On the other hand, if we can produce reliable probability estimates directly from the original
data set, the work of the human resource allocation system becomes much easier. It can at any time,
define a selection rate that matches the available human resources for the specific task of detecting
wrong customs codes considering all other anti-fraud demands at the moment. If the selection rate
is, for example, 10%, the examples to be verified will naturally be the 10% that are most likely to
involve a misclassification according to the calculated probability estimates. The allocation system
may also combine the probability estimates with costs that may vary from example to example
without any retraining. Thus, we decided to concentrate on Bayesian techniques.

Domain specialists claim that there are combinations of attribute values (some involving all of
them) that make the probability of an instance being positive significantly higher then it could be
expected looking at each value separately. They call such combinations critical patterns. To benefit
from critical patterns we would like to use the Bayesian network (BN) (Pearl, 1988) presented in
Figure 1, where all explanatory attributes are parents of the class attribute. We call a structure of
this kind a direct BN structure.

��
��
class

��
��

dcc ��
��

imp ��
��

cp ��
��

epr
Q

Q
Q

Qs
A
AU

�
�

�
�+
�

��

Figure 1: Direct BN structure for misclassification detection

In a BN, considering that x ji is a possible value for node X j and π jk is a complete combination
of values for Π j, the set of parents of node X j, the vector, θ jk, such that θ jki = P(x ji|π jk) is stored
in a table that is called conditional probability table (CPT) of node X j and is assessed from the
frequencies of the values of X j among the training instances where Π j = π jk. The distributions of
X j given any two different combinations of values for its parents are assumed to be independent
and a Dirichlet prior probability distribution for θ jk is usually adopted. Applying Bayes rule and
integrating over all possible values for θ jk it is found that

E(θ jki) = P(x ji|π jk) =
N jki +α jki

N jk +α jk
, (1)
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where N jki is the number of simultaneous observations of x ji and π jk in the training set, N jk =

∑∀i N jki, α jki is the value of one of the parameters of the Dirichlet prior probability distribution and
α jk = ∑∀i α jki, the equivalent sample size of the prior probability distribution.

The Dirichlet prior probability distribution is usually assumed to be noninformative, thus

P(x ji|π jk) =
N jki +λ

N jk +λM j
, (2)

where all parameters of the Dirichlet distribution are equal to a small smoothing constant λ, and M j

is the number of possible values for node X j. We call this direct estimation (DE). DE is sometimes
called Lidstone estimate and if λ = 1 it is called Laplace estimate.

The conditional probability table of the class node of a BN with the structure in Figure 1 contains
more than 1.8×1012 parameters. It is clear that for rarely seen combinations of attributes the choice
of such structure and Equation (2) tends to produce unreliable probabilities whose calculation is
dominated by the noninformative prior probability distribution.

Instead of the structure in Figure 1, we can choose a network structure that does not lead to
too large tables. This can be achieved limiting the number of parents for a network node. Naı̈ve
Bayes(Duda and Hart, 1973) is an extreme example where the maximum number of parents is
limited to one (the class node is the only parent of any other node). Tree augmented naı̈ve Bayes
(TAN) (Friedman et al., 1997) adds a tree to the structure of naı̈ve Bayes connecting the explanatory
attributes and limits the maximum number of parent nodes to two. However, limiting the maximum
number of parents also limits the representational power of the Bayesian network(Boullé, 2005) and,
thus, limits our ability to capture interactions among attributes and benefit from critical patterns.
Therefore, we would prefer not to do it.

Since the high cardinality of our attributes is creating trouble, it is a reasonable idea to prepro-
cess the data, reducing the cardinality of the attributes. We can use, for example, the agglomerative
information bottleneck (AIBN) method (Slonim and Tishby, 1999) for this task. However, the pro-
cess of reducing the cardinality of one attribute is blind with respect to the others (except for the
class attribute) (Slonim and Tishby, 1999; Boullé, 2005; Micci-Barreca, 2001), and thus it is un-
likely that cardinality reduction will result in any significant improvement in the ability to capture
critical patterns, which always depend on more than one attribute.

When the number of probabilities to be estimated is too large if compared to the size of the train-
ing set and we cannot fill the traditional conditional probability tables satisfactorily, Pearl (1988)
recommends the adoption of a model that resorts to causal independence assumptions like the noisy-
OR gate. Using noisy-OR, the number of parameters required to represent the conditional probabil-
ity distribution (CPD) of a node given its parents, instead of being proportional to the product of the
cardinality of all parents attributes, becomes proportional to the sum of their cardinality. However,
causal independence assumptions are incompatible with our goal of capturing critical patterns.

It is possible to use more flexible representations for the conditional probability distributions
of a node given its parents, like default tables (DFs) (Friedman and Goldszmidt, 1996b), deci-
sion trees (DTs) (Friedman and Goldszmidt, 1996b) and decision graphs (DGs) (Chickering et al.,
1997). According to Friedman and Goldszmidt (1996b), using such representations together with
adequate learning procedures induces models that better emulate the real complexity of the inter-
actions present in the data and the resulting network structures tend to be more complex (in terms
of arcs) but require fewer parameters. Fewer parameters may result in more reliable probability
estimates.
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Using traditional CPTs, we assume that the probability distributions for a node given any two
combinations of values for the parents are independent. If some of these distributions are actually
identical, DTs, DFs and DGs, can reflect it and represent the CPD using a variable number of
parameters that is only proportional to the number of actually different distributions.

On the other hand, using DTs, DFs or DGs to represent the conditional probability distributions
of a node given its parents, we assume that the probability distribution of the node given two differ-
ent combinations of values for the parents may be either identical or completely independent. It is
possible that neither of the two assumptions hold.

Gelman et al. (2003) assert that modeling hierarchical data nonhierarchically leads to poor re-
sults. With few parameters, nonhierarchical models cannot fit the data accurately. With many pa-
rameters they fit the existing data well but lead to inferior predictions for new data. In other words
they overfit the training set. In contrast, hierarchical models can fit the data well without overfitting.
They can reflect similarities among distributions without assuming equality.

The slight modification in Equation (2) used by Friedman et al. (1997) in the definition of a
smoothing schema for TAN shows that we can treat the data that is used to estimate a CPT as
hierarchical:

P(x ji|π jk) =
N jki +S ·P(x ji)

N jk +S
,

where S is a constant that defines the equivalent sample size of the prior probability distribution.
We call this almost direct estimation (ADE). ADE is the consequence of adopting an informative
Dirichlet prior probability distribution where α jki ∝ P(x ji), where P(x ji) is the unconditional proba-
bility of x ji (for the meaning of α jki, see Equation 1). ADE uses the probability distribution assessed
in a wider population (the whole training set) to build an informative prior probability distribution
for a narrower population and so it has a hierarchical nature. In the sense of Gelman et al. (2003)
ADE is an empirical hierarchical Bayesian model, not a full hierarchical Bayesian model. Probabil-
ity estimation methods which use such empirical models are popularly known as empirical Bayes
(EB) methods. ADE is also considered a m-estimation method (Cestnik, 1990; Zadrozny and Elkan,
2001).

We believe that ADE can get closer to the true probability distribution, but not that its discrimi-
nation power can be significantly better than DE’s. It is a linear combination of two factors N jki/N jk

and P(x ji). The second factor is closer to the true probability distribution than its constant coun-
terpart in direct estimation but it is still equal for any combination of values of Π j and thus has no
discrimination power.

ADE jumps from a very specific population (the set of training examples where Π j = π jk) to
a very general population (the whole training set). In contrast, we present a model, that we call
hierarchical pattern Bayes (HPB), which moves slowly from smaller populations to larger ones
benefiting from the discrimination power available at each level.

2. Hierarchical Pattern Bayes

HPB is an empirical Bayes method that generalizes ADE into an aggressive multilevel smoothing
strategy. Its name comes from the fact that it explores an hierarchy of patterns intensively, though it
is not a full hierarchical Bayesian model.

2144



HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Given a pattern W and a training set, D, of pairs (Ut ,Ct), where Ut is the tth instance in D and
Ct is the class label of Ut , HPB calculates P(Cr|W ) for any class Cr, where a pattern is as defined
below:

Definition 1 A pattern is a set of pairs of the form (Attribute = Value), where any attribute can
appear at most once.

An attribute that is not in the set is said to be undefined or missing. Before presenting HPB details
we need a few more definitions:

Definition 2 An instance U is a pair (iid,Pat(U)) where Pat(U) is a pattern and iid is an identifier
that makes each instance unique.

Definition 3 A pattern Y is more generic than a pattern W if and only if Y ⊆W

If Y is more generic than W , we say that W satisfies Y . If an instance Ut is such that W = Pat(Ut)
and W satisfies Y , we also say that Ut satisfies Y . It is worth noting that, if Y ⊆ W then SY ⊇ SW

where SY is the set of instances satisfying Y and SW is the set of instances satisfying W .

Definition 4 The level of a pattern W, level(W ), is the number of attributes defined in W.

Definition 5 g(W ) is the set of all patterns more generic than a pattern W whose elements have
level equal to level(W )−1.

For example, if W is {A = a,B = b,C = c}, g(W ) is

{ {B = b,C = c},{A = a,C = c},{A = a,B = b} }.

2.1 The Hierarchical Model

HPB calculates the posterior probability P(Cr|W ), using a strategy that is similar to almost direct
estimation, but the prior probabilities are considered to be given by P(Cr|g(W )).

The parameters of the Dirichlet prior probability distribution used by HPB are given by αr =
S ·P(Cr|g(W )), where S is a smoothing coefficient. Consequently,

P(Cr|W ) =
Nwr +S ·P(Cr|g(W ))

Nw +S
, (3)

where Nw is the number of instances in the training set satisfying the pattern W and Nwr is the
number of instances in the training set satisfying the pattern W whose class label is Cr.

Given Equation (3), the problem becomes to calculate P(Cr|g(W )). Our basic idea is to write
P(Cr|g(W )) as a function of the various P(Cr|Wj) where the W j are patterns belonging to g(W ) and
calculate each P(Cr|Wj) recursively, using Equation (3).
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{}

{A=a} {B=b} {C=c}

{A=a,B=b} {A=a,C=c} {B=b,C=c}

{A=a,B=b,C=c}

Figure 2: Example of HPB structure

Figure 2 shows a pattern hierarchy,2 where A, B and C are the attributes. Each pattern is repre-
sented by a node and the set of parents of a pattern W in the DAG presented in Figure 2 is g(W ).
HPB combines the posterior predictive probability distributions, P(Cr|Wj), of the class given each
parent, W j, of a pattern W , to build the prior predictive probability distribution for the class given
W , P(Cr|g(W )).

