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Abstract

Bayesian inference from high-dimensional data involves the integration over a large number of
model parameters. Accurate evaluation of such high-dimensional integrals raises a unique set of
issues. These issues are illustrated using the exemplar of model selection for principal component
analysis (PCA). A Bayesian model selection criterion, based on a Laplace approximation to the
model evidence for determining the number of signal principal components present in a data set,
has previously been show to perform well on various test data sets. Using simulated data we show
that for d-dimensional data and small sample sizes, N, the accuracy of this model selection method
is strongly affected by increasing values of d. By taking proper account of the contribution to the
evidence from the large number of model parameters we show that model selection accuracy is
substantially improved. The accuracy of the improved model evidence is studied in the asymptotic
limit d — oo at fixed ratio o = N/d, with a < 1. In this limit, model selection based upon the
improved model evidence agrees with a frequentist hypothesis testing approach.

Keywords: PCA, Bayesian model selection, random matrix theory, high dimensional inference

1. Introduction

The generation of high dimensional data is fast becoming a common place occurrence. Exam-
ples range from genomics and molecular biology, for example high-throughput single nucleotide
polymorphism (SNP) genotyping scans (Price et al., 2006) and microarray gene expression studies
(Golub et al., 1999), to geophysical imaging, for example hyperspectral image data (Landgrebe,
2002). Intuitive visualization of the data and construction of novel features from the data are key
tasks in processing such high-dimensional data. This often involves dimensionality reduction, for
which a number of algorithms exist. Principal component analysis (PCA) is a ubiquitous method
of data analysis and dimensionality reduction (Joliffe, 1986). Its utility and success stems from the
simplicity of the method - one simply calculates the eigenvectors and eigenvalues of the sample
covariance matrix C of the data set. A subset of the eigenvectors of C, the principal components,
are then selected to represent the data. A ‘kernelized’ version has been formulated - kernel PCA
(Scholképf, Smola, and Miller, 1998), and building on probabilistic formulations (Roweis, 1998;
Tipping and Bishop, 1999a) it has also been extended to a mixture of principal component analysers
(Tipping and Bishop, 1999b). In the latter case a number of local linear models are embedded in
the high dimensional data space, with the properties of each local model being determined from the
local responsibility-weighted covariance matrix.
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Clearly selection of the correct number of principal components is crucial to the success of PCA
in representing a data set. Identification of the appropriate signal dimensionality is just a model
selection process to which the techniques of Bayesian model selection can be applied via a suitable
approximation of the Bayesian evidence (MacKay, 1992). What is the most suitable method of
approximating the evidence for high-dimensional data and what are the inherent problems? These
are the research questions we address and a roadmap for the paper is given below,

e In Section 2 we motivate why high-dimensional small sample size data sets present a challenge
for Bayesian model selection.

e In Section 3 we summarize the behaviour of the eigenvectors and eigenvalues of sample co-
variance matrices formed from high-dimensional small sample size data sets.

e In Section 4.1 we review the formalism of Bayesian model selection for PCA, and evalu-
ate through simulation the model selection accuracy of an existing approximation to the Bayesian
evidence.

e In Section 4.2 we develop an improved approximation to the Bayesian evidence specifically
for high dimensional data.

o In Section 5 we evaluate the asymptotic properties of the improved approximation to the model
evidence.

e In Section 6 the model selection performance of the improved approximation to the model
evidence is compared with a frequentist hypothesis testing approach to model selection.

2. The Challenge of High-Dimensional Data for Bayesian Model Selection

A number of Bayesian formulations of PCA have followed from the probabilistic formulation of
Tipping and Bishop (1999a), with the necessary marginalization being approximated through both
Laplace approximations (Bishop, 1999a; Minka, 2000, 2001a) and variational bounds (Bishop,
1999b). More recently, work within the statistics research community has used a Bayesian vari-
ational approach to derive an explicit conditional probability distribution for the signal dimension
given the data (émidl and Quinn, 2007). However, these results have only been tested on low di-
mensional data with relatively large sample sizes. A somewhat more tractable expression for the
signal dimension posterior was also obtained by Minka (2000, 2001a) and it is that Bayesian for-
mulation of PCA that we draw upon. By performing a Laplace approximation (Wong, 1989), that
is, expanding about the maximum posterior solution, Minka derived an elegant approximation to
the probability, the model evidence p(D|k), of observing a data set D given the number of principal
components k (Minka, 2000, 2001a). The signal dimensionality of the given data set is then esti-
mated by the value of k that maximizes p(D|k). As with any Bayesian model selection procedure, if
the data has truly been generated by a model of the form proposed, then one is guaranteed to select
the correct model dimensionality as the sample increases to an infinite size. Minka’s dimensionality
selection method performs well when tested on data sets of moderate size and dimensionality. In-
deed, the Laplace approximation incorporates the leading order term in an asymptotic expansion of
the Bayesian evidence, with the sample size N playing the role of the ‘large’ parameter, and so we
would expect the Laplace approximation to be increasingly accurate as N — . In real-world data
sets, such as those emanating from molecular biology experiments, the number of variables d is
often very much greater than the sample size N, with d ~ 10% yet N ~ 10 or N ~ 102 not uncommon
(Hoyle and Rattray, 2003). Typically, data sets with a sample size of N = 100 might be considered
as large enough to be well approximated by the asymptotic limit N — oo, and therefore the Laplace
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approximation to be appropriate. However, though retaining only a small number of terms from the
asymptotic expansion of the evidence would be increasingly accurate as N — oo, individual expan-
sion coefficients may be significant due to the large data dimensionality d. This suggests that for
real finite sample size data sets, higher order terms in the asymptotic expansion not encapsulated
within the Laplace approximation will make significant contributions to the evidence, and model
selection based upon a simplistic application of the Laplace approximation will perform poorly.
What then defines a ‘large’ sample size N is clearly dependent on the data dimensionality d. We
would expect the conjectures about the previously derived Laplace approximation to the evidence to
be increasingly true when the data dimensionality is very much larger than the sample size, that is,
N < d, the situation encountered for many modern data sets. For high dimensional data, rather than
considering the evidence to be close to its value obtained in the asymptotic limit N — oo at fixed d,
it may be more appropriate to consider the evidence as being close to its value in the distinguished
limit d,N — oo at fixed a = N/d. Within this paradigm, developing a suitable Gaussian approxi-
mation requires us to identify all contributions to the evidence that would scale extensively, that is
increase linearly with N, as N,d — oo at fixed a. This would be increasingly important for a < 1,
where the contribution to the evidence resulting from many features can be significant. Ideally we
should re-formulate the evidence as an integration over a set of variables which remains finite in
number in the distinguished limit.

To be more explicit, consider that the Bayesian approach to model selection in PCA starts from
the probability p(D|k,8)p(6|k) and integrates over the model parameters @ to obtain the evidence
p(D|k). This integration is often evaluated by the aforementioned Laplace approximation - expan-
sion about the maximum of p(D|k,8)p(0|k) and evaluation of the consequent tractable Gaussian
integrals. For high-dimensional data the model parameters may consist of a small set of parameters,
6, of order of the signal dimensionality k, and a much larger set of parameters, 64, of order of
the data dimensionality. For example, the latter may be the principal vectors, in the d-dimensional
space, that form part of the model. Overall we can write & = (84, 6x). Integration over 84 provides
a significant contribution to p(D|k) due simply to the large number of individual model param-
eters that we are integrating over. In this scenario, the values of @y obtained from maximizing
J p(DIk,8q,0¢)p(64,6k|k)dOy and p(D|k,6q,6x)p(84,6k|Kk) do not coincide. In fact for large val-
ues of d they may be significantly different. The more accurate estimates of 6y are naturally obtained
from the maximum of [ p(DIk, 84, 6x)p(64, Ok k)dbq, and consequently the more accurate estimates
of the evidence p(D|k) are obtained by expanding about this maximum.

