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Abstract
This paper proposes new approaches to rank individuals from their group comparison results. Many
real-world problems are of this type. For example, ranking players from team comparisons is im-
portant in some sports. In machine learning, a closely related application is classification using
coding matrices. Group comparison results are usually in two types: binary indicator outcomes
(wins/losses) or measured outcomes (scores). For each type of results, we propose new models for
estimating individuals’ abilities, and hence a ranking of individuals. The estimation is carried out
by solving convex minimization problems, for which we develop easy and efficient solution proce-
dures. Experiments on real bridge records and multi-class classification demonstrate the viability
of the proposed models.
Keywords: ranking, group comparison, binary/scored outcomes, Bradley-Terry model, multi-
class classification

1. Introduction

We address an interesting problem of estimating individuals’ abilities from their group comparison
results. This problem arises in some sports. One can evaluate a basketball player by his/her aver-
age points, but this criterion may be unfair as it ignores opponents’ abilities. Comparison results
in some sports, such as bridge, even do not reveal any direct information related to individuals’
abilities. In a bridge match two partnerships form a team to compete with another two. The match
record fairly reflects which two partnerships are better, but a partnership’s raw score, depending on
different boards, does not indicate its ability. Finding reasonable individual rankings using all group
comparison records is thus a challenging task. Another application in machine learning/statistics is
multi-class classification by coding matrices (Dietterich and Bakiri, 1995; Allwein et al., 2001).
This technique decomposes a multi-class problem into several two-class problems, each of which
is considered as the comparison between two disjoint subsets of class labels. The label with the
greatest ability then serves as the prediction.

This line of research stems from the study of paired comparisons (David, 1988), in which one
group/team consists of only one individual, and individuals’ abilities are estimated from paired
comparison results. Several models have been proposed, among which the most popular one is the
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Bradley-Terry model (Bradley and Terry, 1952): suppose there are k individuals whose abilities are
indicated by a non-negative vector p = [p1 p2 . . . pk]

T . They proposed that

P(individual i beats j) =
pi

pi + p j
. (1)

If comparisons are independent, then the maximum likelihood estimate of p is obtained by solving

min
p

−∑
i6= j

ni j log
pi

pi + p j

subject to
k

∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . ,k,
(2)

where ni j is the number of times individual i beats j. The normalizing constraint in (2) is imposed
because the objective function is scale-invariant. The solution to (2) can be found via a simple
iterative procedure, which converges to the unique global minimum under mild conditions. Detailed
discussions are in, for example, Hunter (2004).

Going from paired to group comparisons, we consider k individuals {1, . . . ,k} having m com-
parisons. The ith comparison setting involves a subset Ii, which is separated as two disjoint teams,
I+
i and I−i . They have ni = n+

i + n−i comparisons, among which I+
i and I−i win n+

i and n−i times,
respectively. Before seeking sophisticated models, an intuitive way to estimate the sth individual’s
ability is by the number of its winning comparisons normalized by the total number it involves:

∑i:s∈I+
i

n+
i +∑i:s∈I−i

n−i
∑i:s∈Ii

ni
. (3)

In the case of paired comparisons, several authors (David, 1988; Hastie and Tibshirani, 1998) have
shown that if

nsi > 0, nis > 0, and nsi +nis = constant,∀s, i, (4)

then the ranking by (3) is identical to that by the solution of (2). Note that under (4), the denominator
of (3) is the same over all s, so the calculation is simplified to

∑
i:i6=s

nsi,

Although the above property may provide some support of (3), this approach has several problems.
Firstly, (4) may not hold in most applications of paired comparisons. Secondly, (3) does not consider
teammates’ abilities, so strong players and weak ones receive the same credits. Because of these
deficiencies, we use (3) as a baseline in experiments in Section 4 to demonstrate the need for more
advanced methods. We refer to this approach as AVG.

As a direct extension of (1), Huang et al. (2006b) proposed a generalized Bradley-Terry model
for group comparisons:

P(I+
i beats I−i ) =

∑ j: j∈I+
i

p j

∑ j: j∈Ii
p j

, (5)
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which assumes that a team’s ability is the sum of its members’. Under the assumption that com-
parisons are independent, individuals’ abilities can be estimated by minimizing the negative log-
likelihood of (5):

min
p

−
m

∑
i=1

(

n+
i log

∑ j: j∈I+
i

p j

∑ j: j∈Ii
p j

+n−i log
∑ j: j∈I−i

p j

∑ j: j∈Ii
p j

)

subject to
k

∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . ,k.

(6)

Huang et al. (2006b) pointed out that (6) may not be a convex optimization problem, so global
minima are not easy to obtain. Zadrozny (2002) was the first attempt to solve (6) by an iterative
procedure, which, however, may fail to converge to a stationary point (Huang et al., 2006b). The
algorithm of Huang et al. (2006b) converges to a stationary point under certain conditions. We refer
to this approach as GBT.ML (Generalized Bradley-Terry Model using Maximum Likelihood).

Both models (1) and (6) consider comparisons’ “binary” outcomes, that is, wins and losses.
However, in many comparisons, results are also quantities reflecting opponents’
performances/strengths, such as points in basketball or soccer games. Some work use these “mea-
sured” outcomes for paired comparisons; an example is Glickman (1993): instead of modeling the
probability that one individual beats another, he considers the difference in two individuals’ abili-
ties as a random variable, whose realization is the difference in two scores. Individuals’ abilities are
then estimated via maximizing the likelihood.

In this paper we focus on the batch setting, under which individuals’ abilities are not estimated
until all comparisons are finished. This setting is suitable for annual sports events, such as the
Bermuda Bowl for bridge considered in Section 4, where the goal is to rank participants according
to their performances in the event. However, in some applications, competitions continue to take
place without a clear end and a real-time ranking is required. An example is online gaming, where
players make teams to compete against one another anytime they wish and expect a real-time update
of their ranking right after a game is over. Several work deal with such an online scenario. For
example, Herbrich and Graepel (2007) proposed the TrueSkillTM system, which generalizes the Elo
system used in Chess (Elo, 1986). The system follows a Bayesian framework and obtains real-time
rankings by an online learning scheme called Gaussian density filtering (Minka, 2001). Menke
and Martinez (2007) re-parameterized the Bradley-Terry model (2) as a single-layer artificial neural
network (ANN) and extended it for group competitions. Individuals’ abilities are estimated by
training the ANN with the delta rule, a typical online or incremental learning technique.

We managed to advance the state of the art in two directions. On the one hand, for comparisons
with binary outcomes, we propose a new exponential model in Section 2. The main advantage over
Huang et al. (2006b) is that one can estimate individuals’ abilities by minimizing unconstrained
convex formulations. Hence global minima are easily obtained. On the other hand, we propose in
Section 3 two models for comparisons with measured outcomes, which we call scored outcomes.
The induced optimization problems are also unconstrained and convex; simple solution procedures
are presented. This section may be the first study on finding individuals’ abilities from scored group
comparisons. Section 4 ranks partnerships in real bridge matches with the proposed approaches.
Properties of different methods and their relations are studied in Section 5, which helps to explain
experimental results. Section 6 demonstrates applications in multi-class classification. Section 7
concludes the work and discusses possible future directions.
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Part of this work appears in a conference paper (Huang et al., 2006a).

2. Comparisons with Binary Outcomes

We denote individuals’ abilities as a vector v ∈ Rk, −∞ < vs < ∞, s = 1, . . . ,k. Unlike p used in (5),
v may have negative values. A team’s ability is then defined as the sum of its members’: for I+

i and
I−i , their abilities are respectively

T +
i ≡ ∑

s:s∈I+
i

vs and T−i ≡ ∑
s:s∈I−i

vs. (7)

We consider teams’ actual performances as random variables Y +
i and Y−i , 1≤ i≤ m and define

P(I+
i beats I−i )≡ P(Y +

i −Y−i > 0). (8)

The distribution of Y +
i and Y−i is generally unknown, but a reasonable choice should place the mode

(the value at which the density function is maximized) around T +
i and T−i . To derive a computation-

ally simple form for (8), we assume that Y +
i (and similarly Y−i ) has a doubly-exponential extreme

value distribution with
P(Y +

i ≤ y) = exp(−e−(y−T +
i )), (9)

whose mode is exactly T +
i . Suppose Y +

i is independent of Y−i , from (8) and (9) we have

P(I+
i beats I−i ) =

eT +
i

eT +
i + eT−i

. (10)

The derivation is in Appendix A. One may assume other distributions (e.g., normal) in (9), but
the resulting model is more complicated than (10). Such differences already occur for paired com-
parisons, where David (1988) gave some discussion. Thus (10) is our proposed model for binary
outcomes.

