
Journal of Machine Learning Research 9 (2008) 2523-2547 Submitted 6/07; Revised 2/08; Published 11/08

Active Learning of Causal Networks
with Intervention Experiments and Optimal Designs

Yang-Bo He HEYB@MATH.PKU.EDU.CN

Zhi Geng ZGENG@MATH.PKU.EDU.CN

School of Mathematical Sciences, LMAM
Peking University
Beijing 100871, China

Editor: Andre Elisseeff

Abstract
The causal discovery from data is important for various scientific investigations. Because we cannot
distinguish the different directed acyclic graphs (DAGs) in a Markov equivalence class learned from
observational data, we have to collect further information on causal structures from experiments
with external interventions. In this paper, we propose an active learning approach for discovering
causal structures in which we first find a Markov equivalence class from observational data, and
then we orient undirected edges in every chain component via intervention experiments separately.
In the experiments, some variables are manipulated through external interventions. We discuss two
kinds of intervention experiments, randomized experiment and quasi-experiment. Furthermore, we
give two optimal designs of experiments, a batch-intervention design and a sequential-intervention
design, to minimize the number of manipulated variables and the set of candidate structures based
on the minimax and the maximum entropy criteria. We show theoretically that structural learning
can be done locally in subgraphs of chain components without need of checking illegal v-structures
and cycles in the whole network and that a Markov equivalence subclass obtained after each inter-
vention can still be depicted as a chain graph.

Keywords: active learning, causal networks, directed acyclic graphs, intervention, Markov equiv-
alence class, optimal design, structural learning

1. Introduction

A directed acyclic graph (DAG) (also called a Bayesian network) is a powerful tool to describe
a large complex system in various scientific investigations, such as bioinformatics, epidemiology,
sociology and business (Pearl, 1988; Lauritzen, 1996; Whittaker, 1990; Aliferis et al., 2003; Jansen
et al., 2003; Friedman, 2004). A DAG is also used to describe causal relationships among variables.
It is crucial to discover the structure of a DAG for understanding a large complex system or for
doing uncertainty inference on it (Cooper and Yoo, 1999; Pearl, 2000). There are many methods of
structural learning, and the main methods are Bayesian methods (Cooper and Yoo, 1999; Hecker-
man, 1997) and constraint-based methods (Spirtes et al., 2000). From data obtained in observational
studies, we may not have enough information to discover causal structures completely, but we can
obtain only a Markov equivalence class. Thus we have to collect further information of causal
structures via experiments with external interventions. Heckerman et al. (1995) discussed structural
learning of Bayesian networks from a combination of prior knowledge and statistical data. Cooper
and Yoo (1999) presented a method of causal discovery from a mixture of experimental and obser-

c©2008 Yang-Bo He and Zhi Geng.

HE AND GENG

vational data. Tian and Pearl (2001a,b) proposed a method of discovering causal structures based
on dynamic environment. Tong and Koller (2001) and Murphy (2001) discussed active learning
of Bayesian network structures with posterior distributions of structures based on decision theory.
In these methods, causal structures are discovered by using additional information from domain
experts or experimental data.

Chain graphs were introduced as a natural generalization of DAGs to admit more flexible causal
interpretation (Lauritzen and Richardson, 2002). A chain graph contains both directed and undi-
rected edges. A chain component of a chain graph is a connected undirected graph obtained by
removing all directed edges from the chain graph. Andersson et al. (1997) showed that DAGs in a
Markov equivalence class can be represented by a chain graph. He et al. (2005) presented an ap-
proach of structural learning in which a Markov equivalence class of DAGs is sequentially refined
into some smaller subclasses via domain knowledge and randomized experiments.

In this paper, we discuss randomized experiments and quasi-experiments of external interven-
tions. We propose a method of local orientations in every chain component, and we show theo-
retically that the method of local orientations does not create any new v-structure or cycle in the
whole DAG provided that neither v-structure nor cycle is created in any chain component. Thus
structural learning can be done locally in every chain component without need of checking illegal
v-structures and cycles in the whole network. Then we propose the optimal designs of interventional
experiments based on the minimax and maximum entropy criteria. These results greatly extend the
approach proposed by He et al. (2005). In active learning, we first find a Markov equivalence class
from observational data, which can be represented by a chain graph, and then we orient undirected
edges via intervention experiments. Two kinds of intervention experiments can be used for orien-
tations. One is randomized experiment, in which an individual is randomly assigned to some level
combination of the manipulated variables at a given probability. Randomization can disconnect the
manipulated variables from their parent variables in the DAG. Although randomized experiments
are most powerful for learning causality, they may be inhibitive in practice. The other is quasi-
experiment, in which the pre-intervention distributions of some variables are changed via external
interventions, but we cannot ensure that the manipulated variables can be disconnected from their
parent variables in the DAG, and thus the post-intervention distributions of manipulated variables
may still depend on their parent variables. For example, the pre-intervention distribution of whether
patients take a vaccine or not may depend on some variables, and the distribution may be changed
by encouraging patients with some benefit in the quasi-experiment, but it may still depend on these
variables. Furthermore, we discuss the optimal designs by which the number of manipulated vari-
ables is minimized or the uncertainty of candidate structures is minimized at each experiment step
based on the minimax and the maximum entropy criteria. We propose two kinds of optimal designs:
a batch-intervention experiment and a sequential intervention experiment. For the former, we try to
find the minimum set of variables to be manipulated in a batch such that undirected edges are all
oriented after the interventions. For the latter, we first choose a variable to be manipulated such that
the Markov equivalence class can be reduced by manipulating the variable into a subclass as small
as possible, and then according to the current subclass, we repeatedly choose a next variable to be
manipulated until all undirected edges are oriented.

In Section 2, we introduce notation and definitions and then show some theoretical results on
Markov equivalence classes. In Section 3, we present active learning of causal structures via ex-
ternal interventions and discuss randomized experiments and quasi-experiments. In Section 4, we
propose two optimal designs of intervention experiments, a batch-intervention design and a sequen-

2524

ACTIVE LEARNING OF CAUSAL NETWORKS

tial intervention design. In Section 5, we show simulation results to evaluate the performances of
intervention designs proposed in this paper. Conclusions are given in Section 6. Proofs of theorems
are given in Appendix.

2. Causal DAGs and Markov Equivalence Class

A graph G can be defined to be a pair G = (V,E), where V = {V1, · · · ,Vn} denotes the node set and
E denotes the edge set which is a subset of the set V×V of ordered pairs of nodes. If both ordered
pairs (Vi,Vj) and (V j,Vi) are in E, we say that there is an undirected edge between Vi and V j, denoted
as Vi−Vj. If (Vi,Vj) ∈ E and (V j,Vi) /∈ E, we call it a directed edge, denoted as Vi → Vj. We say
that Vi is a neighbor of V j if there is an undirected or directed edge between Vi and V j. A graph is
directed if all edges of the graph are directed. A graph is undirected if all edges of the graph are
undirected.

A sequence (V1,V2, · · · ,Vk) is called a partially directed path from V1 to Vk if either Vi→Vi+1 or
Vi−Vi+1 is in G for all i = 1, . . . ,k−1. A partially directed path is a directed path if there is not any
undirected edge in the path. A node Vi is an ancestor of V j and V j is a descendant of Vi if there is a
directed path from Vi to Vj. A directed cycle is a directed path from a node to itself, and a partially
directed cycle is a partially directed path from a node to itself.

A graph with both directed and undirected edges is a chain graph if there is not any partially
directed cycle. Figure 1 shows a chain graph with five nodes. A chain component is a node set
whose nodes are connected in an undirected graph obtained by removing all directed edges from
the chain graph. An undirected graph is chordal if every cycle of length larger than or equal to 4
possesses a chord.

r

r r

r r

V1

V2 V3

V4 V5

�
�

�
Q

Q
Q

?

Q
Q

Q
Q

Q
QQs

Figure 1: A chain graph G∗ depicts the essential graph of G,G1,G2 and G3.

A directed acyclic graph (DAG) is a directed graph which does not contain any directed cycle. A
causal DAG is a DAG which is used to describe the causal relationships among variables V1, · · · ,Vn.
In the causal DAG, a directed edge Vi→Vj is interpreted as that the parent node Vi is a cause of the
child node V j, and that V j is an effect of Vi. Let pa(Vi) denote the set of all parents of Vi and ch(Vi)
denote the set of all children of Vi. Let τ be a node subset of V. The subgraph Gτ = (τ,Eτ) induced
by the subset τ has the node set τ and the edge set Eτ = E∩ (τ× τ) which contains all edges falling
into τ. Two graphs have the same skeleton if they have the same set of nodes and the same set of
edges regardless of their directions. A head-to-head structure is called a v-structure if the parents
are not adjacent, such as V1→V2←V3.

2525

HE AND GENG

Figure 2 shows four different causal structures of five nodes. The causal graph G in Figure 2
depicts that V1 is a cause of V3, which in turn is a cause of V5.

r

r r

r r

V1

V2 V3

V4 V5

�
��+

Q
QQs

? ?