The distorting effects of high dimensionality upon covariance matrix eigenvalue spectra and
eigenvectors are well known from random matrix theory (RMT) studies (Johnstone, 2006). The
RMT studies inform us about the expected sample covariance eigenvalue spectrum in the limit
d — oo (at fixed o), and consequently the limits of any model selection procedure based upon the
observed eigenvalue spectra. As PCA is based upon the eigenvalues and eigenvectors of C, under-
standing their behaviour for small sample sizes and high data dimensions is key to understanding
the behaviour of the existing model selection criterion, including the Bayesian model selection ap-
proach of Minka. Results from RMT studies are summarized in Section 3.

3. High-Dimensional Sample Covariance Matrices

We envisage a scenario where one has N, d-dimensional data vectors &,,p = 1,...,N, with sample
mean &, which are drawn from a multi-variate Gaussian distribution with covariance C. The eigen-
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values of C' we denote by Aj, i =1,...,d. The sample data vectors &, contain both signal and noise
components so we represent,

S
C=0%I+ > 0°AnBnB! | Bl By =8y , An>0¥m, (1)
m=1

corresponding to a population covariance C' that contains a small number, S, of orthogonal sig-
nal components, {Bm}fn:l, but that is otherwise isotropic. Here, 62 represents the variance of the
additive noise component of the sample data vectors. Such models have been termed “spiked” co-
variance models within the statistics research literature (Johnstone, 2001), due to the small number
of &-function spikes in the population covariance eigenspectrum. In this case the population eigen-
values are Aj = 62(1 +A;), i < Sand Aj = 62, i > S. The signal strengths 62A,, merely determine
the population covariance eigenvalues corresponding to signal directions, and so the number of sig-
nal components S is commonly estimated by some process of inspection of the ordered eigenvalues
Ni,i=1,...,d, of the sample covariance matrix C = N1y (&u—€)(&—8)T.

When the sample size is greater than the dimensionality, that is, N > d, the sample covariance
eigenvalues A; may be reasonable estimators of the population covariance eigenvalues A;, and in-
deed are asymptotically unbiased estimators, that is, A — Aj as N — oo for fixed dimensionality d
(Anderson, 1963). However, for small sample sizes N < d the sample covariance € is singular with
a d —N + 1 degenerate zero eigenvalue. Similarly, the non-zero sample covariance eigenvalues,
Ai, i=1,...,N—1, can display considerable bias. This is reflected in the expected eigenspectrum,
p(A), which is simply defined as the expectation over data sets of the empirical eigenvalue density,

d
P(\) = E¢ (;_Zla(x_m)) .

Here &(x) is the Dirac &-function, and we have used E¢(-) to denote expectation over the ensemble
of sample data sets. The empirical eigenvalue density is considered to be a self-averaging quantity,
such that as N — oo the eigenvalue density from any individual sample covariance matrix is well
represented by the ensemble average. Therefore, for large sample covariance matrices studying
the behaviour of the expected sample covariance eigenvalue distribution provides us with insight
into the behaviour of individual sample covariance matrices and consequently the behaviour of any
model selection algorithms based upon the sample covariance eigenvalues.

When no signal components are present, that is, C = 621, and in the limit d — o with a = N /d
fixed, the expected distribution of sample eigenvalues tends to the Marcenko-Pastur distribution
(Marcenko and Pastur, 1967),

PAA) = pouk(A) = (1-0)O(1—a)d(A)
" ﬁmax[o,(A—Aminmmax—x)], 2)

where Amax = 02(1+a~2)2, Amin = 6%(1—a~2)2, and ©(x) is the Heaviside step function. Figure 1
shows examples of the MarCenko-Pastur distribution for different values of a. It should be noted that
although the mean sample eigenvalue is an unbiased estimator of 62, that is, [5> dAAPpuik(A) = 02,
the individual non-zero sample covariance eigenvalues lie in the interval [Amin, Amax] and so for o < 1
are highly biased estimators of the corresponding population eigenvalues.
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Figure 1: The MarCenko-Pastur limiting distribution for sample covariance eigenvalues, at a =
0.1,0.25,0.5. In all cases 0> = 1. We have shown only the part of the distribution
pertaining to non-zero eigenvalues. For a < 1 there is also a &-function peak at A = 0 due
to the singular nature of the sample covariance matrix - see main text.

Hoyle and Rattray (2004a) studied the expected behaviour of the sample covariance eigenvalue
spectrum for “spiked” covariance models in the asymptotic limit d — oo at fixed a, by using tech-
niques from statistical physics. Similar results have been obtained within the statistics research
community (Baik and Silverstein, 2006). As the addition of a small number, S, of signal directions
provides a relatively small perturbation to an isotropic population covariance, the majority, or bulk
of eigenvalues are still distributed according to the MarCenko-Pastur law. For this reason we have
used ppuik(A) to denote the Mar€enko-Pastur distribution. For the “spiked” covariance models of
Equation (1) the expected eigenvalue distribution p(A) is modified from ppuik(A). At finite but large
values of d and N the expected sample covariance eigenvalue density can be approximated by,

pPA) = (1-a)O(1-a)d (?\—Au(Am))@(G—Ar}z)

an

a
+ (1 d- 12@0( A )21_[)\ 54/Max[0, (A — Amin) Amax — M)] (3)

where Ay(A) = 6%(1+A)(1+ (aA)~1). A number of interesting features are present in this spec-
trum. A transition occurs at o = A2, such that for a > A;? a sample eigenvalue located at
A = Au(Am) can be resolved separately from the remaining MarCenko-Pastur bulk of eigenvalues.
Thus for S signal components within the “spiked” covariance model we can observe up to S transi-
tions in the sample covariance eigenspectrum, on increasing a. The first transition point a = AIZ
corresponds to the transition point in learning the leading signal direction B1. The scenario of learn-
ing a single signal component B, of strength A; has been studied by Reimann et al. (1996), who
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considered the behaviour (as d — o at fixed o) of the expectation value of R, where Ry = By - J; is
the overlap between the first principal component J; of the sample covariance and B1. One observes
the phenomenon of retarded learning whereby RZ = 0 for a < AIZ andRZ >0 fora > AIZ. This has
been generalized to learning multiple orthogonal signals and one observes a separate retarded learn-
ing transition at a = A2 for each of the overlaps R2 = (B, - Jn)?, where J, is the mt" principal
component (Hoyle and Rattray, 2007). That the ability to detect the signal components is reflected
in the sample covariance eigenvalue structure (with retarded learning transitions coinciding with
transitions in the eigenspectrum) demonstrates the utility of the sample covariance eigenspectrum
for model selection. It also highlights that if the true signal dimensionality is S then asymptotically
we have at most only S sample covariance eigenvalues separated from the Marcenko-Pastur bulk
distribution, dependent on the value of a. If, for the given value of o, we have S eigenvalues sepa-
rated from the MarCenko-Pastur bulk distribution, then the asymptotic equivalence of the observed
sample covariance eigenspectra when C' contains S signals or S§<s signals means that no correct
Bayesian model selection procedure can, asymptotically, select greater than S principal components
(applying an Occam’s Razor like argument), since both models are equally capable of explaining
the observed eigenspectra. Equally, for sufficiently small a it is impossible, asymptotically, to dis-
tinguish the sample spectrum from one which has been generated from a model containing no signal
structure, that is, from a population covariance C' = o?I. Within these constraints placed by the ex-
pected behaviour of the observed eigenspectra we now attempt to derive a suitable Bayesian model
selection procedure that performs well in the distinguished asymptotic limit N,d — oo at fixed a.