For paired comparisons (i.e., each individual forms a team), (10) reduces to

P(individual i beats individual j) =
evi

evi + ev j
,

which is an equivalent re-parameterization (David, 1988; Hunter, 2004) of the Bradley-Terry model
(1) by

pi ≡
evi

∑k
j=1 ev j

.

Therefore, our model (10) can also be considered as a generalized Bradley-Terry model. This
re-parameterization however does not extend to the case of group comparisons, so (10) and (5)
are different. Interestingly, (10) is a conditional exponential model or a maximum entropy model
(Jaynes, 1957a,b), which is commonly used in the computational linguistic community (Berger
et al., 1996). Thus we can use existing properties of this type of models.

Following the proposed model (10), we estimate v by using available comparison results. The
following two sub-sections give two approaches: one minimizes a regularized least square formula,
and the other minimizes the negative log-likelihood. Both are unconstrained convex optimization
problems. Their differences are discussed in Section 5.
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2.1 Regularized Least Square (Ext-B.RLS)

Recall that n+
i and n−i are respectively the number of comparisons teams I+

i and I−i win. From (10),
we have

eT +
i

eT +
i + eT−i

≈
n+

i

n+
i +n−i

,

and therefore

eT +
i −T−i =

eT +
i

eT−i
≈

n+
i

n−i
.

If n+
i 6= 0 and n−i 6= 0, one can solve

min
v

m

∑
i=1

(

(T +
i −T−i )− log

n+
i

n−i

)2

(11)

to estimate the vector v of individuals’ abilities. In case of n+
i = 0 or n−i = 0, a simple solution is

adding a small number to all n+
i and n−i . This technique is widely used in the computational linguis-

tic community, known as the “add-one smoothing” for dealing with the zero-frequency problem. To
represent (11) in a simpler form, we define a vector d ∈ Rm with

di ≡ log
n+

i

n−i
,

and a “comparison setting matrix” G ∈ Rm×k with

Gi j ≡











1 if individual j ∈ I+
i ,

−1 if individual j ∈ I−i ,

0 if individual j 6∈ Ii.

(12)

Take bridge in teams of four as an example. An individual stands for a partnership, so G’s jth
column records the jth partnership’s team memberships in all m matches. Since a match is played
by four partnerships from two teams, each row of G has two 1’s, two −1’s and k−4 0’s. Thus, G
may look like











1 1 −1 −1 0 0 0 0
1 1 0 0 −1 −1 0 0
−1 −1 0 0 0 0 1 1

...
...

...
...

...
...

...
...











, (13)

read as “The first match: the 1st, 2nd partnerships versus the 3rd, 4th; the second match: the 1st,
2nd versus the 5th, 6th; . . . .”

With the help of d and G, we rewrite (11) as

min
v

(Gv−d)T (Gv−d), (14)

which is equivalent to solving the following linear system:

GT Gv = GT d. (15)

If GT G is not invertible, the linear system (15) may have multiple solutions, which lead to possibly
multiple rankings. To see when GT G is invertible, we prove the following result:
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Theorem 1 GT G is invertible if and only if rank(G) = k.

The proof is in Appendix B. This result shows that teams’ members should change frequently across
comparisons (as indicated by rank(G) = k) so that individuals’ abilities are uniquely determined.
To see how multiple rankings occur, consider an extreme case where several players always belong
to the same team. Under the model (10), they can be merged as a single virtual player. After solving
(14), their respective abilities can take any values but still remain optimal as long as the total ability
is equal to the virtual player’s. To handle such situations, we add a regularization term µvT v to (14):

min
v

(Gv−d)T (Gv−d)+µvT v,

where µ is a small positive number. Then a unique solution exists:

(

GT G+µI
)−1

GT d. (16)

The rationale of the regularization is that individuals have equal abilities before having compar-
isons. We refer to this approach as Ext-B.RLS (Extreme value model for Binary outcomes using
Regularized Least Square).

2.2 Maximum Likelihood (Ext-B.ML)

Under the assumption that comparisons are independent, the negative log-likelihood function is

l(v)≡−
m

∑
i=1

(

n+
i log

eT +
i

eT +
i + eT−i

+n−i log
eT−i

eT +
i + eT−i

)

, (17)

and we may estimate v by
argmin

v
l(v).

It is well known that the log-likelihood of a conditional exponential model is concave, and hence
l(v) is convex. However, if l(v) is not strictly convex, multiple global minima may result in multiple
rankings. The following theorem gives the sufficient and necessary condition for strict convexity:

Theorem 2 l(v) is strictly convex if and only if rank(G) = k.

The proof is in Appendix C. As discussed in Section 2.1, the condition may not hold, and a regular-
ization term is usually added to ensure the uniqueness of the optimal solution. Here we consider a
special one

µ
k

∑
s=1

(evs + e−vs), (18)

which is strictly convex and has unique minimum at vs = 0,s = 1, . . . ,k. Later we will see that this
function helps to derive a simple algorithm for maximizing the likelihood.

The modified negative log-likelihood is as the following:

l(v)≡−
m

∑
i=1

(

n+
i log

eT +
i

eT +
i + eT−i

+n−i log
eT−i

eT +
i + eT−i

)

+µ
k

∑
s=1

(evs + e−vs), (19)
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where µ is a small positive number. We estimate individuals’ abilities by the unique global minimum

argmin
v

l(v), (20)

which satisfies the optimality condition:

∂l(v)

∂vs
= −

(

∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i
)

+ ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

+µ(evs− e−vs)

= 0, s = 1, . . . ,k.

Note that the strict convexity of (19) may not guarantee (20) to be attainable; we address this issue
later in Theorem 3. Since µ is small,

∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i ≈ ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

, (21)

which is a reasonable condition that the total number of observed wins of individual s is nearly the
expected number by the assumed model. Meanwhile, the last term in ∂l(v)/∂vs restricts the value
of vs from extremity, and thereby brings some robustness against huge n+

i or n−i .
Standard optimization methods (e.g., gradient or Newton’s method) can be used to find a solu-

tion of (19). For conditional exponential models, an alternative technique to maximize the likelihood
is the generalized iterative scaling by Darroch and Ratcliff (1972), which generates a sequence of
iterations {vt}∞

t=0. The improved iterative scaling (Pietra et al., 1997) speeds up the convergence,
but its update from vt to vt+1 requires the solution of k one-variable minimization problems, which,
however, usually do not have closed-form solutions. Goodman (2002) proposed the sequential con-
ditional generalized iterative scaling, which changes only one variable at a time with a closed-form
update rule. All the above techniques, however, need to be modified for solving (19) due to the reg-
ularization term (18). In the following we propose an iterative method that modifies one component
of v at a time. Let δ ≡ [0, . . . ,0,δs,0, . . . ,0]T indicate the change of the sth component. Using the
inequality logx≤ x−1, ∀x > 0,

l(v+δ)− l(v)

=−



 ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i



δs + ∑
i:s∈I+

i

ni log

(

eT +
i +δs + eT−i

eT +
i + eT−i

)

+ ∑
i:s∈I−i

ni log

(

eT +
i + eT−i +δs

eT +
i + eT−i

)

+µevs(eδs−1)+µe−vs(e−δs−1)

≤−



 ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i



δs +



 ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i



(eδs−1)

+µevs(eδs−1)+µe−vs(e−δs−1). (22)

If δs = 0, (22) = 0. We then minimize (22) to obtain the largest reduction. It is easy to see that
(22) is strictly convex. Taking the derivative with respect to δs to be zero, we find the root for a
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second-order polynomial of eδs , so the update rule is:

vs← vs + log
Bs +

√

B2
s +4µAse−vs

2As
, (23)

where

As ≡ µevs + ∑
i:s∈I+

i

nieT +
i

eT +
i + eT−i

+ ∑
i:s∈I−i

nieT−i

eT +
i + eT−i

, (24)

Bs ≡ ∑
i:s∈I+

i

n+
i + ∑

i:s∈I−i

n−i .

