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Abstract
We analyze the performance of a class of manifold-learning algorithms that find their output by
minimizing a quadratic form under some normalization constraints. This class consists of Locally
Linear Embedding (LLE), Laplacian Eigenmap, Local Tangent Space Alignment (LTSA), Hessian
Eigenmaps (HLLE), and Diffusion maps. We present and prove conditions on the manifold that
are necessary for the success of the algorithms. Both the finite sample case and the limit case are
analyzed. We show that there are simple manifolds in which the necessary conditions are violated,
and hence the algorithms cannot recover the underlying manifolds. Finally, we present numerical
results that demonstrate our claims.
Keywords: dimensionality reduction, manifold learning, Laplacian eigenmap, diffusion maps,
locally linear embedding, local tangent space alignment, Hessian eigenmap

1. Introduction

Many seemingly complex systems described by high-dimensional data sets are in fact governed by a
surprisingly low number of parameters. Revealing the low-dimensional representation of such high-
dimensional data sets not only leads to a more compact description of the data, but also enhances
our understanding of the system. Dimension-reducing algorithms attempt to simplify the system’s
representation without losing significant structural information. Various dimension-reduction al-
gorithms were developed recently to perform embeddings for manifold-based data sets. These in-
clude the following algorithms: Locally Linear Embedding (LLE, Roweis and Saul, 2000), Isomap
(Tenenbaum et al., 2000), Laplacian Eigenmaps (LEM, Belkin and Niyogi, 2003), Local Tangent
Space Alignment (LTSA, Zhang and Zha, 2004), Hessian Eigenmap (HLLE, Donoho and Grimes,
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2004), Semi-definite Embedding (SDE, Weinberger and Saul, 2006) and Diffusion Maps (DFM,
Coifman and Lafon, 2006).

These manifold-learning algorithms compute an embedding for some given input. It is assumed
that this input lies on a low-dimensional manifold, embedded in some high-dimensional space.
Here a manifold is defined as a topological space that is locally equivalent to a Euclidean space. It
is further assumed that the manifold is the image of a low-dimensional domain. In particular, the
input points are the image of a sample taken from the domain. The goal of the manifold-learning
algorithms is to recover the original domain structure, up to some scaling and rotation. The non-
linearity of these algorithms allows them to reveal the domain structure even when the manifold is
not linearly embedded.

The central question that arises when considering the output of a manifold-learning algorithm
is, whether the algorithm reveals the underlying low-dimensional structure of the manifold. The
answer to this question is not simple. First, one should define what “revealing the underlying lower-
dimensional description of the manifold” actually means. Ideally, one could measure the degree
of similarity between the output and the original sample. However, the original low-dimensional
data representation is usually unknown. Nevertheless, if the low-dimensional structure of the data is
known in advance, one would expect it to be approximated by the dimension-reducing algorithm, at
least up to some rotation, translation, and global scaling factor. Furthermore, it would be reasonable
to expect the algorithm to succeed in recovering the original sample’s structure asymptotically,
namely, when the number of input points tends to infinity. Finally, one would hope that the algorithm
would be robust in the presence of noise.

Previous papers have addressed the central question posed earlier. Zhang and Zha (2004) pre-
sented some bounds on the local-neighborhoods’ error-estimation for LTSA. However, their analysis
says nothing about the global embedding. Huo and Smith (2006) proved that, asymptotically, LTSA
recovers the original sample up to an affine transformation. They assume in their analysis that the
level of noise tends to zero when the number of input points tends to infinity. Bernstein et al. (2000.)
proved that, asymptotically, the embedding given by the Isomap algorithm (Tenenbaum et al., 2000)
recovers the geodesic distances between points on the manifold.

In this paper we develop theoretical results regarding the performance of a class of manifold-
learning algorithms, which includes the following five algorithms: Locally Linear Embedding
(LLE), Laplacian Eigenmap (LEM), Local Tangent Space Alignment (LTSA), Hessian Eigenmaps
(HLLE), and Diffusion maps (DFM).

We refer to this class of algorithms as the normalized-output algorithms. The normalized-output
algorithms share a common scheme for recovering the domain structure of the input data set. This
scheme is constructed in three steps. In the first step, the local neighborhood of each point is
found. In the second step, a description of these neighborhoods is computed. In the third step,
a low-dimensional output is computed by solving some convex optimization problem under some
normalization constraints. A detailed description of the algorithms is given in Section 2.

In Section 3 we discuss informally the criteria for determining the success of manifold-learning
algorithms. We show that one should not expect the normalized-output algorithms to recover
geodesic distances or local structures. A more reasonable criterion for success is a high degree
of similarity between the output of the algorithms and the original sample, up to some affine trans-
formation; the definition of similarity will be discussed later. We demonstrate that under certain cir-
cumstances, this high degree of similarity does not occur. In Section 4 we find necessary conditions
for the successful performance of LEM and DFM on the two-dimensional grid. This section serves
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as an explanatory introduction to the more general analysis that appears in Section 5. Some of the
ideas that form the basis of the analysis in Section 4 were discussed independently by both Gerber
et al. (2007) and ourselves (Goldberg et al., 2007). Section 5 finds necessary conditions for the suc-
cessful performance of all the normalized-output algorithms on general two-dimensional manifolds.
It should be noted that the necessary conditions are hard to verify in practice. However, they serve as
an analytic tool to prove that there are general classes of manifolds on which the normalized-output
algorithms fail. Moreover, the numerical examples in this section show that the class of manifolds
on which the normalized-output algorithms fail is wide and includes non-isometrically manifolds
and real-world data. In Section 6 we discuss the performance of the algorithms in the asymptotic
case. Concluding remarks appear in Section 7. The detailed proofs appear in the Appendix.

Our paper has two main results. First, we give well-defined necessary conditions for the suc-
cessful performance of the normalized-output algorithms. Second, we show that there exist simple
manifolds that do not fulfill the necessary conditions for the success of the algorithms. For these
manifolds, the normalized-output algorithms fail to generate output that recovers the structure of
the original sample. We show that these results hold asymptotically for LEM and DFM. Moreover,
when noise, even of small variance, is introduced, LLE, LTSA, and HLLE will fail asymptotically
on some manifolds. Throughout the paper, we present numerical results that demonstrate our claims.

2. Description of Output-normalized Algorithms

In this section we describe in short the normalized-output algorithms. The presentation of these
algorithms is not in the form presented by the respective authors. The form used in this paper
emphasizes the similarities between the algorithms and is better-suited for further derivations. In
Appendix A.1 we show the equivalence of our representation of the algorithms and the representa-
tions that appear in the original papers.

Let X = [x1, . . . ,xN ]′, xi ∈ R
D be the input data where D is the dimension of the ambient space

and N is the size of the sample. The normalized-output algorithms attempt to recover the underlying
structure of the input data X in three steps.

In the first step, the normalized-output algorithms assign neighbors to each input point xi based
on the Euclidean distances in the high-dimensional space.1 This can be done, for example, by choos-
ing all the input points in an r-ball around xi or alternatively by choosing xi’s K-nearest-neighbors.
The neighborhood of xi is given by the matrix Xi = [xi,xi,1, . . . ,xi,K ]′ where xi, j : j = 1, . . . ,K are
the neighbors of xi. Note that K = K(i) can be a function of i, the index of the neighborhood, yet
we omit this index to simplify the notation. For each neighborhood, we define the radius of the
neighborhood as

r(i) = max
j,k∈{0,...,K}

∥∥xi, j − xi,k
∥∥

where we define xi,0 = xi. Finally, we assume throughout this paper that the neighborhood graph is
connected.

In the second step, the normalized-output algorithms compute a description of the local neigh-
borhoods that were found in the previous step. The description of the i-th neighborhood is given by
some weight matrix Wi. The matrices Wi for the different algorithms are presented.

1. The neighborhoods are not mentioned explicitly by Coifman and Lafon (2006). However, since a sparse optimization
problem is considered, it is assumed implicitly that neighborhoods are defined (see Sec. 2.7 therein).
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• LEM and DFM: Wi is a K × (K +1) matrix,

Wi =




w1/2
i,1 −w1/2

i,1 0 · · · 0

w1/2
i,2 0 −w1/2

i,2
. . .

...
...

...
. . . . . . 0

w1/2
i,K 0 · · · 0 −w1/2

i,K




.

For LEM wi, j = 1 is a natural choice, yet it is also possible to define the weights as w̃i, j =

e−‖xi−xi, j‖2
/ε, where ε is the width parameter of the kernel. For the case of DFM,

wi, j =
kε(xi,xi, j)

qε(xi)αqε(xi, j)α , (1)

where kε is some rotation-invariant kernel, qε(xi) = ∑ j kε(xi,xi, j) and ε is again a width pa-
rameter. We will use α = 1 in the normalization of the diffusion kernel, yet other values of
α can be considered (see details in Coifman and Lafon, 2006). For both LEM and DFM, we
define the matrix D to be a diagonal matrix where dii = ∑ j wi, j.

• LLE: Wi is a 1× (K +1) matrix,

Wi =
(

1 −wi,1 · · · −wi,K
)

.