Q
Q

Q
Q

QQs

G

r

r r

r r

V1

V2 V3

V4 V5

�
��3 Q

QQs

? ?

Q
Q

Q
Q

QQs

G1

r

r r

r r

V1

V2 V3

V4 V5

�
��3 Q

QQs
6

?

Q
Q

Q
Q

QQs

G2

r

r r

r r

V1

V2 V3

V4 V5

�
��+ Q

QQk

? ?

Q
Q

Q
Q

QQs

G3

Figure 2: The equivalence class [G].

A joint distribution P satisfies Markov property with respect to a graph G if any variable of G is
independent of all its non-descendants in G given its parents with respect to the joint distribution P.
Furthermore, the distribution P can be factored as follows

P(v1,v2, · · · ,vn) =
n

∏
i=1

P(vi|pa(vi)),

where vi denotes a value of variable Vi, and pa(vi) denotes a value of the parent set pa(Vi) (Pearl,
1988; Lauritzen, 1996; Spirtes et al., 2000). In this paper, we assume that any conditional indepen-
dence relations in P are entailed by the Markov property, which is called the faithfulness assump-
tion (Spirtes et al., 2000). We also assume that there are no latent variables (that is, no unmeasured
variables) in causal DAGs. Different DAGs may encode the same Markov properties. A Markov
equivalence class is a set of DAGs that have the same Markov properties. Let G1 ∼ G2 denote that
two DAGs G1 and G2 are Markov equivalent, and let [G] denote the equivalence class of a DAG
G, that is, [G] = {G′ : G′ ∼ G}. The four DAGs G, G1, G2 and G3 in Figure 2 form a Markov
equivalence class [G]. Below we review two results about Markov equivalence of DAGs given by
Verma and Pearl (1990) and Andersson et al. (1997).

Lemma 1 (Verma and Pearl, 1990) Two DAGs are Markov equivalent if and only if they have the
same skeleton and the same v-structures.

Andersson et al. (1997) used an essential graph G∗ to represent the equivalence class [G].

Definition 2 The essential graph G∗ = (V,E∗) of G has the same node set and the same skeleton
as G, whose one edge is directed if and only if it has the same orientation in every DAG in [G] and
whose other edges are undirected.

For example, G∗ in Figure 1 is the essential graph of G in Figure 2. The edges V2 → V5 and
V3→V5 in G∗ are directed since they have the same orientation for all DAGs of [G] in Figure 2, and
other edges are undirected.

Lemma 3 (Andersson et al., 1997) Let G∗ be the essential graph of G = (V,E). Then G∗ has the
following properties:

2526

ACTIVE LEARNING OF CAUSAL NETWORKS

(i) G∗ is a chain graph,

(ii) G∗τ is chordal for every chain component τ, and

(iii) Vi→Vj−Vk does not occur as an induced subgraph of G∗.

Suppose that G is an unknown underlying causal graph and that its essential graph G∗ = (V,E)
has been obtained from observational data, and has k chain components {τ1, · · · ,τk}. Its edge set
E can be partitioned into the set E1 of directed edges and the set E2 of undirected edges. Let G∗τ
denote a subgraph of the essential G∗ induced by a chain component τ of G∗. Any subgraph of the
essential graph induced by a chain component is undirected. Since all v-structures can be discovered
from observational data, any subgraph G′τ of G′ should not have any v-structure for G′ ∈ [G]. For
example, the essential graph G∗ in Figure 1 has one chain component τ = {V1,V2,V3,V4}. It can
been seen that G′τ has no v-structure for G′ ∈ {G,G1,G2,G3}.

Given an essential graph G∗, we need to orient all undirected edges in each chain component
to discover the whole causal graph G. Below we show that the orientation can be done separately
in every chain component. We also show that there are neither new v-structures nor cycles in the
whole graph as long as there are neither v-structures nor cycles in any chain component. Thus in
the orientation process, we only need to ensure neither v-structures nor cycles in any component,
and we need not check new v-structures and cycles for the whole graph.

Theorem 4 Let τ be a chain component of an essential graph G∗. For each undirected edge V −U
in G∗τ , neither orientation V →U nor V ←U can create a v-structure with any node W outside τ,
that is, neither V →U ←W nor W →V ←U can occur for any W /∈ τ.

Theorem 4 means that there is not any node W outside the component τ which can build a
v-structure with two nodes in τ.

Theorem 5 Let τ be a chain component of G∗. If orientation of undirected edges in the subgraph
G∗τ does not create any directed cycle in the subgraph, then the orientation does not create any
directed cycle in the whole DAG.

According to Theorems 4 and 5, we find that the undirected edges can be oriented separately
in each chain component regardless of directed and undirected edges in other part of the essential
graph as long as neither cycles nor v-structures are constructed in any chain component. Thus the
orientation for one chain component does not affect the orientations for other components. The
orientation approach and its correctness will be discussed in Section 3.

3. Active Learning of Causal Structures via External Interventions

To discover causal structures further from a Markov equivalence class obtained from observational
data, we have to perform external interventions on some variables. In this section, we consider two
kinds of external interventions. One is the randomized experiment, in which the post-intervention
distribution of the manipulated variable Vi is independent of its parent variables. The other is the
quasi-experiment, in which the distribution of the manipulated variable Vi conditional on its parents
pa(Vi) is changed by manipulating Vi. For example, the distribution of whether patients take a
vaccine or not is changed by randomly encouraging patients at a discount.

2527

HE AND GENG

3.1 Interventions by Randomized Experiments

In this subsection, we conduct interventions as randomized experiments, in which some variables are
manipulated from external interventions by assigning individuals to some levels of these variables in
a probabilistic way. For example, in a clinical trial, every patient is randomly assigned to a treatment
group of Vi = vi at a probability P′(vi). The randomized manipulation disconnects the node Vi from
its parents pa(Vi) in the DAG. Thus the pre-intervention conditional probability P(vi|pa(vi)) of
Vi = vi given pa(Vi) = pa(vi) is replaced by the post-intervention probability P′(vi) while all other
conditional probabilities P(v j|pa(v j)) for j 6= i are kept unchanged in the randomized experiment.
Then the post-intervention joint distribution is

PVi(v1,v2, · · · ,vn) = P′(vi)∏
j 6=i

P(v j|pa(v j)),

(Pearl, 1993). From this post-intervention distribution, we have PVi(vi|pa(vi)) = PVi(vi), that is, the
manipulated variable Vi is independent of its parents pa(Vi) in the post-intervention distribution.
Under the faithfulness assumption, it is obvious that an undirected edge between Vi and its neighbor
Vj can be oriented as Vi←Vj if the post-intervention distribution has Vi Vj, otherwise it is oriented
as Vi→ Vj, where Vi Vj denotes that Vi is independent of V j. The orientation only needs an inde-
pendence test for the marginal distribution of variables Vi and V j. Notice that the independence is
tested by using only the experimental data without use of the previous observational data.

Let e(Vi) denote the orientation of edges which is determined by manipulating node Vi. If Vi

belongs to a chain component τ (that is, it connects at least one undirected edge), then the Markov
equivalence class [G] can be reduced by manipulating Vi to the post-intervention Markov equiva-
lence class [G]e(Vi)

[G]e(Vi) = {G′ ∈ [G]|G′ has the same orientation as e(Vi)}.

A Markov equivalence class is split into several subclasses by manipulating Vi, each of which has
different orientations e(Vi). Let G∗e(Vi)

denote the post-intervention essential graph which depicts
the post-intervention Markov equivalence class [G]e(Vi). We show below that G∗e(Vi)

also has the
properties of essential graphs.

Theorem 6 Let τ be a chain component of the pre-intervention essential graph G∗ and Vi be a node
in the component τ. The post-intervention graph G∗e(Vi)

is also a chain graph, that is, G∗e(Vi)
has the

following properties:

(i) G∗e(Vi)
is a chain graph,

(ii) G∗e(Vi)
is chordal, and

(iii) Vj→Vk−Vl does not occur as an induced subgraph of G∗e(Vi)
.

By Theorem 6, the pre-intervention chain graph is changed by manipulating a variable to an-
other chain graph which has less undirected edges. Thus variables in chain components can be
manipulated repeatedly until the Markov equivalence subclass is reduced to a subclass with a single
DAG, and properties of chain graphs are not lost in this intervention process.

According to the above results, we first learn an essential graph from observational data, which
is a chain graph (Andersson et al., 1997) and depicts a Markov equivalence class (Heckerman et

2528

ACTIVE LEARNING OF CAUSAL NETWORKS

al., 1995; Verma and Pearl, 1990; Castelo and Perlman, 2002). Next we choose a variable Vi to
be manipulated from a chain component, and we can orient the undirected edges connecting Vi and
some other undirected edges whose reverse orientations create v-structures or cycles. Repeating this
process, we choose a next variable to be manipulated until all undirected edges are oriented. Below
we give an example to illustrate the intervention process.