If using other regularization terms, minimizing (22) may not lead to a closed-form solution of δs.
The algorithm is as the following:

Algorithm 1
1. Start with v0 and obtain T 0,+

i ,T 0,−
i , i = 1, . . . ,m.

2. Repeat (t = 0,1, . . .)

(a) Let s = (t +1) mod k. Change the sth element of vt by (23) to obtain vt+1.

(b) Calculate T t+1,+
i ,T t+1,−

i , i = 1, . . . ,m.

until ∂l(vt)/∂v j = 0, j = 1, . . . ,k are satisfied.

Next we address the convergence issue. As As > 0, (23) is always well-defined. A formal proof of
Algorithm 1’s convergence is in the following theorem:

Theorem 3 The modified negative log-likelihood l(v) defined in (19) attains a unique global mini-
mum, and the sequence {vt} generated by Algorithm 1 converges to it.

The proof is in Appendix D. In Huang et al. (2006b), some assumptions are needed to ensure
their update rule to be well-defined as well as the convergence. In contrast, Algorithm 1 does not
require any assumption since the regularization term provides very nice properties. We refer to the
approach of minimizing (19) as Ext-B.ML (Extreme value distribution model for Binary outcomes
using Maximum Likelihood).

3. Comparisons with Scored Outcomes

This section proposes estimating individuals’ abilities based on measured outcomes, such as points
in basketball or soccer games. We still use random variables Y +

i and Y−i for team performances,
but give n+

i and n−i different meanings: they now denote scores of I+
i and I−i . Our idea is to view

n+
i − n−i as a realization of Y +

i −Y−i and maximize the resulting likelihood. Note that we model
difference in scores instead of the score itself. We propose two approaches in the following sub-
sections. One assumes normal distributions for Y +

i and Y−i , while the other assumes the same
extreme value distribution (9). Individuals’ abilities are estimated by maximizing the likelihood of
score differences. Properties of the two approaches are investigated in Section 5.
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3.1 Normal Distribution Model (NM-S.ML)

As mentioned in Section 2, using normal distributions for comparisons with binary outcomes is
computationally more difficult due to a complicated form of P(I+

i beats I−i ). However, for scored
paired comparisons, Glickman (1993) successfully applied normal distributions. He considers indi-
viduals’ performances as normally distributed random variables

Yi ∼ N(vi,σ2), i = 1, . . . ,k,

and view the score difference of individuals i and j as a realization of Yi−Yj. By assuming Yi and
Yj are independent for all individuals,

Yi−Yj ∼ N(vi− v j,2σ2), (25)

and individuals’ abilities are estimated by maximizing the likelihood. We extend this approach to
group comparisons. Recall that Y +

i and Y−i are random variables for two teams’ performances. With
the same assumption of independent normal distributions, we have

Y +
i ∼ N(T +

i ,σ2), Y−i ∼ N(T−i ,σ2).

and
Y +

i −Y−i ∼ N(T +
i −T−i ,2σ2).

Assuming comparisons are independent and defining a vector b with

bi ≡ n+
i −n−i ,

the negative log-likelihood then is

l(v,σ) = logσ+
1

4σ2

m

∑
i=1

(

T +
i −T−i − (n+

i −n−i )
)2

(26)

= logσ+
(Gv−b)T (Gv−b)

4σ2 ,

where G is the comparison setting matrix defined in (12). The maximum likelihood estimate of v is
obtained by solving ∂l(v,σ)/∂vs = 0 ∀s, which is the following linear system:

GT Gv = GT b. (27)

Similar to (14), (27) may have multiple solutions if GT G is not invertible. To overcome this problem,
we add a regularization term and solve

min
v

l(v,σ)+
µ

4σ2 vT v, (28)

where µ is small positive number. The unique solution of (28) then is

v̄≡ (GT G+µI)−1GT b. (29)

In addition, we also obtain an estimate of the variance by solving

∂
(

l(v,σ2)+ µ
4σ2 vT v

)

∂σ
= 0,

which leads to

σ̄2 ≡
(Gv̄−b)T (Gv̄−b)+µv̄T v̄

2
.

We refer to this method as NM-S.ML (Normal distribution-based Model for Scored outcomes using
Maximum Likelihood).
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3.2 Extreme Value Distribution Model (Ext-S.ML)

Instead of the normal distribution in (25), we now consider that Y +
i −Y−i is under the extreme value

distribution for binary outcomes. Appendix A shows that

P(Y +
i −Y−i ≤ y) =

eT−i

eT +
i −y + eT−i

, (30)

and hence the density function is

fY +
i −Y−i

(y) =
eT−i +T +

i −y

(eT +
i −y + eT−i )2

.

The negative log-likelihood function is

−
m

∑
i=1

log
eT +

i +T−i −(n+
i −n−i )

(

eT +
i −(n+

i −n−i ) + eT−i
)2 . (31)

A similar proof to Theorem 2’s shows that (31) is convex and shares the same condition for strict
convexity in Section 2.2. Therefore, the problem of multiple solutions may also occur. We thus
adopt the same regularization term as in Section 2.2 and solve

min
v

l(v)≡−
m

∑
i=1

log
eT +

i +T−i −(n+
i −n−i )

(

eT +
i −(n+

i −n−i ) + eT−i
)2 +µ

k

∑
s=1

(evs + e−vs). (32)

The unique global minimum satisfies for s = 1, . . . ,k,

∂l(v)

∂vs
=−ms +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

+µ(evs− e−vs)

= 0, (33)

where
ms ≡ ∑

i:s∈Ii

1.

From (30),

P(Y +
i −Y−i ≥ T +

i −T−i ) =
1
2
, i = 1, . . . ,m. (34)

Since µ is small, (33) and (34) imply that for s = 1, . . . ,k,

∑
i:s∈I+

i

P(Y +
i −Y−i ≥ n+

i −n−i )+ ∑
i:s∈I−i

P(Y−i −Y +
i ≥ n−i −n+

i )

≈
m
2

= ∑
i:s∈I+

i

P(Y +
i −Y−i ≥ T +

i −T−i )+ ∑
i:s∈I−i

P(Y−i −Y +
i ≥ T−i −T +

i ).

As (21) in Section 2.2, the above condition also indicates that models should be consistent with
observations. To solve (32), we use Algorithm 1 with a different update rule, which is in the form
of (23) but with

As ≡ µevs +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

,

Bs ≡ ms.
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Figure 1: A typical bridge match setting. N, S, E and W stand for north, south, east, and west,
respectively.

The derivation is similar to (23)’s: let δ≡ [0, . . . ,0,δs,0, . . . ,0]T . Then

l(v+δ)− l(v)

=−msδs +2

(

∑
i:s∈I+

i

log
eT +

i +n−i +δs + eT−i +n+
i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

log
eT−i +n+

i +δs + eT +
i +n−i

eT +
i +n−i + eT−i +n+

i

)

+µevs(eδs−1)+µe−vs(e−δs−1)

≤−msδs +2

(

∑
i:s∈I+

i

eT +
i +n−i

eT +
i +n−i + eT−i +n+

i
+ ∑

i:s∈I−i

eT−i +n+
i

eT +
i +n−i + eT−i +n+

i

)

(eδs−1)

+µevs(eδs−1)+µe−vs(e−δs−1). (35)

Minimizing (35) leads to the update rule. Global convergence can be proved in a similar way to
Theorem 3. We refer to this approach as Ext-S.ML (Extreme value distribution model for Scored
outcomes using Maximum Likelihood).

4. Ranking Partnerships from Real Bridge Records

This section presents a real application: ranking partnerships from match records of Bermuda Bowl
2005,1 which is the most prestigious bridge event. In a match two partnerships (four players) from
a team compete with two from another team. The rules require mutual understanding within a
partnership, so partnerships are typically fixed while a team can send different partnerships for
different matches. To rank partnerships using our model, an individual stands for a partnership, and
every T +

i (or T−i ) consists of two individuals. We caution the use of the term “team” here. Earlier
we refer to each T +

i as a team and in bridge the two partnerships (or four players) of T +
i are really

called a team. However, these four players are from a (super)-team (usually a country), which often
has six members. We use “team” in both situations, which are easily distinguishable.