The weights wi, j are chosen so that xi can be best linearly reconstructed from its neighbors.
The weights minimize the reconstruction error function

∆i (wi,1, . . . ,wi,K) = ‖xi −∑
j

wi, jxi, j‖2

under the constraint ∑ j wi, j = 1. In the case where there is more than one solution that mini-
mizes ∆i, regularization is applied to force a unique solution (for details, see Saul and Roweis,
2003).

• LTSA: Wi is a (K +1)× (K +1) matrix,

Wi = (I −PiPi
′)H .

Let UiLiVi
′ be the SVD of Xi −1x̄′i where x̄i is the sample mean of Xi and 1 is a vector of ones

(for details about SVD, see, for example, Golub and Loan, 1983). Let Pi = [u(1), . . . ,u(d)]
be the matrix that holds the first d columns of Ui where d is the output dimension. The
matrix H = I − 1

K 11′ is the centering matrix. See also Huo and Smith (2006) regarding this
representation of the algorithm.

• HLLE: Wi is a d(d +1)/2× (K +1) matrix,

Wi = (0,H i)

where 0 is a vector of zeros and H i is the d(d+1)
2 ×K Hessian estimator.

The estimator can be calculated as follows. Let UiLiVi
′ be the SVD of Xi −1x̄′i. Let

Mi = [1,U (1)
i , . . . ,U (d)

i ,diag(U (1)
i U (1)

i
′),diag(U (1)

i U (2)
i

′), . . . ,diag(U (d)
i U (d)

i
′)] ,
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where the operator diag returns a column vector formed from the diagonal elements of the
matrix. Let M̃i be the result of the Gram-Schmidt orthonormalization on Mi. Then H i is
defined as the transpose of the last d(d +1)/2 columns of M̃i.

The third step of the normalized-output algorithms is to find a set of points Y = [y1, . . . ,yN ]′, yi ∈
R

d where d ≤ D is the dimension of the manifold. Y is found by minimizing a convex function
under some normalization constraints, as follows. Let Y be any N × d matrix. We define the i-th
neighborhood matrix Yi = [yi,yi,1, . . . ,yi,K ]′ using the same pairs of indices i, j as in Xi. The cost
function for all of the normalized-output algorithms is given by

Φ(Y ) =
N

∑
i=1

φ(Yi) =
N

∑
i=1

‖WiYi‖2
F , (2)

under the normalization constraints
{

Y ′DY = I
Y ′D1 = 0

for LEM and DFM,

{
Cov(Y ) = I

Y ′1 = 0
for LLE, LTSA and HLLE, (3)

where ‖ ‖F stands for the Frobenius norm, and Wi is algorithm-dependent.
Define the output matrix Y to be the matrix that achieves the minimum of Φ under the normaliza-

tion constraints of Eq. 3 (Y is defined up to rotation). Then we have the following: the embeddings
of LEM and LLE are given by the according output matrices Y ; the embeddings of LTSA and HLLE
are given by the according output matrices 1√

N
Y ; and the embedding of DFM is given by a linear

transformation of Y as discussed in Appendix A.1. The discussion of the algorithms’ output in this
paper holds for any affine transformation of the output (see Section 3). Thus, without loss of gen-
erality, we prefer to discuss the output matrix Y directly, rather than the different embeddings. This
allows a unified framework for all five normalized-output algorithms.

3. Embedding Quality

In this section we discuss possible definitions of “successful performance” of manifold-learning
algorithms. To open our discussion, we present a numerical example. We chose to work with LTSA
rather arbitrarily. Similar results can be obtained using the other algorithms.

The example we consider is a uniform sample from a two-dimensional strip, shown in Fig. 1A.
Note that in this example, D = d; that is, the input data is identical to the original data. Fig. 1B
presents the output of LTSA on the input in Fig. 1A. The most obvious difference between input
and output is that while the input is a strip, the output is roughly square. While this may seem to be
of no importance, note that it means that the algorithm, like all the normalized-output algorithms,
does not preserve geodesic distances even up to a scaling factor. By definition, the geodesic distance
between two points on a manifold is the length of the shortest path on the manifold between the two
points. Preservation of geodesic distances is particularly relevant when the manifold is isometrically
embedded. In this case, assuming the domain is convex, the geodesic distance between any two
points on the manifold is equal to the Euclidean distance between the corresponding domain points.
Geodesic distances are conserved, for example, by the Isomap algorithm (Tenenbaum et al., 2000).

Figs. 1E and 1F present closeups of Figs. 1A and 1B, respectively. Here, a less obvious phe-
nomenon is revealed: the structure of the local neighborhood is not preserved by LTSA. By local
structure we refer to the angles and distances (at least up to a scale) between all points within each
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A B C D

E F G

Figure 1: The output of LTSA (B) for the (two-dimensional) input shown in (A), where the input
is a uniform sample from the strip [0,1]× [0,6]. Ideally one would expect the two to be
identical. The normalization constraint shortens the horizontal distances and lengthens
the vertical distances, leading to the distortion of geodesic distances. (E) and (F) focus
on the points shown in black in (A) and (B), respectively. The (blue) triangles pointing
downwards in (E) and (F) are the 8-nearest-neighborhood of the point denoted by the
full black circle. The (red) triangles pointing upwards in (F) indicate the neighborhood
computed for the corresponding point (full black circle) in the output space. Note that
less than half of the original neighbors of the point remain neighbors in the output space.
The input (A) with the addition of Gaussian noise normal to the manifold and of variance
10−4 is shown in (C). The output of LTSA for the noisy input is shown in (D). (G) shows
a closeup of the neighborhood of the point indicated by the black circle in (D).

local neighborhood. Mappings that preserve local structures up to a scale are called conformal
mappings (see for example de Silva and Tenenbaum, 2003; Sha and Saul, 2005). In addition to
the distortion of angles and distances, the K-nearest-neighbors of a given point on the manifold do
not necessarily correspond to the K-nearest-neighbors of the respective output point, as shown in
Figs. 1E and 1F. Accordingly, we conclude that the original structure of the local neighborhoods is
not necessarily preserved by the normalized-output algorithms.

The above discussion highlights the fact that one cannot expect the normalized-output algo-
rithms to preserve geodesic distances or local neighborhood structure. However, it seems reasonable
to demand that the output of the normalized-output algorithms resemble an affine transformation of
the original sample. In fact, the output presented in Fig. 1B is an affine transformation of the
input, which is the original sample, presented in Fig. 1A. A formal similarity criterion based on
affine transformations is given by Huo and Smith (2006). In the following, we will claim that a
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normalized-output algorithm succeeds (or fails) based on the existence (or lack thereof) of resem-
blance between the output and the original sample, up to an affine transformation.

Fig. 1D presents the output of LTSA on a noisy version of the input, shown in Fig. 1C. In
this case, the algorithm prefers an output that is roughly a one-dimensional curve embedded in R

2.
While this result may seem incidental, the results of all the other normalized-output algorithms for
this example are essentially the same.

Using the affine transformation criterion, we can state that LTSA succeeds in recovering the
underlying structure of the strip shown in Fig. 1A. However, in the case of the noisy strip shown in
Fig. 1C, LTSA fails to recover the structure of the input. We note that all the other normalized-output
algorithms perform similarly.

For practical purposes, we will now generalize the definition of failure of the normalized-output
algorithms. This definition is more useful when it is necessary to decide whether an algorithm has
failed, without actually computing the output. This is useful, for example, when considering the
outputs of an algorithm for a class of manifolds.

We now present the generalized definition of failure of the algorithms. Let X = XN×d be the
original sample. Assume that the input is given by ψ(X) ⊂ R

D , where ψ : R
d → R

D is some
smooth function, and D ≥ d is the dimension of the input. Let Y = YN×d be an affine transformation
of the original sample X , such that the normalization constraints of Eq. 3 hold. Note that Y is
algorithm-dependent, and that for each algorithm, Y is unique up to rotation and translation. When
the algorithm succeeds it is expected that the output will be similar to a normalized version of X ,
namely to Y . Let Z = ZN×d be any matrix that satisfies the same normalization constraints. We say
that the algorithm has failed if Φ(Y ) > Φ(Z), and Z is substantially different from Y , and hence
also from X . In other words, we say that the algorithm has failed when a substantially different
embedding Z has a lower cost than the most appropriate embedding Y . A precise definition of
“substantially different” is not necessary for the purposes of this paper. It is enough to consider Z
substantially different from Y when Z is of lower dimension than Y , as in Fig. 1D.

We emphasize that the matrix Z is not necessarily similar to the output of the algorithm in
question. It is a mathematical construction that shows when the output of the algorithm is not likely
to be similar to Y , the normalized version of the true manifold structure. The following lemma
shows that if Φ(Y ) > Φ(Z), the inequality is also true for a small perturbation of Y . Hence, it is not
likely that an output that resembles Y will occur when Φ(Y ) > Φ(Z) and Z is substantially different
from Y .

Lemma 3.1 Let Y be an N ×d matrix. Let Ỹ = Y +εE be a perturbation of Y , where E is an N ×d
matrix such that ‖E‖F = 1 and where ε > 0. Let S be the maximum number of neighborhoods to
which a single input point belongs. Then for LLE with positive weights wi, j, LEM, DFM, LTSA, and
HLLE, we have

Φ(Ỹ ) > (1− ε)Φ(Y )− εCaS ,

where Ca is a constant that depends on the algorithm.