Example 1. Consider an essential graph in Figure 3, which depicts a Markov equivalence
class with 12 DAGs in Figure 4. After obtaining the essential graph from observational data, we
manipulate some variables in randomized experiments to identify a causal structure in the 12 DAGs.
For example, Table 1 gives four possible orientations and Markov equivalence subclasses obtained
by manipulating V1. A class with 12 DAGs is split into four subclasses by manipulating V1. The
post-intervention subclasses (ii) and (iv) have only a single DAG separately. Notice that undirected
edges not connecting V1 can also be oriented by manipulating V1. The subclasses (i) and (iii) are
depicted by post-intervention essential graphs (a) and (b) in Table 1 respectively, both of which
are chain graphs. In Table 2, the first column gives four possible independence sets obtained by
manipulating V1. For the set with V1 V2 and V1 / V3, the causal structure is the DAG (3) in Figure
4, and thus we need not further manipulate other variables. For the third set with V1 / V2 and V1 / V3,
we manipulate the next variable V2. If V2 V3, then the causal structure is the DAG (1), otherwise
it is the DAG (2). For the fourth set with V1 V2 and V1 V3, we may need further to manipulate
variables V2, V3 and V4 to identify a causal DAG.

r

r

r

r rV1

V2

V3

V4

V5�
��

@
@@

@
@@

�
��

Figure 3: An essential graph of DAGs

3.2 Interventions by Quasi-experiments

In the previous subsection we discussed interventions by randomized experiments. Although ran-
domized experiments are powerful tools to discover causal structures, it may be inhibitive or im-
practical. In this subsection we consider quasi-experiments. In a quasi-experiment, individuals may
choose treatments non-randomly, but their behaviors of treatment choices are influenced by experi-
menters. For example, some patients may not comply with the treatment assignment from a doctor,
but some of them may comply, which is also called an indirect experiment in Pearl (1995).

If we perform an external intervention on Vi such that Vi has a conditional distribution P′(vi|pa(vi))
different from the pre-intervention distribution P(vi|pa(vi)) in (1) and other distributions are kept
unchanged, then we have the post-intervention joint distribution

PVi(v1,v2, · · · ,vn) = P′(vi|pa(vi))∏
j 6=i

P(v j|pa(v j)).

2529

HE AND GENG

q

q

q

q qV1

V2

V3
V4 V5

(1)

���
@@R?

@@R
���

- q

q

q

q q

(2)

���
@@R

6@@R
���

- q

q

q

q q

(3)@@I
���6@@R

���
-

q

q

q

q q

(4)@@I
��	 6@@R

���
- q

q

q

q q

(5)@@I
��	 6@@I

���
- q

q

q

q q

(6)

��	 @@R
?

-
@@R���

q

q

q

q q

(7)

��	 @@R
?

-
@@I ���

q

q

q

q q

(8)

��	 @@R
?

-
@@I ��	

q

q

q

q q

(9)

��	
@@I ?��	

@@I -

q

q

q

q q

(10)

��	
@@I

6
��	
@@I - q

q

q

q q

(11)

��	
@@I ?��	

@@I � q

q

q

q q

(12)

��	
@@I

6
��	
@@I �

Figure 4: All DAGs in the equivalence class given in Figure 3.

No of subclass e(V1)
DAGs

in a subclass
post-intervention
essential graphs

(i) V2←V1→V3 (1,2) q

q

q

q q

(a)
V1

���
@@R

@@R
���

-

(ii) V2→V1→V3 (3)

(iii) V2→V1←V3
(4,5,

7−12)
q

q

q

q qV1
(b)@@I

��	 @@
��

(iv) V2←V1←V3 (6)

Table 1: The post-intervention subclasses and essential graphs obtained by manipulating V1.

In the external intervention, we may not be able to manipulate Vi, but we only need to change its
conditional distribution, which may still depend on its parent variables. We call such an experiment
a quasi-experiment. Below we discuss how to orient undirected edges via such quasi-experiments.
Let τ be a chain component of the essential graph G∗, ne(Vk) be the neighbor set of Vk, C be the
children of Vk outside τ (that is, C = ch(Vk)\ τ), and B be the set of all potential parents of Vk, that
is, B = ne(Vk) \C is the neighbor set of Vk minus the children of Vk which have been identified in
the chain graph. Let Vi−Vk be an undirected edge in a chain component τ, and we want to orient
the undirected edge by manipulating Vi. Since B is the neighbor set of Vk, we have Vi ∈ B and thus

2530

ACTIVE LEARNING OF CAUSAL NETWORKS

V1 V2 V3 V4 DAG in Fig. 4
V1 V2 and V1 / V3 * * * (3)
V1 / V2 and V1 V3 * * * (6)

V1 / V2 and V1 / V3
V2 V3 * * (1)
V2 / V3 * * (2)

V1 V2 and V1 V3

V2 V3 and V2 / V4 * * (7)

V2 / V3 and V2 / V4
V3 / V4 * (4)
V3 V4 * (5)

V2 V3 and V2 V4

V3 / V4 * (8)

V3 V4
V4 / V5 (9)
V4 V5 (11)

V2 / V3 and V2 V4 *
V4 / V5 (10)
V4 V5 (12)

Table 2: The intervention process to identify a causal structure from the essential graph in Figure
3, where ∗ means that the intervention is unnecessary.

B 6= /0. Below we show a result which can be used to identify the direction of the undirected edge
Vi−Vk via a quasi-experiment of intervention on Vi.

Theorem 7 For a quasi-experiment of intervention on Vi, we have the following properties

1. PVi(vk|B) = P(vk|B) for all vk and B if Vi is a parent of Vk, and

2. PVi(vk) = P(vk) for all vk if Vi is a child of Vk.

According to Theorem 7, we can orient the undirected edge Vi−Vk as

1. Vi←Vk if PVi(vk|B) 6= P(vk|B) for some vk and B, or

2. Vi→Vk if PVi(vk) 6= P(vk) for some vk.

The nonequivalence of pre- and post-intervention distributions is tested by using both experimental
data and observational data, which is different from that of randomized experiments.

Example 1 (continued). Consider again the essential graph in Figure 3. We use a quasi-
experiment of manipulating V1 in order to orient the undirected edges connecting V1 (V3−V1−V2).
We may test separately four null hypotheses PV1(v2) = P(v2), PV1(v3) = P(v3), PV1(v2|v1,v3,v4) =
P(v2|v1,v3,v4) and PV1(v3|v1,v2,v4) = P(v3|v1,v2,v4) with both observational and experimental
data. We orient V1−V2 as V1 → V2 if PV1(v2) 6= P(v2), otherwise as V1 ← V2 (or further check
whether there is a stronger evidence of PV1(v2|v1,v3,v4) 6= P(v2|v1,v3,v4)). Similarly we can orient
V1−V3. Finally we obtain four possible orientations as shown in Table 1.

If both PVi(vk) = P(vk) and PVi(vk|B) = P(vk|B) for all vk and B hold for a quasi-experiment,
then we cannot identify the direction of edge Vi−Vk from the intervention. For example, suppose
that there are only two variables V1 and V2, V1 has three levels and V1 is the parent of V2. If the
true conditional distribution of V2 given V1 is: p(v2|V1 = 1) = p(v2|V1 = 2) 6= p(v2|V1 = 3), then the

2531

HE AND GENG

undirected edge V1−V2 cannot be oriented with the intervention on V1 with pV1(V1 = v) 6= p(V1 = v)
for v = 1 and 2 but pV1(V1 = 3) = p(V1 = 3) because we have that pV1(v2) = p(v2) for all v2 and that
pV1(v2|B) = p(v2|B) where B = {V1}. In a quasi-experiment, an experimenter may not be able to
manipulate V1, and thus this phenomenon can occur. If V1 can be manipulated, then the experimenter
can choose the distribution of V2 to avoid this phenomenon.

4. Optimal Designs of Intervention Experiments

In this section, we discuss the optimal designs of intervention experiments which are used to min-
imize the number of manipulated variables or to minimize the uncertainty of candidate structures
after an intervention experiment based on some criteria. Since the orientation for one chain compo-
nent is unrelated to the orientations for other components, we can design an intervention experiment
for each chain component separately. As shown in Section 2, given a chain component τ, we orient
the subgraph over τ into a DAG Gτ without any v-structure or cycle via experiments of interventions
in variables in τ. For simplicity, we omit the subscript τ in this section. In the following subsec-
tions, we discuss intervention designs for only one chain component. We first introduce the concept
of sufficient interventions and discuss their properties of sufficient interventions, then we present
the optimal design of batch interventions, and finally we give the optimal design of sequential in-
terventions. For optimizing quasi-experiments of interventions, we assume that intervention on a
variable Vi will change the marginal distribution of its child V j, that is, there is a level v j such that
PVi(v j) 6= P(v j) for Vi→ Vj. Under this assumption, all undirected edges connecting a node Vi can
be oriented via a quasi-experiment of intervention on variable Vi. Without the assumption, there
may be some undirected edge which cannot be oriented even if we perform interventions in both of
its two nodes.