4.1 Experimental Settings

We discuss why a partnership’s ability is not directly available from match results, and explain why
our model is applicable here. Figure 1 illustrates the match setting. A1,A2,A3,A4 and B1,B2,B3,B4

1. All match records are available at http://www.worldbridge.org/tourn/Estoril.05/Estoril.htm. The subset
used here is available at http://www.csie.ntu.edu.tw/˜cjlin/papers/genBTexp/Data.zip.
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Board Table I Table II IMPs

NS EW NS EW IN PT
1 1510 1510
2 100 650 11
3 630 630
4 650 660
5 690 690
6 420 50 10
7 140 600 10
8 420 100 8
9 460 400 2
10 110 140 1

Table 1: Records of the first ten boards between India (IN) and Portugal (PT). India: NS at Table
I and EW at Table II. The four columns in the middle are boards’ raw scores, and only
winners get points. For example, in the second board IN’s NS partnership won at Table I
and got 100 points while PT’s NS got 650 at Table II. Since PT got more points than IN,
it obtained IMPs.

are four players of Team A and Team B, sitting at two tables as depicted. A match consists of several
boards, each of which is played at both tables. An important feature is that a board’s four hands are
at identical positions of two tables, but a team’s two partnerships sit at complementary positions. In
Figure 1, A1 and A2 sit at the north (N) and the south (S) sides of one table, so A3 and A4 must sit
at the east (E) and the west (W) sides of the other table. This setting reduces the effect of uneven
hands.

On each board winning partnerships receive raw scores. Depending on the difference in two
teams’ total scores, the winning team gains International Match Points (IMPs). For example, Ta-
ble 1 shows records of the first ten boards of the match between two Indian partnerships and two
Portuguese partnerships. We can see that a larger difference in raw scores results in more IMPs for
the winner. IMPs are then converted to Victory Points (VP) for the team ranking.2 A quick look
at Table 1 may motivate the following straightforward approach: a partnership’s score in a match
is the sum of raw scores over all boards, and its ability is the average over the matches it plays.
However, this estimate is unfair due to raw scores’ dependency on boards and opponents. Summing
a partnership’s raw scores favors those who get better hands or play against weak opponents. More-
over, since boards are different across rounds and partnerships play in different rounds, the sum of
raw scores can be more unfair. The above analysis indicates that a partnership’s ability cannot be
obtained directly from group comparison results. Hence the proposed models can be helpful.

We consider qualifying games: 22 teams from all over the world had a round robin tournament,
which consisted of

(22
2

)

= 231 matches and each team played 21. Most teams had six players in three
fixed partnerships, and there were 69 partnerships in total. In order to obtain reasonable rankings,
each partnership should play enough matches. The last column of Table 3 shows each partnership’s

2. The IMP-to-VP conversion for Bermuda Bowl 2005 is on page 32, http://www.worldbridge.org/departments/
rules/GeneralConditionsOfContest2005.pdf.
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number of matches. Most played 13 to 15 matches, which are close to the average (14=21×2/3) of
a team with three fixed partnerships. Thus these match records are reasonable for further analysis.

To use our model, the comparison setting matrix G defined in (12) is of size 231×69; as shown
in (13) each row records a match setting and has exactly two 1’s (two partnerships from one team),
two −1’s (two partnerships from another team) and 65 0’s (the remaining partnerships). The sum
of two rival teams’ scores (VPs) is generally 30, but occasionally between 25 to 30 as a team’s
maximal VP is 25. We use two rival teams’ VPs as n+

i and n−i , respectively. Several matches have
zero scores; we add one to all n+

i and n−i for Ext-B.RLS to avoid the numerical difficulties caused
by log(n+

i /n−i ).

4.2 Evaluation and Results

In sport events, rankings serve two main purposes. On the one hand, they summarize the relative
performances of players or teams based on outcomes in the event, so that people may easily distin-
guish outstanding ones from poor ones. On the other hand, rankings in past events may indicate the
outcomes of future events, and can therefore become a basis for designing future event schedules.
Interestingly, we may connect these two purposes with two basic concepts in machine learning:
minimizing the empirical error and minimizing the generalization error. For the first purpose, a
good ranking must be consistent with available outcomes of the event, which relates to minimizing
errors on training data, while for the second, a good ranking must predict well on the outcomes of
future events, which is about minimizing errors on unseen data. We thus adopt these two principles
to evaluate the proposed approaches, and in the context of bridge matches, they translate into the
following evaluation criteria:

• Empirical Performance: How well do the estimated abilities and rankings fit the available
match records?

• Generalization Performance: How well do the estimated abilities and rankings predict the
outcomes of unseen matches?

Here we distinguish individuals’ abilities from their ranking: Abilities give a ranking, but not vice
versa. When we only have a ranking of individuals, groups’ strengths are not directly available
since the relation of individuals’ ranks to those of groups is unclear. In contrast, if individuals’
abilities are available, a group’s ability can be the sum of its members’. We thus propose different
error measures for abilities and rankings. Let {(I+

1 , I−1 ,n+
1 ,n−1 ), . . . ,(I+

m , I−m ,n+
m ,n−m)} be the group

comparisons of interest and their outcomes. For a vector v ∈ Rk of individuals’ abilities, we define
the

• Group Comparison Error:

GCE(v) ≡

m

∑
i=1

I
{

(n+
i −n−i )(T +

i −T−i )≤ 0
}

m
,

where I{·} is the indicator function; T +
i and T−i are predicted group abilities of I+

i and I−i , as defined
in (7). The GCE is essentially the proportion of wrongly predicted comparisons by the ability vector
v to the m comparisons.

In the error measure for rankings, we use r, a permutation of the k individuals, to denote a
ranking, where rs is the rank of individual s. Then we define the
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• Group Rank Error:

GRE(r) ≡

m

∑
i=1

(

I
{

n+
i > n−i and U+

i > L−i

}

+ I
{

n+
i < n−i and L+

i < U−i

})

m

∑
i=1

(

I
{

U+
i > L−i

}

+ I
{

L+
i < U−i

})

, (36)

in which

U+
i ≡min

j∈I+
i

r j, L+
i ≡max

j∈I+
i

r j,

U−i ≡min
j∈I−i

r j, L−i ≡max
j∈I−i

r j.

Since a smaller rank indicates more strength, the U+
i and L+

i defined above represent the best and
the weakest in I+

i , respectively. The denominator in (36) is thus the number of comparisons where
one group’s members are all ranked higher (or lower) than the members of the competing group,
and the numerator in (36) counts the number of wrong predictions, that is, comparisons in which
members of the winning group are all ranked lower than those of the defeated group. In other words,
GRE computes the error only on comparisons in which relative strengths of the participating groups
can be clearly determined by their members’ ranks, whereas GCE considers the error on all of the
comparisons. From this point of view, GRE is a more conservative error measure.

Combining the two error measures with the two evaluation criteria, we conducted four sets of
experiments: Empirical GCE, Empirical GRE, Generalization GCE, and Generalization GRE. We
compared six approaches, including the newly proposed Ext-B.RLS, Ext-B.ML, NM-S.ML, and
Ext-S.ML; the generalized Bradley-Terry model GBT.ML (Huang et al., 2006b), and AVG, the
simple approach (3) of summing individuals’ scores, which serves as a baseline.3 In the empirical
part, we applied each approach on the entire 231 matches to estimate partnerships’ abilities, and
computed the two errors. Since the goal in the empirical part is to fit available records well, we
set the regularization parameter µ for all approaches4 except AVG to a small value 10−3. In the
generalization part, we randomly split the entire set as a training set of 162 matches and a testing
set of 69 matches for 50 times. For each split, we searched for µ in [25,24, . . . ,2−8,2−9] by the
Leave-One-Out (LOO) validation on the training set, estimated partnerships’ abilities with the best
µ, and then computed GCE and GRE on the testing set.

Results are in Figures 2 and 3 for empirical and generalization performances, respectively. In
the empirical part, the four proposed approaches and GBT.ML perform obviously better than AVG,
and the improvement in GRE is very significant. In particular, Ext-B.ML, NM-S.ML, and Ext-S.ML
cause very small GREs, to the order of 10−1. These results show that the proposed approaches are
effective in fitting the available bridge match records. However, in the generalization part, all of
the approaches result in poor GCEs, nearly as large as a random predictor does, and the proposed
approaches did not improve over AVG. For GREs, values are smaller, but the improvements over

3. AVG gives individuals’ abilities. We then use the same summation assumption to obtain groups’ abilities for com-
puting GCEs.