4. Bayesian Model Selection

In this section we summarize the Bayesian model selection procedure for PCA. We start in Section
4.1 by reproducing the formulation of the Bayesian model evidence as outlined by Minka (2000,
2001a) and the subsequent Laplace approximation. In Section 4.2 we re-express the evidence in
a form that is more suitable for application of a Gaussian approximation when d,N — o at fixed
a<l

4.1 Laplace Approximation of Minka

The data vectors &, are modelled as being drawn from a multi-variate Gaussian distribution with
mean m and covariance 3 =vI + HH'. Thus X acts as a model of the true population covariance
C. The matrix H represents the signal considered present in the data and so is modelled as being
due to a small number, k, of orthogonal signal components ui, i = 1,...,k. Consequently we set,

H=UL-VL)"’W ,U'U=I , WW=1I ,

where the columns of the orthonormal matrix U are formed from the vectors w;. The parameter
v provides an estimator of the true population noise level 62, The diagonal matrix L has ele-
ments l;, i = 1,...,k, which represent estimators of the population covariance eigenvalues A;j. The
orthonormal matrix W represents an irrelevant rotation within the subspace and is subsequently
eliminated from the calculation. Model selection proceeds via the standard use of Bayes’ theorem,

(D|H,m,v)p(H,m,V)
p(D)

p(H,m,vD) = P
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The signal dimensionality, k, is implicit in the matrix H. With a non-informative prior, the mean
m can be integrated out to yield the probability of observing the data set D given H and v (Minka,
2001a),

p(D|H,v) = N~92(2m)~N-19/2| r g7 4 vi|-(N=D/2exp (—';ltr((HHT—irvI)‘lé)) :
Given a prior p(U, W, L,v) the evidence for a signal dimensionality k is then,
p(DIK) = /dUdeLdv p(D|U, W, Lv)p(U,W,L.v).

The integration over the elements I;, i = 1,... k is restricted to the region I; > 0Vi. Similarly,
the integration over U and W is over the entire space of d x k and k x k orthonormal matrices
respectively. For the relevant integration over U this is equivalent to integration over the Stiefel
manifold Vi (RY) defined by the set of all orthonormal k-frames in RY (James, 1954) .

Minka chooses a conjugate prior,

n

p(U,W,L,v) [ |HHT+vI|*<”+2>/2exp(—§tr((HHT+vI)*1)), (4)

where the hyper-parameter n controls the sharpness of the prior. For a non-informative prior n
should be small and ultimately we shall take 0 — 0 in our resulting approximation to the evidence
p(D|k). With the prior given in Equation (4) the evidence is Minka (2000, 2001a),

N (d)
Area(Vi(RY))

y exp(—gtr((HHT I) NG NI D)) (5)

p(Dfk) [dvdLav|HHT vr 2

with,

N—9/2(2m)—(N-1)d/2 1
r((Gn+1)d-k -1) r(n/2)¢
and here 1/Area(Vy(RY)) is the reciprocal of the area of the Stiefel manifold Vi (RY) (James, 1954),

Ni(d) = (n(d —k)/2)EnFHE--1 (n/2)™/2,

1

Area(Vi (R9)) =2 I‘lr d—i+1)/2)m@-+1/2

The dependence of Ag(d) upon k is relatively weak compared to other factors contributing to
Inp(DJk), and so Minka drops Ak(d) from further consideration in approximating p(D|k). As with
the maximum likelihood case (Tipping and Bishop, 1999a), for a fixed choice, k, of the number of
principal components, the maximum posterior estimators for {u.}k 1 are known to be the eigenvec-
tors of C corresponding to the k largest eigenvalues of C. Minka approximates the evidence p(D|k)
in Equation (5) using a Laplace approximation, expanding about the maximum posterior solution.
The stationary point values of v and {l;}¥_, are denoted by v and {ﬂ}'le respectively, and are given
by (on taking n — 0),

N
 N-1

N Z?:k+1)‘j
(N+1)(d—k)—

=

~ A , V=

(6)
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Within this approximation I; provides a point estimate of the it" population covariance eigenvalue
Ni. For a < 1, as we have already commented in the previous section, Aj can be highly biased and
consequently a poor point estimate of A;. Continuing with the Laplace approximation and setting
m = dk —k(k+1)/2, Minka finds (again after taking n — 0),

“N/2
AN (d—K) /29 (M+K) /2] A [—1/2n—k/2

where,
k d .
Az = (ATY=ATH A= AN
l_‘jE11 i ! J

The estimator A; is given by Aj = [; ~ A; for i < k and A\; = V for i > k.

Figure 2 shows simulation estimates of the performance of a model selection criterion based
upon the evidence given by Equation (7). We have sampled data vectors &, from a population
covariance C' containing three signal components. The noise level has been set to 02 = 1 and
the signal strengths are A2 = 30,A3 = 20,A3 = 10. The simulation results are averages evaluated
over 1000 simulated data sets. Plotted in Fig.2(a) is the probability of selecting the correct model
dimension against d, for different fixed values of N. As expected the accuracy of the model selection
decreases with increasing d, with greater accuracy for larger sample sizes N at a given value of d.
Plotted in Fig.2(b) is the probability of selecting the correct model dimension against d, for different
fixed values of a. Note that the smallest value studied, a = 0.2, is still greater than the retarded
learning transition point of the weakest signal component, which occurs at a = A3‘2 =0.1

The accuracy of the model selection procedure can potentially be improved by noting that PCA
can simply be considered as constructing a representation of a matrix, in this case the mean centred
sample data matrix. As such the transpose of the representation of the mean centred data matrix is
equally as valid, which can be evaluated as the eigen-decomposition of the transpose of the mean
centred data matrix. Given that we then model the transposed data matrix using k, N-dimensional
vectors rather than k, d-dimensional vectors, then with N < d and thus effectively lower model com-
plexity, we would expect model selection based upon using the transposed mean centred data matrix
to display superior accuracy. This is borne out by simulation results for model selection accuracy
when applied to the transposed centred data matrix that are also shown in Fig.2. In all cases shown
in Fig.2 the accuracy of the model selection is greater when using the transpose of the mean centred
data matrix. One should note from Fig.2a, that even with transposing the centred data matrix, the
model selection accuracy decreases with increasing data dimensionality d, at fixed sample size N.
Taking a data set with o < 1 and transposing does not produce an effective value of a that is larger
than one - if true this would suggest one could have arbitrarily large effective values of a (by taking
d — oo at fixed N) and consequently asymptotically perfect model selection even though, as has
already been highlighted, the expected spectrum in this limit is indistinguishable from that obtained
by sampling from a distribution with an isotropic population covariance matrix. Consequently the
accuracy of model selection based upon the sample covariance eigenspectrum will always decrease
with increasing d, at fixed N, due to the distorting effects of high data dimensionality. We can at-
tempt to mitigate these effects by taking proper account of the high dimensional contributions to the
model evidence. This we do in the next section.
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Figure 2: Probability of correct model selection using the method of Minka. The solid lines provide
a guide to the eye. (a) & (b) Plots of model selection accuracy against data dimension d
- (a) Fixed values of N, (b) Fixed values of a. The data is generated with a population
covariance C' containing three signal components -see main text for details. Solid sym-
bols represent simulation results from the model selection procedure applied to the mean
centred data matrix, whilst open symbols represent simulation results from the model
selection procedure applied to the transpose of the mean centred data matrix.