4.1 Sufficient Interventions

It is obvious that we can identify a DAG in a Markov equivalence class if we can manipulate all
variables which connect undirected edges. However, it may be unnecessary to manipulate all of
these variables. Let S = (V1,V2, · · · ,Vk) denote a sequence of manipulated variables. We say that a
sequence of manipulated variables is sufficient for a Markov equivalence class [G] if we can identify
one DAG from all possible DAGs in [G] after these variables in the sequence are manipulated. That
is, we can orient all undirected edges of the essential graph G∗ no matter which G in [G] is the true
DAG. There may be several sufficient sequences for a Markov equivalence class [G].

Let g denote the number of nodes in the chain component, and h the number of undirected edges
within the component. Then there are at most 2h possible orientation of these undirected edges, and
thus there are at most 2h DAGs over the component in the Markov equivalence class. Given a
permutation of nodes in the component, a DAG can be obtained by orienting all undirected edges
backwards in the direction of the permutation, and thus there are at most min{2h,g!} DAGs in the
class.

Theorem 8 If a sequence S = (V1,V2, · · · ,Vk) of manipulated variables is sufficient, then any per-
mutation of S is also sufficient.

According to Theorem 8, we can ignore the order of variables in an intervention sequence
and treat the sequence as a variable set. Thus, if S is a sufficient set, then S ′ which contains S

2532

ACTIVE LEARNING OF CAUSAL NETWORKS

is also sufficient. Manipulating Vi, we obtain a class E(Vi) = {e(Vi)} of orientations (see Table
1 as an example). Given an orientation e(Vi), we can obtain the class [G]e(Vi) by (3). We say that
e(V1, . . . ,Vk) = {e(V1), . . . ,e(Vk)} is a legal combination of orientations if there is not any v-structure
or cycle formed and there is not any undirected edge oriented in two different directions by these
orientations. For a set S = (V1, . . . ,Vk) of manipulated variables, the Markov equivalence class is
reduced into a class

[G]e(V1,...,Vk) = [G]e(V1)∩ . . .∩ [G]e(Vk)

for a legal combination e(V1, . . . ,Vk) of orientations. If [G]e(V1,...,Vk) has only one DAG for all possi-
ble legal combinations e(V1, . . . ,Vk) ∈ E(V1)× . . .×E(Vk), then the set S is a sufficient set for iden-
tifying any DAG in [G]. Let S denote the class of all sufficient sets, that is, S = {S : S is sufficient}.
We say that a sequence S is minimum if any subset of S is not sufficient.

Theorem 9 The intersection of all sufficient sets is an empty set, that is,
T

S∈S S = ∅. In addition,
the intersection of all minimum sufficient sets is also an empty set.

From Theorem 9, we can see that there is not any variable that must be manipulated to identify
a causal structure. Especially, any undirected edge can be oriented by manipulating either of its two
nodes.

4.2 Optimization for Batch Interventions

We say that an intervention experiment is a batch-intervention experiment if all variables in a suf-
ficient set S are manipulated in a batch to orient all undirected edges of an essential graph. Let
|S | denote the number of variables in S . We say that a batch intervention design is optimal if its
sufficient set So has the smallest number of manipulated variables, that is, |So|= min{|S | : S ∈ S}.
Given a Markov equivalence class [G], we try to find a sufficient set S which has the smallest num-
ber of manipulated variables for identifying all possible DAGs in the class [G]. Below we give an
algorithm to find the optimal design for batch interventions, in which we first try all sets with a sin-
gle manipulated variable, then try all sets with two variables, and so on, until each post-intervention
Markov equivalence class has a single DAG.

Given a Markov equivalence class [G], we manipulate a node V and obtain an orientation of
some edges, denoted by e(V). The class [G] is split into several subclasses, denoted by [G]e(V)

for all possible orientations e(V). Let [G]e(V1,V2) denote a subclass with an orientation obtained by
manipulating V1 and V2. The following algorithm 1 performs exhaustive search for the optimal
design of batch interventions. Before calling Algorithm 1, we need to enumerate all DAGs in the
class [G], and then we can easily find [G]e(Vi) according to (3). There are at most min{g!,2h}
DAGs in the class [G], and thus the upper bound of the complexity for enumerating all {[G]e(Vi)} is
min{g!,2h}. We may be able to have an efficient method to find all {[G]e(Vi)} using the structure of
the chain component.

2533

HE AND GENG

Algorithm 1 Algorithm for finding the optimal designs of batch interventions
Input: A chain graph G induced by a chain component τ = {V1, . . . ,Vg}, and [G]e(Vi) for all e(Vi)

and i.
Output: All optimal designs of batch interventions.

Initialize the size k of the minimum intervention set as k = 0.
repeat

Set k = k +1.
for all possible variable subsets S = {Vi1 , . . . ,Vik} do

if |[G]e(S)|= 1 for all possible legal combination e(S) of orientations then
return the minimum sufficient set S

end if
end for

until find some sufficient sets

Algorithm 1 exhaustively searches all combinations of manipulated variables to find the mini-
mum sufficient sets, and its complexity is O(g!), although Algorithm 1 may stop whenever it finds
some minimum sets. The calculations in Algorithm 1 are only simple set operations

[G]e(S) = [G]e(Vi1)∩ . . .∩ [G]e(Vik),

where all [G]e(Vi) have been found before calling Algorithm 1. Notice that a single chain component
usually has a size g much less than the total number n of variables. Algorithm 1 is feasible for a
mild size g. A more efficient algorithm or a greedy method is needed for a large g and h. In this
case, there are too many DAGs to enumerate. We can first take a random sample of DAGs from the
class [G] with the simulation method proposed in the next subsection, and then we use the sample
approximately to find an optimal design.

A possible greedy approach is to select a node to be first manipulated from the chain component
which has the largest number of neighbors such that the largest number of undirected edges are
oriented by manipulating it, and then delete these oriented edges. Repeat this process until there is
not any undirected edge left. But there are cases where the sufficient set obtained from the greedy
method is not minimum.

Example 1 (continued). Consider the essential graph in Figure 3, which depicts a Markov
equivalence class with 12 DAGs in Figure 4. From Algorithm 1, we can find that {1,2,4}, {1,3,4},
{2,3,4} and {2,3,5} are all the minimum sufficient sets. The greedy method can obtain the same
minimum sufficient sets for this example.

4.3 Optimization for Sequential Interventions

The optimal design of batch interventions presented in the previous subsection tries to find a min-
imum sufficient set S before any variable is manipulated, and thus it cannot use orientation results
obtained by manipulating the previous variables during the intervention process. In this subsection,
we propose an experiment of sequential interventions, in which variables are manipulated sequen-
tially. Let S (t) denote the set of variables that have been manipulated before step t and S (0) = /0. At
step t of the sequential experiment, according to the current Markov equivalence class [G]e(S (t−1))

obtained by manipulating the previous variables in S (t−1), we choose a variable V to be manipulated

2534

ACTIVE LEARNING OF CAUSAL NETWORKS

based on some criterion. We consider two criteria for choosing a variable. One is the minimax crite-
rion based on which we choose a variable V such that the maximum size of subclasses [G]e(S (t)) for

all possible orientations e(S (t)) is minimized. The other is the maximum entropy criterion based on
which we choose a variable V such that the following entropy is maximized for any V in the chain
component τ

HV =−
M

∑
i=1

li
L

log
li
L

,

where li denotes the number of possible DAGs of the chain component with the ith orientation
e(V)i obtained by manipulating V , L = ∑i li and M is the number of all possible orientations
e(V)1, . . . ,e(V)M obtained by manipulating V . Based on the maximum entropy criterion, the post-
intervention subclasses have sizes as small as possible and they have sizes as equal as possible,
which means uncertainty for identifying a causal DAG from the Markov equivalence class is mini-
mized by manipulating V . Below we give two examples to illustrate how to choose variables to be
manipulated in the optimal design of sequential interventions based on the two criteria.

Example 1 (continued). Consider again the essential graph in Figure 3, which depicts a Markov
equivalence class with 12 DAGs in Figure 4. Tables 3 to 6 show the results for manipulating one of
variables V1, V2 (symmetry to V3), V4 and V5 respectively in order to distinguish the possible DAGs
in Figure 4. The first row in these tables gives possible orientations obtained by manipulating the
corresponding variable. The second row gives DAGs obtained by the orientation, where numbers are
used to index DAGs in Figure 4. The third row gives the number li of DAGs of this chain component
for the ith orientation. The entropies for manipulating V1, . . . ,V5 are 0.9831, 1.7046, 1.7046, 1.3480,
0.4506, respectively. Based on the maximum entropy criterion, we choose variable V2 or V3 to be
manipulated first. The maximum numbers li of DAGs for manipulating one of V1, . . . ,V5 are 8,
3, 3, 6, 10, respectively. Based on the minimax criterion, we also choose variable V2 or V3 to be
manipulated first.