The first step to write P(Cr|g(W )) as a function of all the P(Cr|Wj) is to apply Bayes theorem:

P(Cr|g(W )) =
P(g(W )|Cr)P(Cr)

P(g(W ))

∝ P(W1,W2, . . . ,WL|Cr)P(Cr),

where W1,W2,. . . ,WL are the elements of g(W ). Then we approximate the joint probability P(W1,W2,
. . . ,WL|Cr) by the product of the marginal probabilities:

P′(Cr|g(W )) ∝ P(Cr)
L

∏
j=1

P(Wj|Cr), (4)

Note that we do not assume any kind of independence when using Equation (3) to calculate posterior
predictive probabilities, but we do assume independence in a naı̈ve Bayes fashion when calculating
the prior probabilities using Equation (4). Naı̈ve Bayes is known to perform well with regard to
classification error (Domingos and Pazzani, 1997) and ranking (Zhang and Su, 2004), even when
its independence suppositions are violated. Assuming independence among overlapping patterns,
as Equation (4) does, is equivalent to assuming independence among attributes which are known to
be highly correlated, what may appear to be strange. However, naı̈ve Bayes has been reported to
perform better when attributes are highly correlated than when correlation is moderate (Rish et al.,
2001).

2. Note that the DAG in Figure 2 is not a Bayesian network and the dependencies among its nodes do not follow BN
conventions.
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On the other hand, naı̈ve Bayes is known to produce extreme probabilities (Domingos and Paz-
zani, 1997), thus we apply a calibration mechanism (Bennett, 2000; Zadrozny, 2001), which is
expressed in Equation (5):

P′′(Cr|g(W )) = (1−A) ·P′(Cr|g(W ))+A ·P(Cr), (5)

where A = B/(1 + B) and B is a calibration coefficient. We discuss this calibration mechanism in
Section 2.2. P′′(Cr|g(W )) is our best estimate for P(Cr|g(W )) and it is used in Equation (3) as if it
were the true value of P(Cr|g(W )).

Given Equations (4) and (5) we need to calculate P(W j|Cr). Applying Bayes theorem again,

P(Wj|Cr) =
P(Cr|Wj)P(W j)

P(Cr)
. (6)

We can estimate P(Cr) is using the maximum likelihood approach: P(Cr) = Nr/N, where Nr

is the number of examples in the training set whose class label is Cr, and N is the total number of
examples in the training set. If the class variable is binary, this strategy works well, but if the class
node has high cardinality it is better to employ a noninformative prior probability distribution:

P(Cr) =
Nr +SNI/Mc

N +SNI ,

where Mc is the number of classes and SNI is the smoothing constant that defines the equivalent
sample size of the noninformative distribution.

When we substitute P(W j|Cr) by the right side of Equation (6) into Equation (4) we are able to
clear out the factor P(W j) because it is identical for all classes:

P′(Cr|g(W )) ∝ P(Cr)
L

∏
j=1

P(Wj|Cr)

∝ P(Cr)
L

∏
j=1

P(Cr|Wj)P(W j)

P(Cr)

∝ P(Cr)
L

∏
j=1

P(Cr|Wj)

P(Cr)
,

so we do not need to worry about it.
Since W j is a pattern, the estimation of P(Cr|Wj) can be done recursively, using Equation (3).

The recursion ends when g(W ) contains only the empty pattern. In this case P(Cr|g(W )) =
P(Cr|{{}}) = P(Cr).

2.2 Calibration Mechanism

Naı̈ve Bayes is known to perform well in what regards to classification error (Domingos and Paz-
zani, 1997) and ranking (Zhang and Su, 2004), even when its independence suppositions are vio-
lated. However, naı̈ve Bayes is also known to produce unbalanced probability estimates that are
typically too “extreme” in the sense that they are too close to zero or too close to one.

The reason why naı̈ve Bayes produces extreme probabilities is that it treats each attribute value
in a pattern as if it were new information. Since attributes are not really independent, a new attribute
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value is not 100% new information, treating it as if it were completely new reinforces the previous
beliefs of naı̈ve Bayes towards either zero or one. This reuse of information is explained by Bennett
(2000) in the context of text classification.

In order to obtain better posterior probability distributions, calibration mechanisms which try
to compensate the overly confident predictions of naı̈ve Bayes have been proposed (Bennett, 2000;
Zadrozny, 2001).

Naı̈ve Bayes assumes that attributes are independent given the class. Equation (4) assumes that
some aggregations of attributes are independent given the class. Since many of these aggregations
have attributes in common, the use of Equation (4) is equivalent to assuming independence among
attributes which are known to be highly correlated. Naı̈ve Bayes has been reported to perform
better when attributes are highly correlated than when correlation is moderate (Rish et al., 2001),
but it is quite obvious that we are reusing a lot of information and that we can expect very extreme
probability estimates. Therefore, we need to use a calibration mechanism.

Our mechanism is simpler than the ones presented by Bennett (2000) and by Zadrozny and
Elkan (2002) and is unsupervised. This makes it very fast and easy to employ within each step of
HPB.

We just made a linear combination of the result of Equation (4) and P(Cr). We did that con-
sidering that if the estimates are more extreme than the true probabilities both near zero and near
one they must match the true probabilities at some point in the middle. We believe that this point is
somewhere near P(Cr).

Extreme probabilities are produced when evidence in favor or against a class is reused. P(Cr) is
a point where either there is no evidence or there is evidence in conflicting directions in such way
that the effect is null. Thus, such a point cannot be considered extreme. Our calibration mechanism
attenuates the probabilities when they are extreme without affecting them in the point P(Cr), where,
we believe, they are already correct.

In Figure 3 we show the effect of the calibration mechanism.
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1−A · (1−P(Cr))

P′′(Cr|g(W ))

Figure 3: Effect of linear calibration over extreme probabilities

In the horizontal axis the non calibrated estimation P′(Cr|g(W )) is represented. The curved
line represents the true probability, P(Cr|g(W )), as a function of P′(Cr|g(W )). Since all informa-
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tion about P′(Cr|g(W )) comes from a finite data set such function never hits one or zero. When
P′(Cr|g(W )) is near zero, P(Cr|g(W )) is not as near. The same happens when P(Cr|g(W )) is near
one.

The 45o straight line represents what would be our final estimation if we did not do any cali-
bration, that is, P′(Cr|g(W )) itself. The other oblique straight line is the result of our calibration
mechanism, P′′(Cr|g(W )). It is still a linear approximation but it is much closer from P(Cr|g(W ))
than P′(Cr|g(W )).

2.3 Analyzing HPB

HPB tries to explore the training set as much as possible. If there are L attributes, HPB starts its
work capturing the influence of patterns of level L. At this level, all interactions among attributes
may be captured as long as there are enough training instances. However, no training set is so
large that we can expect that all level L patterns are well represented. Actually, if there are high
cardinality attributes, it is more likely that only a minority of them are represented well. For this
minority, level L dominates Equation (3) and prior probabilities are not very important. On the other
hand, prior probabilities are critical for the vast majority of cases where level L patterns are not well
represented in the training set. Then, HPB moves to level L−1. At this level, a greater fraction of
patterns are well represented and it is still possible to capture the majority of attribute interactions.
Many patterns of level L−1, however, are still not well represented and it is necessary to resort to
lower level patterns. The lower are the level of the patterns the weaker is HPB’s capacity to capture
interactions, but less common are problems with small sample sizes.

Equation (3) combines the influence of different level patterns in a way that the most specific
patterns always dominate if they are well represented. Equation (4) combines patterns in an naı̈ve
Bayes fashion, in spite of the fact that they are highly correlated. This results in extreme probability
estimates that are attenuated by the calibration mechanism in Equation (5).

Since the population of instances (both in the training and in the test set) satisfying a pattern
W is a subpopulation of the population of instances satisfying W j,∀Wj ∈ g(W ), we can say that
HPB uses results previously assessed in a wider population to build informative prior probability
distributions for narrower populations. Therefore, HPB is a an empirical Bayesian model, not a full
hierarchical Bayesian model.

In the work of Gelman et al. (2003); Andreassen et al. (2003); Stewart et al. (2003) full hier-
archical Bayesian models are presented, but they have only two levels. HPB deals with a multi
level hierarchy recursively and also handles the fact that each subpopulation is contained by several
overlapping superpopulations and not only by one superpopulation. These facts make it more diffi-
cult to build a full model that allows the calculation of all involved probability distributions at once
considering all available evidence.

2.4 HPB as a Replacement for conditional probability tables

HPB’s original goal was to be a stand alone classifier well suited a to particular domain, but it is
much more relevant as a replacement for conditional probability tables.

HPB’s use of space and time is exponential in the number of attributes. Thus, in domains with
many attributes, it is not possible to use HPB directly. However, since the number of parents of any
node in a Bayesian network is usually small because the size of a CPT is exponential in the number
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of parent nodes, HPB may be used as a replacement for Bayesian networks conditional probability
tables in almost any domain.

Space and time are frequently not the limiting factor for the number of parents of a BN node.
More parents usually mean less reliable probabilities (Keogh and Pazzani, 1999) and it is not un-
common to limit their number to two (Friedman and Goldszmidt, 1996a; Keogh and Pazzani, 1999;
Hamine and Helman, 2004). So, if HPB produces better probability estimates, it will actually allow
for the addition of more parent nodes.

If the BN structure is given, the use of HPB as a replacement of the CPT of any node, X j, is
straightforward. To calculate, P(x jk|π ji) it is just a matter of acting as if Cr = x jk and W = π ji,
ignoring all other attributes and using HPB to calculate P(Cr|W ).

If the BN structure needs to be learned from data, it is necessary to choose a scoring metric that
can work together with HPB in the task of choosing among the possible BN structures. We propose
the use of the log-likelihood evaluated using leave-one-out cross validation:

LLLOO = ∑
t

logP(Ut |S,D−{Ut}) = ∑
t

∑
j

logP(x jt |πS
jt ,D−{Ut}),

where D is the training set, Ut is the tth instance of D, S is the BN structure being scored, x jt is
the value assumed by attribute X j in the instance Ut , πS

jt is the set of values assumed, in Ut , by
the parents of X j in S and P(x jt |πS

jt ,D−{Ut}) is the value calculated by HPB for P(x jt |πS
jt) using

D−{Ut} as the training set.
HPB uses the training set only through the frequencies Nwr and Nw in Equation (3). For fast

computation of LLLOO, we can assess these frequencies in D and rely on the relations:

ND−{Ut}
w =

{

ND
w −1 if W ⊂ πS

jt ;
ND

w otherwise;

ND−{Ut}
wr =

{

ND
wr −1 if W ⊂ πS

jt ∧ x jr = x jt ;
ND

wr otherwise.