4. In order to ensure the convergence of their algorithm, Huang et al. (2006b) added to the objective function (5) what
they called a “barrier term,” which is also controlled by a small positive number µ (See Eq. (14) in Huang et al.
2006b). Here we simply refer to it as a regularization parameter.
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Figure 2: Empirical performances of the six approaches.
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(b) Group Rank Error

Figure 3: Generalization performances of the six approaches, averaged over 50 random testing sets.
Vertical bars indicate standard deviations.
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Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG
10/53 6/51 9/57 6/52 8/66 35/132

Table 2: Empirical Group Rank Errors in fraction.
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Figure 4: Average LOO time (sec) over 50 training/testing splits. Vertical bars indicate standard
deviations.

AVG are rather marginal. In the following we give some accounts of the poor generalization perfor-
mances. As mentioned in Section 4.1, each match setting can be viewed as a vector in {1,0,−1}69,
in which only two dimensions have 1’s, and another two have−1’s. Moreover, we are using records
in the qualifying stage, a round-robin tournament in which every two teams (countries) played ex-
actly one match. Consequently, when a match is removed from the training set, the four competing
partnerships of that match have no chance to meet directly during the training stage. Indirect com-
parisons may only be marginally useful in predicting those partnerships’ competition outcomes due
to the lack of transitivity. In conclusion, the outcome of a match in this bridge data set may not
be well indicated by outcomes of the other matches, and therefore all of the approaches failed to
generalize well.

To further study the rankings by the six approaches, we show in Table 2 their empirical GREs.
Since GRE only looks at the subset of matches in which group members’ ranks clearly decide
groups’ relative strengths, the size of this subset, that is, the denominator in GRE, may also be a
performance indicator of each approach. We thus present GREs in fraction. It is clear that the
ranking by AVG is able to determine the outcomes of more matches, but at the same time causes
more errors. Similar results are also found in the generalization experiments. We may therefore say
that the proposed approaches and GBT.ML lead to rankings with more “precision,” in the sense that
they may not be able to decide groups’ relative performances in the majority of comparisons, but
once they do, their decisions are accurate.

In addition to the efficacy of the six approaches, we also reported their efficiency. Figure 4
shows the average LOO time over the 50 training/testing splits under different values of µ. We
obtained these timing results on an Intel R CoreTM2 Quad CPU (2.66GHz) machine with 8G main
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memory; the linear systems of Ext-B.RLS and NM-S.ML were solved by Gaussian Elimination.
AVG,5 Ext-B.RLS, and NM-S.ML finished LOO almost instantly under all values of µ, while Ext-
B.ML, GBT.ML, and Ext-S.ML, the three approaches using iterative algorithms, took more time as
µ decreased. However, for large-scale problems with a huge k or m, traditional linear system solvers
may encounter memory or computational difficulties, and the efficiency of the proposed approaches
requires a more thorough study.

Finally, we list the top ten partnerships ranked by Ext-B.ML in Appendix F. Most of them are
famous bridge players.

5. Properties of Different Approaches

Although we distinguish binary comparisons from scored ones, they are similar in some situations.
On the one hand, if two teams had a series of comparisons, the number of victories can be viewed
as a team’s score in a super-game. On the other hand, scores in a game might be the sum of
binary outcomes; for example, scores in soccer games are total numbers of successful shots. It is
therefore interesting to study the properties of different methods and their relation. Table 3 lists
partnership rankings obtained by applying the six approaches to the entire set of match records.
We first investigate the similarity between these rankings by Kendall’s tau, a standard correlation
coefficient that quantifies the consistency between two rankings. We computed Kendall’s tau for
every pair of the six rankings and present them in Table 4, which indicates roughly three groups:
Ext-B.RLS, Ext-B.ML, GBT.ML and NM-S.ML give similar rankings; the one by Ext-S.ML is
quite different, while AVG seems to be uncorrelated with the others. We then measure the distance
between two groups of rankings g1 and g2: For each partnership,

d(ranks by g1, ranks by g2)

≡











min(ranks by g2)−max(ranks by g1) if ranks by g1 are all smaller,

min(ranks by g1)−max(ranks by g2) if ranks by g2 are all smaller,

0 otherwise.

(37)

For example, from Table 3 the second partnership of U.S.A.2 is ranked 67th/65th/67th/65th by
Ext-B.RLS/Ext-B.ML/GBT.ML/NM-S.ML and 25th by AVG. Therefore,

d({67,65,67,65},25) = min(67,65,67,65)−25 = 40.

Checking all 69 partnerships’ ranks gives

|d({Ext-B.RLS,Ext-B.ML,GBT.ML,NM-S.ML}, Ext-S.ML)≥ 20|= 6, (38)

|d({Ext-B.RLS,Ext-B.ML,GBT.ML,NM-S.ML}, AVG)≥ 20|= 11. (39)

In Table 3 we respectively underline and boldface partnerships satisfying (38) and (39). The eleven
ranks satisfying (39) shows that AVG’s ranking is closer to the team ranking:6 Partnerships satis-
fying (39) have higher ranks than those by the others when the team ranks are high, but have the
opposite when the team ranks are low. This observation indicates that AVG may fail to identify
weak (strong) individuals from strong (weak) groups.

5. Apparently there is no need to run LOO for AVG, which is independent of µ; we do it here only for timing compar-
isons.

6. Recall that in the beginning of Section 4, we mentioned that all teams, after the qualifying stage was over, were
ranked according to their total VPs gained in the tournament.
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Team (ordered by Partnership rankings
team rankings) Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG #match
Italy (IT) 14 18 11 7 14 21 4 12 19 6 18 22 7 4 40 5 4 11 15 14 13
U.S.A.2 (US2) 57 67 1 53 65 1 39 67 1 53 65 1 54 50 1 42 25 2 8 17 17
U.S.A.1 (US1) 8 27 37 11 17 38 11 13 38 11 14 38 35 9 16 23 6 10 18 10 14
Sweden (SE) 2 43 50 2 23 55 2 10 65 2 23 56 5 8 47 1 14 38 14 13 15
India (IN) 10 35 39 9 29 41 9 28 40 9 28 41 12 28 37 19 12 15 15 14 13
Argentina (AR) 29 25 28 27 20 30 25 23 34 26 19 30 41 10 52 16 18 26 15 14 13
Egypt (EG) 47 23 24 51 18 22 51 22 15 51 17 21 51 18 17 37 20 3 14 20 7

49 52 50 52 44 8 1
Brazil (BR) 31 4 66 28 8 59 24 8 63 29 7 58 26 57 11 28 13 31 11 18 13
Japan (JP) 5 65 38 3 67 39 3 68 27 3 68 40 3 68 15 7 44 46 14 14 14
Netherlands (NL) 16 52 17 32 43 31 30 45 33 32 43 31 30 34 49 36 32 24 15 15 12
China (CN) 51 48 7 45 44 6 47 46 7 45 44 8 43 31 21 30 52 9 13 14 15
South Africa (ZA) 45 30 20 49 26 15 52 26 20 50 24 15 55 29 13 49 35 27 15 13 14
Russia (RU) 34 21 42 35 16 46 36 16 49 36 16 47 48 6 23 39 21 53 14 14 14
Portugal (PT) 22 12 58 34 10 56 29 14 60 37 10 55 33 22 56 50 29 47 14 14 14
Australia (AU) 40 55 19 42 50 19 43 53 21 42 49 20 20 45 32 43 51 40 16 11 15
New Zealand (NZ) 68 41 3 68 48 5 66 42 5 66 48 5 66 58 2 64 41 17 9 16 17
England (UK) 9 33 61 12 36 64 17 32 64 13 35 63 36 25 64 48 22 55 17 12 13
Canada (CA) 13 36 56 13 40 58 18 35 62 12 39 57 19 24 67 34 45 62 14 16 12
Chinese Taipei (TW) 53 62 46 63 66 57 56 61 55 64 67 59 59 65 60 57 56 66 2 12 1

6 26 59 4 25 54 6 37 54 4 25 54 14 27 53 33 63 61 4 7 16
Poland (PL) 15 54 60 24 47 60 31 48 59 27 46 60 39 38 61 58 54 60 12 15 15
Guadeloupe (GP) 44 32 69 37 33 69 44 41 69 34 33 69 42 46 69 65 59 69 14 14 14
Jordan (JO) 63 64 62 61 57 58 61 62 62 63 67 68 21 21

Table 3: Partnerships’ rankings. A partnership corresponds to the same position in columns. For
example, Italy’s second partnership is ranked 18th, 14th, 12th, 18th, 4th and 4th by Ext-
B.RLS, Ext-B.ML, GBT.ML, NM-S.ML, Ext-S.ML and AVG, respectively, and it plays
14 matches. Rankings satisfying (38) and (39) are underlined and boldfaced, respectively.