Although the same variable V2 or V3 is chosen to be manipulated first in the above example,
in general, the choice may be different based on the two criteria. The minimax criterion tends to
be more conservative, and the entropy criterion tends to be more uniform. For example, consider
two interventions for an equivalence class with 10 DAGs: one splits the class into 8 subclasses with
the numbers (l1, . . . , l8) = (1,1,1,1,1,1,1,3) of DAGs, the other splits it into 5 subclasses with the
numbers of DAGs equal to (2,2,2,2,2). Then the minimax criterion chooses the second intervention,
while the maximum entropy criterion chooses the first intervention.

To find the number (li for i = 1, · · · ,M), we need to enumerate all DAGs in the class [G] and
then count the number li of DAGs with the same orientations as e(V)i. As discussed in Section
4.2, the upper bound of the complexity for calculating all li is O(min{g!,2h}). Generally the size
g of a chain component is much less than the number n of the full variable set and the number h
of undirected edges in a chain component is not very large. In the following example, we show a
special case with a tree structure, where the calculation is easy.

Example 2. In this example, we consider a special case that a chain component has a tree
structure. It does not mean that a DAG is a tree, and it is not uncommon in a chain component
(see Figure 1). Since there are no v-structures in any chain component, all undirected edges in
a subtree can be oriented as long as we find its root. Manipulating a node V in a tree, we can

2535

HE AND GENG

Orientation V2←V1→V3 V2→V1→V3 V2→V1←V3 V2←V1←V3

DAGs {1,2} {3} {4,5,7,8,9,10,11,12} {6}
li 2 1 8 1

Entropy is 0.9831 and maximum li is 8

Table 3: Manipulating V1

Orientation
q

q

q

q

@@I?��	
q

q

q

q

@@I
6
��	

q

q

q

q

@@I
6
���

q

q

q

q

@@R
6
���

q

q

q

q

@@R?���
q

q

q

q

@@I?���

DAGs {8,9,11} {10,12} {3,4,5} {2} {1,6} {7}
li 3 2 3 1 2 1

Entropy is 1.7046 and maximum li is 3

Table 4: Manipulating V2

Orientation
q

q

q q@@R
���

-
q

q

q q@@I
���

-
q

q

q q@@R
��	

-
q

q

q q@@I
��	

-
q

q

q q@@I
��	

�

DAGs {1,2,3,4,6,7} {5} {8} {9,10} {11,12}
li 6 1 1 2 2

Entropy is 1.3480 and maximum li is 6

Table 5: Manipulating V4

Orientation V4→V5 V4←V5

DAGs {1,2,3,4,5,6,7,8,9,10} {11,12}
li 10 2
Entropy is 0.4506 and maximum li is 10

Table 6: Manipulating V5

determinate all orientations of edges connecting V , and thus all subtrees that are emitted from V
can be oriented, but only one subtree with V as a terminal cannot be oriented. Suppose that node
V connects M undirected edges, and let li denote the number of nodes in the ith subtree connecting
V for i = 1, . . . ,M. Since each node in the ith subtree may be the root of this subtree, there are li

possible orientations for the ith subtree. Thus we have the entropy for manipulating V

HV =−
M

∑
i=1

li
L

log
li
L

.

Consider the chain component τ = {V1, . . . ,V4} of the chain graph G∗ in Figure 1, which has a tree
structure. In Table 7, the first column gives variables to be manipulated, the second column gives
possible orientations via the intervention, the third column gives the equivalence subclasses (see
Figure 2) for each orientation, the fourth column gives the number li of possible DAGs for the ith

2536

ACTIVE LEARNING OF CAUSAL NETWORKS

orientation and the last column gives the entropy for each intervention. From Table 7, we can see
that manipulating V1 or V2 has the maximum entropy and the minimax size.

Intervention Orientation Subclass of DAGs li HV

V1 V2←V1→V3 G 1 1.0397
V2→V1→V3 G1,G2 2
V2←V1←V3 G3 1

V2 V4←V2←V1 G,G3 2 1.0397
V4←V2→V1 G1 1
V4→V2→V1 G2 1

V3 V1→V3 G,G1,G2 3 0.5623
V1←V3 G3 1

V4 V4←V2 G,G1,G3 3 0.5623
V4→V2 G2 1

Table 7: Manipulating variables in a chain component with a tree structure.

An efficient algorithm or an approximate algorithm is necessary when both g and h are very
large. A simulation algorithm can be used to estimate li/L. In this simulation method, we randomly
take a sample of DAGs without any v-structure from the class [G]. To draw such a DAG, we
randomly generate a permutation of all nodes in the class, orient all edges backwards in the direction
of the permutation, and keep only the DAG without any v-structure. There may be some DAGs in
the sample which are the same, and we keep only one of them. Then we count the number l ′i of
DAGs in the sample which have the same orientation as e(V)i. We can use l′i/L′ to estimate li/L,
where L′ = ∑i l′i . When the sample size tends to infinite, all DAGs in the class can be drawn, and
then the estimate l′i/L′ tends to li/L. Another way to draw a DAG is that we randomly orient each
undirected edge of the essential graph, but we need to check whether there is any cycle besides
v-structure.

5. Simulation

In this section, we use two experiments to evaluate the active learning approach and the optimal
designs via simulations. In the first experiment, we evaluate a whole process of structural learning
and orientation in which we first find an essential graph using the PC algorithm and then orient
the undirected edges using the approaches proposed in this paper. In the second experiment, we
compare various designs for orientations starting with the same underlying essential graph. For both
experiments, the DAG (1) in Figure 4 is used as the underlying DAG and all variables are binary.
Its essential graph is given in Figure 3 and there are other 11 DAGs which are Markov equivalent
to the underlying DAG (1), as shown in Figure 4. This essential graph can also be seen as a chain
component of a large essential graph. All conditional probabilities P(v j|pa(v j)) are generated from
the uniform distribution U(0,1). We repeat 1000 simulations with the sample size n = 1000.

In each simulation of the first experiment, we first use the PC algorithm to find an essential
graph with the significance level α = 0.15 with which the most number of true essential graphs
were obtained among various significance levels in our simulations. Then we use the interven-
tion approach proposed in Section 3 to orient undirected edges of the essential graph. To com-
pare the performances of orientations for different significance levels and sample sizes used in

2537

HE AND GENG

intervention experiments, we run simulations for various combinations of significance levels αI =
0.01,0.05,0.10,0.15,0.20,0.30 and sample sizes nI = 50,100,200,500 in intervention experiments.
To compare the performance of the experiment designs, we further give the numbers of manipulated
variables that are necessary to orient all undirected edges of the same essential graphs in various in-
tervention designs. We run the simulations using R 2.6.0 on an Intel(R) Pentium(R) M Processor
with 2.0 GHz and 512MB RAM and MS XP. It takes averagely 0.4 second of the processor time for
a simulation, and each simulation needs to finish the following works: (1) generate a joint distribu-
tion and then generate a random sample of size n = 1000, (2) find an essential graph using the PC
algorithm, (3) find an optimal design, and (4) repeatedly generate experimental data of size nI until
identifying a DAG.

To make the post-intervention distribution P′(vi|pa(vi)) different from the pre-intervention P(vi|pa(vi)),
we use the post-intervention distribution of the manipulated variable Vi as follows

P′(vi|pa(vi)) = P′(vi) =

{

1, P(vi)≤ 0.5;
0, otherwise.

To orient an undirected edge Vi−Vj, we implemented both the independence test of the manipulated
Vi and its each neighbor variable V j for randomized experiments and the equivalence test of pre- and
post-intervention distributions (i.e., PVi(v j) = P(v j) for all v j) in our simulations. Both tests have
the similar results and the independence test is little more efficient than the equivalence test. To
save space, we only show the simulation results of orientations obtained by the equivalence test and
the optimal design based on the maximum entropy criterion in Table 8, and other designs have the
similar results of orientations.

To evaluate the performance of orientation, we define the percentage of correct orientations as
the ratio of the number of correctly oriented edges to the number of edges that are obtained from
the PC algorithm and belong to the DAG (1) in Figure 4. The third column λ in Table 8 shows the
average percentages of correctly oriented edges of the DAG (1) in 1000 simulations. To separate the
false orientations due to the PC algorithm from those due to intervention experiments, we further
check the cases that the essential graph in Figure 3 is correctly obtained from the PC algorithm.
The fourth column m shows the number of correct essential graphs obtained from the PC algorithm
in 1000 simulations. In the fifth column, we show the percentage λ′ of correct orientations for
the correct essential graph. Both λ and λ′ increase as nI increases. Comparing λ and λ′, it can
be seen that there are more edges oriented correctly when the essential graph is correctly obtained
from the PC algorithm. From the sixth to eleven columns, we give the cumulative distributions of
the number of edges oriented correctly when the essential graph is correctly obtained. The column
labeled ‘≥ i’ means that we correctly oriented more than or equal to i of 6 edges of the essential
graph in Figure 3, and the values in this column denote the percents of DAGs with more than or
equal to i edges correctly oriented in those simulations. For example, the column ‘≥ 5’ means that
more than or equal to 5 edges are oriented correctly (i.e., the DAGs (1), (2) and (6) in Figure 4), and
0.511 in the first line means that 51.1% of m = 409 correct essential graphs were oriented with ‘≥ 5’
correct edges. The column ‘6’ means that the underlying DAG (1) is obtained correctly. From this
column, it can be seen that more and more DAGs are identified correctly as the size nI increases.
The cumulative distribution for ≥ 0 is equal to one and is omitted. From these columns, it can be
seen that more and more edges are correctly oriented as the size nI increases. From λ and λ′, we
can see that a larger αI is preferable for a smaller size nI , and a smaller αI is preferable for a larger

2538

ACTIVE LEARNING OF CAUSAL NETWORKS

nI . For example, αI = 0.20 is the best for nI = 50, αI = 0.10 for nI = 100, αI = 0.05 for nI = 200,
αI = 0.01 for nI = 500.