The use of positive weights in LLE is discussed in Saul and Roweis (2003, Section 5); a similar
result for LLE with general weights can be obtained if one allows a bound on the values of wi, j. The
proof of Lemma 3.1 is given in Appendix A.2.
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A B CA B CA B CA B CA B C

Figure 2: (A) The input grid. (B) Embedding Y , the normalized grid. (C) Embedding Z, a curve
that satisfies Cov(Z) = I.

4. Analysis of the Two-Dimensional Grid

In this section we analyze the performance of LEM on the two-dimensional grid. In particular,
we argue that LEM cannot recover the structure of a two-dimensional grid in the case where the
aspect ratio of the grid is greater than 2. Instead, LEM prefers a one-dimensional curve in R

2.
Implications also follow for DFM, as explained in Section 4.3, followed by a discussion of the other
normalized-output algorithms. Finally, we present empirical results that demonstrate our claims.

In Section 5 we prove a more general statement regarding any two-dimensional manifold. Nec-
essary conditions for successful performance of the normalized-output algorithms on such mani-
folds are presented. However, the analysis in this section is important in itself for two reasons.
First, the conditions for the success of LEM on the two-dimensional grid are more limiting. Sec-
ond, the analysis is simpler and points out the reasons for the failure of all the normalized-output
algorithms when the necessary conditions do not hold.

4.1 Possible Embeddings of a Two-Dimensional Grid

We consider the input data set X to be the two-dimensional grid [−m, . . . ,m]× [−q, . . . ,q], where
m ≥ q. We denote xi j = (i, j). For convenience, we regard X = (X (1),X (2)) as an N × 2 matrix,
where N = (2m+1)(2q+1) is the number of points in the grid. Note that in this specific case, the
original sample and the input are the same.

In the following we present two different embeddings, Y and Z. Embedding Y is the grid itself,
normalized so that Cov(Y ) = I. Embedding Z collapses each column to a point and positions the
resulting points in the two-dimensional plane in a way that satisfies the constraint Cov(Z) = I (see
Fig. 2 for both). The embedding Z is a curve in R

2 and clearly does not preserve the original
structure of the grid.

We first define the embeddings more formally. We start by defining Ŷ = X(X ′DX)−1/2. Note that
this is the only linear transformation of X (up to rotation) that satisfies the conditions Ŷ ′D1 = 0 and
Ŷ ′DŶ = I, which are the normalization constraints for LEM (see Eq. 3). However, the embedding
Ŷ depends on the matrix D, which in turn depends on the choice of neighborhoods. Recall that the
matrix D is a diagonal matrix, where dii equals the number of neighbors of the i-th point. Choose r
to be the radius of the neighborhoods. Then, for all inner points xi j, the number of neighbors K(i, j)
is a constant, which we denote as K. We shall call all points with less than K neighbors boundary
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points. Note that the definition of boundary points depends on the choice of r. For inner points of
the grid we have dii ≡ K. Thus, when K � N we have X ′DX ≈ KX ′X .

We define Y = XCov(X)−1/2. Note that Y ′1 = 0, Cov(Y ) = I and for K � N, Y ≈
√

KNŶ .
In this section we analyze the embedding Y instead of Ŷ , thereby avoiding the dependence on the
matrix D and hence simplifying the notation. This simplification does not significantly change the
problem and does not affect the results we present. Similar results are obtained in the next section
for general two-dimensional manifolds, using the exact normalization constraints (see Section 5.2).

Note that Y can be described as the set of points [−m/σ, . . . ,m/σ]× [−q/τ, . . . ,q/τ], where
yi j = (i/σ, j/τ). The constants σ2 = Var(X (1)) and τ2 = Var(X (2)) ensure that the normalization
constraint Cov(Y ) = I holds. Straightforward computation (see Appendix A.3) shows that

σ2 =
(m+1)m

3
; τ2 =

(q+1)q
3

. (4)

The definition of the embedding Z is as follows:

zi j =





(
i
σ , −2i

ρ − z̄(2)
)

i ≤ 0

(
i
σ , 2i

ρ − z̄(2)
)

i ≥ 0

,

where z̄(2) = (2q+1)2
Nρ ∑m

i=1(2i) ensures that Z′1 = 0, and σ (the same σ as before; see below) and ρ
are chosen so that sample variance of Z(1) and Z(2) is equal to one. The symmetry of Z(1) about
the origin implies that Cov(Z(1),Z(2)) = 0, hence the normalization constraint Cov(Z) = I holds. σ
is as defined in Eq. 4, since Z(1) = Y (1) (with both defined similarly to X (1)). Finally, note that the
definition of zi j does not depend on j.

4.2 Main Result for LEM on the Two-Dimensional Grid

We estimate Φ(Y ) by Nφ(Yi j) (see Eq. 2), where yi j is an inner point of the grid and Yi j is the
neighborhood of yi j; likewise, we estimate Φ(Z) by Nφ(Zi j) for an inner point zi j. For all inner
points, the value of φ(Yi j) is equal to some value φ. For boundary points, φ(Yi j) is bounded by φ
multiplied by some constant that depends only on the number of neighbors. Hence, for large m and
q, the difference between Φ(Y ) and Nφ(Yi j) is negligible.

The main result of this section states:

Theorem 4.1 Let yi j be an inner point and let the ratio m
q be greater than 2. Then

φ(Yi j) > φ(Zi j)

for neighborhood-radius r that satisfies 1 ≤ r ≤ 3, or similarly, for K-nearest neighborhoods where
K = 4,8,12.

This indicates that for aspect ratios m
q that are greater than 2 and above, mapping Z, which is essen-

tially one-dimensional, is preferred to Y , which is a linear transformation of the grid. The case of
general r-ball neighborhoods is discussed in Appendix A.4 and indicates that similar results should
be expected.
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Figure 3: (A) The normalized grid at an inner point yi j. The 4-nearest-neighbors of yi j are marked
in blue. Note that the neighbors from the left and from the right are at a distance of
1/σ, while the neighbors from above and below are at a distance of 1/τ. The value of
φ(Yi j) is equal to the sum of squared distances of yi j to its neighbors. Hence, we obtain
that φ(Yi j) = 2/σ2 +2/τ2 when K = 4 and φ(Yi j) = 2/σ2 +2/τ2 +4(1/σ2 +1/τ2) when
K = 8. (B) The curve embedding at an inner point zi j. The neighbors of zi j from the left
and from the right are marked in red. The neighbors from above and below are embedded
to the same point as zi j. Note that the squared distance between zi j and z(i±1) j equals
1/σ2 +4/ρ2. Hence, φ(Zi j) = 2(1/σ2 +4/ρ2) when K = 4, and φ(Zi j) = 6(1/σ2 +4/ρ2)
when K = 8.

The proof of the theorem is as follows. It can be shown analytically (see Fig. 3) that

φ(Yi j) = F(K)

(
1

σ2 +
1
τ2

)
, (5)

where
F(4) = 2; F(8) = 6; F(12) = 14 .

For higher K, F(K) can be approximated for any r-ball neighborhood of yi j (see Appendix A.4).
It can be shown (see Fig. 3) that

φ(Zi j) = F̃(K)

(
1

σ2 +
4
ρ2

)
, (6)

where F̃(K) = F(K) for K = 4,8,12. For higher K, it can be shown (see Appendix A.4) that
F̃(K) ≈ F(K) for any r-ball neighborhood.

A careful computation (see Appendix A.5) shows that

ρ > σ , (7)

and therefore

φ(Zi j) <
5F(K)

σ2 . (8)
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Assume that m
q > 2. Since both m and q are integers, we have that m + 1 ≥ 2(q + 1). Hence,

using Eq. 4 we have

σ2 =
m(m+1)

3
>

4q(q+1)

3
= 4τ2 .

Combining this result with Eqs. 5 and 8 we have

m
q

> 2 ⇒ φ(Yi j) > φ(Zi j)

which proves Theorem 4.1.

4.3 Implications to Other Algorithms

We start with implications regarding DFM. There are two main differences between LEM and DFM.
The first difference is the choice of the kernel. LEM chooses wi, j = 1, which can be referred to as
the “window” kernel (a Gaussian weight function was also considered by Belkin and Niyogi, 2003).
DFM allows a more general rotation-invariant kernel, which includes the “window” kernel of LEM.
The second difference is that DFM renormalizes the weights kε(xi,xi, j) (see Eq. 1). However, for
all the inner points of the grid with neighbors that are also inner points, the renormalization factor
(qε(xi)

−1qε(xi, j)
−1) is a constant. Therefore, if DFM chooses the “window” kernel, it is expected

to fail, like LEM. In other words, when DFM using the “window” kernel is applied to a grid with
aspect ratio slightly greater than 2 or above, DFM will prefer the embedding Z over the embedding
Y (see Fig 2). For a more general choice of kernel, the discussion in Appendix A.4 indicates that
a similar failure should occur. This is because the relation between the estimations of Φ(Y ) and
Φ(Z) presented in Eqs. 5 and 6 holds for any rotation-invariant kernel (see Appendix A.4). This
observation is also evident in numerical examples, as shown in Figs. 4 and 5.