4.2 Overlap Method

Although for a < 1 the top k eigenvectors of C are the maximum posterior choice of model prin-
cipal components {ui}};l, for non-maximum posterior choices of U one still has a large rotational
degeneracy of the k-frame within the d-dimensional space, which will make a large contribution
to the integral in Equation (5). The integrand in Equation (5) can be written in terms of the over-
laps Rij = wui - vj between the model principal components i, i = 1,...,k, and the eigenvectors
vj, j=1,...,N—1, of C that correspond to the non-zero eigenvalues of C One finds,

\HH' +vI|*<N+1+”>/2exp(—%tr((HHT +vI)"HC +N"InD)))

N+l+” (lenl. +d- klnv>z
';'ii( —|1ZAR— 221 —I1]

This suggests performing the integration over {ui}ﬁ;l in terms of {R;j}. The volume element
that results from integrating over {w;} , at fixed {Rjj} is det M (4=N=D/2x Area(Vi (RI-N+1)),
where the matrix elements Mjy = & — Y jRijRyj. For high dimensional spaces we might ex-
pect the vectors uj,ui to be orthogonal over any high-dimensional subspace, not just the entire
d-dimensional space. Therefore we can approximate the matrix elements by My = & (1 — Yi Rizj),
and det M is easily evaluated. With this approximation the evidence is,

= exp
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Area(Vi(RI-N+1))
PDIK) = N(d)—1re (Vk(R9)) /I_ldR”/I_IdI'/dV

X exp [(]I_I;I_liiln(l— Z_ R,2J> — N+1+r] (ZI nli + (d —k) Inv)
N N-1

k
ZVZAJ I;IZl( _Ilz)\R”_i“‘zzl —Il] (8)

Approximations to the model evidence can now be made by approximating this integration
over the overlap variables {R;j}, and consequently this approach is termed the “overlap” method.
For large values of d and N we would expect the integral in Equation (8) to be dominated by the
stationary points of the exponent and a Laplace approximation to the integral can be constructed.
Denoting stationary point values by V, I.,R.J, it is an easy matter to find that, on taking n — 0,
stationary points of Equation (8) satisfy for some j,

1-R? = (V11 HNA;

W ) F’élj’zovjl?éj

The dominant stationary point solution has the overlap between the i signal direction estimate, u;
and the i sample covariance eigenvector, vj, bemg non-zero, that is, R2 >0, R”, =0,Vi#£¥,

For j > k the dominant stationary point has R = 0. Within this approximation the expectation
value of Rizj will be O(N~1) due to small fluctuations about this stationary point. However, we
have an extensive number, that is, proportional to N, of such overlap variables. Thus we expect
Yisk R?j ~ 1, and consequently the contribution from these small fluctuations cannot be ignored.
The fluctuations in R;j, for j > k, collectively affect the stationary point behaviour of the overlaps
Rij for j <k. To progress we integrate out the fluctuations by setting,

b = ;R”,

and perform the integration over {R;j} -k by writing,

/U,[ldR” - /mﬂdRij N dbi6<bi - ];Rﬁ) :

Using the standard Fourier representation of a Dirac &-function,
1
(x — d eP*,
(x) = o ar
we obtain,

JTIT R = e e T emoeee 5 (6 5 )] 0

>
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where the path of integration for p; is between —ico and +ico. Combining the integrand in Equa-
tion (9) with the integrand in Equation (8), the integration over {Rjj} -k is Gaussian and so easily
performed. We obtain,

/dv/]‘ldldbdp. rldR.,exp<Zip.b. S(d—N-— 12 n[1— ZR

N+1
—= In2pi —N(v 2= 1"HAj] — ——= [ S Inli 4+ (d —k)Inv
2;}; i : Z i
_Nv_lNilM N i(v_l_ I Z ARZ ) (10)
2 =1 2i: =1

With the path of integration for p; being along the imaginary axis the remaining integrals in
Equation (10) are approximated via steepest descent (Wong, 1989). For brevity we give only the
solutions to the saddle point equations, with the caret again denoting saddle-point values of the
corresponding integration variables,

N [N—l)\ k( 1)1 1)
v = — i — SN, 11
CESCEI PRI

0 = PV YL+NY — EAV  —a 4+ 1+N"1(k+3)) + Aj, 12)
2 . (d=N-1) 1 1

Al NO-1-FDN NG @ T-FhHA-A)’ )
RG = 0 ,j#i,]j<k,

b= TN, a4
5 _ 1 _pe_ (@-N-1)

bi = 1-RZ NG TN (15)

Again the saddle-point solution values Vv and I provide us with point estimates for the popula-
tion noise level o2 and population signal eigenvalue A; respectively. Equations (11) and (12) can be
solved efficiently via an iterative process starting from an initial estimate of ¥ =d 1 Y jAj. Obtain-
ing real-valued estimates, li, for the population covariance eigenvalues is clearly dependent upon
the quadratic equation in (12) having a non-negative discriminant. In practice, we have interpreted
complex-valued estimates Ii for a particular choice of signal dimensionality k as meaning that the
particular choice for k is not appropriate and should not be considered. From analysis of the asymp-
totic behaviour of the “overlap” approximation (see next section) we find that the discriminant of
Equation (12) becomes negative for sample covariance eigenvalues Aj which are below the edge of
the MarCenko-Pastur bulk distribution given in Equation (2), that is, Aj < Apax = 0%(1 + a*%)z, SO
that indeed a negative discriminant is consistent with attempting to extract more signal components
than can be genuinely distinguished from an isotropic population covariance. In other words com-
plex solutions to Equation (12) suggest that the data do not support a model with that number, k, of
signal components.

Once solutions for v and {I 1 have been obtained, values for Rﬁ, bi, b; follow from Equations
(13), (14) and (15) respectlvely Followmg Minka (2001a) and dropping the relatively weak k-
dependence in Ak(d) we derive an approximation for the log-evidence as,

2743



HoYLE

[iN

o
T m‘\
o
=]

o
o
o
o
T

o
'S

Probability Correct

Probability Correct

I
N
I
N
T

. I ; & - ST ¢
%00 400 600 800 1000 200 400 mo 800 1000
Dimensiond Dimensiond

Figure 3: Plot of model selection accuracy for the “overlap” method. (a)Plot of model selection ac-
curacy against data dimension d at fixed values of N. (b)Plot of model selection accuracy
against data dimension for fixed values of a. For comparison open symbols represent
simulation results from the model selection procedure of Minka applied to the transpose
of the mean centred data matrix.
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where Hj is the Hessian of the exponent in the integrand evaluated at the saddle point. The last two
terms in (16) come from integrating over the small fluctuations about the saddle point. Since the
Hessian is of small dimension, and so not strongly dependent on N and d, we subsequently drop
the last two terms from our approximation of the log-evidence. The “overlap” approximation to the
log-evidence, given in Equation (16), can be used for model selection by selecting the value of k
that has the highest value of In p(D|k).

Figure 3 shows simulation estimates of the accuracy of the “overlap” model selection criterion
given in Equation (16). Fig.3(a) shows the probability of selecting the correct model dimension
against d, for different fixed values of N. Plotted in Fig.3(b) is the probability of selecting the
correct model dimension against d, for different fixed values of a. Sample sizes and model pa-
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rameter values are identical to those in Figure 2. Also reproduced (open symbols) in Fig.3(a) and
Fig.3(b) are the simulation estimates of model selection accuracy for Minka’s approximation to the
model evidence applied to the transposed mean centred data. From Fig.3(a) it is clear that the “over-
lap” model selection criterion only suffers from degradation in performance at significantly higher
values of dimension d compared to the approximation to the evidence in Equation (7). Similarly,
Fig.3(b) demonstrates the superior model selection accuracy of the “overlap” method for increasing
dimensionality d, at fixed values of a.

5. Asymptotic Analysis

The “overlap” approximation to the model evidence has been developed by applying a steepest
descent approximation to the Bayesian evidence that has been re-formulated in terms of integration
over variables that remain finite in number in the distinguished asymptotic limit d,N — oo, at fixed a.
The “overlap” approximation essentially contains the leading order term of an asymptotic expansion
of the evidence in that distinguished limit. It would be expected that the approximation to the model
evidence would therefore become increasingly accurate in this limit. Note that this is very different
from the traditional large sample limit N — oo at fixed d, for which Minka’s approximation to the
Bayesian evidence will become increasingly accurate. It has been argued that since for many real
high-dimensional data sets a < 1, one would expect that approximations to the model evidence that
are accurate in the distinguished limit will have superior model selection accuracy at finite values
of d,N. The simulation results presented in Fig.3 would appear to confirm this. However, more
concrete understanding of the accuracy of the “overlap” method in the distinguished asymptotic
limit is required. A theoretical analysis of model selection accuracy in this limit would provide us
with a firmer comparison of Minka’s original Laplace approximation and the “overlap” method, in
addition to the comparison provided by simulation study in Section 4.2. A number of quantities
such as the eigenvalue spectrum are self-averaging in the asymptotic limit, that is, have vanishing
sampling variation, so that for large data dimensions, d, the value for a single data set, {£,}, is
well approximated by the ensemble average over data sets. Studying the ensemble expectation, in
the asymptotic limit of d — o at fixed o, of the “overlap” approximation to the model evidence
provides us with insight into its accuracy as a model selection procedure for high dimensional data.