The number of edges oriented correctly
nI αI λ m λ′ 6 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1
50 .01 .672 409 .758 0.401 0.511 0.868 0.870 0.927 0.973

.05 .699 409 .782 0.496 0.616 0.829 0.839 0.934 0.976

.10 .735 418 .808 0.538 0.646 0.833 0.868 0.969 0.993

.15 .745 407 .821 0.516 0.690 0.855 0.909 0.966 0.990

.20 .756 404 .826 0.564 0.723 0.832 0.899 0.963 0.978

.30 .741 373 .819 0.501 0.729 0.823 0.920 0.965 0.979
100 .01 .761 401 .850 0.586 0.706 0.910 0.925 0.975 0.995

.05 .774 408 .846 0.588 0.721 0.885 0.919 0.973 0.993

.10 .806 425 .878 0.668 0.814 0.896 0.925 0.974 0.993

.15 .794 410 .868 0.624 0.790 0.878 0.932 0.985 1.000

.20 .788 382 .875 0.626 0.812 0.890 0.948 0.982 0.992

.30 .798 417 .861 0.583 0.777 0.856 0.959 0.988 1.000
200 .01 .822 421 .901 0.724 0.808 0.945 0.948 0.988 0.995

.05 .836 402 .911 0.701 0.853 0.950 0.973 0.995 0.995

.10 .833 408 .900 0.686 0.863 0.917 0.949 0.993 0.995

.15 .823 382 .901 0.696 0.851 0.911 0.955 0.995 1.000

.20 .826 395 .886 0.658 0.820 0.889 0.962 0.990 0.997

.30 .822 402 .887 0.614 0.828 0.905 0.975 0.998 1.000
500 .01 .870 369 .966 0.878 0.943 0.984 0.992 1.000 1.000

.05 .869 388 .940 0.802 0.920 0.951 0.977 0.995 0.997

.10 .863 399 .936 0.762 0.905 0.952 0.995 1.000 1.000

.15 .859 433 .926 0.723 0.898 0.956 0.986 0.995 1.000

.20 .846 390 .923 0.703 0.890 0.956 0.990 0.997 1.000

.30 .834 389 .893 0.599 0.820 0.949 0.992 1.000 1.000

Table 8: The simulation results

In the second experiment, we compare the numbers of manipulated variables to orient the same
underlying essential graph for different experimental designs. In the following simulations, we
set nI = 100 and αI = 0.1, and all orientations start with the true essential graph in Figure 3. As
shown in Section 4.2, the optimal batch design and the design by the greedy method always need
three variables to be manipulated for orientation of the essential graph. For the optimal sequential
designs, the frequencies of the numbers of manipulated variables in 1000 simulations are given in
Table 9. In the random design labeled ’Random’, we randomly select a variable to be manipulated
at each sequential step, only one variable is manipulated for orientations in 268 of 1000 simulations,
and four variables are manipulated in 55 of 1000 simulations. In the middle of Table 9, we show
the simulation results of the optimal sequential designs based on the minimax criterion and its
approximate designs obtained by drawing a sample of DAGs. The minimax design needs only one or
two variables to be manipulated in all 1000 simulations. We show three approximate designs which
draw h, h×5 and h×10 DAGs from a chain component with h undirected edges respectively. For

2539

HE AND GENG

example, the sample sizes of DAGs from the initial essential graph [G] with h = 6 undirected edges
are 6, 30 and 60, respectively. As the sample size increases, the distribution of the manipulated
variable numbers tends to the distribution for the exact minimax design. The optimal sequential
design based on the maximum entropy criterion has a very similar performance as that based on the
minimax criterion, as shown in the bottom of Table 9. According to Table 9, all of the sequential
intervention designs (Random, Minimax, Entropy and their approximations) are more efficient than
the batch design, and the optimal designs based on the minimax and the maximum entropy criteria
are more efficient than the random design.

m∗

Design 1 2 3 4
Random 268 475 202 55
Minimax 437 563 0 0
Approx. (h) 372 469 159 0
Approx. (h×5) 413 573 14 0
Approx. (h×10) 426 574 0 0
Entropy 441 559 0 0
Approx. (h) 375 454 171 0
Approx. (h×5) 435 547 18 0
Approx. (h×10) 425 574 1 0

m∗ denotes the number of manipulated variables

Table 9: The frequencies of the numbers of interventions

6. Conclusions

In this paper, we proposed a framework for active learning of causal structures via intervention
experiments, and further we proposed optimal designs of batch and sequential interventions based
on the minimax and the maximum entropy criteria. A Markov equivalence class can be split into
subclasses by manipulating a variable, and a causal structure can be identified by manipulating
variables repeatedly. We discussed two kinds of external intervention experiments, the randomized
experiment and the quasi-experiment. In a randomized experiment, the distribution of a manipu-
lated variable does not depend on its parent variables, while in a quasi-experiment, it may depend
on its parents. For a randomized experiment, the orientations of an undirected edge can be deter-
mined by testing the independence of the manipulated variable and its neighbor variable only with
experimental data. For a quasi-experiment, the orientations can be determined by testing the equiva-
lence of pre- and post-intervention distributions with both experimental and observational data. We
discussed two optimal designs of batch and sequential interventions. For the optimal batch design,
a smallest set of variables to be manipulated is found before interventions, which is sufficient to
orient all undirected edges of an essential graph. But the optimal batch design does not use orien-
tation results obtained by manipulating the previous variables during the intervention process, and
thus it may be less efficient than the optimal sequential designs. For the optimal sequential design,
we choose a variable to be manipulated sequentially such that the current Markov equivalence class
can be reduced to a subclass with potential causal DAGs as little as possible. We discussed two

2540

ACTIVE LEARNING OF CAUSAL NETWORKS

criteria for optimal sequential designs, the minimax and the maximum entropy criteria. The exact,
approximate and greedy methods are presented for finding the optimal designs.

The scalability of the optimal designs proposed in this paper depends only on the sizes of chain
components but does not depend on the size of a DAG since the optimal designs are performed
separately within every chain component. As discussed in Section 4, the optimal designs need to
find the number of possible DAGs in a chain component, which has a upper bound min{2h,g!}.
When both the number h of undirected edges and the number g of nodes in a chain component
are very large, instead of using the optimal designs, we may use the approximate designs via
sampling DAGs. We checked several standard graphs found at the Bayesian Network Repository
(http://compbio.cs.huji.ac.il/Repository/). We extracted their chain components and found that most
of their chain components have tree structures and their sizes are not large. For example, ALARM
with 37 nodes has 4 chain components with only two nodes in each component, HailFinder with 56
nodes has only one component with 18 nodes, Carpo with 60 nodes has 9 components with at most
7 nodes in each component, Diabets with 413 nodes has 25 components with at most 3 nodes, and
Mumin 2 to Mumin 4 with over 1000 nodes have at most 21 components with at most 35 nodes.
Moreover, all of those largest chain components have tree structures, and thus we can easily carry
out optimal designs as discussed in Example 2.

In this paper, we assume that there are no latent variables. Though the algorithm can orient
the edges of an essential graph and output a DAG based on a set of either batch or sequential
interventions, the application of the method for learning causality in the real word is pretty limited
because latent or hidden variables are typically present in real-world data sets.

Acknowledgments

We would like to thank the guest editors and the three referees for their helpful comments and
suggestions that greatly improved the previous version of this paper. This research was supported
by Doctoral Program of Higher Education of China (20070001039), NSFC (70571003, 10771007,
10431010), NBRP 2003CB715900, 863 Project of China 2007AA01Z43, 973 Project of China
2007CB814905 and MSRA.

Appendix A. Proofs of Theorems

Before proving Theorems 4 and 5, we first give a lemma which will be used in their proofs.

Lemma 10 If a node V ∈V is a parent of a node U in a chain component τ of G∗ (i.e., (V→U)∈G∗

, U ∈ τ, V ∈ V and V /∈ τ), then V is a parent of all nodes in τ (i.e., (V →W) ∈ G for any W ∈ τ).