2.5 Selecting HPB Coefficients

Equations (3) and (5) require respectively the specifications of coefficients S and B. In the classi-
fication of a single instance, these equations are applied by HPB in the calculation of P(Cr|W ) for
several different patterns, W . The optimal values of S and B can be different for each pattern.

In the case of the B coefficients, we use a heuristic motivated by the fact that the level of any
pattern in g(W ) is level(W )− 1. The higher such level is, the more attributes in common the
aggregations have, the more extreme probability estimates are and the stronger must be the effect of
the calibration mechanism. Thus, we made the coefficient B in Equation (5) equal to b(level(W )−
1), where b is an experimental constant.

In the case of the S coefficients, we can employ a greedy optimization approach, or, for faster
training, simply define S to be a constant.

The optimization process we propose uses the area under the hit curve(Zhu, 2004) as a scoring
metric. The hit curve of a classifier C over a data set D is a function, hC,D(r), where r is a selection
rate (a real number in the interval [0,1]). The classifier is used to assign to each example, Ut in D the
probability that Ut is a positive instance. The value of hC,D(r) is the number of positive instances
among the r · |D| instances that were considered the most likely to be positive by the classifier.
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We employed hit curves, instead of the more popular Receiver Operating Characteristic Curves
(ROC) (Egan, 1975), because they match the interests of the user of a fraud detection system di-
rectly. Given a selection rate that reflects the available human resources, he/she wants to maximize
the number of detected frauds.

Since the concept of a positive instance only makes sense for binary class variables, the opti-
mization process only works for binary class problems.

When applicable, the process starts from the most general pattern family and moves toward the
more specific ones, where a pattern family is the set containing all patterns that define exactly the
same attributes (possibly with different values).

Assuming that the S coefficients have already been fixed for all pattern families that are more
generic than a family F , there is a single S coefficient that needs to be specified to allow the use of
Equation (3) to calculate P(Cr|W ), where W is any pattern belonging to F .

This coefficient is selected in order to maximize the area under the hit curve that is induced
when, using leave-one-out cross validation, we calculate P(C0|W ) for all training patterns, W , in F ,
where C0 is the class that is defined to be the positive class.

Calculating P(C0|W ) using leave-one-out cross validation, means, as explained in Section 2.4,
simply subtracting one from some frequencies used by Equation (3).

2.6 Computational Complexity

The training phase of the version of HPB where constant smoothing coefficients are employed
consists solely in assessing the frequencies used by Equation (3). It is easy to see that each instance,
U , such that W = Pat(U), in the training set, D, requires that exactly 2L frequencies are incremented,
where L is the number of parent attributes. Thus, HPB training time is

O(Ntr ·2
L),

where Ntr in the number of training instances.
The test (or application) phase of HPB requires that, for each test instance, U , such that W =

Pat(U), the probability distribution for the class is computed given 2L patterns. Since each compu-
tation is proportional to the number of classes, HPB test time is

O(Nts ·Mc ·2
L),

where Nts in the number of test instances and Mc is the number of classes.
Note that, in both cases, HPB running time is exponential in the number of parent attributes,

linear in the number of instances and independent of the cardinality of the parent attributes.
When the S coefficients are chosen by the optimization process described in Section 2.5, HPB

test time does not change, but training requires that, for each pattern family, several S candidates are
tested. There are 2L pattern families and each test requires applying HPB to all training instances.
Thus, HPB training time becomes

O(Ntr ·2
L +Ncand ·2

L ·Ntr ·Mc ·2
L) = O(Ncand ·Ntr ·Mc ·2

2L),

where Ncand is the number of candidates considered to choose a single S coefficient, which depends
on the search algorithm.

HPB needs to save, for each training pattern, less than 2L frequencies. Thus HPB use of space
is

O(Ntr ·2
L).
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3. Experimental Results

We evaluated HPB in three different contexts:

• misclassification detection: HPB’s motivation problem, an important classification problem
for Brazil’s Federal Revenue, where four high cardinality attributes which are supposed to
have relevant interactions are used to predict a binary class attribute;

• prediction of joint behavior: another problem originated from Brazil’s Federal Revenue where
two high cardinality attributes are used to predict a third high cardinality attribute;

• HPB as a general replacement for CPTs of Bayesian Networks: tests over several UCI data
sets comparing HPB to CPTs and other representations of the conditional probability distri-
bution of a BN node given its parents.

In all cases the classification methods were tested using the Weka Experimenter tool (Witten and
Frank, 1999) with five-fold cross validation. The machine used in the tests was an Intel Core 2 Duo
6300 with 2 GB of primary memory.

3.1 Misclassification Detection

This is the motivation problem for HPB. Considering four explanatory attributes: declared custom
code (DCC), importer (IMP), country of production (CP) and entry point in the receiving country
(EPR), we need to estimate, for each new example, the probability that it involves a misclassifica-
tion, that is, the probability that the DCC is not the correct custom code for the goods being traded.

Our data set has 682226 examples of correct classification (which we will call negative exam-
ples) and 6460 examples of misclassification (positive examples). In this data set, the first attribute
assumed 7608 distinct values, the second, 18846 values, the third, 161 values, and the fourth 80
values. There are no missing values.

We compared classifiers built using the following methods:

• HPB-OPT: BN with the direct BN structure (Figure 1), where the CPT of the class node was replaced
by HPB with selection of S coefficients by the optimization process described in Section 2.5.

• HPB: BN with the direct BN structure (Figure 1), where the CPT of the class node was replaced by
HPB with fixed S coefficients;

• NB: naı̈ve Bayes;

• Noisy-OR: BN with the direct BN structure (Figure 1) using a noisy-OR gate instead of a CPT;

• TAN: Smoothed version of tree augmented naı̈ve Bayes as described by Friedman et al. (1997) ;

• ADE: almost direct estimation. BN with the direct BN structure, traditional CPTs and the smoothing
schema described by Friedman et al. (1997);

• DE: direct estimation. BN with the direct BN structure (Figure 1) and traditional CPTs;

• DG: Decision Graph constructed following Chickering et al. (1997). In this larger experiment, devi-
ating from what was proposed by Chickering et al. (1997), we did not use DGs within BNs, but as
standalone classification methods.
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• BN-HC-DT: BN with decision trees learned using hill climbing (HC) and MDL as the scoring metric
as described by Friedman and Goldszmidt (1996b);

• BN-HC-DF: BN with default tables learned using HC and MDL as described by Friedman and Gold-
szmidt (1996b);

• PRIOR: Trivial classifier that assigns the prior probability to every instance.

We were unable to build BNs with DGs replacing CPTs following Chickering et al. (1997)
because it took too long (more than one day without completing a single fold). We found that the
construction of a DG becomes very slow when the BN node in question has high cardinality and
its parents also have high cardinality. High cardinality parents imply many possible split/merge
operations to compare in each step of the learning algorithm and a high cardinality child implies
that each comparison requires a lot of calculation.

In some experiments in the same domain, with BNs with DGs applied over smaller data sets, we
found that in the global BN structures chosen by the search algorithm described by Chickering et al.
(1997), all four explanatory attributes were parents of the class attribute. This means that if we had
used a decision graph as a standalone classification method we would have had exactly the same
results. Thus we concluded that it was worth to test a DG as a standalone classification method over
our large data set. Since our class variable is binary the running time becomes acceptable.

We tried different parameterizations for each method and chose the parameter set that provided
the best results in the five-fold cross-validation process, where best results mean best area under the
hit curve up to 20% of selection rate. We ignored the area under the curve for selection rates above
20%, because all selection rates of interest are below this threshold.

Besides using the hit curve, we compared the probability distributions estimated by the models
with the distribution actually found in the test set using two measures: root mean squared error
(RMSE) and mean cross entropy (MCE):

RMSE =

√

√

√

√

√

N

∑
t=1

M

∑
r=1

(P′(Crt)−P(Crt))
2

MN , MCE =

N

∑
i=1

M

∑
t=1

−P(Crt) log2 P′(Crt)

MN ,

where N is the number of instances in the test set, M is the number of classes, P′(C jt) is the estimated
probability that the tth instance belongs to class Cr and P(Ctr) is the true probability that t th instance
belongs to class Cr. P(Cr) is always either 0 or 1.

Many of the methods tested require the specification of parameters and many of them are real
constants. We used a common strategy to chose such constants:

1. Based on experience, decide on a search interval, SI = [beg,end], within which we believe
the ideal constant is;

2. Build a search enumeration SE containing all powers of 10, all halves of powers of 10 and
quarters of powers of 10 within SI;

3. Try all constants in SE. If the method requires more than one constant try all possible combi-
nations exhaustively;

4. If the optimal constant, C is in the middle of SE take C as the final constant;
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5. If the optimal constant, C is one of the extreme values of SE expand SE adding one more
value to it and try again. The value to be added is the real number that is the nearest to the
current optimal value that was not in SE and is a power of 10, a half of a power 10 or a quarter
of a power of 10.

By restricting ourselves to powers of 10, halves of powers of 10 and quarters of powers of 10
we try different orders of magnitude for the constants and avoid fine tuning them.

The smoothing coefficients employed by HPB-OPT are all automatically selected. The selection
involves a leave-one-out cross validation that takes place within the current training set (the five-
fold cross validation varies the current training set). The B coefficients are defined by the heuristic
described in Section 2.5 and by the constant b. The choice of b was done starting with SI = [0.5,2.5].
The value of SNI was set to zero.

HPB requires the specification of the S constant, which is used directly and the b constant which
defines the B coefficients through the heuristic in Section 2.5. The choice of b was done starting
with SI = [0.5,2.5]. To choose S we defined s = S/NumClasses = S/2 and chose s starting from
SI = [1.0,10.0]. The reason to introduce the constant s is just to follow the way Weka usually
handles smoothing constants. Again, the value of SNI was set to zero.

DGs have four parameters: the smoothing constant and three boolean parameters defining the
activation state of each of the possible operations, which are complete splits, binary splits and
merges. The smoothing constant was chosen starting from SI = [0.01,1.0]. We always kept com-
plete splits enabled and tried the variations resulted from enabling/disabling binary splits and merges
exhaustively for each smoothing constant.