From Equation (11) it is evident that V = d 137" A; + O(N 1) as N — co. Consequently, due
to the self-averaging nature of the sample covariance eigenvalue spectrum, we have that V — E¢(A)
as N — oo, where we have used E¢(-) to denote expectation over the ensemble of sample data sets.
We already commented in Section 3 that E¢(A) = 02 in the asymptotic limit N — oo at fixed a,
and so V provides an asymptotically unbiased estimate of the population noise level. Estimates of
the population signal eigenvalues are given by {ﬂ Ll, and in the distinguished asymptotic limit
solutions to Equation (12) for I are given by,

i = % (LA oY)+ /(LA —a D)2 — ano-t| (17)
If we consider a “spiked” population covariance model of the form in Equation (1) the population
covariance eigenvalues correspond to signal eigenvalues A; = 0%(1+A;), i < S and noise eigenval-
ues A\j = 02, i > S. The resulting expected sample covariance eigenspectrum is given in Equation
(3). Taking those sample eigenvalues which are separated from the bulk and also those at the upper
bulk edge and substituting into Equation (17) we obtain on setting ¥ = o2 (on taking the positive
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solution branch),

= G2(1+A) ,forAi=02(14+A)(1+(1/aA)),

li
i = o%(1+a 2) ,forAi=0(1+0a 2)2.

For sample covariance eigenvalues that are below the edge of the Mar&enko-Pastur bulk distribution,
that is, A\j < 0?(1+ oz )2, we obtain only complex solutions from Equation (17). Conversely, when
Ai = 02(1+A)(1+(1/aA))), that is, when the sample covariance spectrum displays eigenvalues
which are distinct from the bulk of the distribution, the estimator f. = 02(1 +Aj) = /\j and so gives
an asymptotically unbiased estimate of the population signal eigenvalue A;.

What is the asymptotic behaviour of the log-evidence? Inspecting Equation (16) we can see
that, potentially, we need to evaluate O(N~1) contributions to E¢(V). However, it is easily shown
that O(N~1) contributions to E¢(¥) cancel out when evaluating E¢(Inp(DIk)), and so we do not
pursue them further here. We can evaluate the ensemble average E¢(3 j- In(Ai —Aj)) through use
of the replica trick (see Appendix A). Specifically we have for a > Ai‘z,

lim N'Eg (zkln(xi—)\,-)> = Ino® — (a1 =1)In(1+A) + a tinA + %7 (18)
1>

N,d—o0 i

whilst for a < A; 2 we have,

NlciiTwN‘lEg (;In()\i—)\j)> =Ino? — (@l=1)In+a"2) + a a2 + az. (19)
) 1>

The asymptotic behaviour of the ratio Area(Vyx(R4N*1)) /Area(Vi(RY)) is easily evaluated to give,

Area(Vi(RI-N+1)\ Nk
'”< Area(Vy(R)) >_ 2

[—|nT[—|— In% — (@ 1=1)In(1-a) —1} + O(InN) . (20)

Substituting Equations (18),(19),(20) and the asymptotic values for v and li into Equation (16), we
obtain after some straight-forward algebra,

Nd Nd

2
7Incr -5 + O(InN) . (21)

If we set x = o~ we can write the summand in Equation (21) as ©(a — A;2) f (x, A;) where,
f(x,A)=A + xInx + (x—=1)In(14+A) — 2xInA — (x—1)In(1+xA"1) — xA™L.

We find that, X
f(Az,A):o,ﬂ :o,af

~——~ > 0 forx < A?
OX |y_p2 0x2 ’

and so for o > A the summand in Equation (21) is positive. Consequently if o > A2, so that the
sample covariance eigenvalue spectrum reflects the presence of the signal B;j, then the addition of
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i principal component results in an increase in the asymptotic approximation to the log-evidence.
Conversely if a < Afz there is no change in the asymptotic approximation to the log-evidence on
including the i principal component. This is a satisfying result since we have already commented
in Section 3 that for a < Afz the sample covariance eigenspectrum is asymptotically indistinguish-
able from that produced from a population model with A; = 0, and so therefore from a Bayesian
model selection perspective all population models with A; < o~z are equally likely (provide an
equally accurate description of the observed data). Ultimately this is due to the fact that we are
considering models with a finite number, k, of signal components, and so in the asymptotic limit
we are considering a vanishingly small proportion of sample covariance eigenvalues as representing
signal components. With the non-zero sample covariance eigenvalues giving a dense covering of
the range [Amin, Amax] in the asymptotic limit, the largest few sample covariance eigenvalues, which
are not distinct from the Marcenko-Pastur bulk distribution given in Equation (2) will be aggregated
at the upper edge of the bulk, where they do not lead to any change in the log-evidence. For finite
sample sizes we would expect the higher order terms in the expansion of the log-evidence to lead
to a decrease in the log-evidence on inclusion of principal components that correspond to sample
covariance eigenvalues that are below the bulk edge. However, in the asymptotic limit we can ap-
ply an Occam’s Razor like argument and only select those principal components that increase the
log-evidence. The limiting model selection estimate, §, for the true signal dimensionality, S, then
simply corresponds to counting the number of sample covariance eigenvalues that are beyond the
upper edge of the Marcenko-Pastur bulk distribution. That is,

d
= 3 O — A

The asymptotic analysis of the “overlap” method reveals that unbiased estimates of the pop-
ulation signal eigenvalues can be recovered and that, asymptotically, model selection based upon
the “overlap” approximation to the log-evidence performs optimally. From Fig.2b it would ap-
pear that, at least for larger values of a, model selection based upon Minka’s approximation to the
log-evidence also approaches 100% accuracy as d — oo. Is it possible that the two different approx-
imations to the log-evidence asymptotically have the same model selection performance? Starting
from Minka’s approximation to the Bayesian evidence p(D|k) given in Equation (7) we have,

Inp(DIk) =~ —InArea(Vi(RY)) ——len)\.— (d—K)In? m2+k|n2n
18 A1 A-1 k
32 J__Izl[ln(/\j— ALY + In(n—Ap) + InN} - SN, @)

where Aj = NA;/(N —1) for i <k and A; = ¥ for i > k, with ¥ defined in Equation (6). In this
instance O(N~1) contributions to E¢(V) do make a contribution to the leading order asymptotic
term in E¢(Inp(DJk)). From the definition of the point estimate V in (6) we find,

k
N 2, Eelh) + ON?).

For the “spiked” covariance model of Equation (1) this can then be refined to,

Ec(9) = (1+N"Y(ka —1))Eg(drC) —

Z \

2747



HoYLE

R CXO'2 S 0-2
Ec(V) = o+ WJ;A,- + (ka—1)
ao? X .
Y |0 —A) (LA (L (1/aA)) + O(A —a)(L+a )’
+0O(N72).

Retaining only k-dependent terms, the leading order asymptotic contribution to E¢(Inp(D|k)) can
be obtained within this approximation as,

N k
Ee(lnp(DI) = 5 3 (0@~ AT) fu(xA) + OA?—a)fu(xa )| + O(nN) .
i=
where the subscript M on the function fy(x,A) is used to denote the asymptotic incremental change
to the log-evidence obtained from Minka’s approximation given in Equation (22), and again x =
a2, Specifically fy(x,A) is given as,

fm(x,A) =A + xInx + (x—1)In(1+A) — 2xInA — xIn[1+xA 1 +xA?] . (23)

The transition point at which a signal component is strong enough to be distinguishable from the
Marcenko-Pastur bulk distribution in Equation (2) is given by a signal strength A = o=z, If we put
A= yor% = y+/X, then y directly measures the signal strength relative to that at which it is first
detectable. We can then write Equation (23) as,

i, A=yvX) = (x—1)In(1+yvX) — xIn (1+yv/x+y%) + yvX.