In the cases of LLE with no regularization, LTSA, and HLLE, it can be shown that Φ(Y ) ≡ 0.
Indeed, for LTSA and HLLE, the weight matrix Wi projects on a space that is perpendicular to the
SVD of the neighborhood Xi, thus ‖WiXi‖2

F = 0. Since Yi = XiCov(X)−1/2, we have ‖WiYi‖2
F = 0,

and, therefore, Φ(Y )≡ 0. For the case of LLE with no regularization, when K ≥ 3, each point can be
reconstructed perfectly from its neighbors, and the result follows. Hence, a linear transformation of
the original data should be the preferred output. However, the fact that Φ(Y )≡ 0 relies heavily on the
assumption that both the input X and the output Y are of the same dimension (see Theorem 5.1 for
manifolds embedded in higher dimensions), which is typically not the case in dimension-reducing
applications.

4.4 Numerical Results

For the following numerical results, we used the Matlab implementation written by the respective
algorithms’ authors as provided by Wittman (retrieved Jan. 2007) (a minor correction was applied
to the code of HLLE).

We ran the LEM algorithm on data sets with aspect ratios above and below 2. We present results
for both a grid and a uniformly sampled strip. The neighborhoods were chosen using K-nearest
neighbors with K = 4,8,16, and 64. We present the results for K = 8; the results for K = 4,16,
and 64 are similar. The results for the grid and the random sample are presented in Figs. 4 and 5,
respectively.

1919



GOLDBERG, ZAKAI, KUSHNIR AND RITOV

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Figure 4: The output of LEM on a grid of dimensions 81× 41 is presented in (A). The result of
LEM for the grid of dimensions 81×39 is presented in (B). The number of neighbors in
both computations is 8. The output for DFM on the same data sets using σ = 2 appears
in (C) and (D), respectively.

We ran the DFM algorithm on the same data sets. We used the normalization constant α = 1
and the kernel width σ = 2; the results for σ = 1,4, and 8 are similar. The results for the grid and
the random sample are presented in Figures 4 and 5, respectively.

Both examples clearly demonstrate that for aspect ratios sufficiently greater than 2, both LEM
and DFM prefer a solution that collapses the input data to a nearly one-dimensional output, normal-
ized in R

2. This is exactly as expected, based on our theoretical arguments.

Finally, we ran LLE, HLLE, and LTSA on the same data sets. In the case of the grid, both
LLE and LTSA (roughly) recovered the grid shape for K = 4,8,16, and 64, while HLLE failed to
produce any output due to large memory requirements. In the case of the random sample, both LLE
and HLLE succeeded for K = 16,64 but failed for K = 4,8. LTSA succeeded for K = 8,16, and 64
but failed for K = 4. The reasons for the failure for lower values of K are not clear, but may be due
to roundoff errors. In the case of LLE, the failure may also be related to the use of regularization in
LLE’s second step.

5. Analysis for General Two-Dimensional Manifolds

The aim of this section is to present necessary conditions for the success of the normalized-output
algorithms on general two-dimensional manifolds embedded in high-dimensional space. We show
how this result can be further generalized to manifolds of higher dimension. We demonstrate the
theoretical results using numerical examples.
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Figure 5: (A) and (D) show the same 3000 points, uniformly-sampled from the unit square, scaled
to the areas [0,81]× [0,41] and [0,81]× [0,39], respectively. (B) and (E) show the outputs
of LEM for inputs (A) and (D), respectively. The number of neighbors in both computa-
tions is 8. (C) and (F) show the output for DFM on the same data sets using σ = 2. Note
the sharp change in output structure for extremely similar inputs.

5.1 Two Different Embeddings for a Two-Dimensional Manifold

We start with some definitions. Let X = [x1, . . . ,xN ]′, xi ∈ R
2 be the original sample. Without loss

of generality, we assume that

x̄ = 0; Cov(X) ≡ Σ =

(
σ2 0
0 τ2

)
.

As in Section 4, we assume that σ > τ. Assume that the input for the normalized-output algorithms is
given by ψ(X) ⊂ R

D where ψ : R
2 → R

D is a smooth function and D ≥ 2 is the dimension of the
input. When the mapping ψ is an isometry, we expect Φ(X) to be small. We now take a close look
at Φ(X).

Φ(X) =
N

∑
i=1

‖WiXi‖2
F =

N

∑
i=1

∥∥∥WiX
(1)
i

∥∥∥
2
+

N

∑
i=1

∥∥∥WiX
(2)
i

∥∥∥
2
,

where X ( j)
i is the j-th column of the neighborhood Xi. Define e( j)

i =
∥∥∥WiX

( j)
i

∥∥∥
2
, and note that e( j)

i

depends on the different algorithms through the definition of the matrices Wi. The quantity e( j)
i is the

portion of error obtained by using the j-th column of the i-th neighborhood when using the original
sample as output. Denote ē( j) = 1

N ∑i e( j)
i , the average error originating from the j-th column.
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We define two different embeddings for ψ(X), following the logic of Sec. 4.1. Let

Y = XΣ−1/2 (9)

be the first embedding. Note that Y is just the original sample up to a linear transformation that
ensures that the normalization constraints Cov(Y ) = I and Y ′1 = 0 hold. Moreover, Y is the only
transformation of X that satisfies these conditions, which are the normalization constraints for LLE,
HLLE, and LTSA. In Section 5.2 we discuss the modified embeddings for LEM and DFM.

The second embedding, Z, is given by

zi =





(
x(1)

i
σ ,

−x(1)
i

ρ − z̄(2)

)
x(1)

i < 0

(
x(1)

i
σ ,

κx(1)
i

ρ − z̄(2)

)
x(1)

i ≥ 0

. (10)

Here

κ =
(

∑
i:x(1)

i <0

(
x(1)

i

)2)1/2(
∑

i:x(1)
i ≥0

(
x(1)

i

)2)−1/2
(11)

ensures that Cov(Z(1),Z(2)) = 0, and z̄(2) = 1
N (∑x(1)

i ≥0
κx(1)

i
ρ + ∑x(1)

i <0
−x(1)

i
ρ ) and ρ are chosen so that

the sample mean and variance of Z(2) are equal to zero and one, respectively. We assume without
loss of generality that κ ≥ 1.

Note that Z depends only on the first column of X . Moreover, each point zi is just a linear
transformation of x(1)

i . In the case of neighborhoods Zi, the situation can be different. If the first

column of Xi is either non-negative or non-positive, then Zi is indeed a linear transformation of X (1)
i .

However, if X (1)
i is located on both sides of zero, Zi is not a linear transformation of X (1)

i . Denote by

N0 the set of indices i of neighborhoods Zi that are not linear transformations of X (1)
i . The number

|N0| depends on the number of nearest neighbors K. Recall that for each neighborhood, we defined
the radius r(i) = max j,k∈{0,...,K}

∥∥xi, j − xi,k
∥∥. Define rmax = maxi∈N0 r(i) to be the maximum radius

of neighborhoods i, such that i ∈ N0.

5.2 The Embeddings for LEM and DFM

So far we have claimed that given the original sample X , we expect the output to resemble Y (see
Eq. 9). However, Y does not satisfy the normalization constraints of Eq. 3 for the cases of LEM
and DFM. Define Ŷ to be the only affine transformation of X (up to rotation) that satisfies the
normalization constraint of LEM and DFM. When the original sample is given by X , we expect
the output of LEM and DFM to resemble Ŷ . We note that unlike the matrix Y that was defined in
terms of the matrix X only, Ŷ depends also on the choice of neighborhoods through the matrix D
that appears in the normalization constraints.

We define Ŷ more formally. Denote X̃ = X − 1
1′D1 11′DX . Note that X̃ is just a translation of X

that ensures that X̃ ′D1 = 0. The matrix X̃ ′DX̃ is positive definite and therefore can be presented by
ΓΣ̂Γ′ where Γ is a 2×2 orthogonal matrix and

Σ̂ =

(
σ̂2 0
0 τ̂2

)
,
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where σ̂ ≥ τ̂. Define X̂ = X̃Γ; then Ŷ = X̂ Σ̂−1/2 is the only affine transformation of X that satisfies
the normalization constraints of LEM and DFM; namely, we have Ŷ ′DŶ = I and Ŷ ′D1 = 0.

We define Ẑ similarly to Eq. 10,

ẑi =





(
x̂(1)

i
σ̂ ,

−x̂(1)
i

ρ̂ − ˆ̄z(2)

)
x̂(1)

i < 0

(
x̂(1)

i
σ̂ ,

κ̂x̂(1)
i

ρ̂ − ˆ̄z(2)

)
x̂(1)

i ≥ 0

,

where κ̂ is defined by Eq. 11 with respect to X̂ , ˆ̄z(2) = 1
N (∑x(1)

i ≥0
diiκ̂x(1)

i
ρ + ∑x(1)

i <0
−diix

(1)
i

ρ ) and ρ̂2 =

κ2 ∑x̂(1)
i ≥0

dii

(
x̂(1)

i

)2
+∑x̂(1)

i ≤0
dii

(
x̂(1)

i

)2
.