Noisy-OR and PRIOR have no parameters. The optimization of all other methods involves only
the smoothing constant, which, in all cases, was chosen starting from SI = [0.01,2.5].

Below we report the optimal parameters for each method:

• HPB-OPT: b = 1.0;

• HPB: s = 5.0 and b = 1.0;

• NB: s = 0.1;

• TAN: s = 0.25 ;

• ADE: s = 0.01;

• DE: s = 2.5;

• DG CBM: s = 0.05, complete splits, binary splits and merges enabled;

• BN-HC-DT: s = 0.01;

• BN-HC-DF: s = 0.025;

In Figure 4, we show the hit curves produced by each classification method. We chose to
represent the Recall = NTruePositives/NPositives, in the vertical axis, instead of the absolute number
of hits, because this does not change the form of the curve and makes interpretation easier. We
represented the selection rate in log scale to emphasize the beginning of the curves. In Table 2 we
show the recall values for different selection rates.
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In Table 1, we show the area under the hit curve (AUC), the area under the hit curve up to 20%
of selection rate (AUC20), the root mean squared error (RMSE), the mean cross entropy (MCE),3

the training time (TR) and the test time (TS) of each method. The presence of the symbol ! before
any result means that it is significantly worse than its counterpart in the first row of the table using
a 95% confidence t-test. Since HPB is in the first row, we can see that HPB is significantly better
than all other classifiers with regard to AUC, AUC20 and MCE. With regard to RMSE, HPB was
not better than BN-HC-DT, BN-HC-DF and PRIOR.
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Figure 4: Misclassification detection - hit curves (to avoid pollution we only present curves related
to a subset of the tested methods)

3. For better visualization of the RMSE values, MCE values and their deviations, all RMSE and MCE values presented
in this paper were multiplied by 104.
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1% 2% 5% 10% 20%
HPB 18.89±0.77 26.77±0.57 41.20±1.10 55.72±1.82 72.81±1.69
HPB-
OPT

17.41±1.55 25.08±1.10 39.76±0.61 54.70±1.44 71.45±1.74

TAN 12.06±0.59 19.26±0.70 34.52±1.32 48.70±1.82 63.52±1.06
ADE 13.32±1.37 15.06±1.46 20.70±1.65 30.61±1.18 49.39±1.06
DE 8.32±0.69 10.42±0.73 16.49±0.73 26.58±0.56 45.54±0.58
DG 15.47±1.29 20.76±0.61 31.12±1.61 43.36±2.19 62.03±1.41
BN-HC-
DT

4.68±0.23 8.20±0.62 18.54±0.51 30.14±1.13 48.78±1.32

BN-HC-
DF

4.44±0.39 8.22±0.49 18.45±0.44 30.06±0.30 47.45±0.98

NB 12.06±0.35 19.07±0.87 33.76±0.68 48.37±1.70 66.24±1.56
Noisy-Or 12.86±0.46 20.36±1.13 33.45±0.73 47.36±1.69 63.26±1.52
PRIOR 1.00±0.00 2.00±0.00 5.00±0.00 10.00±0.00 20.00±0.00

Table 1: Misclassification detection - other measures

AUC AUC20 RMSE(×104) MCE(×104) TR(s) TS(s)
HPB 83.17±0.73 53.34±1.37 986.05±3.82 347.54±4.01 9.84±0.55 7.79±1.03
HPB-OPT 84.47±0.70 52.21±1.21 !1006.26±5.24 !367.20±5.10 !517.66±4.76 !11.43±1.50
TAN !78.10±0.72 !45.78±1.17 !1155.36±5.26 !484.05±7.94 !43.67±0.12 1.34±0.01
ADE !74.96±0.19 !31.43±1.25 !1005.14±6.38 !459.39±4.46 4.04±0.12 0.34±0.09
DE !72.33±0.57 !27.37±0.40 !3462.81±2.93 !2825.06±3.79 4.35±0.11 0.28±0.00
DG !76.12±0.90 !42.89±1.55 !1007.47±6.90 !519.49±30.82 !577.78±29.29 4.47±0.48
BN-HC-
DT

!70.47±0.76 !29.95±0.85 960.89±0.25 !364.68±1.59 !125.01±1.21 !2446.17±113.19

BN-HC-DF !69.79±0.76 !29.63±0.43 960.78±0.26 !365.03±1.25 !2433.02±20.20 !265.02±3.41
NB !81.73±0.79 !46.33±1.08 !1120.25±6.84 !419.47±6.68 4.79±0.06 0.28±0.00
Noisy-Or !79.13±0.64 !45.07±1.09 !1016.06±5.08 !in f±0.00 4.73±0.07 0.28±0.00
PRIOR !50.48±0.01 !10.48±0.01 963.96±0.00 !383.27±0.00 4.87±0.46 0.28±0.00

Table 2: Misclassification detection - recall at different selection rates

The PRIOR method is very conservative, assigning the prior probability to every instance. In
this data set, such strategy results in a good MCE and a good RMSE. On the other hand, the PRIOR
method has absolutely no discrimination power, considering all instances to be equally likely to be
positive. In Figure 4 and Table 2, we can see that this results in random selection, just checking that
recall is always approximately equal to the selection rate.

BN-HC-DT and BN-HC-DF produced similar hit curves as can be seen in Table 2. In Figure 4
BN-HC-DT is the second worse method. The reason is that the construction of DTs and DFs
presented by Friedman and Goldszmidt (1996b) turned out to be very conservative, tending to prefer
simple structures: DFs with few rows and DTs with few splits. Observing the PRIOR method
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results, it is not surprising that this conservative behavior results in a good MCE, a good RMSE and
an unsatisfactory hit curve in comparison to other methods.

At a selection rate of 1%, ADE performs better than NB, noisy-OR and TAN, but for higher
selection rates it is worse by a very significant margin. The reason is that critical patterns involving
all attributes are decisive in the very beginning of the curves. ADE treats all attributes at once and
thus can benefit from their presence, but soon ADE is forced to choose among test patterns for which
there are no identical training patterns. At this point it starts to choose at random (in the average,
17% of the positive test instances are identical to at least one training instance).

Using Decision Graphs (with binary splits enabled), the most critical patterns were separated
from the others and that resulted in a significant improvement in the beginning of the hit curve in
comparison to methods like NB, noisy-OR or TAN, which cannot capture the influence of many
attributes at once. However, the other patterns were clustered into few leaves in the graph. Within a
leaf all patterns are considered equally likely to be positive. This resulted in loss of discrimination
power for selection rates above 5%.

HPB (in both versions) benefits from critical patterns involving many or even all attributes, but
also considers the influence of less specific patterns. As a consequence, it performs well for any
selection rate. The version of HPB that uses a fixed value for the S coefficients is worse than NB
for selection rates above 45%, but at this point, recall is already of 87% for both methods and the
differences between them are never significant. Except for its non-optimized version, HPB-OPT is
better than any other method for all selection rates, but the optimization process makes it fifty times
slower than the simpler HPB.

It is worth noting that even the slower version of HPB is faster than the methods involving
decision graphs, decision trees and default tables.

Since the cardinality of the attributes is a problem in this domain, we decided to also test all
classification methods on a transformed data set where the cardinality of all attributes were reduced
by the agglomerative information bottleneck method (AIBN). To prevent AIBN from using infor-
mation from the test sets, we implemented a Weka meta classifier that applies AIBN immediately
before training the real classifier and after each training set was separated from its associated test
set in the five-fold cross validation process.

AIBN reduces the cardinality of an attribute by successively executing the merge of two values
that results in minimum mutual information lost. The process can continue till a single value lasts,
but can be stopped at any convenient point. We chose to limit the loss of mutual information to
1e−4, a very low value. In spite of this, the cardinality reduction was accentuated. Table 3 shows
the cardinality of the attributes before and after reduction.

Attribute Original Cardinality Final Cardinality
DCC 7608 101
IMP 18846 84
CP 161 50
EPR 80 28

Table 3: Cardinality reduction using AIBN
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Because of the lower cardinality of the resulting attributes, it was possible to test BNs with DGs
instead of standalone DGs. Results are in Table 4, Figure 5 and Table 5.

1% 2% 5% 10% 20%
HPB 14.28±0.40 20.72±0.47 35.05±0.92 51.14±2.00 67.70±2.04
HPB-
OPT

10.86±0.51 17.74±0.73 34.00±1.06 50.08±2.09 67.76±2.12

TAN 10.11±0.67 17.66±0.90 32.15±1.54 46.78±1.70 63.78±0.76
ADE 13.10±0.53 16.36±1.20 20.42±1.34 33.82±1.44 55.72±1.06
DE 8.28±0.59 11.17±0.64 19.40±0.64 32.82±0.47 56.66±0.63
BN-DG 8.14±0.46 17.40±0.66 32.12±1.38 45.44±1.12 60.66±1.48
BN-HC-
DT

6.10±0.53 15.18±0.19 27.12±1.66 38.68±2.26 57.21±1.99

BN-HC-
DF

6.22±0.45 14.94±0.15 26.33±0.56 37.92±1.53 55.05±1.21

NB 10.22±0.55 17.09±0.83 31.50±0.84 46.28±1.73 64.14±1.85
Noisy-Or 4.84±0.26 14.80±0.52 29.79±0.87 44.70±1.72 62.78±1.97
PRIOR 1.00±0.00 2.00±0.00 5.00±0.00 10.00±0.00 20.00±0.00

Table 4: Misclassification detection with cardinality reduction - recall at different selection rates

HPB and HPB-OPT are still the best methods but they lose much of their ability to explore
critical patterns, and, at a selection rate of 1%, they do not perform nearly as well as they did
over the original data set. The reason is that AIBN joins attribute values looking at each attribute
separately and thus ignoring any interaction among them. In this case, relevant interactions were
lost.

BNs with DGs lost much of their ability to explore critical patterns too, which also resulted in a
much worse performance at a selection rate of 1%.