Aplotof fy(x=a"1,A= ya‘%) against y for different fixed values of a is shown in Figure 4. From
Fig.4 we can see that at the transition point, y = 1, fy is negative, and so selection of the it" principal
component will result in a reduction of the log-evidence, even if the signal strength A; is sufficiently
strong enough for the it" sample covariance eigenvalue to be distinct from the Mar&enko-Pastur bulk
distribution. Thus, even though a detectable signal is present model selection based upon Equation
(22) would not include that signal component. For the largest value of a shown fy, does not become
positive until approximately y > 1.8. Therefore, even for a = 0.9, not until the signal strength A; is
1.8 times stronger than it need be for detection will the it" signal component be correctly selected
whilst using Minka’s approximation to the log-evidence in Equation (22). For smaller values of a
even stronger signal strengths are required, for example, y > 2.0 at a = 0.1. For the simulations
results shown in Fig.2b it is only at the largest value of a shown that we have fy > 0 for all three
signal components, and thus that all three signal components are guaranteed to be detectable in the
asymptotic limit.

6. Comparison with Frequentist Approaches

In the distinguished asymptotic limit N, d — oo the model selection process based upon the “overlap-
method”approximation to the log-evidence simplifies (after applying a Occam’s Razor like argu-
ment) to retaining those principal components whose corresponding eigenvalues are greater than
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Figure 4: Plot of the function fyy(x = a1, A = ya*%) against y for different values of a. Nfy /2
represents the incremental change (to leading order) in the log-evidence on retaining a
principal component corresponding to a signal component of strength A = ya*%. The
horizontal dashed line denotes the zero level for fy.

the upper spectral edge, Amax = 02(1+ a*%)z, of the bulk eigenvalue distribution. Whilst this result
appears intuitive from the viewpoint of the behaviour of eigenspectra of large sample covariance
matrices presented in Section 3, we have also shown that not all approximations to the Bayesian ev-
idence reduce in the asymptotic limit to this optimal choice for model selection. How then does the
“overlap” method for model selection compare to other approaches, for example more traditional
non-Bayesian approaches for dimensionality selection in PCA? In the asymptotic limit N — oo,
where we have an infinite amount of data, we would naively expect frequentist and correctly formu-
lated Bayesian approaches to model selection to give similar answers.

One of the most commonly applied techniques for dimensionality selection for PCA is to select
sample covariance eigenvalues (and corresponding eigenvectors) that account for a fixed percentage
of the total variance, for example, 90%. Typically this may only be the top two or three eigenvalues.
Alternative methods consist of producing a “scree plot’, that is, plot of eigenvalue against rank, and
attempting to detect by eye an ‘elbow’ in the plot where there is a significant change in scale of the
sample covariance eigenvalues, supposedly reflecting the change from signal dominated eigenvalues
to noise dominated eigenvalues. However, with sample covariance eigenvalues potentially being
highly biased even when the population covariance is isotropic this is not always a reliable or easily
implemented technique.

Hypothesis tests have been developed to detect departure from sphericity of the population co-
variance, based upon using trC as the test statistic (John, 1971; Nagao, 1973). This approach has
been modified by Ledoit and Wolf (2002) to account for smaller sample sizes but is still essentially
only appropriate for a > 1. The effect of smaller values of a can be accounted for since the asymp-
totic form of the expected spectrum is given by the Mar&enko-Pastur distribution (2) when C = ¢°1.
Wachter has used this by producing Q-Q plots of the sample covariance eigenvalue quantiles against
the Marcenko-Pastur distribution quantiles (Wachter, 1976). Sample covariance eigenvalues above
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the 45 degree line in these Wachter plots indicate potentially signal containing principal compo-
nents. At finite values of d a more principled, but non-Bayesian, approach would be to perform a
series of iterative hypothesis tests whereby the null-hypothesis Hg is that of a model containing k
signal components. Comparison of the (k + 1) sample covariance eigenvalue, Ay, 1, against the
sampling distribution of Ay, 1 under Hp would allow for potential rejection of the null-hypothesis
and inclusion of the (k +1)™ principal component as representing genuine signal in the data. After
setting a rate at which one wishes to control the Type-I error, for example, y = 0.05, testing of the
(k+1)™" (k+2)™, ... principal components proceed via,

Ho: C=6%T, 6% = d 139 1A), k=0
whilep(A > Agi1/k,d,N) <y

k—k+1

A = A

6% = ( ) Z] k+1)‘J

Ho : C =diag(Aq,...,A,62,...,62)
end while

To implement this testing procedure we need the cumulative sampling distribution p(A > Ay.1|k,d,N)
of the (k4 1)" sample covariance eigenvalue under the null hypothesis of C' containing k signal
components - that is the probability, when the population covariance contains only k signal compo-
nents, of the (k -+ 1)™ sample covariance eigenvalue being larger than the eigenvalue Ay, 1 observed
in the real sample data. Johnstone (2001) has derived the sampling distribution for k = 0 by ex-
tending the analysis of Tracy and Widom (1996) on the Gaussian Orthogonal Ensemble (GOE) of
random matrices. We can define location and scale constants,

Ung = N71 (\/m + \ﬁ)z ,
and

ong = N (ﬁ+f)(ﬁ f)‘%’

Then for data drawn from an isotropic population covariance, C = o2I, the largest sample co-
variance eigenvalue A1 (suitably centred and scaled) converges in distribution to the Tracy-Widom
distribution Wy. Specifically one has,

(A1/0%) — Uing g
ONd

Fi(s) = exn{—/ q(x $)q°(x )dX} ;

with g(x) being the solution to the Painlevé 11 differential equation that is asymptotically equivalent
to the Airy function Ai(x),

=Wy ~Fy,

where,

2
TAO — a0 + 20°9

qix) ~ Ai(X) ,Xx—o00.
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Figure 5: Comparison of the model selection accuracy for the “overlap” method (solid black sym-
bols) with a null hypothesis test based upon the Tracy-Widom distribution for the largest
eigenvalue of a sample covariance matrix (open symbols). a)Plot of model selection ac-
curacy against data dimension d at fixed values of N. (b)Plot of model selection accuracy
against data dimension for fixed values of .

Note that the centering constant png — Amax, Up t0 an irrelevant factor of o2, That is, the edge of the
Marcenko-Pastur distribution, as N,d — o at fixed a. More recent analysis of the distribution of
A1 when the data is complex and contains signal has been performed by Baik et al. (2005). The au-
thors provide conjectures for the behaviour of the sampling distribution of A1 when the data is real,
based upon their analysis of the complex case, but this still does not provide a means of calculating
the sampling distribution p(Ax41|k,d,N) for k > 0. Instead Johnstone (2001) derives the inequality
P(A > Agyalk,d,N) < p(A > A1]0,d —k,N), with the latter distribution being given in terms of the
Tracy-Widom distribution. Consequently, at finite N this provides a conservative hypothesis test
since use of p(A1]/0,d —k,N) yields an over-estimate of the tail area of the sampling distribution
p(Ak+1lk,d,N), and therefore an over-estimate of the Type-I error rate. With the variance o2, tend-
ing to zero as N — oo, then in the asymptotic limit N — oo the series of hypothesis tests given above
corresponds simply to determining how many sample covariance eigenvalues A are above Apax - the
edge of the Marcenko-Pastur bulk distribution - and so, as naively expected, is in agreement with
the behaviour of the “overlap” method in the distinguished asymptotic limit.