Ext-B.RLS Ext-B.ML GBT.ML NM-S.ML Ext-S.ML AVG
Ext-B.RLS 1.00 0.84 0.79 0.82 0.50 0.44
Ext-B.ML 0.84 1.00 0.87 0.97 0.61 0.49
GBT.ML 0.79 0.87 1.00 0.86 0.62 0.53
NM-S.ML 0.82 0.97 0.86 1.00 0.60 0.49
Ext-S.ML 0.50 0.61 0.62 0.60 1.00 0.50
AVG 0.44 0.49 0.53 0.49 0.50 1.00

Table 4: Kendall’s tau (correlation coefficients).

The above results suggest that approaches based on different types of comparisons may produce
similar rankings, such as Ext-B.ML and NM-S.ML, while those based on the same type of outcomes
may lead to diverse results, such as NM-S.ML and Ext-S.ML. Therefore, in the next two subsections
we study their formulations and obtain the following results:
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• When all ni’s are equal, that is, the number of games or the total score in every group com-
parison is the same, and estimated group abilities are approximately even, Ext-B.ML and
NM-S.ML give similar rankings.

• When all ni’s are equal, Ext-B.RLS is more sensitive than Ext-B.ML and NM-S.ML to ex-
treme outcomes (n+

i ≈ 0 or n+
i ≈ ni).

• For the two scored-outcome approaches, extreme outcomes have a greater impact on NM-
S.ML than on Ext-S.ML.

5.1 Comparing Binary- and Scored-outcome Approaches

Experimental results in Section 4 show that the binary-outcome approach Ext-B.ML and the scored-
outcome approach NM-S.ML give very similar rankings. By analyzing their optimization problems,
we find that

Claim 1 If all ni’s are equal and the optimal v for Ext-B.ML satisfies

T +
i ≈ T−i ∀i,

then Ext-B.ML and NM-S.ML give very close rankings.

The proof is in Appendix E. For the bridge data used in Section 4, ni’s are two rival teams’ total
VPs and are mostly 30; the average |T +

i −T−i | from the optimal v for Ext-B.ML is 0.3983.
However, in applications where ni’s are unequal, these two approaches may give different re-

sults. Clearly, they use different approximations:

eT +
i

eT−i
≈

n+
i

n−i
and T +

i −T−i ≈ n+
i −n−i . (40)

One considers the ratio, which is independent from the values of ni’s, but the other considers the
difference, whose value scales with those of ni’s. Therefore, the estimate by NM-S.ML may be
more biased than Ext-B.ML to fit comparison outcomes with large ni.

Another issue is the small but perceivable dissimilarity of the ranking by Ext-B.RLS from those
by Ext-B.ML and NM-S.ML, as revealed in the empirical GREs in Table 2 and the Kendall’s tau in
Table 4. Investigating them more carefully, we find that

|d(Ext-B.RLS,{Ext-B.ML, NM-S.ML})≥ 10|= 8, (41)

where the distance is defined in (37). Interestingly, five of these eight partnerships played matches
where weak teams beat strong teams by an extreme amount, such as Netherlands beating U.S.A.2 by
25:0, and Ext-B.RLS ranks them higher than Ext-B.ML and NM-S.ML do. This result suggests that
Ext-B.RLS is vulnerable to even only few extreme outcomes so as to change the overall ranking. We
verify this property by comparing the estimates by Ext-B.RLS and NM-S.ML. Suppose ni = n ∀i
(which is the case here), and then according to (16), the ability estimate of individual s by Ext-
B.RLS is

vs =
m

∑
i=1

Asi
(

logn+
i − logn−i

)

=
m

∑
i=1

Asi
(

logn+
i − log(n−n+

i )
)

,
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(b) Error histogram for NM-S.ML
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(c) Error histogram for Ext-S.ML

Figure 5: Error function curves and histograms. The x-axis of histograms is |T +
i −T−i −(n+

i −n−i )|.

where A =
(

GT G + µI
)−1

GT . To check the sensitivity of vs with respect to the change of n+
i , we

calculate
∂vs

∂n+
i

= Asi
( 1

n+
i

+
1

n−n+
i

)

=
nAsi

n+
i (n−n+

i )
.

Clearly, the estimate vs is more sensitive to extreme values of n+
i , that is, n+

i ≈ 0 or n+
i ≈ n. However,

for NM-S.ML we have

vs =
m

∑
i=1

Asi(n
+
i −n−i ) =

m

∑
i=1

Asi(2n+
i −n)

and
∂vs

∂n+
i

= 2Asi.

That is, different values of n+
i have equal impact on the estimate by NM-S.ML.

In conclusion, when ni remains a constant and the estimates by Ext-B.ML have T +
i ≈ T−i ∀i,

NM-S.ML and Ext-B.ML give similar estimates, which are less sensitive than that by Ext-B.RLS to
extreme outcomes. When ni’s are unequal, the discussion in (40) indicates that NM-S.ML is more
affected than Ext-B.ML.

5.2 Comparing the Two Scored-outcome Approaches

As shown in (38), the ranking by Ext-S.ML is rather diverse from those by Ext-B.RLS, Ext-B.ML,
and NM-S.ML. We explore this issue by first re-writing the objective functions of NM-S.ML and
Ext-S.ML respectively as

min
v

m

∑
i=1

(

T +
i −T−i − (n+

i −n−i )

)2

+µ
k

∑
s=1

v2
s
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and

min
v

m

∑
i=1

log

(

1+ cosh
(

T +
i −T−i − (n+

i −n−i )
)

)

+µ
k

∑
s=1

(evs + e−vs),

where cosh is the hyperbolic cosine function. Although these two formulations are derived to max-
imize the likelihood, they can be viewed as minimizing estimation errors

∣

∣T +
i −T−i − (n+

i −n−i )
∣

∣

with two different loss functions. As µ is small, we ignore the effect of the regularization term. It is
easy to show that as

∣

∣T +
i −T−i − (n+

i −n−i )
∣

∣→ ∞,

log
(

1+ cosh
(

T +
i −T−i − (n+

i −n−i )
)

)

∣

∣T +
i −T−i − (n+

i −n−i )
∣

∣

→ 1.

To show the behaviors of the three functions: x2, x and log(1 + cosh(x)), we plot their curves in
Figure 5(a). One can see that log(1 + cosh(x)) increases almost linearly with x. In the machine
learning community, it is well known that quadratic loss functions may lead to a very different
estimation from linear ones. The reason is that quadratic loss functions penalize large errors more
severely than linear ones do; estimations are thus dominated by even only few extreme observations,
and as a side effect, may cause quite a few moderate errors. In contrast, estimations under linear loss
functions may allow several large errors in order to make most errors small. Figures 5(b) and 5(c)
are histograms of

∣

∣T +
i −T−i −(n+

i −n−i )
∣

∣ for NM-S.ML and Ext-S.ML, respectively; we see clearly
the aforementioned two error patterns: Compared with NM-S.ML, Ext-S.ML has a lot more errors
in the first bin and also some in the last two. In addition, we find that the empirical GRE of Ext-S.ML
in Section 4.2 is highly related to its error pattern: Among the 24 correct rank predictions7 produced
by Ext-S.ML but not by NM-S.ML, twelve have

∣

∣T +
i −T−i − (n+

i − n−i )
∣

∣ smaller than 3 (the first
bin of histograms); NM-S.ML has no

∣

∣T +
i −T−i − (n+

i − n−i )
∣

∣ larger than 27 (the last two bins of
histograms) while Ext-S.ML has four, among which the partnerships satisfying (38) participate in
three. Interestingly, the two types of loss functions seem to reflect two different ranking criteria: one
focuses more on performances against extreme opponents, so wins over strong opponents and losses
to weak opponents greatly influence the ranking; the other is less sensitive to extreme outcomes
and treat comparisons more evenly. Consequently, deciding which loss function, and hence which
approach to use may eventually be contingent on game-specific factors and subjective preferences.