3.2 Prediction of Joint Behavior

In some problems of interest for Brazil’s Federal Revenue it is important to answer the following
question: what do two or more actors tend to do when they act together? When BNs are used to
model such problems, their structure tend to follow the sketch in Figure 6.
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Figure 5: Misclassification detection with cardinality reduction - hit curves (to avoid pollution we
only present curves related to a subset of the tested methods)

Other Nodes
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Actor in Role 1 

Action

Actor in Role 2 ... Actor in Role N 

Figure 6: actors Bayesian network
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AUC AUC20 RMSE(×104) MCE(×104) TR(s) TS(s)
HPB 81.51±0.72 48.07±1.43 1037.82±3.51 385.10±4.59 8.30±0.07 5.74±0.03
HPB-OPT 82.16±0.85 47.28±1.44 956.09±1.06 350.67±1.98 !148.66±2.73 !6.32±0.02
TAN !80.27±0.61 !44.21±1.15 !1103.69±5.84 !419.30±5.32 !18.40±0.53 1.40±0.02
ADE !75.90±0.52 !35.05±1.20 953.39±1.38 354.56±2.25 2.96±0.02 0.69±0.01
DE !75.85±0.48 !34.45±0.47 !1967.97±7.53 !914.90±6.01 !17.90±0.14 0.70±0.03
BN-DG !78.98±0.84 !42.59±1.18 !1064.32±7.84 !393.07±8.34 !33.35±1.11 !7.84±0.09
BN-HC-
DT

!77.56±0.87 !37.72±1.73 !1065.34±6.17 !393.08±1.54 !154.79±9.83 !21.37±0.80

BN-HC-
DF

!77.09±0.68 !36.75±0.99 !1058.77±3.53 389.11±4.16 !234.64±56.99 !7.80±0.11

NB 81.11±0.84 !44.24±1.53 !1142.89±6.04 !429.37±6.61 !16.78±0.11 0.45±0.01
Noisy-Or !80.11±0.84 !42.15±1.48 !1122.98±5.38 !in f±0.00 !16.65±0.11 0.44±0.02
PRIOR !50.48±0.01 !10.48±0.01 963.96±0.00 383.27±0.00 !17.42±1.75 0.44±0.01

Table 5: Misclassification detection with cardinality reduction - other measures

Since the number of possible actors can be very big, but the number of roles is usually small,
it seems reasonable to replace the CPT of the Action node in Figure 6 with HPB. However, in
Section 3.1, HPB was used to predict a binary class. The number of possible actions can be high,
so we have a different challenge for HPB.

In this section, we present the performance of HPB in a standalone classification problem which
was built to resemble the problem of calculating the prior probability distribution of the Action
node in Figure 6. We used two high cardinality explanatory attributes: the importer (IMP) and the
exporter (EXP)4 to predict another high cardinality variable, the declared custom code (DCC). Note
that we are not predicting if there is a misclassification or not, but the DCC itself.

The importer attribute can assume 18846 values, the exporter attribute can assume 43880 values
and the declared custom code can assume 7608 values. There are no missing values.

The tested methods were:

• HPB: BN with a direct BN structure and HPB with fixed S coefficients;

• NB: naı̈ve Bayes;

• ADE: almost direct estimation. BN with a direct BN structure and the smoothing schema described by
Friedman et al. (1997);

• DE: direct estimation. BN with a direct BN structure and traditional CPTs;

• DE Imp: direct estimation, ignoring the exporter attribute;

• DE Exp: direct estimation, ignoring the importer attribute.

HPB-OPT was not tested because its optimization process requires a binary class variable. We
did not test DGs, DFs and DTs because the combination of high cardinality parents and a high
cardinality child makes them too slow.

4. The exporter attribute was not available when we ran the tests in Section 3.1, so we did not use it there.
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The parameters for each method were chosen as in Section 3.1, but MCE was used as the
selection criterion. Below we present the initial search intervals and the optimal constants (s =
S/NumClasses = S/7608):

• HPB: The SI for the s constant was [1e− 4,1e− 03] and the optimal value for s was equal to 1e− 3.
The SI for the b constant was [0.5,2.5] and the optimal value for b was equal to 1.0. SNI was always
set to be equal to S;

• NB: SI = [1e−3,2.5], s = 0.05;

• ADE: SI = [1e−3,2.5], s = 1e−3;

• DE: SI = [1e−3,2.5], s = 1e−3;

• DE Imp: SI = [1e−3,2.5], s = 1e−3;

• DE Exp: SI = [1e−3,2.5], s = 2.5e−3;

Table 6 shows that HPB is the best method with regard to RMSE, MCE and number of correct
predictions (NC). The difference is significant with the exception that HPB was not significantly
better than NB with respect to number of correct assignments.

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
HPB 108.37 ± 0.02 8.31 ± 0.00 26882.40 ± 89.76 19.51 ± 0.06 35.48 ± 0.17 1800.73 ± 2.99
DE !108.88 ± 0.02 !9.37 ± 0.01 !25796.20 ± 63.73 !18.72 ± 0.04 1.87 ± 0.05 39.82 ± 0.03
ADE !108.87 ± 0.01 !8.78 ± 0.01 !26039.20 ± 58.11 !18.90 ± 0.04 2.13 ± 0.01 46.17 ± 0.06
DE Exp !108.91 ± 0.01 !9.07 ± 0.01 !25257.60 ± 64.14 !18.33 ± 0.04 2.95 ± 0.15 77.03 ± 7.94
DE Imp !110.42 ± 0.01 !8.95 ± 0.01 !22077.60 ± 90.97 !16.02 ± 0.06 3.24 ± 0.20 73.50 ± 0.51
NB !111.89 ± 0.05 !9.23 ± 0.01 26803.00 ± 118.12 19.45 ± 0.08 4.01 ± 0.19 357.24 ± 1.18

Table 6: Prediction of joint behavior

3.3 HPB as a General Replacement for CPTs of Bayesian Networks

In this section we test HPB over UCI data sets. Our goal is to observe its performance in domains
whose characteristics are different from the ones which inspired its design. We evaluated the perfor-
mance of Bayesian networks where the usual CPTs were replaced with HPB models. For compar-
ison we also evaluated BNs using other representations for the conditional probability distribution
(CPD) of a node given its parents . Below we list all tested CPD representations:

• HPB: HPB as described in Section 2.4;

• DE: direct estimation, that is, traditional CPTs;

• ADE: almost direct estimation. Also CPTs but using the smoothing strategy presented by Friedman
et al. (1997);

• DG: decision graphs as presented by Chickering et al. (1997);

• DT: decision trees as presented by Friedman et al. (1997);

• DF: default tables as presented by Friedman et al. (1997).
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In all cases, we learned the global BN structure using the hill climbing search algorithm im-
plemented in Weka 3.4.2 and used NB as the starting point. To guarantee that we would not have
excessively long execution times we limited the maximum number of parents to 10 and because
HPB does not handle continuous attributes we removed them all. We also removed all instances
with missing attributes.

Depending on the chosen representation for the CPDs, we employed different scoring metrics
in the BN structure search. Below we list our choices:

• HPB: log-likelihood evaluated using leave-one-out cross validation;

• DE: MDL;

• ADE: MDL;

• DGs: Bayesian Dirichlet scoring metric as presented by Chickering et al. (1997);

• DTs: MDL as presented by Friedman and Goldszmidt (1996b);

• DFs: MDL as presented by Friedman and Goldszmidt (1996b).

The tested data sets were: anneal, audiology, autos, breast-cancer, horse-colic, credit-rating,
german-credit, cleveland-14-heart-disease, hungarian-14-heart-disease, hepatitis, hypothyroid, kr-
vs-kp, labor, lymphography, mushroom, primary-tumor, sick, soybean, vote and zoo.

Before building a BN we decided on fixed equivalent sample size for the prior probability distri-
butions (this means a fixed S constant) and used it for all HPB’s instances inside the BN. Fortunately,
the optimal values for the equivalent sample sizes tend to be similar.

We chose S starting from SI = [1.0,25.0] and, forced the SNI be identical to the S. The b constant
was chosen starting from SI = [0.5,2.5].

We chose the s constant (s = S/NumClasses) for DGs starting from SI = [0.01,2.5]. We always
kept complete splits enabled and exhaustively varied the activation state of binary splits and merges.
We chose the s constant for the other methods starting from SI = [0.01,2.5].

In contrast to Sections 3.1 and 3.2 we did not expand the initial search intervals if the optimal
value for a constant turned out to be in one of its extreme points.

We compared the results using three criteria: number of correct classifications (NC), mean cross
entropy (MCE) and root mean squared error (RMSE). To save space we present only the numbers
of times where each method resulted in the best average performance. Since selecting the best
parameterization for each method using a criterion and comparing the methods using only the same
criterion would possibly not provide the reader enough information, we selected parameterizations
using all three criteria and compared the methods using also all the three criteria in exhaustive
combinations. In some cases, two or more classifiers resulted in exactly the same value for NC.
In these cases, if NC was the comparison criterion, we used MCE to decide who was the winner.
Results are in Table 7. Details are available in appendix A.

2162



HPB: A MODEL FOR HANDLING BN NODES WITH HIGH CARDINALITY PARENTS

Sel.Crit. Comp.Crit. HPB DG DF DT ADE DE
NC NC 9 6 2 1 1 1
NC MCE 9 5 2 1 2 1
NC RMSE 7 6 4 1 1 1
MCE NC 9 5 2 0 3 1
MCE MCE 10 5 2 1 0 2
MCE RMSE 8 6 4 0 1 1
RMSE NC 7 7 4 0 1 1
RMSE MCE 9 5 2 1 1 2
RMSE RMSE 8 6 4 0 1 1

Table 7: Number of winning results in UCI data sets

HPB DG DF DT ADE DE
3.18 3.79 1.49 1.56 1.0 1.0

Table 8: Proportions among the number of arcs of BN structures

In Table 8 we show the average proportions between the number of arcs in the BN structures learned
using each CPD representation and the BN structures learned using direct estimation (traditional
CPTs). We can see that, as predicted by Friedman and Goldszmidt (1996b), the use of structures
like DFs, DTs and DGs does result in BNs with more arcs. The use of HPB has a similar effect.

As shown in Section 3.1, HPB is much faster than DGs, DTs and DFs in the task of handling
a small set of high cardinality explanatory attributes. However, in UCI tests, many BN structures
involved sets of low cardinality parents. This makes HPB comparatively slow. HPB was, in all
cases, the slowest method and in some of them more than 10 times slower than the second slowest
method.

Moreover, the advantage of HPB in all three criteria (MCE, RMSE and NC) was rarely statisti-
cally significant. Thus, we cannot recommend HPB as a general replacement for CPTs.

However, the vast majority of variables in the tested data sets have low cardinality (the highest
cardinality variable among all data sets is the audiology class variable with 24 possible values) and
many of them are binary. In spite of this, HPB’s are clearly the best results in Table 7 showing that
good prior probability distributions, can, many times, improve the quality of predictions.