Proof By (iii) of Lemma 3, V →U W does not occur in any induced subgraph of G∗. Thus for
any neighbor of U in the chain component τ, W and V must be adjacent in G∗. Because V /∈ τ, the
edge between V and W is directed. There are two alternatives as shown in Figures 5 and 6 for the
subgraph induced by {V,U,W}.

If it is the subgraph in Figure 6 (i.e., the V →W ∈ G′ for any G′ ∈ [G]), then W →U must be
in G′ for any G′ ∈ [G] in order to avoid a directed cycle, as shown in Figure 7. So W →U must be
in G∗. It is contrary to the fact that {U,W} ∈ τ is in a chain component of G∗. So V must also be a
parent of W . Because all variables in τ are connected by undirected edges in G∗τ , V must be a parent

2541

HE AND GENG

r

r r

V

U W

�
��+

Q
QQs

Figure 5: SG1

r

r r

V

U W

�
��+ Q

QQk

Figure 6: SG2

r

r r

V

U W

�
��+ Q

QQk
�

Figure 7: SG3

of all other variables in τ.

Proof of Theorem 4. According to Lemma 10, if a node W outside a component τ points at a node
V in τ, then W must point at each node U in τ. Thus W , V and U cannot form a v-structure.

Proof of Theorem 5. Suppose that Theorem 5 does not hold, that is, there is a directed path
V1→ ·· · →Vk in Gτ which is not a directed cycle, but W1→ ·· · →Wi→V1→ ·· · →Vk→Wi+1→
·· · →W1 is a directed cycle, where Wi /∈ τ. We denote this cycle as DC. From Lemma 10, Wi must
also be a parent of Vk, and thus W1→ ·· · →Wi→ Vk →Wi+1→ ·· · →W1 is also a directed cycle,
denoted as DC′. Now, every edge of DC′ is out of Gτ. Similarly, we can remove all edges in other
chain components from DC′ and keep the path being a directed cycle. Finally, we can get a directed
cycle in the directed subgraph of G∗. It contradicts the fact that G∗ is an essential graph of a DAG.
So we proved Theorem 5.

To prove Theorem 6, we first present an algorithm for finding the post-intervention essential
graph G∗e(V) via the orientation e(V), then we show the correctness of the algorithm using several
lemmas, and finally we give the proof of Theorem 6 with G∗e(V) obtained by the algorithm. In order
to prove that G∗e(V) is also a chain graph, we introduce an algorithm (similar to Step D of SGS and
the PC algorithm in Spirtes et al., 2000) for constructing a graph, in which some undirected edges
of the initial essential graph are oriented with the information of e(V). Let τ be a chain graph of G∗,
V ∈ τ and e(V) be an orientation of undirected edges connecting V .

Algorithm 2 Find the post-intervention essential graph via orientation e(V)

Input: The essential graph G∗ and e(V)
Output: The graph H

Orient the undirected edges connecting V in the essential graph G∗ according to e(V) and denote
the graph as H.
Repeat the following two rules to orient some other undirected edges until no rules can be applied:
(i) if V1→ V2−V3 ∈ H and V1 and V3 are not adjacent in H, then orient V2−V3 as V2→ V3 and
update H;
(ii) if V1→V2→V3 ∈ H and V1−V3 ∈ H, then orient V1−V3 as V1→V3 and update H.
return the graph H

It can be shown that H constructed by Algorithm 2 is a chain graph and H is equal to the
post-intervention essential graph G∗e(V). We show those results with the following three Lemmas.

Lemma 11 Let G∗ be the essential graph of DAG G, τ be a chain component of G∗ and I be a DAG
over τ. Then there is a DAG G′ ∈ [G] such that I = G′τ if and only if I is a DAG with the same
skeleton as G∗τ and without v-structures.

2542

ACTIVE LEARNING OF CAUSAL NETWORKS

Proof If there is a DAG G′ ∈ [G] such that I = G′τ, we have from Lemma 1 that I is a DAG with the
same skeleton as G∗τ and without v-structures.

Let I be a DAG with the same skeleton as G∗τ and without v-structures, and G′ be any DAG in
the equivalence class [G]. We construct a new DAG I ′ from G′ by substituting the subgraph G′τ of
G′ with I. I′ has the same skeleton as G′. From Theorems 4 and 5, I ′ has the same v-structures as
G′. Thus I′ is equivalent to G′ and I′ ∈ [G].

Lemma 12 Let H be a graph constructed by Algorithm 2. Then H is a chain graph.

Proof If H is not a chain graph, there must be a directed cycle in subgraph Hτ for some chain
component of G∗. Moreover, G∗τ is chordal and H ⊂ G∗, and thus Hτ is chordal too. So we can get
a three-edge directed cycle in Hτ as given in Figure 8 or 9.

r

r r

d

b c

�
��+ Q

QQ

Figure 8: SG6

r

r r

d

b c

�
��+ Q

QQk

Figure 9: SG61

If Figure 9 is a subgraph of H obtained at some step of Algorithm 2, then the undirected edge
b c is oriented as b← c according to Algorithm 2. Thus only Figure 8 can be a subgraph of H.

According to Lemma 10, we have that the directed edge d → b is not in G∗. Since all edges
connecting a have been oriented in Step 1 of Algorithm 2, d → b is not an edge connecting a.
So d → b must be identified at step 2 of Algorithm 2. There are two situations, one is to avoid a
v-structure as shown in Figure 10, the other is to avoid a directed cycle as Figure 13.

r r

r

r

b c

d

d1

�
�	

@
@

?

Figure 10: SG7

r r

r

r

b c

d

d1

�
�	

@
@

?
A
A
AAU

Figure 11: SG8

r r

r

r

b c

d

d1

�
�	�

@
@

?
A
A
AAU

Figure 12: SG9

r r

r

r

b c

d

d1

�
�	

@
@

6�
�

���

Figure 13: SG10

r r

r

r

b c

d

d1

�
�	

@
@

6�
�

���

A
A
AAU

Figure 14: SG11

r r

r

r

b c

d

d1

�
�	

@
@R

6�
�

���

A
A
AAU

Figure 15: SG12

We can arrange all directed edges in Hτ in order of orientations performed at Step 2 of Algorithm
2. First, we prove that the directed edge d→ b in Figure 8 is not the first edge oriented at Step 2 of
Algorithm 2.

2543

HE AND GENG

In the first case as Figure 10, if d→ b is the first edge oriented at Step 2 of Algorithm 2, we have
d1 = a. Because b and a are not adjacent, and d c is an undirected edge in H, we have that d1→ c
must be in H as Figure 11, where d1 = a. Now we consider the subgraph b c← d1. According to
the rules (i) and (ii) in Algorithm 2, we have that b← c is in G∗e(a) as Figure 12, which contradicts
the assumption that b c ∈ H.

In the second case as Figure 13, if d→ b is the first edge oriented at Step 2 of Algorithm 2, we
have d1 = a.

Considering the structure d1 → b c and that d c is an undirected edge in H, we have that
d1→ c must be in H as Figure 14. Now we consider the subgraph of {d,d1,c}. By Algorithm 2,
d → c is in H as Figure 15, which contradicts the assumption that d c ∈ H. Thus we have that
the first edge oriented at Step 2 of Algorithm 2 is not in any directed cycle. Suppose that the first k
oriented edges at Step 2 of Algorithm 2 are not in any directed cycle. Then we want to prove that
the (k +1)th oriented edge is also not in a directed cycle.

Let d→ b be the (k + 1)th oriented edge at Step 2 of Algorithm 2, and Figure 8 be a subgraph
of H. There are also two cases as Figures 10 and 13 for orienting d→ b.

In the case of Figure 10, since d1 → d is in the first k oriented edges and d c ∈ H, we have
that d1→ c must be in H. We also get that b← c must be in H as Figure 12, which contradicts the
assumption that b c ∈ H.

In the case of Figure 10, since d1→ b and d→ d1 are in the first k oriented edges and b c ∈H,
we have that d1→ c must be in H. We also get that d← c must be in H as Figure 15, which contra-
dicts the assumption that d c ∈ H. So the (k +1)th oriented edge is also not in any directed cycle.
Now we can get that every directed edge in Hτ is not in any directed cycle. It implies that there are
no directed cycles in Hτ, and thus H is a chain graph.

Lemma 13 Let G∗e(V) be the post intervention essential graph with the orientation e(V) and H be
the graph constructed by Algorithm 2. We have G∗e(V) = H.

Proof We first prove G∗e(a) ⊆H. We just need to prove that all directed edges in H must be in G∗e(a).
We use induction to finish the proof.

After Step 1 of Algorithm 2, all directed edges in H are in G∗e(a). We now prove that the first
directed edge oriented at Step 2 of Algorithm 2, such as b← c, is in G∗e(a). Because b← c must
be oriented by the rule (i) of Algorithm 2, there must be a node d /∈ τ such that b c← d is the
subgraph of H. So b← c← d must be a subgraph in each G′ ∈ G∗e(a). Otherwise, b→ c← d forms
a v-structure such that G′ /∈ [G]. Thus we have b← c ∈ G∗e(a).