Although in the distinguished asymptotic limit the Bayesian and frequentist approaches to
model selection agree, it is interesting to compare model selection accuracies for finite values of
N and d. For real data sets the sampling distribution of the individually ranked eigenvalues will
have an effect upon the performance of the hypothesis test approach and likewise accuracy of point
estimates for model parameters will impact upon the performance of the Bayesian methods. Fig-
ure 5 shows the model selection accuracy for the “overlap” method compared to that for the null
hypothesis test outlined above that is based upon the Tracy-Widom distribution. Fig.5(a) shows
the probability of selecting the correct model dimension against d, for different fixed values of N.
Plotted in Fig.5(b) is the probability of selecting the correct model dimension against d, for differ-
ent fixed values of a. Sample sizes and model parameter values are identical to those in Figure 2
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and Figure 3. We have controlled the Type-I error at the 5% level (y = 0.05) with the value of the
abscissa for the 95! centile of the Tracy-Widom distribution taken from Johnstone (2001). Within
Fig.5(b) we would expect all model selection accuracies to converge to 1 as d,N — oo since all the
signal strengths have been chosen to be above their respective retarded learning transition points and
therefore the sample eigenvalues corresponding to signal directions are all distinguishable from the
Marcenko-Pastur bulk in this limit. However, for finite d and N Fig.5(a) and (b) reveal that overall
the hypothesis testing approach has a superior model selection accuracy when both N and a are
relatively small. By definition, the hypothesis test only considers a sample covariance eigenvalue
to represent a signal if it exceeds that expected from the null model by more than reasonable sam-
pling variation. As sampling variation will be greater at smaller values of N we might expect the
hypothesis testing approach to be more sensitive for model selection than the “overlap” approach
within this regime, particularly since higher order terms in the asymptotic expansion of the Bayesian
evidence, that have not been incorporated into the “overlap” evidence approximation, will be more
significant for smaller values of d and N. For larger values of d and N, the conservative nature of
any hypothesis testing approach may adversely affect its model selection accuracy in comparison to
a Bayesian evidence based approach.

7. Discussion & Conclusions

For calculations within high-dimensional inference problems we have argued that, rather than using
results obtained by considering the traditional large sample limit N — co, better approximations may
be obtained by considering them to be close to the asymptotic value obtained in some distinguished
limit, even though the sample size N may naively be considered large enough for routine application
of the Laplace approximation to be accurate. What constitutes a large sample size, N, should clearly
be defined with respect to the data dimensionality d. For PCA the appropriate distinguished asymp-
totic limit is d,N — oo, with a = N/d fixed, though for other models different distinguished limits
may need to be considered in order to observe meaningful non-trivial behaviour that is distinct from
the large sample limit, N — oo. For example, statistical physics studies of independent component
analysis (ICA) suggests that d — co with N = ad? at fixed o would be the appropriate distinguished
limit to consider (Urbanczik, 2003). However, irrespective of the particular distinguished limit con-
sidered when developing an asymptotic approximation, one needs to be careful to keep track of the
increasing number of contributions as d — oo, and potentially large contributions resulting from the
rotational degeneracy of the integrand in the formulation of the Bayesian evidence.

The effect of high data dimensionality on model selection accuracy when a < 1 is apparent from
the simulation results shown in Fig.2a and Fig.3a. Ultimately this is due to the biased sample covari-
ance eigenvalues and the poor accuracy of the sample covariance eigenvectors in representing the
signal directions when a < 1. The high-dimensional nature of the data leads to high-dimensional
integral formulations of the Bayesian evidence. Approximation of the evidence has to be done
carefully. Within the “overlap” method, inclusion of large contributions to the evidence from ro-
tational degeneracy of the model k—frame and extensive Gaussian fluctuations leads to improved
model selection accuracy. The observation that reformulating the integrand can lead to improved
Laplace estimates of marginal distributions is not necessarily a new one (MacKay, 1998). For high-
dimensional data the reformulation is essential, and for the “overlap” method reformulation of the
evidence calculation in terms of a finite number of variables has ultimately led to an integrand that
is better approximated by a single Gaussian, via a steepest descent calculation. There may exist
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potentially superior estimation schemes, based upon a Gaussian parametrization of the integrand,
that perform well when the integrand is essentially unimodal, for example expectation propagation
based schemes (Minka, 2001b) or variational approximation similar to that employed by Bishop
(1999Db) for model selection within Bayesian PCA, although it should be noted that Bishop (1999b)
does not impose an orthogonal constraint upon the low dimensional decomposition of the popula-
tion covariance. However, it is the fact that one has to reformulate the evidence calculation for a
Gaussian approximation to be accurate that is our main finding here, not the particular choice of
approximation scheme that one employs once the reformulation has been made. Of greater interest
perhaps is the fact that we have been able to demonstrate the asymptotic equivalence of the Bayesian
evidence based model selection criterion and the frequentist hypothesis testing approach to model
selection. Furthermore, analysis of the asymptotic behaviour of the “overlap” approximation to the
log-evidence reveals that the estimators of the population signal eigenvalues are unbiased, at least
for the “spiked” covariance models considered here.

The influence of high data dimensionality on estimates of model parameters can be explicitly
demonstrated by re-visiting Minka’s original Laplace approximation to the evidence. Although
Minka’s derivation provides a poorer approximation to the model evidence, in the distinguished
limit N,d — oo at fixed o, in comparison to the “overlap” approximation, it is still the correct
leading order approximation in the asymptotic limit N — oo at arbitrary fixed values of d. Therefore
it contains information about how the model evidence behaves for large values of N and d. This
suggests that Minka’s Laplace approximation to the model evidence could be re-used to develop
improved point estimates of population covariance eigenvalues {A;}. One proceeds by noting that
the eigenvectors of C are the maximum posterior estimates of U for arbitrary choices of {l;} and
v, since projection of the sample data onto the sample covariance eigenvectors retains the greatest
variance. We can simply re-use Minka’s approach to perform the Gaussian integration over U about
this maximum posterior point, yielding p(D|{l;},Vv) which can then be optimized with respect to {l;}
and v. Specifically we have the following approximation to the log-evidence (taking n — 0),

—N+1<lel+d k)lnv)—z 221 Lt
- 5In|Az| + InAg(d) — InArea(Vk(RY)) + erI(In2T[— gInN, (24)
s 11 a 1 -1 :
In|Az| = mInN d—k)In(v_ - =1~ In(l;y =1~ In(Ai—Aj) | .
n|Az| = min +i;<( )In(v="—1; )+j:Z+1”(J i )+j;+ln( J))

It should be noted that the contribution from In|Az| is extensive in d and therefore affects the
construction of point estimates for {l;} and v. Retaining only extensive terms in Equation (24) and
locating stationary points with respect to I; and v yields estimators li,0. In the asymptotic limit
N — oo these estimators are given by,

0 = VM- Gia+0—ah) + N,
1N71

Vo= d Y.
A
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The equation above, determining the asymptotic behaviour of the estimator Ii is asymptotically
identical to that given in Equation (12) for the “overlap” method and so, as already noted, gives
asymptotically unbiased estimates for the population signal eigenvalue. Although this leading order
approximation to the log-evidence can yield asymptotically unbiased estimators of the population
covariance eigenvalues, it is still not an accurate estimation of the log-evidence and will still give
inferior model selection performance in comparison to the “overlap” method. This is because higher
order terms in the asymptotic expansion of the integral in Equation (5) will also be extensive in N,
on taking the asymptotic limit N,d — o at fixed a. Ultimately this can seen from the “overlap”
reformulation of the integral defining the evidence, which introduces higher than quadratic order
terms in the extensive integration variables R;j in the exponent of the integrand in Equation (8).
These higher than quadratic order terms only arise for a < 1 due to the contribution of the de-
terminant det M (9-N-1)/2 that results on changing integration variables from orthonormal vectors
{w;}¥_; of the model k-frame to the overlap variables R;j. However, as we have demonstrated with
the increased model selection accuracy of the “overlap” method, it is important to explicitly refor-
mulate the integration in terms of variables that are finite in number even in the asymptotic limit
N,d — oo at fixed .