A similar analysis to that of Y and Z can be performed for Ŷ and Ẑ. The same necessary
conditions for success are obtained, with σ, τ, and ρ replaced by σ̂, τ̂, and ρ̂, respectively. In the
case where the distribution of the original points is uniform, the ratio σ̂

τ̂ is close to the ratio σ
τ and

thus the necessary conditions for the success of LEM and DFM are similar to the conditions in
Corollary 5.2.

5.3 Characterization of the Embeddings

The main result of this section provides necessary conditions for the success of the normalized-
output algorithms. Following Section 3, we say that the algorithms fail if Φ(Y ) > Φ(Z), where Y
and Z are defined in Eqs. 9 and 10, respectively. Thus, a necessary condition for the success of the
normalized-output algorithms is that Φ(Y ) ≤ Φ(Z).

Theorem 5.1 Let X be a sample from a two-dimensional domain and let ψ(X) be its embedding in
high-dimensional space. Let Y and Z be defined as above. Then

κ2

ρ2

(
ē(1) +

|N0|
N

car2
max

)
<

ē(2)

τ2 =⇒ Φ(Y ) > Φ(Z) , (12)

where ca is a constant that depends on the specific algorithm. For the algorithms LEM and DFM a
more restrictive condition can be defined:

κ2

ρ2 ē(1) <
ē(2)

τ2 =⇒ Φ(Y ) > Φ(Z) .

For the proof, see Appendix A.6.
Note that the bound in Eq. 12 depends on the radii of the neighborhoods, and when the maxi-

mum radius is large, the bound is less effective. However, there is a tradeoff between enlarging the
radius and improving the description of the neighborhoods, that is, reducing ē(2). In other words,
when the neighborhoods are large, one can expect a large average error in the description of the
neighborhoods, since the Euclidian approximation of the neighborhoods is less accurate for neigh-
borhoods of large radius.

Adding some assumptions, we can obtain a simpler criterion. First note that, in general, ē(1)

and ē(2) should be of the same order, since it can be assumed that, locally, the neighborhoods are
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uniformly distributed. Second, following Lemma A.2 (see Appendix A.8), when X (1) is a sample
from a symmetric unimodal distribution it can be assumed that κ ≈ 1 and ρ2 > σ2

8 . Then we have
the following corollary:

Corollary 5.2 Let X ,Y,Z be as in Theorem 5.1. Let c = σ/τ be the ratio between the variance of
the first and second columns of X. Assume that ē(1) <

√
2ē(2), κ < 4

√
2, and ρ2 > σ2

8 . Then

4

(
1+

|N0|
N

car2
max√

2ē(2)

)
< c ⇒ Φ(Y ) > Φ(Z) .

For LEM and DFM, we can write

4 < c ⇒ Φ(Y ) > Φ(Z) .

We emphasize that both Theorem 5.1 and Corollary 5.2 do not state that Z is the output of the
normalized-output algorithms. However, when the difference between the right side and the left
side of the inequalities is large, one cannot expect the output to resemble the original sample (see
Lemma 3.1). In these cases we say that the algorithms fail to recover the structure of the original
domain.

5.4 Generalization of the Results to Manifolds of Higher Dimensions

The discussion above introduced necessary conditions for the normalized-output algorithms’ suc-
cess on two-dimensional manifolds embedded in R

D . Necessary conditions for success on general
d-dimensional manifolds, d ≥ 3, can also be obtained. We present here a simple criterion to demon-
strate the fact that there are d-dimensional manifolds that the normalized-output algorithms cannot
recover.

Let X = [X (1), . . . ,X (d)] be a N×d sample from a d-dimensional domain. Assume that the input
for the normalized-output algorithms is given by ψ(X)⊂ R

D where ψ : R
d → R

D is a smooth func-
tion and D ≥ d is the dimension of the input. We assume without loss of generality that X ′1 = 0 and
that Cov(X) is a diagonal matrix. Let Y = XCov(X)−1/2. We define the matrix Z = [Z(1), . . . ,Z(d)]
as follows. The first column of Z, Z(1), equals the first column of Y , namely, Z(1) = Y (1). We define
the second column Z(2) similarly to the definition in Eq. 10:

Z(2)
i =





−x(1)
i

ρ − z̄(2) x(1)
i < 0

κx(1)
i

ρ − z̄(2) x(1)
i ≥ 0

, (13)

where κ is defined as in Eq. 11, and z̄(2) and ρ are chosen so that the sample mean and variance of
Z(2) are equal to zero and one, respectively. We define the next d −2 columns of Z by

Z( j) =
Y ( j)−σ2 jZ(2)

√
1−σ2

2 j

; j = 3, . . . ,d ,

where σ2 j = Z(2)′Y ( j). Note that Z′1 = 0 and Cov(Z) = I. Denote σmax = max j∈{3,...,d} σ2 j.
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We bound Φ(Z) from above:

Φ(Z) = Φ(Y (1))+Φ(Z(2))+
N

∑
i=1

(
1

1−σ2
2 j

)
d

∑
j=3

∥∥∥Wi

(
Y ( j)

i −σ2 jZ
(2)
i

)∥∥∥
2

≤ Φ(Y (1))+Φ(Z(2))+
1

1−σ2
max

N

∑
i=1

d

∑
j=3

∥∥∥WiY
( j)
i

∥∥∥
2
+

σ2
max

1−σ2
max

N

∑
i=1

d

∑
j=3

∥∥∥WiZ
(2)
i

∥∥∥
2

= Φ(Y (1))+
1+(d −3)σ2

max

1−σ2
max

Φ(Z(2))+
1

1−σ2
max

d

∑
j=3

Φ(Y ( j)) .

Since we may write Φ(Y ) = ∑d
j=1 Φ(Y ( j)), we have

1+(d −3)σ2
max

1−σ2
max

Φ(Z(2)) < Φ(Y (2))+
σ2

max

1−σ2
max

d

∑
j=3

Φ(Y ( j)) ⇒ Φ(Z) < Φ(Y ) .

When the sample is taken from a symmetric distribution with respect to the axes, one can expect
σmax to be small. To see this, note that by symmetry and Eq. 13, Z(2)

i ≈ |Y (1)
i |, and by assumption

Cov(Y (1),Y ( j)) = 0 for j = 3, . . . ,d. Hence, by the symmetry of Y ( j), σ2 j is expected to be small.
In the specific case of the d-dimensional grid, σmax = 0. Indeed, Y ( j) is symmetric around zero,
and all values of Z(2) appear for a given value of Y ( j). Hence, both LEM and DFM are expected to
fail whenever the ratio between the length of the grid in the first and second coordinates is slightly
greater than 2 or more, regardless of the length of grid in the other coordinates, similar to the result
presented in Theorem 4.1. Corresponding results for the other normalized-output algorithms can
also be obtained, similar to the derivation of Corollary 5.2.

5.5 Numerical Results

We ran all five normalized-output algorithms, along with Isomap, on three data sets. We used the
Matlab implementations written by the algorithms’ authors as provided by Wittman (retrieved Jan.
2007).

The first data set is a 1600-point sample from the swissroll as obtained from Wittman (retrieved
Jan. 2007). The results for the swissroll are given in Fig. 7, A1-F1. The results for the same
swissroll, after its first dimension was stretched by a factor 3, are given in Fig. 7, A2-F2. The
original and stretched swissrolls are presented in Fig. 6A. The results for K = 8 are given in Fig. 7.
We also checked for K = 12,16; but “short-circuits” occur (see Balasubramanian et al., 2002, for a
definition and discussion of “short-circuits”).

The second data set consists of 2400 points, uniformly sampled from a “fishbowl”, where a
“fishbowl” is a two-dimensional sphere minus a neighborhood of the northern pole (see Fig. 6B
for both the “fishbowl” and its stretched version). The results for K = 8 are given in Fig. 8. We
also checked for K = 12,16; the results are roughly similar. Note that the “fishbowl” is a two-
dimensional manifold embedded in R

3, which is not an isometry.
The third data set consists of 900 images of the globe, each of 100× 100 pixels (see Fig. 6C).

The images, provided by Hamm et al. (2005), were obtained by changing the globe’s azimuthal and
elevation angles. The parameters of the variations are given by a 30×30 array that contains −45 to
45 degrees of azimuth and −30 to 60 degrees of elevation. We checked the algorithms both on the
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60/−45 60/−41.9 60/−38.79 60/−35.69 60/−32.59 60/−29.48

56.9/−45 56.9/−41.9 56.9/−38.79 56.9/−35.69 56.9/−32.59 56.9/−29.48

53.79/−45 53.79/−41.9 53.79/−38.79 53.79/−35.69 53.79/−32.59 53.79/−29.48

50.69/−45 50.69/−41.9 50.69/−38.79 50.69/−35.69 50.69/−32.59 50.69/−29.48

A

B

C

Figure 6: The data sets for the first example appear in panel A. In the left appears the 1600-point
original swissroll and in the right appears the same swissroll, after its first dimension was
stretched by a factor of 3. The data for the second example appear in panel B. In the
left appears a 2400-point uniform sample from the “fishbowl”, and in the right appears
the same “fishbowl”, after its first dimension was stretched by a factor of 4. In panel C
appears the upper left corner of the array of 100×100 pixel images of the globe. Above
each image we write the elevation and azimuth.

entire set of images and on a strip of 30×10 angular variations. The results for K = 8 are given in
Fig. 9. We also checked for K = 12,16; the results are roughly similar.
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A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 7: The output of LEM on 1600 points sampled from a swissroll is presented in A1. The
output of LEM on the same swissroll after stretching its first dimension by a factor of
3 is presented in A2. Similarly, the outputs of DFM, LLE, LTSA, HLLE, and Isomap
are presented in B1-2, C1-2, D1-2, E1-2, and F1-2, respectively. We used K = 8 for all
algorithms except DFM, where we used σ = 2.