Suppose that the first k oriented edges at Step 2 of Algorithm 2 are in G∗e(a). We now prove that
the (k+1)th oriented edge at Step 2 of Algorithm 2 is also in G∗e(a). Denoting the (k+1)th oriented
edge as l← h, according to the rules in Algorithm 2, there are two cases to orient l← h as shown
in Figures 16 and 17.

r

r r

f

l h

Q
QQs

Figure 16: SG4

r

r r

f

h l

�
��+ Q

QQk

Figure 17: SG5

2544

ACTIVE LEARNING OF CAUSAL NETWORKS

In Figure 16, because f → h is in every DAG G′ ∈ G∗e(a), in order to avoid a new v-structure,
we have that l← h must be in every DAG G′ ∈ G∗e(a). Thus we have l← h ∈ G∗e(a). In Figure 17,
because l→ f and f → h are in every DAG G′ ∈ G∗e(a), in order to avoid a directed cycle, we have
that h← l must be in every DAG G′ ∈ G∗e(a). Thus we have h← l ∈ G∗e(a). Now we get that the
(k + 1)th oriented edge at Step 2 of Algorithm 2 is also in G∗e(a). Thus all directed edges in H are
also in G∗e(a) and then we have G∗e(a) ⊆ H.

Because H is a chain graph by Lemma 12, we also have H ⊆ G∗. By Lemma 11, for any undi-
rect edge a b of Hτ where τ is a chain component of H, there exist G1 and G2 ∈ G∗e(a) such that
a→ b occurs in G1 and a← b occurs in G2. It means that a b also occurs in G∗e(a). So we have
H ⊆ G∗e(a), and then G∗e(a) = H.

Proof of Theorem 6. By definition of G∗e(V), we have that G∗e(V) has the same skeleton as the
essential graph G∗ and contains all directed edges of G∗. That is, all directed edges in G∗ are also
directed in G∗e(V). So property 2 of Theorem 6 holds. Property 3 of Theorem 6 also holds because
all DAGs represented by G∗e(V) are Markov equivalent. From Lemmas 12 and 13, we can get that
G∗e(V) is a chain graph.

Proof of Theorem 7. We first prove property 1. Let C = ch(Vk)\ τ. Then B = ne(Vk)\C contains
all parents of Vk and the children of Vk in τ. Let A = An({B,Vk}) be the ancestor set of all nodes
in {B,Vk}. Since Vi is a parent of Vk for property 1, we have Vi ∈ A. The post-intervention joint
distribution of A is

PVi(A) = P′(vi|pa(vi)) ∏
v j∈A\Vi

P(v j|pa(v j)). (1)

Let U = A\{B,Vk}. Then we have from the post-intervention joint distribution (1)

PVi(vk|B) =
∑U P′(vi|pa(vi))∏v j∈A\Vi

P(v j|pa(v j)))

∑U,Vk
P′(vi|pa(vi))∏V j∈A\Vi

P(v j|pa(v j))

=
∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑U,Vk
P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

,

where ∑U denotes a summation over all variables in the set U .
Below we want to factorize the denominator into a production of summation over U and sum-

mation over Vk. First we show that the factor P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not
contain Vk because Vk appears only in the conditional probabilities of ch(Vk) and the conditional
probability of Vk. Next we show that ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not contain any variable
in U . From definition of B, we have B ⊇ (ch(Vk)∩ τ). Then from definition of U , we have that
Vj in {ch(Vk)∩ τ,Vk} is not in U . Now we just need to show that any parent of any node V j in
{ch(Vk)∩ τ,Vk} is also not in U :

1. By definitions of B and U , the parents of Vk is not in U .

2. Consider parents of nodes in {ch(Vk)∩ τ}. Let W is such a parent, that is, W → V j for
Vj ∈ {ch(Vk)∩ τ}. There is a head to head path (W →V j←Vk). We show that W is not in U
separately for two cases: W ∈ τ and W /∈ τ. For the first case of W ∈ τ, there is an undirected

2545

HE AND GENG

edge between W and Vk in G∗τ since there is no v-structure in the subgraph G′τ for any G′ ∈ [G].
Then from definition of B, we have W ∈ B. For the second case of W /∈ τ, W must be a parent
of Vk by Lemma 10, and then W is in B. Thus we obtain W /∈U .

We showed that the factor ∏V j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j)) does not contain any variable in U . Thus
the numerator and the summations over U and Vk in the denominator can be factorized as follows

PVi(vk|B)

=
∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑Vk ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))∑U P′(vi|pa(vi))∏v j∈A\{ch(Vk)∩τ,Vk}P(v j|pa(v j))

=
∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))

∑Vk ∏v j∈{ch(Vk)∩τ,Vk}P(v j|pa(v j))
= P(vk|B).

Thus we proved property 1.
Property 2 is obvious since manipulating Vi does not change the distribution of its parent Vk.

Formally, let an(Vk) be the ancestor set of Vk. If Vk ∈ pa(Vi), then we have PVi(an(vk),vk) =
P(an(vk),vk) and thus PVi(Vk) = P(Vk).

Proof of Theorem 8. Manipulating a node Vi will orient all of undirected edges connecting Vi.
Thus the orientations of undirected edges do not depend on the order in which the variables are
manipulated. If a sequence S is sufficient, then its permutation is also sufficient.

Proof of Theorem 9. Suppose that S = (V1, . . . ,VK) is a sufficient set. We delete a node, say
Vi, from S , and define S ′[i] = S \ {Vi}. If the set S ′[i] is no longer sufficient, then we can add other
variables to S ′[i] without adding Vi such that S ′[i] becomes to be sufficient. This is feasible since any

undirected edge can be oriented by manipulating either of its two nodes. Thus we have
TK

i=1 S ′[i] = ∅.
Since all S ′[i] belong to S, we proved

T

S∈S S = ∅.
Similarly, for each minimum sequence S , we can define S ′[i] such that it does not contain Vi and

it is a minimum sufficient set. Thus the intersection of all minimum sufficient sets is empty.

References

C. Aliferis, I. Tsamardinos, A. Statnikov and L. Brown. Causal explorer: A probabilistic network
learning toolkkit for biomedical discovery. In International Conference on Mathematics and En-
gineering Techniques in Medicine and Biological Sciences, pages 371-376, 2003.

S. A. Andersson, D. Madigan and M. D. Perlman. A characterization of markov equivalence classes
for acyclic digraphs. Annals of Statistics, 25:505-541, 1997.

R. Castelo and M. D. Perlman. Learning Essential graph Markov models from data. In Proceedings
1st European Workshop on Probabilistic Graphical Models, pages 17-24, 2002.

G. F. Cooper and C. Yoo. Causal discovery from a mixture of experimental and observational data.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 116-125, 1999.

2546

ACTIVE LEARNING OF CAUSAL NETWORKS

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science,
303(5659):799-805, 2004.

Y. He, Z. Geng and X. Liang. Learning causal structures based on Markov equivalence class. In
ALT, Lecture Notes in Artificial Intelligence 3734, pages 92-106, 2005.

D. Heckerman, D. Geiger and D. M. Chickering. Learning Bayesian networks: The Combination of
knowledge and statistical data. Machine Learning, 20:197-243, 1995.

D. Heckerman. A Bayesian approach to causal discovery. Data Mining and Knowledge Discovery,
1(1):79-119, 1997.

R. Jansen, H. Y. Yu and D. Greenbaum. A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science, 302(5644):449-453, 2003.

S. L. Lauritzen. Graphical Models. Oxford Univ. Press. 1996.

S. L. Lauritzen, T. S. Richardson. Chain graph models and their casual interpretations. Journal of
the Royal Statistical society series B-statistical methodology,64:321-348, Part 3, 2002.

M. Kalisch, P. Buhlmann. Estimating high-dimensional directed acyclic graphs with the PC-
algorithm.Journal of Machine Learning Research 8, 613-636, 2007.

K. P. Murphy. Active Learning of Causal Bayes Net Structure, Technical Report, Department of
Computer Science, University of California Berkeley, 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

J. Pearl. Graphical models, causality and intervention. Statist. Sci., 8:266-269, 1993.

J. Pearl. Causal inference from indirect experiments. Artifcal Intelligence in Medicine, 7:561-582,
1995.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

P. Spirtes, C. Glymour, R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge,
MA, second edition, 2000.

J. Tian and J. Pearl. Causal Discovery from Changes. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pages 512-521, 2001a.

J. Tian and J. Pearl. Causal Discovery from Changes: a Bayesian Approach, UCLA Cognitive
Systems Laboratory, Technical Report (R-285), 2001b.

S. Tong and D. Koller. Active learning for structure in bayesian networks. In International Joint
Conference on Artificial Intelligence, pages 863-869, 2001.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, pages 220-227, 1990.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, New York. 1990.

2547