We can say that a BN where CPDs are represented using HPB has a quite high probability
of producing better classification predictions than BNs employing other CPD representations. The
only explanation we found for this fact is that HPB represents some CPDs better than its alternatives
and that such better representations result in BNs with better classification predictions, even when
the characteristics of the attributes are opposite to the ones that inspired HPB.

This suggests that it should not be difficult to find problems where, if a BN is employed, there
will be one or more BN nodes where it will be worth using HPB.
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4. Conclusions

We presented HPB a novel multilevel empirical hierarchical Bayesian model, which is intended to
replace conditional probability tables of Bayesian network nodes whose parents have high cardinal-
ity.

We presented HPB in two versions. The first version involves an optimization process to choose
the best smoothing coefficients for each family of patterns, while the second and simpler version
employs a fixed smoothing coefficient. We prefer the simpler version because it is much faster and
can handle non binary child nodes.

We evaluated HPB in the domain of preselection of imported goods for human verification using
hit curves, RMSE and MCE. In this domain, interactions among attributes have a great influence
over the probability of finding a positive instance of misclassification, but due to the high cardinality
of the attributes in this domain, exploiting such interactions is challenging.

Even the simpler version of HPB was shown capable of capturing the influence of interactions
among high cardinality attributes and achieved performance improvements over standard Bayesian
network methods like naı̈ve Bayes and tree augmented naı̈ve Bayes, over Bayesian networks where
traditional conditional probability tables were substituted by noisy-OR gates, default tables, decision
trees and decision graphs, and over Bayesian networks constructed after a cardinality reduction
preprocessing phase using the agglomerative information bottleneck method.

HPB’s execution time is exponential in the number of parents of a BN node but independent of
their cardinality. Since the number of parents of a BN node is almost always small, for nodes whose
parents have high cardinality, HPB, at least when its smoothing coefficients are fixed, is much faster
than default tables, decision trees or decision graphs when employed to represent the conditional
probability distribution of the node given its parents. This version of HPB uses the training set only
through frequencies, thus data can be added dynamically without any retraining procedures other
than some frequency increments.

We tested HPB in another classification problem: the prediction of the behavior of two ac-
tors when they act together. As a subproblem, this prediction is relevant in several fraud detection
domains and, if the general problem is modeled as a BN, generally appears as the the task of repre-
senting the CPD of a particular node given its parents. The results, again, favored HPB.

We also provide experimental results over UCI data sets, where Bayesian network classifiers
with different CPD representations are compared. Despite the fact that these data sets do not include
high cardinality attributes, HPB was the representation that resulted in more winnings than any other
representation in three comparison measures. The comparatively large execution times and the fact
that most differences in comparison measures were not significant, do not allow us to propose HPB
as a general replacement for CPTs. However, we can still conclude that BN nodes whose CPDs
given their parents are better represented by HPB than by other methods are not rare. This fact
indicates that HPB may have a quite wide applicability.

HPB can be very useful in practice. If specialists are handcrafting a Bayesian network structure,
they want it to reflect the structure of the target problem. If this results in a node with high cardinality
parents, they can just use HPB as a plug-in replacement for the CPT of the node and keep the
structure they want. Without a method like HPB the high cardinality parents could easily result
in unreliable probability estimates that could compromise the whole model. The specialists would
have to accept a BN structure that would not reflect the target problem as closely as the original one,
but which would avoid the use of high cardinality nodes as parents of the same node.
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Full hierarchical Bayesian models have been widely used in the marketing community under the
name of Hierarchical Bayes (Allenby et al., 1999; Lenk et al., 1996). These models have also been
used in medical domains (Andreassen et al., 2003) and robotics (Stewart et al., 2003). However, we
are not aware of any hierarchical Bayesian model that can replace conditional probability tables of
Bayesian network nodes whose parents have high cardinality. Moreover, HPB deals with a multi
level hierarchy recursively and also handles the fact that the population of instances associated to
each pattern is contained by several overlapping superpopulations and not by a single one. It would
be very difficult to build a full hierarchical Bayesian model that can do the same.

As future work we leave the development of better mechanisms to select HPB coefficients.
Both optimization processes and heuristics should be considered. The first for the most reliable
predictions and the last for fast and acceptable ones.

The pattern hierarchy employed by HPB is fixed, symmetrical (all attributes are treated the
same way) and complete (all subsets of each pattern of interest are considered in the calculation of
the probability of a class given the pattern). It is possible that there exists an incomplete, possibly
asymmetrical hierarchy that would lead to better results. Developing an algorithm to search for such
hierarchy is also left as future work.

We compared HPB against algorithms which employ the best default tables, decision trees and
decision graphs chosen using some criterion. If instead of this we employed mixtures of probability
tables (Fujimoto and Murata, 2006) where default tables, decision trees or decision graphs were
used as category integration tables, results could be better. As a final future work we leave the
development of an algorithm that can build such a mixture model and the comparison of its results
to HPB’s ones.
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Appendix A. Detailed Results over UCI Data Sets

In this appendix we detail the results of our tests over UCI data sets (see Section 3.3). To save space
we only present results where the number of correct classifications (NC) was used to select the best
parameterization for each method. The methods appear in the tables in decreasing order of NC. In
some cases, two or more classifiers resulted in exactly the same value for NC. In these cases, we
used MCE to decide the order. Results are in Table 9, Table 10 and Table 11.
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ANNEAL RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 817.69 ± 123.19 199.99 ± 86.45 175.00 ± 2.54 97.43 ± 1.22 18.21 ± 0.75 0.04 ± 0.00
BN-HC-HPB 820.43 ± 69.84 182.20 ± 34.07 174.80 ± 1.09 97.32 ± 0.46 !314.35 ± 62.57 !6.24 ± 1.72
BN-HC-DF !1289.10 ± 117.59 !469.69 ± 86.02 !168.60 ± 2.07 !93.87 ± 1.11 2.56 ± 0.08 0.02 ± 0.00
BN-HC-DT !1486.14 ± 122.19 !610.11 ± 117.16 !166.00 ± 2.34 !92.42 ± 1.22 8.74 ± 0.36 0.04 ± 0.00
NB !1449.24 ± 131.34 !623.72 ± 158.70 !165.00 ± 1.58 !91.87 ± 0.75 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DE !1565.84 ± 142.88 !625.42 ± 115.93 !162.60 ± 3.28 !90.53 ± 1.95 2.09 ± 0.10 0.01 ± 0.00
BN-HC-ADE !1529.27 ± 144.05 !604.07 ± 105.71 !159.19 ± 6.14 !88.63 ± 3.28 2.09 ± 0.09 0.02 ± 0.00
AUDIOLOGY RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1062.27 ± 164.74 443.77 ± 168.94 37.40 ± 2.19 82.75 ± 5.01 1207.20 ± 207.25 19.39 ± 4.30
NB 1199.52 ± 141.70 !1034.56 ± 355.41 35.60 ± 2.50 78.76 ± 5.56 0.05 ± 0.00 0.00 ± 0.00
BN-HC-BDG 1200.72 ± 236.04 608.81 ± 271.34 35.40 ± 4.09 78.32 ± 9.18 64.59 ± 6.16 0.06 ± 0.00
BN-HC-DF !1343.05 ± 121.85 !728.90 ± 167.44 !32.20 ± 2.58 !71.23 ± 5.67 17.60 ± 1.97 0.04 ± 0.00
BN-HC-DE !1521.41 ± 39.31 !906.80 ± 44.24 !28.00 ± 0.70 !61.95 ± 1.68 14.18 ± 0.44 0.03 ± 0.00
BN-HC-ADE !1521.01 ± 39.43 !927.73 ± 51.99 !28.00 ± 0.70 !61.95 ± 1.68 14.22 ± 0.51 0.04 ± 0.00
BN-HC-DT !1559.49 ± 49.27 !970.53 ± 52.04 !26.40 ± 1.67 !58.39 ± 3.43 13.98 ± 1.06 0.07 ± 0.00
AUTOS RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 2704.17 ± 150.42 2021.03 ± 232.97 26.40 ± 1.67 64.39 ± 4.08 1.26 ± 0.34 0.09 ± 0.01
BN-HC-BDG 2804.60 ± 156.24 !2484.20 ± 367.24 26.40 ± 1.81 64.39 ± 4.43 0.70 ± 0.07 0.00 ± 0.00
NB 2806.48 ± 157.29 2296.88 ± 433.79 !24.80 ± 0.83 !60.48 ± 2.04 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF !3037.27 ± 123.34 !2518.42 ± 245.10 !20.60 ± 2.19 !50.24 ± 5.34 0.16 ± 0.01 0.00 ± 0.00
BN-HC-ADE !3124.67 ± 98.05 !2682.00 ± 226.16 !18.60 ± 2.19 !45.36 ± 5.34 0.12 ± 0.00 0.00 ± 0.00
BN-HC-DE !3124.67 ± 98.03 !2682.11 ± 226.19 !18.60 ± 2.19 !45.36 ± 5.34 0.12 ± 0.00 0.00 ± 0.00
BN-HC-DT !3124.67 ± 98.03 !2682.11 ± 226.19 !18.60 ± 2.19 !45.36 ± 5.34 0.20 ± 0.00 0.00 ± 0.00
BREAST-CANCER RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 4401.36 ± 208.72 4164.95 ± 318.23 42.60 ± 1.81 74.47 ± 3.16 0.18 ± 0.04 0.00 ± 0.00
NB 4429.70 ± 690.84 4467.29 ± 1408.44 42.20 ± 4.32 73.79 ± 7.75 0.05 ± 0.00 0.00 ± 0.00
BN-HC-HPB 4511.98 ± 380.22 4519.62 ± 716.09 42.20 ± 2.77 73.78 ± 5.03 !0.49 ± 0.03 !0.01 ± 0.00
BN-HC-DF 4454.83 ± 217.54 4240.36 ± 327.92 41.80 ± 1.78 73.07 ± 2.96 0.14 ± 0.00 0.00 ± 0.00
BN-HC-DT 4470.69 ± 281.55 4247.27 ± 402.75 40.20 ± 4.32 70.27 ± 7.54 !0.22 ± 0.01 0.00 ± 0.00
BN-HC-DE 4485.58 ± 234.38 4284.39 ± 352.75 39.40 ± 3.78 68.88 ± 6.60 0.12 ± 0.00 0.00 ± 0.00
BN-HC-ADE 4488.31 ± 248.77 4291.26 ± 377.44 39.40 ± 3.78 68.88 ± 6.60 0.12 ± 0.00 0.00 ± 0.00
HORSE-COLIC RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 3496.97 ± 528.93 2962.44 ± 762.94 62.00 ± 3.39 84.23 ± 4.45 4.35 ± 1.80 0.05 ± 0.00
BN-HC-DT 3580.15 ± 682.03 3689.41 ± 1470.42 62.00 ± 4.41 84.23 ± 5.87 0.51 ± 0.04 0.00 ± 0.00
BN-HC-BDG 3557.76 ± 367.29 3156.62 ± 608.12 61.60 ± 3.20 83.69 ± 4.36 2.49 ± 0.48 0.00 ± 0.00
BN-HC-DF 3488.76 ± 560.79 3072.05 ± 1039.40 61.20 ± 4.08 83.15 ± 5.60 0.31 ± 0.01 0.00 ± 0.00
BN-HC-DE 3630.07 ± 699.88 3907.53 ± 1591.14 61.20 ± 3.96 83.14 ± 5.22 0.21 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3648.28 ± 683.27 3900.65 ± 1545.75 60.80 ± 3.70 82.60 ± 4.92 0.21 ± 0.00 0.00 ± 0.00
NB 3951.10 ± 596.02 !4951.78 ± 1805.65 60.40 ± 3.57 82.06 ± 4.81 0.05 ± 0.00 0.00 ± 0.00
CREDIT-RATING RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 3115.11 ± 216.95 2423.92 ± 284.79 120.80 ± 3.19 87.53 ± 2.31 0.69 ± 0.17 0.00 ± 0.00
BN-HC-HPB 3245.36 ± 289.67 2578.43 ± 364.32 120.20 ± 4.14 87.10 ± 3.00 1.05 ± 0.46 !0.06 ± 0.02
BN-HC-DE 3220.08 ± 205.71 2571.82 ± 353.12 119.20 ± 2.94 86.37 ± 2.13 0.15 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3221.82 ± 212.88 2577.11 ± 357.98 119.20 ± 2.94 86.37 ± 2.13 0.16 ± 0.00 0.00 ± 0.00
BN-HC-DF 3224.01 ± 122.88 2527.08 ± 166.69 118.60 ± 1.67 85.94 ± 1.21 0.19 ± 0.00 0.00 ± 0.00
BN-HC-DT 3213.24 ± 224.72 2529.39 ± 292.68 118.60 ± 3.28 85.94 ± 2.38 0.36 ± 0.02 0.00 ± 0.00
NB 3304.10 ± 195.52 2754.44 ± 278.50 118.60 ± 1.67 85.94 ± 1.21 0.06 ± 0.00 0.00 ± 0.00
GERMAN-CREDIT RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
NB 4167.54 ± 164.17 3789.33 ± 258.83 149.80 ± 7.39 74.89 ± 3.69 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF 4166.08 ± 96.36 3788.58 ± 106.86 148.60 ± 6.14 74.30 ± 3.07 !0.40 ± 0.02 !0.00 ± 0.00
BN-HC-HPB 4244.67 ± 165.79 3934.53 ± 320.17 147.80 ± 2.94 73.90 ± 1.47 !4.69 ± 1.83 !0.13 ± 0.03
BN-HC-DT 4216.53 ± 111.46 3851.92 ± 172.64 147.60 ± 4.87 73.80 ± 2.43 !1.06 ± 0.03 !0.00 ± 0.00
BN-HC-BDG 4228.17 ± 121.41 3882.09 ± 227.78 146.60 ± 5.22 73.30 ± 2.61 !1.10 ± 0.18 0.00 ± 0.00
BN-HC-ADE 4230.48 ± 126.66 3876.35 ± 199.32 145.60 ± 6.02 72.80 ± 3.01 !0.37 ± 0.01 0.00 ± 0.00
BN-HC-DE 4223.58 ± 123.27 3855.98 ± 192.26 145.40 ± 6.84 72.70 ± 3.42 !0.36 ± 0.01 0.00 ± 0.00
CLEVELAND-14-
HEART-DISEASE