These three examples, in addition to the noisy version of the two-dimensional strip discussed
in Section 3 (see Fig. 1), clearly demonstrate that when the aspect ratio is sufficiently large, all the
normalized-output algorithms prefer to collapse their output.

6. Asymptotics

In the previous sections we analyzed the phenomenon of global distortion obtained by the normalized-
output algorithms on a finite input sample. However, it is of great importance to explore the limit
behavior of the algorithms, that is, the behavior when the number of input points tends to infinity.
We consider the question of convergence in the case of input that consists of a d-dimensional man-
ifold embedded in R

D , where the manifold is isometric to a convex subset of Euclidean space. By
convergence we mean recovering the original subset of R

d up to a non-singular affine transforma-
tion.

Some previous theoretical works presented results related to the convergence issue. Huo and
Smith (2006) proved convergence of LTSA under some conditions. However, to the best of our
knowledge, no proof or contradiction of convergence has been given for any other of the normalized-
output algorithms. In this section we discuss the various algorithms separately. We also discuss the
influence of noise on the convergence. Using the results from previous sections, we show that there
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A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 8: The output of LEM on 2400 points sampled from a “fishbowl” is presented in A1. The
output of LEM on the same “fishbowl” after stretching its first dimension by a factor of
4 is presented in A2. Similarly, the outputs of DFM, LLE, LTSA, HLLE, and Isomap
are presented in B1-2, C1-2, D1-2, E1-2, and F1-2, respectively. We used K = 8 for all
algorithms except DFM, where we used σ = 2.

are classes of manifolds on which the normalized-output algorithms cannot be expected to recover
the original sample, not even asymptotically.

6.1 LEM and DFM

Let x1,x2, . . . be a uniform sample from the two-dimensional strip S = [0,L]× [0,1]. Let Xn =
[x1, . . . ,xn]

′ be the sample of size n. Let K = K(n) be the number of nearest neighbors. Then when
K � n there exists with probability one an N, such that for all n > N the assumptions of Corollary 5.2
hold. Thus, if L > 4 we do not expect either LEM or DFM to recover the structure of the strip as
the number of points in the sample tends to infinity. Note that this result does not depend on the
number of neighbors or the width of the kernel, which can be changed as a function of the number
of points n, as long as K � n. Hence, we conclude that LEM and DFM generally do not converge,
regardless of the choice of parameters.

In the rest of this subsection we present further explanations regarding the failure of LEM and
DFM based on the asymptotic behavior of the graph Laplacian (see Belkin and Niyogi, 2003, for
details). Although it was not mentioned explicitly in this paper, it is well known that the outputs of
LEM and DFM are highly related to the lower non-negative eigenvectors of the normalized graph
Laplacian matrix (see Appendix A.1). It was shown by Belkin and Niyogi (2005), Hein et al.
(2005), and Singer (2006) that the graph Laplacian operator converges to the continuous Laplacian
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A1 B1 C1 D1 F1E1

A2 B2 C2 D2 F2E2

Figure 9: The output of LEM on the 30×30 array of the globe rotation images is presented in A1;
the output of LEM on the array of 30× 10 is presented in A2. Similarly, the outputs of
DFM, LLE, LTSA, HLLE, and Isomap are presented in B1-2, C1-2, D1-2, E1-2, and F1-2
respectively. We used K = 8 for all algorithms except DFM, where we chose σ to be the
root of the average distance between neighboring points.

operator. Thus, taking a close look at the eigenfunctions of the continuous Laplacian operator may
reveal some additional insight into the behavior of both LEM and DFM.

Our working example is the two-dimensional strip S = [0,L]× [0,1], which can be considered as
the continuous counterpart of the grid X defined in Section 4. Following Coifman and Lafon (2006)
we impose the Neumann boundary condition (see details therein). The eigenfunctions ϕi, j(x1,x2)
and eigenvalues λi, j on the strip S under these conditions are given by

ϕi, j(x1,x2) = cos

(
iπ
L

x1

)
cos( jπx2) λi, j =

(
iπ
L

)2

+( jπ)2 for i, j = 0,1,2, . . . .

When the aspect ratio of the strip satisfies L > M ∈ N, the first M non-trivial eigenfunctions are
ϕi,0, i = 1, . . . ,M, which are functions only of the first variable x1. Any embedding of the strip
based on the first M eigenfunctions is therefore a function of only the first variable x1. Specifically,
whenever L > 2 the two-dimensional embedding is a function of the first variable only, and therefore
clearly cannot establish a faithful embedding of the strip. Note that here we have obtained the same
ratio constant L > 2 computed for the grid (see Section 4 and Figs. 4 and 5) and not the looser
constant L > 4 that was obtained in Corollary 5.2 for general manifolds.
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6.2 LLE, LTSA and HLLE

As mentioned in the beginning of this section, Huo and Smith (2006) proved the convergence of the
LTSA algorithm. The authors of HLLE proved that the continuous manifold can be recovered by
finding the null space of the continuous Hessian operator (see Donoho and Grimes, 2004, Corollary).
However, this is not a proof that the algorithm HLLE converges. In the sequel, we try to understand
the relation between Corollary 5.2 and the convergence proof of LTSA.

Let x1,x2, . . . be a sample from a compact and convex domain Ω in R
2. Let Xn = [x1, . . . ,xn]

′ be
the sample of size n. Let ψ be an isometric mapping from R

2 to R
D , where D > 2. Let ψ(Xn) be

the input for the algorithms. We assume that there is an N such that for all n > N the assumptions
of Corollary 5.2 hold. This assumption is reasonable, for example, in the case of a uniform sample
from the strip S. In this case Corollary 5.2 states that Φ(Zn) < Φ(Yn) whenever

4

(
1+

|n0|
n

car2
max,n√
2ē(2)

n

)
< cn ,

where cn is the ratio between the variance of X (1)
n and X (2)

n assumed to converge to a constant c. The
expression |n0|

n is the fraction of neighborhoods Xi,n such that X (1)
i,n is located on both sides of zero.

rmax,n is the maximum radius of neighborhood in n0. Note that we expect both |n0|
n and rmax,n to

be bounded whenever the radius of the neighborhoods does not increase. Thus, Corollary 5.2 tells
us that if {ē(2)

n } is bounded from below, we cannot expect convergence from LLE, LTSA or HLLE
when c is large enough.

The consequence of this discussion is that a necessary condition for the convergence of LLE,
LTSA and HLLE is that {ē(2)

n } (and hence, from the assumptions of Corollary 5.2, also {ē(1)
n }) con-

verges to zero. If the two-dimensional manifold ψ(Ω) is not contained in a linear two-dimensional

subspace of R
D , the mean error ē(2)

n is typically not zero due to curvature. However, if the radii
of the neighborhoods tend to zero while the number of points in each neighborhood tends to infin-
ity, we expect ē(2)

n → 0 for both LTSA and HLLE. This is because the neighborhood matrices Wi

are based on the linear approximation of the neighborhood as captured by the neighborhood SVD.
When the radius of the neighborhood tends to zero, this approximation gets better and hence the
error tends to zero. The same reasoning works for LLE, although the use of regularization in the
second step of LLE may prevent ē(2)

n from converging to zero (see Section 2).
We conclude that a necessary condition for convergence is that the radii of the neighborhoods

tend to zero. In the presence of noise, this requirement cannot be fulfilled. Assume that each input
point is of the form ψ(xi)+ εi where εi ∈ R

D is a random error that is independent of ε j for j 6= i.
We may assume that εi ∼ N(0,α2I), where α is a small constant. If the radius of the neighborhood
is smaller than α, the neighborhood cannot be approximated reasonably by a two-dimensional pro-
jection. Hence, in the presence of noise of a constant magnitude, the radii of the neighborhoods
cannot tend to zero. In that case, LLE, LTSA and HLLE might not converge, depending on the ratio
c. This observation seems to be known also to Huo and Smith (2006), who wrote:

“... we assume α = o(r); that is, we have α
r → 0, as r → 0.

It is reasonable to require that the error bound (α) be smaller than the size of the neigh-
borhood (r), which is reflected in the above condition. Notice that this condition is also
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somewhat nonstandard, since the magnitude of the errors is assumed to depend on n,
but it seems to be necessary to ensure the consistency of LTSA.”2

Summarizing, convergence may be expected when n → ∞, if no noise is introduced. If noise is
introduced and if σ/τ is large enough (depending on the level of noise α), convergence cannot be
expected (see Fig. 1).