6. Multi-class Classification

Multi-class classification using coding matrices (Dietterich and Bakiri, 1995; Allwein et al., 2001)
is a general scheme to decompose a problem into several two-class problems. The widely-used
methods “one-against-one” and “one-against-the rest” are special cases of this framework. The
decomposition is usually specified by a coding matrix G ∈ {1,0,−1}m×k, where k is the number
of classes and m is the number of two-class problems. Each row of G describes how the k classes
are separated to two groups: those with 1 are in one group while those with −1 are in the other;
those with 0 are not used in this two-class problem. The coding matrix in Table 5 illustrates four
common types of codes: one-against-one, one-against-all, dense, and sparse; their definitions are

7. Correct rank predictions are the denominator of GRE minus its numerator.
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One-against-one
One-against-the rest
Dense
Sparse
...















0 0 1 0 0 −1 0 0
−1 −1 −1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 0 0 1 0 0 −1
...

...
...

...
...

...
...

...















Table 5: A coding matrix (k = 8). The four rows illustrate four types of codes.

given by Items 1 to 4 on Page 2210. At the training stage, m binary classifiers are trained for the m
two-class problems. For an unlabeled instance, its label is predicted by combining results of the m
binary classifiers.

There are several schemes for deciding the final prediction. Dietterich and Bakiri (1995) pro-
posed choosing the class whose column in G has the smallest distance to the m binary decisions
on the instance. This method can correct errors made by some decision rules, and thus is called
error-correcting output codes (ECOC). Allwein et al. (2001) proposed a more general framework,
the loss-based decoding, which exploits not only binary decisions, but also decision values of binary
classifiers. In particular, they adopted the exponential loss-based decoding (EXPLOSS): let f̂i be
the decision function of the ith binary classifier, and f̂i(x) > 0 (< 0) specifies that an instance x to
be in classes of I+

i (I−i ). Then,

predicted label ≡ argmin
s

(

m

∑
i=1

e−Gis f̂i
)

.

If Gis = 1 and f̂i(x) says s ∈ I+
i , then e−Gis f̂i gives a small loss. By using decision values, the loss-

based decoding incorporates the confidence of each binary prediction in making the final decision.

Table 5 is in the same format as our “comparison setting matrix” G defined in (12) and (13).
Huang et al. (2006b) (GBT.ML) thus consider classes as individuals and two-class problems as
group comparisons; the 1’s and −1’s in the ith row of G correspond to I+

i and I−i , respectively. The
group competition results n+

i and n−i are assumed to be available from two-class classifiers. For an
unlabeled instance, classes are ranked according to their estimated “abilities” and the highest one
(with the largest ability) serves as the prediction. All of our newly proposed models can be applied
in the same way, but there are two minor issues. Firstly, all of our proposed methods except Ext-
B.RLS assume that group comparisons are independent. This property does not hold for multi-class
classification since two-class classifiers involving the same classes share training data. Huang et al.
(2006b) pointed out that GBT.ML can be interpreted as minimizing the Kullback-Leibler distance
between the model and the observations. It is easy to see that their argument also applies to Ext-
B.ML but not to NM-S.ML nor Ext-S.ML. Secondly, the n+

i and n−i given by two-class classifiers
are real values, for which the binary-outcome approaches, according to their definition, may not be
suitable. Despite of these minor issues, as we will show, our proposed methods perform quite well
in practice.

We compare our methods with EXPLOSS and GBT.ML on six real data sets: waveform, satim-
age, segment, USPS, MNIST, and letter; numbers of classes range from 3 to 26. The settings of

2208



RANKING INDIVIDUALS BY GROUP COMPARISONS

1−vs−1 1−vs−the rest dense sparse
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16
T

e
st

in
g

 e
rr

o
r 

ra
te

 (
%

)

               

 

 

 

 

EXPLOSS

 

 

Ext−B.RLS

 

 

Ext−B.ML

 

 

GBT.ML

 

 

NM−S.ML

 

 

Ext−S.ML

(a) waveform (k = 3)

1−vs−1 1−vs−the rest dense sparse
10

10.5

11

11.5

12

12.5

13

13.5

T
e

st
in

g
 e

rr
o

r 
ra

te
 (

%
)

               

 

 

 

 

EXPLOSS

 

 

Ext−B.RLS

 

 

Ext−B.ML

 

 

GBT.ML

 

 

NM−S.ML

 

 

Ext−S.ML

(b) satimage (k = 6)

1−vs−1 1−vs−the rest dense sparse
2.5

3

3.5

4

4.5

5

T
e

st
in

g
 e

rr
o

r 
ra

te
 (

%
)

               

 

 

 

 

EXPLOSS

 

 

Ext−B.RLS

 

 

Ext−B.ML

 

 

GBT.ML

 

 

NM−S.ML

 

 

Ext−S.ML

(c) segment (k = 7)

1−vs−1 1−vs−the rest dense sparse
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

T
e

st
in

g
 e

rr
o

r 
ra

te
 (

%
)

               

 

 

 

 

EXPLOSS

 

 

Ext−B.RLS

 

 

Ext−B.ML

 

 

GBT.ML

 

 

NM−S.ML

 

 

Ext−S.ML

(d) USPS (k = 10)
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Figure 6: Testing error rates on the 800-training-1000-testing data sets by six approaches under four
codes: one-against-one (1-vs-1), one-against-the rest (1-vs-the rest), dense, and sparse.
Vertical bars indicate standard deviations.
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experiments are the same as those in Huang et al. (2006b). We use the 20 subsets of 800 training
and 1,000 testing instances8 and consider the same four types of coding matrices:

1. One-against-one: |I+
i |= |I

−
i |= 1, i = 1, . . . ,k(k−1)/2.

2. One-against-all: |I+
i |= 1, |I−i |= k−1, i = 1, . . . ,k.

3. Dense: |I+
i |= |I

−
i |= k/2, ∀i; m = [10log2 k].

4. Sparse: E(|I+
i |) = E(|I−i |) = k/4, ∀i; m = [15log2 k].

[x] rounds a real number x to its nearest integer. We choose support vector machines (SVM) (Boser
et al., 1992) with the RBF (Radial Basis Function) kernel e−γ‖xi−x j‖

2
as the two-class classifier,

where xi and x j are two training instances. An improved version (Lin et al., 2007) of Platt (2000)
generates n+

i and n−i = 1− n+
i from SVM decision values. We implement our methods by mod-

ifying LIBSVM (Chang and Lin, 2001). For all of the 20 subsets, we select SVM parameters by
cross validation before testing. Figures 6(a)-6(f) report the average testing error rates and stan-
dard deviations of the six methods: EXPLOSS, Ext-B.RLS, Ext-B.ML, GBT.ML, NM-S.ML and
Ext-S.ML. Each figure summarizes the results on one data set by six groups of colored error bars,
which represent the error rates of the six methods under the four types of codes. We can see that
EXPLOSS (black diamond) and Ext-B.RLS (red square) perform worse than the others under the
one-against-one and the sparse codes as k becomes large, while GBT.ML, Ext-B.ML, NM-S.ML
and Ext-S.ML are almost equally good. Regarding the performances of the four types of codes,
one-against-one and sparse are less effective for large values of k, an observation consistent with
the results in (Huang et al., 2006b). Recall that in Section 4.2 Ext-S.ML behaves differently from
the others, but here its predictions are similar to those of NM-S.ML and Ext-B.ML. The reason is
that the n+

i and n−i produced by (Lin et al., 2007) are probabilities satisfying n+
i +n−i = 1, so values

of |T +
i − T−i − (n+

i − n−i )| are mostly small and the difference between quadratic and linear loss
functions is negligible. Results here suggest that the proposed methods are useful for multi-class
classification with coding matrices.