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)

BN-HC-DF 2339.91 ± 113.39 1296.49 ± 119.09 49.80 ± 1.78 82.17 ± 2.72 0.09 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2366.36 ± 154.85 1333.08 ± 182.49 49.60 ± 2.07 81.84 ± 3.28 !0.12 ± 0.01 0.00 ± 0.00
BN-HC-HPB 2381.80 ± 136.95 1299.65 ± 95.18 49.40 ± 1.14 81.51 ± 1.44 !0.20 ± 0.00 !0.05 ± 0.02
NB 2354.95 ± 182.24 1334.42 ± 181.36 49.40 ± 2.40 81.50 ± 3.61 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DT 2362.61 ± 152.32 1338.52 ± 166.44 49.00 ± 2.54 80.84 ± 3.70 !0.13 ± 0.00 0.00 ± 0.00
BN-HC-DE !2487.86 ± 110.45 !1495.27 ± 134.98 47.60 ± 2.70 78.54 ± 4.22 0.09 ± 0.00 0.00 ± 0.00
BN-HC-ADE !2488.44 ± 116.62 1428.83 ± 142.14 47.40 ± 2.88 78.20 ± 4.46 0.09 ± 0.00 0.00 ± 0.00
HUNGARIAN-14-
HEART-DISEASE

RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)

BN-HC-HPB 2186.65 ± 256.16 1278.47 ± 198.23 49.20 ± 2.58 83.69 ± 4.82 0.30 ± 0.05 0.04 ± 0.00
NB 2184.21 ± 410.39 1163.94 ± 327.13 48.20 ± 4.43 82.01 ± 8.05 0.05 ± 0.00 0.00 ± 0.00
BN-HC-ADE 2289.01 ± 475.44 1251.44 ± 402.26 47.60 ± 4.39 80.98 ± 7.93 0.08 ± 0.00 0.00 ± 0.00
BN-HC-DE 2299.81 ± 486.99 1275.80 ± 426.23 47.60 ± 4.39 80.98 ± 7.93 0.08 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2290.08 ± 331.60 1319.64 ± 275.60 47.40 ± 3.50 80.62 ± 6.13 0.26 ± 0.02 0.00 ± 0.00
BN-HC-DF 2305.03 ± 411.21 1275.65 ± 332.30 46.60 ± 4.15 79.28 ± 7.55 0.08 ± 0.00 0.00 ± 0.00
BN-HC-DT 2330.69 ± 360.65 1278.32 ± 273.29 46.40 ± 4.87 78.94 ± 8.72 0.12 ± 0.00 0.00 ± 0.00