7. Concluding Remarks

In the introduction to this paper we posed the following question: Do the normalized-output al-
gorithms succeed in revealing the underlying low-dimensional structure of manifolds embedded in
high-dimensional spaces? More specifically, does the output of the normalized-output algorithms
resemble the original sample up to affine transformation?

The answer, in general, is no. As we have seen, Theorem 5.1 and Corollary 5.2 show that
there are simple low-dimensional manifolds, isometrically embedded in high-dimensional spaces,
for which the normalized-output algorithms fail to find the appropriate output. Moreover, the dis-
cussion in Section 6 shows that when noise is introduced, even of small magnitude, this result
holds asymptotically for all the normalized-output algorithms. We have demonstrated these results
numerically for four different examples: the swissroll, the noisy strip, the (non-isometrically em-
bedded) “fishbowl”, and a real-world data set of globe images. Thus, we conclude that the use of
the normalized-output algorithms on arbitrary data can be problematic.

The main challenge raised by this paper is the need to develop manifold-learning algorithms
that have low computational demands, are robust against noise, and have theoretical convergence
guarantees. Existing algorithms are only partially successful: normalized-output algorithms are
efficient, but are not guaranteed to converge, while Isomap is guaranteed to converge, but is com-
putationally expensive. A possible way to achieve all of the goals simultaneously is to improve the
existing normalized-output algorithms. While it is clear that, due to the normalization constraints,
one cannot hope for geodesic distances preservation nor for neighborhoods structure preservation,
success as measured by other criteria may be achieved. A suggestion of improvement for LEM
appears in Gerber et al. (2007), yet this improvement is both computationally expensive and lacks
a rigorous consistency proof. We hope that future research finds additional ways to improve the
existing methods, given the improved understanding of the underlying problems detailed in this
paper.
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Appendix A. Detailed Proofs and Discussions

This section contains detailed proofs of Equations 4 and 7, Lemmas 3.1 and A.2, and Theorem 5.1.
It also contains discussions regarding the equivalence of the normalized-output algorithms’ repre-
sentations, and the estimation of F(K) and F̃(K) for a ball of radius r (see Section 4).

A.1 The Equivalence of the Algorithms’ Representations

For LEM, note that according to our representation, one needs to minimize

Φ(Y ) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

K

∑
j=1

wi, j‖yi − yi, j‖2 ,

under the constraints Y ′D1 = 0 and Y ′DY = I. Define ŵrs = wr, j if s is the j-th neighbor of r and
zero otherwise. Define D̂ to be the diagonal matrix such that drr = ∑N

s=1 ŵrs; note that D̂ = D. Using
these definitions, one needs to minimize Φ(Y ) = ∑r,s ŵrs‖yr − ys‖2 under the constraints Y ′D̂1 = 0
and Y ′D̂Y = I, which is the the authors’ representation of the algorithm.

For DFM, as for LEM, we define the weights ŵrs. Define the N ×N matrix Ŵ = (ŵrs). Define
the matrix D−1Ŵ ; note that this matrix is a Markovian matrix and that v(0) ≡ 1 is its eigenvector
corresponding to eigenvalue 1, which is the largest eigenvalue of the matrix. Let v(p), p = 1, . . . ,d
be the next d eigenvectors, corresponding to the next d largest eigenvalues λp, normalized such that
v(p)′Dv(p) = 1. Note that the vectors v(0), . . . ,v(d) are also the eigenvectors of I−D−1W correspond-
ing to the d +1 lowest eigenvalues. Thus, the matrix [v(1), . . . ,v(d)] (up to rotation) can be computed
by minimizing tr(Y ′(D−W )Y ) under the constraints Y ′DY = I and Y ′D1 = 0. Simple compu-
tation shows (see Belkin and Niyogi, 2003, Eq. 3.1) that tr(Y ′(D−W )Y ) = 1

2 ∑r,s ŵrs‖yr − ys‖2.
We already showed that Φ(Y ) = ∑r,s ŵrs‖yr − ys‖2. Hence, minimizing tr(Y ′(D−W )Y ) under
the constraints Y ′DY = I and Y ′D1 = 0 is equivalent to minimizing Φ(Y ) under the same con-
straints. The embedding suggested by Coifman and Lafon (2006) (up to rotation) is the matrix[

λ1
v(1)

‖v(1)‖ , . . . ,λd
v(d)

‖v(d)‖

]
. Note that this embedding can be obtained from the output matrix Y by a

simple linear transformation.
For LLE, note that according to our representation, one needs to minimize

Φ(Y ) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

‖yi −
K

∑
j=1

wi, jyi, j‖2

under the constraints Y ′1 = 0 and Cov(Y ) = I, which is the minimization problem given by Roweis
and Saul (2000).

The representation of LTSA is similar to the representation that appears in the original paper,
differing only in the weights’ definition. We defined the weights Wi following Huo and Smith
(2006), who showed that both definitions are equivalent.

For HLLE, note that according to our representation, one needs to minimize

Φ(Y ) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

tr
(
Y ′

i H ′
i HiYi

)

under the constraint Cov(Y ) = I. This is equivalent (up to a multiplication by
√

(N)) to minimizing
tr(Y ′H Y ) under the constraint Y ′Y = I, where H is the matrix that appears in the original definition
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of the algorithm. This minimization can be calculated by finding the d + 1 lowest eigenvectors of
H , which is the embedding suggested by Donoho and Grimes (2004).

A.2 Proof of Lemma 3.1

We begin by estimating Φ(Ỹ ).

Φ(Ỹ ) =
N

∑
i=1

‖WiYi + εWiEi‖2
F =

N

∑
i=1

K

∑
j=0

∥∥Wiyi, j + εWiei, j
∥∥2

(14)

≥
N

∑
i=1

K

∑
j=0

(∥∥Wiyi, j
∥∥2 −2ε|(Wiyi, j)

′Wiei, j|
)

≥
N

∑
i=1

K

∑
j=0

(
(1− ε)

∥∥Wiyi, j
∥∥2 − ε

∥∥Wiei, j
∥∥2
)

= (1− ε)
N

∑
i=1

‖WiYi‖2
F − ε

N

∑
i=1

‖WiEi‖2
F

≥ (1− ε)Φ(Y )− ε
N

∑
i=1

‖Wi‖2
F ‖Ei‖2

F ,

where ei, j denotes the j-th row of Ei.
We bound ‖Wi‖2

F for each of the algorithms by a constant Ca. It can be shown that for LEM and

DFM, Ca ≤ 2K; for LTSA, Ca ≤ K; for HLLE Ca ≤ d(d+1)
2 . For LLE in the case of positive weights

wi, j, we have Ca ≤ 2. Thus, substituting Ca in Eq. 14, we obtain

Φ(Ỹ ) ≥ (1− ε)Φ(Y )− εCa

N

∑
i=1

K

∑
j=0

∥∥ei, j
∥∥2

≥ (1− ε)Φ(Y )− εCaS‖E‖2
F = (1− ε)Φ(Y )− εCaS .

The last inequality holds true since S is the maximum number of neighborhoods to which a single
observation belongs.

A.3 Proof of Equation 4

By definition σ2 = Var(X (1)) and hence,

σ2 =
1
N

m

∑
i=−m

q

∑
j=−q

(
x(1)

i j

)2

=
1

(2m+1)(2q+1)

m

∑
i=−m

q

∑
j=−q

i2

=
2

2m+1

m

∑
i=1

i2

=
2

2m+1
(2m+1)(m+1)m

6

=
(m+1)m

3
.
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The computation for τ is similar.

A.4 Estimation of F(K) and F̃(K) for a Ball of Radius r

Calculation of φ(Yi j) for general K can be different for different choices of neighborhoods. There-
fore, we restrict ourselves to estimating φ(Yi j) when the neighbors are all the points inside an r-ball
in the original grid. Recall that φ(Yi j) for an inner point is equal to the sum of the squared distance
between yi j and its neighbors. The function

f (x1,x2) =
(x1

σ

)2
+
(x2

τ

)2

agrees with the squared distance for points on the grid, where x1 and x2 indicate the horizontal and
vertical distances from xi j in the original grid, respectively. We estimate φ(Yi j) using integration of
f (x1,x2) on B(r), a ball of radius r, which yields

φ(Yi j) ≈
Z

(x2
1+x2

2)<r2

f (x1,x2)dx1dx2 =
πr4

4

(
1

σ2 +
1
τ2

)
. (15)

Thus, we obtain F(K) ≈ πr4

4 .
We estimate φ(Zi j) similarly. We define the continuous version of the squared distance in the

case of the embedding Z by

g(x1,x2) = x2
1

(
1

σ2 +
4
ρ2

)
.

Integration yields

φ(Zi j) ≈
Z

(x2
1+x2

2)<r2

g(x1,x2)dx1dx2 =
πr4

4

(
1

σ2 +
4
ρ2

)
. (16)

Hence, we obtain F̃(K) ≈ πr4

4 and the relations between Eqs. 5 and 6 are preserved for a ball of
general radius.