For the simulations presented within this paper we have taken the signal dimensionality k to
be finite and relatively small, for example, k = 1,2, 3, so that k < N < d. This choice reflects the
current interest in “spiked” covariance models and the generic challenge of identifying a fixed low-
dimensional subspace as more and more features are considered. However, it is entirely feasible to
imagine scenarios where the signal dimensionality is much larger than k = 3, and potentially even
comparable to the sample size N. The derivation of the approximation to the log-evidence given in
Equation (16) is valid for any finite value of k and thus can be used for model selection even for data
sets where larger values of k are appropriate. Studying the accuracy of model selection for such data
sets would prove more problematic. What would be the appropriate asymptotic limit to consider? If
we consider a distinguished limit characterised by N/d — a <1and k/N — B < 1asN,d,k — oo,
then any asymptotic analysis will need to take account of the effect a non-vanishing proportion
of signal population eigenvalues has upon the distribution of sample covariance eigenvalues. The
signal directions would no longer represent a small number of rank one perturbations of the identity
matrix, with the consequence that the limiting sample covariance eigenvalue distribution would no
longer correspond to the Marcenko-Pastur distribution given in Equation (2). Whilst tools exist to
characterise the expected sample covariance eigenspectrum for an arbitrary population covariance
eigenspectrum (Marcenko and Pastur, 1967; Wachter, 1978; Hoyle and Rattray, 2004b), obtaining
closed form analytical results and proving the asymptotic correctness of the model selection for an
arbitrary expected sample eigenspectrum would be difficult.

Finally, we should comment that we have illustrated ideas and concepts using model selection
for PCA, in particular for a < 1. Even today, with readily available compute power and sophis-
ticated statistical learning algorithms, PCA is still a popular tool for dimensionality reduction or
exploratory analysis. The application of PCA to extremely high-dimensional small sample size data
sets has only increased the need for accurate model selection procedures. We also chose PCA as
our exemplar because there already exists an elegant formulation of the Bayesian model selection
problem (Minka, 2000, 2001a), and an approximation to the model evidence obtained by routine ap-
plication of the Laplace approximation had already been developed. However, we believe that many
of the ideas presented here are valid more generally. A large contribution to the Bayesian evidence
for PCA arises from the rotational degeneracy of the model likelihood, that is, that there are many
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orientations of the k-frame formed by the model signal vectors, {u;}X ,, that are equally capable
of accounting for the observed data. This ultimately stems from the fact that we are attempting to
make inferences about vectors in RY whilst we only have N sample vectors from which to construct
a basis for the space. Thus, the degeneracy of the model likelihood is due to a combination of small
sample size, N < d, and that the likelihood is expressed in terms of projections of the sample data
onto the model signal vectors. This is true irrespective of whether the signal vectors {ui}'f:l are
constrained to be orthogonal or not, and so we expect that the issues illustrated here with PCA will
be equally applicable to a number of other dimensionality reduction algorithms.
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Appendix A.

Evaluation over data sets of the expectation value, E¢(3 j-k In(Ai —Aj)) (for i <k), would appear
to be problematic. Since we are interested in the leading order behaviour of this expectation value,
that is, the scaling with N, we can change the summation over j to include only those eigenvalues in
the bulk distribution given in Equation (2). Potentially the leading order term can then be evaluated
via,
Amax
lim N_lEg <Z(|I’l()\i —)\j)) = G_l/ d)\ln()\i _)\)pbulk()\) , (25)
N,d—o0 s Amin

and where ppyik(A) is the MarCenko-Pastur bulk distribution given in Equation (2). Even if some
sample covariance eigenvalues A;j lie outside the MarCenko-Pastur bulk for j > k the asymptotic
result given in (25) is still valid since N=tIn(A; —A) ~ O(N~2) for Aj > A > Apax. Thus contribu-
tions to N™1E¢(¥ j=k In(Aj — A;j)) from a small number of sample eigenvalues outside of the bulk
distribution are vanishingly small in the asymptotic limit. The direct evaluation of the integral in
(25) is difficult, so we prefer to use an indirect method. Since we are restricting the summation over
j to eigenvalues in the bulk then if we denote the interval [Amin, Amax] = louik, We can write,

: -1 ; -1 -1
N!érﬂwN Ee <>\ > In()\i—)\j)> = N!(lewN Ee (trin(AiI — NT°G)) . (26)
i€ lbuik
where G is the Gram matrix formed from N, d-dimensional samples drawn from a multi-variate
zero-mean Gaussian distribution with population covariance C = 021, that is, the matrix G has
elements Gy = £ €. The expectation, over data sets {£,})\_;, of trIn(\il — N~'G) is performed
with the aid of the replica trick, which uses the representation,
n
. -1
Iny = lim M .

n—0 n
The calculation proceeds in a straight-forward fashion. We only give brief details here and the
reader is referred to more in-depth explanations, given elsewhere, of the use of the replica trick in
statistical physics and machine learning (Mezard et al., 1987; Hertz et al., 1991; Engel and Van den
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Broeck, 2001). We find that evaluation of Equation (26) is given by the extremal value (with respect
to x and q,) of,
o 'o’q

01 1 2
—<Inx — o ~In(1—-0%X) —
{ * ( ) 1—0%x

" — Ni(x+0q1) + 1} - (27)
Differentiating with respect to x and gy the expression in (27) is easily maximized to give (for
Ai = 0?(1+A)(1+a AT,
1
Ing? — (a1=1)In(1+A) + a tinA; + A (28)
i

Here we have assumed the sample covariance eigenvalue A will correspond to that from a “spiked”
population covariance and that we are above the retarded learning transition for the it" signal com-
ponent. For a < Afz we are below the retarded learning transition for the i signal and we expect
A to be located approximately at the upper edge of the bulk distribution so that A; ~ o2(1 + 0(*%)2.
We expect the summation in N*lzj>kln()\i — Aj) will still converge since it is restricted to j >
k > i. Setting Aj = Amax in the previous replica calculation still yields a well-behaved estimate for

limn—wNT1E¢ (3 ok IN(Ai = Aj)), namely,

NI

Ino? — (@ *—1)In(1+a~%) + a~tina~% + a (29)

Since Aj = o~z is the limit at which Ai is indistinguishable from the bulk distribution, that is,
Ai — Amax, it is unsurprising that Equation (29) is obtained as the limit of Equation (28) as Aj — a2,

Figure 6a compares the limiting theoretical estimates for N 1E¢ (3 - In(Ai —Aj)), given in
Equations (28) and (29) with simulation for different values of a. Different plotted symbols rep-
resent different values of i, with i = 1,...,5 running from top to bottom respectively. For each
series we have set k = i in the evaluation of the simulation averages. This was considered to be
better than artificially setting k = 3, the true signal dimensionality which in general would not be
known. Although in some cases, for evaluation of the simulation averages, this will lead to sum-
mation over sample covariance eigenvalues that are outside of the Marcenko-Pastur bulk distribu-
tion these will make only O(N 1) contributions to N"*E¢ (3 j-kIn(Aj —A;)), and so the simulation
averages still provide a relevant test of the theoretical estimate of the asymptotic limiting value
limy e N"1E¢ (3 jok IN(Ai —Aj)). Asymptotically, in the limit N — co and for the population co-
variance signal strengths chosen, three sample covariance eigenvalues are expected to be separated
from the bulk distribution over the entire range of a plotted. Consequently we expect simulation
averages to have a distinctly different behaviour for i < 3 compared to i > 3. A common limiting
value for N_lEg (zj>kln()\i —)\j)) when i > 3 is apparent from Figure 6a. Figure 6b compares
simulation averages with the theoretical estimates in Equations (28) and (29) for different signal
strengths. In this case the population covariance contains a single signal component, of strength A,
whilst we have fixed o = 0.1. The sample covariance eigenspectrum is expected to display a tran-
sition at A= 1.0/\/a ~ 3.16. This is clearly reflected in the behaviour of the simulation average.
The convergence towards the limiting theoretical estimate is also apparent from the comparison of
simulation averages for d = 1000 and d = 2000.
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