Table 9: Comparisons over UCI data sets
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HEPATITIS RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-ADE 3337.13 ± 410.16 2722.43 ± 691.25 26.60 ± 0.89 85.80 ± 2.88 0.15 ± 0.01 0.00 ± 0.00
BN-HC-DT 3343.89 ± 668.03 2800.25 ± 1027.57 26.60 ± 1.67 85.80 ± 5.39 !0.26 ± 0.01 0.00 ± 0.00
BN-HC-DE 3369.93 ± 385.56 2767.97 ± 708.74 26.40 ± 1.51 85.16 ± 4.89 0.14 ± 0.00 0.00 ± 0.00
NB 3605.14 ± 587.26 3782.49 ± 1160.16 26.40 ± 1.51 85.16 ± 4.89 0.06 ± 0.00 0.00 ± 0.00
BN-HC-HPB 3354.12 ± 303.11 2587.67 ± 413.88 26.20 ± 0.83 84.51 ± 2.69 !0.65 ± 0.07 !0.01 ± 0.00
BN-HC-BDG 3580.20 ± 601.23 3797.96 ± 1617.52 26.20 ± 1.30 84.51 ± 4.20 !0.33 ± 0.01 0.00 ± 0.00
BN-HC-DF 3540.69 ± 455.63 3069.03 ± 1017.49 25.80 ± 0.83 83.22 ± 2.69 0.16 ± 0.01 0.00 ± 0.00
HYPOTHYROID RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1894.74 ± 13.90 1117.79 ± 33.44 696.20 ± 0.44 92.28 ± 0.05 395.15 ± 41.22 4.80 ± 0.36
BN-HC-DF 1895.51 ± 6.60 1130.20 ± 25.31 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.04 0.04 ± 0.00
BN-HC-ADE 1898.35 ± 7.58 1135.40 ± 16.14 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.14 0.04 ± 0.00
BN-HC-DE 1898.35 ± 7.58 1135.44 ± 16.11 696.20 ± 0.44 92.28 ± 0.05 4.25 ± 0.12 0.03 ± 0.00
BN-HC-DT 1906.34 ± 14.12 !1159.86 ± 26.54 696.20 ± 0.44 92.28 ± 0.05 22.10 ± 0.86 0.09 ± 0.00
BN-HC-BDG 1888.97 ± 20.46 1106.31 ± 51.51 696.00 ± 0.70 92.25 ± 0.07 35.19 ± 1.43 0.07 ± 0.00
NB 1895.38 ± 11.11 1134.41 ± 31.89 696.00 ± 0.70 92.25 ± 0.11 0.06 ± 0.00 0.00 ± 0.00
KR-VS-KP RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 1301.83 ± 192.75 505.85 ± 125.79 624.60 ± 4.61 97.71 ± 0.75 161.41 ± 4.41 0.05 ± 0.00
BN-HC-HPB 1404.34 ± 203.37 574.37 ± 157.82 624.00 ± 4.74 97.62 ± 0.69 !2241.20 ± 90.05 !15.30 ± 0.95
BN-HC-DF !1780.81 ± 276.91 !894.29 ± 172.35 !615.20 ± 8.64 !96.24 ± 1.35 20.74 ± 1.43 0.04 ± 0.00
BN-HC-DT !1696.09 ± 153.76 !727.22 ± 133.38 !614.79 ± 2.68 !96.18 ± 0.46 !187.80 ± 11.61 !0.10 ± 0.00
BN-HC-DE !1889.40 ± 142.39 !959.52 ± 142.96 !612.00 ± 6.00 !95.74 ± 0.90 14.04 ± 0.32 0.03 ± 0.00
BN-HC-ADE !1888.02 ± 135.00 !931.64 ± 141.25 !611.20 ± 4.26 !95.61 ± 0.62 14.05 ± 0.34 0.03 ± 0.00
NB !3022.02 ± 171.19 !2104.82 ± 196.02 !560.60 ± 10.23 !87.70 ± 1.54 0.06 ± 0.00 0.00 ± 0.00
LABOR RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-DT 2592.18 ± 1284.37 2068.30 ± 1725.01 10.40 ± 0.89 91.36 ± 8.73 0.09 ± 0.00 0.00 ± 0.00
BN-HC-HPB 2914.13 ± 937.77 2208.65 ± 1031.56 10.40 ± 0.89 91.36 ± 8.73 !0.26 ± 0.05 0.00 ± 0.00
BN-HC-DF 2695.25 ± 1514.59 2493.34 ± 2032.41 10.40 ± 0.89 91.36 ± 8.73 0.08 ± 0.00 0.00 ± 0.00
BN-HC-ADE 3005.58 ± 1228.36 2617.90 ± 1746.11 10.40 ± 0.89 91.36 ± 8.73 0.08 ± 0.02 0.00 ± 0.00
BN-HC-BDG 2836.04 ± 1381.80 2624.67 ± 2036.46 10.40 ± 0.89 91.36 ± 8.73 !0.14 ± 0.01 0.00 ± 0.00
BN-HC-DE 2763.72 ± 1490.36 2699.29 ± 2374.92 10.40 ± 0.89 91.36 ± 8.73 0.07 ± 0.00 0.00 ± 0.00
NB 2526.04 ± 1401.66 1968.36 ± 1567.61 10.00 ± 1.00 87.87 ± 9.65 0.06 ± 0.00 0.00 ± 0.00
LYMPHOGRAPHY RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 2512.72 ± 387.81 1824.09 ± 591.88 25.80 ± 2.16 87.12 ± 6.69 3.33 ± 1.62 0.06 ± 0.02
NB 2380.47 ± 450.03 1486.82 ± 544.14 25.60 ± 1.67 86.43 ± 4.36 0.06 ± 0.00 0.00 ± 0.00
BN-HC-BDG 2662.61 ± 659.37 2700.19 ± 1378.11 25.20 ± 2.48 85.10 ± 7.77 0.62 ± 0.12 0.00 ± 0.00
BN-HC-ADE 2754.23 ± 276.46 1944.44 ± 368.85 24.40 ± 1.94 82.36 ± 5.28 0.23 ± 0.06 0.00 ± 0.00
BN-HC-DE 2687.32 ± 344.42 1864.19 ± 420.07 24.20 ± 2.38 81.67 ± 6.86 0.18 ± 0.01 0.00 ± 0.00
BN-HC-DF 2718.45 ± 502.66 2131.58 ± 942.79 24.20 ± 1.92 81.70 ± 5.41 0.22 ± 0.01 0.00 ± 0.00
BN-HC-DT 2681.11 ± 276.46 1879.54 ± 408.83 !23.60 ± 1.14 !79.70 ± 2.65 0.41 ± 0.03 0.00 ± 0.00
MUSHROOM RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-DE 0.01 ± 0.01 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 10.50 ± 0.23 0.05 ± 0.00
BN-HC-ADE 0.01 ± 0.02 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 10.52 ± 0.26 0.05 ± 0.00
BN-HC-DF 0.08 ± 0.09 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 !14.70 ± 0.16 !0.07 ± 0.00
BN-HC-HPB 0.10 ± 0.13 0.00 ± 0.00 1624.80 ± 0.44 100.00 ± 0.00 !240.65 ± 50.90 !2.20 ± 0.20
BN-HC-BDG !0.41 ± 0.24 !0.03 ± 0.01 1624.80 ± 0.44 100.00 ± 0.00 !76.26 ± 4.26 !0.09 ± 0.00
BN-HC-DT 28.28 ± 54.93 0.80 ± 1.36 1624.60 ± 0.54 99.98 ± 0.02 !114.42 ± 4.39 !0.22 ± 0.00
NB !876.14 ± 56.96 !216.17 ± 36.18 !1609.00 ± 2.91 !99.02 ± 0.17 0.06 ± 0.00 0.00 ± 0.00
PRIMARY-TUMOR RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1786.01 ± 53.39 1218.08 ± 52.72 32.60 ± 2.70 48.09 ± 4.08 11.06 ± 8.75 0.72 ± 0.04
NB 1792.85 ± 50.38 1296.85 ± 122.63 32.20 ± 2.28 47.48 ± 3.27 0.06 ± 0.00 0.00 ± 0.00
BN-HC-DF 1810.11 ± 71.59 1290.67 ± 124.59 29.80 ± 2.16 43.93 ± 2.93 0.40 ± 0.06 0.01 ± 0.00
BN-HC-BDG !1933.29 ± 66.50 !1978.04 ± 173.90 !28.60 ± 3.50 !42.16 ± 4.98 7.59 ± 0.67 0.03 ± 0.00
BN-HC-ADE !1983.01 ± 14.42 !1561.17 ± 33.06 !17.00 ± 0.70 !25.07 ± 1.05 0.46 ± 0.11 0.01 ± 0.00
BN-HC-DT !2011.13 ± 2.24 !1670.29 ± 10.79 !16.80 ± 0.44 !24.78 ± 0.71 1.04 ± 0.07 0.03 ± 0.00
BN-HC-DE !1984.37 ± 15.07 !1565.26 ± 39.21 !16.60 ± 1.14 !24.48 ± 1.71 0.47 ± 0.10 0.01 ± 0.00
SICK RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 2273.43 ± 31.56 1364.06 ± 55.35 708.40 ± 0.54 93.90 ± 0.09 34.73 ± 3.78 0.03 ± 0.00
BN-HC-HPB 2268.98 ± 21.24 1338.45 ± 23.39 708.20 ± 0.83 93.87 ± 0.10 !250.84 ± 98.29 !2.08 ± 0.85
BN-HC-ADE 2279.90 ± 16.33 1351.24 ± 43.58 708.20 ± 0.44 93.87 ± 0.05 4.15 ± 0.18 0.02 ± 0.00
BN-HC-DE 2280.38 ± 15.09 1354.35 ± 44.87 708.20 ± 0.44 93.87 ± 0.05 4.18 ± 0.13 0.01 ± 0.00
BN-HC-DF 2287.45 ± 30.30 1372.02 ± 53.92 708.20 ± 0.44 93.87 ± 0.05 4.24 ± 0.10 0.02 ± 0.00
BN-HC-DT 2283.19 ± 26.33 1346.01 ± 45.16 707.60 ± 0.89 93.79 ± 0.10 20.38 ± 0.78 !0.05 ± 0.00
NB !2380.36 ± 50.23 !1432.11 ± 53.36 !704.60 ± 2.07 !93.39 ± 0.32 0.06 ± 0.00 0.00 ± 0.00
SOYBEAN RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-BDG 549.80 ± 52.43 75.57 ± 12.73 131.80 ± 1.30 96.48 ± 0.80 25.50 ± 1.25 0.10 ± 0.00
BN-HC-HPB !648.62 ± 46.64 !115.11 ± 10.06 !129.40 ± 1.34 !94.72 ± 0.95 !525.54 ± 202.49 !17.23 ± 4.09
BN-HC-DF !682.22 ± 91.60 !152.13 ± 82.49 !129.00 ± 2.34 !94.43 ± 1.60 3.42 ± 0.19 0.06 ± 0.00
NB !730.32 ± 112.99 !267.33 ± 103.20 !128.80 ± 2.77 !94.28 ± 1.76 0.05 ± 0.00 0.00 ± 0.00
BN-HC-DE !808.74 ± 139.12 !312.35 ± 137.43 !126.40 ± 3.28 !92.52 ± 2.17 1.49 ± 0.03 0.05 ± 0.00
BN-HC-ADE !808.01 ± 138.81 !322.17 ± 135.10 !126.40 ± 3.28 !92.52 ± 2.17 1.48 ± 0.02 0.05 ± 0.00
BN-HC-DT !792.47 ± 50.65 !157.82 ± 18.19 !125.20 ± 2.38 !91.65 ± 1.53 14.10 ± 0.95 !0.15 ± 0.00

Table 10: Comparisons over UCI data sets
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VOTE RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1852.76 ± 389.88 954.62 ± 345.06 83.80 ± 1.92 96.32 ± 2.21 7.96 ± 4.79 0.08 ± 0.03
BN-HC-BDG 2078.01 ± 379.00 !1806.33 ± 890.10 83.00 ± 1.58 95.40 ± 1.81 2.85 ± 0.33 0.00 ± 0.00
BN-HC-DT 1985.64 ± 632.81 1190.27 ± 623.88 82.80 ± 2.38 95.17 ± 2.74 1.82 ± 0.12 0.00 ± 0.00
BN-HC-ADE 2143.81 ± 744.24 1376.41 ± 831.41 82.20 ± 3.27 94.48 ± 3.75 0.40 ± 0.02 0.00 ± 0.00
BN-HC-DE 2119.88 ± 719.66 1417.61 ± 816.58 82.20 ± 2.58 94.48 ± 2.97 0.40 ± 0.01 0.00 ± 0.00
BN-HC-DF 2261.07 ± 621.48 1494.57 ± 821.78 81.59 ± 2.70 93.79 ± 3.10 0.46 ± 0.03 0.00 ± 0.00
NB !2979.38 ± 540.11 !4398.98 ± 1905.74 !78.59 ± 2.60 !90.34 ± 2.99 0.05 ± 0.00 0.00 ± 0.00
ZOO RMSE(×104) MCE(×104) NC PC(%) TR(s) TS(s)
BN-HC-HPB 1076.29 ± 416.51 321.46 ± 226.17 19.20 ± 0.83 95.04 ± 3.53 1.15 ± 0.43 0.05 ± 0.01
BN-HC-DF 1000.05 ± 537.16 309.72 ± 236.93 19.00 ± 1.00 94.04 ± 4.19 0.17 ± 0.00 0.00 ± 0.00
NB 1106.38 ± 494.76 369.25 ± 238.98 19.00 ± 0.70 94.09 ± 4.07 0.05 ± 0.00 0.00 ± 0.00
BN-HC-BDG 1088.29 ± 614.67 436.05 ± 358.95 19.00 ± 1.00 94.04 ± 4.19 0.51 ± 0.04 0.00 ± 0.00
BN-HC-ADE 1007.12 ± 410.85 285.87 ± 166.44 18.80 ± 0.83 93.09 ± 4.39 0.14 ± 0.00 0.00 ± 0.00
BN-HC-DE 1108.85 ± 335.92 361.89 ± 143.52 18.80 ± 0.83 93.09 ± 4.39 0.13 ± 0.00 0.00 ± 0.00
BN-HC-DT 1303.27 ± 358.63 431.96 ± 241.95 !18.00 ± 1.00 !89.09 ± 4.21 0.40 ± 0.01 0.00 ± 0.00

Table 11: Comparisons over UCI data sets
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