For DFM, a general rotation-invariant kernel was considered for the weights. As with Eqs. 15
and 16, the approximations of φ(Yi j) and φ(Zi j) for the general case with neighborhood radius r are
given by

Z

(x2
1+x2

2)<r2

f (x1,x2)k(x1,x2)dx1dx2 =


π

Z

0<t<r

k(t2)t3dt



(

1
σ2 +

1
τ2

)

and
Z

(x2
1+x2

2)<r2

g(x1,x2)k(x1,x2)dx1dx2 =


π

Z

0<t<r

k(t2)t3dt



(

1
σ2 +

4
ρ2

)
.

Note that the ratio between these approximations of φ(Yi j) and φ(Zi j) is preserved. In light of these
computations it seems that for the general case of rotation-invariant kernels, φ(Yi j) > φ(Zi j) for
aspect ratio sufficiently greater than 2.
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A.5 Proof of Equation 7

Direct computation shows that

z̄(2) =
(2q+1)2

Nρ

m

∑
i=1

(2i) =
2m(m+1)

(2m+1)ρ
.

Recall that by definition ρ ensures that Var(Z(2)) = 1. Hence,

1 =
1
N

m

∑
i=−m

q

∑
j=−q

(2i)2

ρ2 −
(

z̄(2)
)2

=
2

2m+1
4m(m+1)(2m+1)

6ρ2 − 4m2(m+1)2

(2m+1)2ρ2

=
4m(m+1)

3ρ2 − 4m2(m+1)2

(2m+1)2ρ2 .

Further computation shows that

(m+1)m >
4(m+1)2m2

(2m+1)2 .

Hence,

ρ2 >
4(m+1)m

3
− (m+1)m = σ2 .

A.6 Proof of Theorem 5.1

The proof consists of computing Φ(Y ) and bounding Φ(Z) from above. We start by computing
Φ(Y ).

Φ(Y ) =
N

∑
i=1

‖WiYi‖2
F =

N

∑
i=1

∥∥∥WiX
(1)
i /σ

∥∥∥
2
+

N

∑
i=1

∥∥∥WiX
(2)
i /τ

∥∥∥
2

= N
ē(1)

σ2 +N
ē(2)

τ2 .

The computation of Φ(Z) is more delicate because it involves neighborhoods Zi that are not linear
transformations of their original sample counterparts.

Φ(Z) =
N

∑
i=1

‖WiZi‖2
F =

N

∑
i=1

∥∥∥WiZ
(1)
i

∥∥∥
2
+

N

∑
i=1

∥∥∥WiZ
(2)
i

∥∥∥
2

= N
ē(1)

σ2 + ∑
i:x(1)

i <0 , i/∈N0

∥∥∥WiX
(1)
i /ρ

∥∥∥
2
+ ∑

i:x(1)
i >0 , i/∈N0

∥∥∥κWiX
(1)
i /ρ

∥∥∥
2
+ ∑

i∈N0

∥∥∥WiZ
(2)
i

∥∥∥
2

(17)

< N
ē(1)

σ2 +N
κ2ē(1)

ρ2 + ∑
i∈N0

∥∥∥WiZ
(2)
i

∥∥∥
2
. (18)

Note that max j,k∈{0,...,K}
∥∥zi, j − zi,k

∥∥≤ κr(i)/ρ. Hence, using Lemma A.1 we get

∥∥∥WiZ
(2)
i

∥∥∥
2
<

caκ2r(i)2

ρ2 , (19)
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where ca is a constant that depends on the specific algorithm. Combining Eqs. 18 and 19 we obtain

Φ(Z) < N
ē(1)

σ2 +N
κ2ē(1)

ρ2 + |N0|car2
max

κ2

ρ2 .

In the specific case of LEM and DFM, a tighter bound can be obtained for
∥∥∥WiZ

(2)
i

∥∥∥
2
. Note that for

LEM and DFM
∥∥∥WiZ

(2)
i

∥∥∥
2

= ∑
j=1K

wi, j(z
(2)
i − z(2)

i, j )2

≤
K

∑
j=1

wi, j
κ2

ρ2 (x(2)
i − x(2)

i, j )2 =
κ2

ρ2 e(1)
i .

Combining Eq. 17 and the last inequality we obtain in this case that

Φ(Z) ≤ N
ē(1)

σ2 +N
κ2ē(1)

ρ2 ,

which completes the proof.

A.7 Lemma A.1

Lemma A.1 Let Xi = [xi,xi,1, . . . ,xi,K ]′ be a local neighborhood. Let ri = max j,k
∥∥xi, j − xi,k

∥∥. Then

‖WiXi‖2
F < car2

i ,

where ca is a constant that depends on the algorithm.

Proof We prove this lemma for each of the different algorithms separately.

• LEM and DFM:

‖WiXi‖2
F =

K

∑
j=1

wi, j
∥∥xi, j − xi

∥∥2 ≤
(

K

∑
j=1

wi, j

)
r2

i ≤ Kr2
i ,

where the last inequality holds since wi, j ≤ 1. Hence ca = K.

• LLE:

‖WiXi‖2
F =

∣∣∣
∣∣∣

K

∑
j=1

wi, j(xi, j − xi)
∣∣∣
∣∣∣
2
≤
∣∣∣
∣∣∣ 1
K

K

∑
j=1

(xi, j − xi)
∣∣∣
∣∣∣
2

≤ 1
K2

K

∑
j=1

∥∥xi, j − xi
∥∥2 ≤ r2

i

K
,

where the first inequality holds since wi, j were chosen to minimize
∥∥∑K

j=1 w̃i, j(xi, j − xi)
∥∥2

.
Hence ca = 1/K.
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• LTSA:

‖WiXi‖2
F =

∥∥(I −PiP
′
i )HXi

∥∥2
F ≤

∥∥(I −PiP
′
i )
∥∥2

F ‖HXi‖2
F

≤ K ∑
j

∥∥xi, j − x̄i
∥∥2 ≤ K2r2

i .

The first equality is just the definition of Wi (see Sec. 2). The matrix I −PiP′
i is a projection

matrix and its square norm is the dimension of its range, which is smaller than K +1. Hence
ca = K2.

• HLLE:

‖WiXi‖2
F = ‖WiHXi‖2

F ≤ ‖Wi‖2
F ‖HXi‖2

F ≤ d(d +1)

2
(K +1)r2

i .

The first equality holds since WiH = Wi(I − 1
K 11′) = Wi, since the rows of Wi are orthogonal

to the vector 1 by definition (see Sec. 2). Hence ca = d(d+1)
2 (K +1).

A.8 Lemma A.2

Lemma A.2 Let X be a random variable symmetric around zero with unimodal distribution. As-
sume that Var(X) = σ2. Then Var(|X |) ≥ σ2

4 .

Proof First note that that the equality holds for X ∼U(−
√

3σ,
√

3σ), where U denotes the uniform
distribution. Assume by contradiction that there is a random variable X , symmetric around zero and
with unimodal distribution such that Var(|X |) < σ2

4 − ε, where ε > 0. Since Var(|X |) = E(|X |2)−
E(|X |)2, and E(|X |2) = E(X2) = Var(X) = σ2, we have E(|X |)2 > 3σ2

4 + ε.
We approximate X by Xn, where Xn is a mixture of uniform random variables, defined as follows.

Define Xn ∼ ∑n
i=1 pn

i U(−cn
i ,c

n
i ) where pn

i > 0, ∑n
i=1 pn

i = 1. Note that E(Xn) = 0 and that Var(Xn) =

∑n
i=1 pn

i (c
n
i )

2/3. For large enough n, we can choose pn
i and cn

i such that Var(Xn) = σ2 and E(|X −
Xn|) < ε

2E(|X |) .
Consider the random variable |Xn|. Note that using the definitions above we may write |Xn| =

∑n
i=1 pn

i U(0,cn
i ), hence E(|Xn|) = 1

2 ∑n
i=1 pn

i cn
i . We bound this expression from below. We have

E(|Xn|)2 = E(|Xn −X +X |)2 ≥ (E(|X |)−E(|Xn −X |))2 (20)

≥ E(|X |)2 −2E(|X |)E(|Xn −X |) >
3σ2

4
.

Let Xn−1 = ∑n−1
i=1 pn−1

i U(−cn−1
i ,cn−1

i ) where

pn−1
i =

{
pn

i i < n−1
pn

n−1 + pn
n i = n−1

,

and

cn−1
i =

{
cn

i i < n−1√(
(cn

n−1

)2
+(cn

n)
2 i = n−1

.
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Note that Var(Xn−1) = σ2 by construction and Xn−1 is symmetric around zero with unimodal distri-
bution. Using the triangle inequality we obtain

E(|Xn−1|) =
1
2

n−1

∑
i=1

pn−1
i cn−1

i ≥ 1
2

n

∑
i=1

pn
i cn

i = E(|Xn|) .

Using the same argument recursively, we obtain that E(|X1|) ≥ E(|Xn|). However, X1 ∼
U(−

√
3σ,

√
3σ) and hence E(|X1|)2 = 3σ2

4 . Since by Eq. 20, E(|Xn|)2 > 3σ2

4 we have a contra-
diction.
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