7. Conclusions

We propose new and useful methods to rank individuals from group comparisons. For comparisons
with binary outcomes, earlier work solves non-convex problems, but here convex formulations with
easy solution procedures are developed. For scored outcomes, our formulations are probably the
first for this type of problems. Experiments show that the proposed approaches give reasonable
partnership rankings from bridge records and perform effectively in multi-class classification. We
give theoretical accounts for behaviors of proposed approaches, which demonstrate how different
models reflect diverse ranking criteria. We also develop techniques to evaluate different rankings,
which may be used in other ranking tasks.

Appendix A. Derivation of (10) from (8)

P(Y +
i −Y−i > 0)≡

Z ∞

−∞

Z ∞

y−
de−e−(y+−T+

i )

de−e−(y−−T−i )

. (42)

8. Available at http://www.csie.ntu.edu.tw/˜cjlin/papers/svmprob/data.
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Let
x+ ≡ e−(y+−T +

i ) and x− ≡ e−(y−−T−i ).

Consequently,

de−e−(y+−T+
i )

=−e−x+
dx+ and de−e−(y−−T−i )

=−e−x−dx−.

Then,

(42) =
Z ∞

0
−e−x−

Z x−eT+
i −T−i

0
−e−x+

dx+dx−

=
eT +

i

eT +
i + eT−i

.

Appendix B. Proof of Theorem 1

If rank(G) < k, GT G is obviously not invertible; if rank(G) = k, the Singular Value Decomposition
of G can be written as

G = UΛV T ,

where U ∈ Rm×k and V ∈ Rk×k are orthonormal and Λ ∈ Rk×k is diagonal with

Λii 6= 0, i = 1, . . . ,k.

Therefore,
GT G = V ΛUTUΛV T = V Λ2V T

is invertible.

Appendix C. Proof of Theorem 2

We first rewrite l(v) as

l(v) =−
m

∑
i=1

(n+
i T +

i +n−i T−i )+
m

∑
i=1

ni log(eT +
i + eT−i ).

The first summation is obviously convex. For the second summation, by using Hölder’s inequality
we have

m

∑
i=1

ni log
(

eλT +
i +(1−λ)T̃+

i + eλT−i +(1−λ)T̃−i
)

=
m

∑
i=1

ni log
(

(eT +
i )λ(eT̃ +

i )1−λ +(eT−i )λ(eT̃−i )1−λ
)

≤
m

∑
i=1

ni log
(

eT +
i + eT−i

)λ(
eT̃ +

i + eT̃−i
)1−λ

=
m

∑
i=1

niλ log
(

eT +
i + eT−i

)

+

m

∑
i=1

ni(1−λ) log
(

eT̃ +
i + eT̃−i

)

(43)
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for any v, ṽ and λ ∈ (0,1), and the equality holds if and only if

T +
i −T−i = T̃ +

i − T̃−i ∀i,

which can be re-written as
G(v− ṽ) = 0. (44)

If rank(G) = k, then (44) holds if and only if v = ṽ, so l(v) is strictly convex. If l(v) is strictly
convex, then the equality in (43) holds if and only if v = ṽ, so

G(v− ṽ) = 0⇔ v = ṽ,

which implies rank(G) = k.

Appendix D. Proof of Theorem 3

It is easy to verify that the level sets of l(v) are bounded. Since l(v) is strictly convex, it then
attains a unique global minimum. To prove the convergence of Algorithm 1, we first show that if
∂l(v)/∂vs 6= 0, then minimizing (22) leads to

l(v+δ) < l(v). (45)

From (23), if the optimal δs for (22) is zero, then

Bs +
√

B2
s +4µAse−vs

2As
= 1,

which implies

4As(µe−vs−As +Bs) =−4As
∂l(v)

∂vs
= 0. (46)

Since As 6= 0 throughout iterations, (46) implies ∂l(v)/∂vs = 0. Thus if ∂l(v)/∂vs 6= 0, the optimal
δs 6= 0. With (22) = 0 if δs = 0, (45) follows.

Next we show that the sequence {vt} generated by Algorithm 1 is bounded. If not, there must
exist j such that |vt

j| → ∞. Then

l(vt) ≥ µ
k

∑
s=1

(evt
s + e−vt

s)

= µ
k

∑
s=1

(e|v
t
s|+ e−|v

t
s|)

≥ µe|v
t
j|+ e−|v

t
j|

→ ∞,

which contradicts the fact that
l(v0) > l(vt) ∀t.

Since {vt} is bounded, it has limit points. For any limit point v∗, there is an infinite set N̄ such that

lim
t∈N̄,t→∞

vt = v∗.
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Since v is finite dimensional, there is one component s updated in an infinite set N ⊂ N̄:

(t mod k)+1 = s for t ∈ N.

Because l(v) is convex, to prove that v∗ is a global minimum, it suffices to show that

∂l(v∗)
∂vs

= 0 for s = 1, . . . ,k. (47)

Suppose the contrary is true, then among s,s+1, . . . ,k,1, . . . ,s−1, there is s̄ such that

∂l(v∗)
∂vs

= · · ·=
∂l(v∗)
∂vs̄−1

= 0,
∂l(v∗)

∂vs̄
6= 0. (48)

From (45), updating v∗s̄ by (23) yields v∗+1 6= v∗ and

l(v∗+1) < l(v∗).

We have that ∂l(v∗)/∂vs = 0 implies

Bs +
√

B2
s +4µA∗s e−v∗s

2A∗s
= 1,

where A∗s is defined according to (24) and Bs is a constant independent of v. Therefore,

lim
t∈N,
t→∞

vt+1
s = lim

t∈N,
t→∞

(

vt
s + log

Bs +
√

B2
s +4µAt

se−vt
s

2At
s

)

= v∗s + log
Bs +

√

B2
s +4µA∗s e−v∗s

2A∗s
= v∗s , (49)

and
lim

t∈N,t→∞
vt+1 = lim

t∈N,t→∞
vt = v∗. (50)

Let t̄ be the iteration corresponding to s̄. Using (48), a similar derivation to (49) and (50) shows that

lim
t∈N,
t→∞

vt+1 = · · ·= lim
t∈N,
t→∞

vt̄ = v∗ and lim
t∈N,
t→∞

vt̄+1 = v∗+1;

consequently,
lim

t∈N,t→∞
l(vt̄+1) = l(v∗+1) < l(v∗),

which contradicts the fact that

l(v∗)≤ ·· · ≤ l(vt+1)≤ l(vt).

Thus (47) holds for all limit points. Since l(v) is strictly convex, every limit point is the unique
global minimum. Moreover, the sequence {vt} is bounded, so it globally converges to the global
minimum.
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Appendix E. Proof of Claim 1

From (29) it is clear that the ranking by NM-S.ML is invariant to the scale of ni; we thus assume

n+
i +n−i = 2,∀i.

Then (26) can be rewritten as

min
v

m

∑
i=1

(

(T +
i −T−i )2− (4n+

i −4)(T +
i −T−i )

)

.

For Ext-B.ML, as µ is small and can be ignored, we consider the objective function in (17), which
can be re-written as

m

∑
i=1

−n+
i (T +

i −T−i )+ni log(eT +
i −T−i +1) (51)

=
m

∑
i=1

−n+
i (T +

i −T−i )+2
(

log2+
1
2
(T +

i −T−i )+
1
8
(T +

i −T−i )2 +O
(

(T +
i −T−i )3)

)

(52)

≈
1
8

m

∑
i=1

(

(T +
i −T−i )2− (4n+

i −4)(T +
i −T−i )

)

.

From (51) to (52) we use the Taylor expansion of the function log(ex +1) at x = 0 and the assumption
that T +

i ≈ T−i ∀i. Therefore, the rankings by NM-S.ML and Ext-B.ML are similar.

Appendix F. Top 10 Partnerships by Ext-B.ML

Team Players
U.S.A.2 Eric Greco Geoff Hampson
Sweden Peter Bertheau Fredrik Nystrom
Japan Yoshiyuki Nakamura Yasuhiro Shimizu
Chinese Taipei Chih-Kuo Shen Jui-Yiu Shih
New Zealand Tom Jacob Malcolm Mayer
China Zhong Fu Jie Zhao
Italy Norberto Bocchi Giorgio Duboin
Brazil Gabriel Chagas Miguel Villas-boas
India Subhash Gupta Rajeshwar Tewari
Portugal Jorge Castanheira Sofia Pessoa
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