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Vojtěch Franc∗ XFRANCV@CMP.FELK.CVUT.CZ

Fraunhofer-FIRST.IDA
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Abstract
The max-sum classifier predicts n-tuple of labels from n-tuple of observable variables by maximiz-
ing a sum of quality functions defined over neighbouring pairs of labels and observable variables.
Predicting labels as MAP assignments of a Random Markov Field is a particular example of the
max-sum classifier. Learning parameters of the max-sum classifier is a challenging problem be-
cause even computing the response of such classifier is NP-complete in general. Estimating param-
eters using the Maximum Likelihood approach is feasible only for a subclass of max-sum classifiers
with an acyclic structure of neighbouring pairs. Recently, the discriminative methods represented
by the perceptron and the Support Vector Machines, originally designed for binary linear classifiers,
have been extended for learning some subclasses of the max-sum classifier. Besides the max-sum
classifiers with the acyclic neighbouring structure, it has been shown that the discriminative learn-
ing is possible even with arbitrary neighbouring structure provided the quality functions fulfill some
additional constraints. In this article, we extend the discriminative approach to other three classes
of max-sum classifiers with an arbitrary neighbourhood structure. We derive learning algorithms
for two subclasses of max-sum classifiers whose response can be computed in polynomial time: (i)
the max-sum classifiers with supermodular quality functions and (ii) the max-sum classifiers whose
response can be computed exactly by a linear programming relaxation. Moreover, we show that the
learning problem can be approximately solved even for a general max-sum classifier.

Keywords: max-xum classifier, hidden Markov networks, support vector machines

1. Introduction

Let (T ,E) be an undirected graph, where T is a finite set of objects and E ⊆
(T

2

)

is a set of object
pairs defining a neighborhood structure. A pair {t, t ′} of objects belonging to E will be called
neighbors or neighboring objects. Let each object t ∈ T be characterized by an observation xt and
a label yt which take values from a finite set X and Y , respectively. We denote an ordered |T |-tuple
of observations by x = (xt ∈ X | t ∈ T ) and an ordered |T |-tuple of labels by y = (yt ∈ Y | t ∈ T ).
Each object t ∈ T is assigned a function qt : Y ×X → R which determines a quality of a label
yt given an observation xt . Each object pair {t, t ′} ∈ E is assigned a function gtt ′ : Y ×Y → R
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which determines the quality of labels yt and yt ′ . We adopt the convention gtt ′(y,y′) = gt ′t(y′,y).
Let q ∈ R

|T ||X ||Y | and g ∈ R
|E ||Y |2 be ordered tuples which contain elements qt(y,x), t ∈ T , x ∈ X ,

y ∈ Y and gtt ′(y,y′), {t, t ′} ∈ E , y,y′ ∈ Y , respectively. We consider a class of structured classifiers
f : X T → Y T parametrized by (q,g) that predict labeling y from observations x by selecting the
labeling with the maximal quality, that is,

f (x;q,g) = argmax
y∈Y T

F(x,y;q,g) = argmax
y∈Y T

[

∑
t∈T

qt(yt ,xt)+ ∑
{t,t ′}∈E

gtt ′(yt ,yt ′)

]

. (1)

We will call the classification rule of the form (1) a max-sum classifier. The problem of computing
the output of the max-sum classifier, that is, the evaluation of the right-hand side of (1) is called
the max-sum labeling problem or shortly the max-sum problem (it is also known as the weighted
constraint satisfaction problem). The max-sum problem is known to be NP-complete in general.
We will use the six-tuple (T ,E ,Y ,q,g,x) to denote a max-sum problem instance which must be
solved to classify x.

This article deals with a problem of learning the parameters (q,g) of a max-sum classifier from a
finite training set L =

{

(x j,y j) ∈ X T ×Y T | j ∈ {1, . . . ,m}
}

. Henceforth we will use the shortcut
J = {1, . . . ,m}.

A typical example of a max-sum classifier is the maximum aposteriori (MAP) estimation in
Markov models. In this case, the observations x and the labels y are assumed to be realizations of
random variables X = (Xt | t ∈ T ) and Y = (Yt | t ∈ T ). It is assumed that only the pairs of variables
(Xt ,Yt), t ∈ T and (Yt ,Yt ′), {t, t ′} ∈ E are directly statistically dependent. Then the joint probability
of X and Y is given by the Gibbs distribution

P(x,y;q,g) =
1
Z

expF(x,y;q,g) , (2)

where Z is the partition function which normalizes the distribution. The optimal Bayesian classifier
which minimizes the probability of misclassification f (x) 6= y assigns labels according to y∗ =
argmaxy∈Y T P(y |x). It is easy to see that the classifier (1) coincides with the optimal one which
minimizes the misclassifications.

Applications of the classifier (1) are image de-noising (Besag, 1986), image labeling (Chou and
Brown, 1990) stereo matching (Boykov et al., 2001), natural language processing (Collins, 2002),
3D image segmentation (Anguelov et al., 2005), etc.

1.1 Existing Approaches to Learning Max-Sum Classifiers

A generative approach to learning a max-sum classifier is based on an estimation of parameters
(q,g) of the Gibbs distribution (2). Having the distribution estimated, a classifier minimizing an
expected risk (Bayesian risk) for a given loss function can be inferred using the Bayesian decision
making framework. Maximum-Likelihood (ML) estimation methods are well known for Markov
models with an acyclic graph (T ,E) (see, for example, Schlesinger and Hlaváč, 2002). In the
general case, however, the ML estimation is not tractable because no polynomial time algorithm is
known for computing a partition function exactly. Approximate methods to compute the partition
function are based on a Gibbs sampler (Hinton and Sejnowski, 1986; Jerrum and Sinclair, 1993).
Another disadvantage of the generative approach is the fact that little is known about an expected
risk of the classifiers inferred from an imprecisely estimated statistical model.
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DISCRIMINATIVE LEARNING OF MAX-SUM CLASSIFIERS

A discriminative approach is an alternative method which does not require explicit modeling of
the underlying probability distribution. It is based on a direct optimization of classifier parameters
(q,g) in order to minimize an error estimate of a classifier performance computed on a finite train-
ing set. It is easy to see that the score function F(x,y;q,g) of the max-sum classifier (1) is linear
in its parameters (q,g) which allows to exploit methods for learning linear classifiers. In the case
of a consistent training set, that is, if there exists a classifier with zero empirical error, the problem
of learning a linear classifier can be expressed as a problem of satisfying a set of linear inequali-
ties. This problem is efficiently solvable by the perceptron algorithm. Variants of the perceptron
algorithm for learning parameters of the max-sum classifier (1) with a chain and tree neighborhood
structure were published in Schlesinger and Hlaváč (2002) and Collins (2002). These algorithms
exploit the fact that a perceptron can be used whenever the response of the learned classifier can be
computed efficiently. This applies for the acyclic neighbourhood structure since the response of the
max-sum classifier can be computed by the dynamic programming (DP).

The Support Vector Machines (SVM) (Vapnik, 1998) are another representative of a discrimi-
native approach for learning linear classifiers which has proved to be successful in numerous ap-
plications. Unlike the perceptron algorithm, the SVMs allows learning also from an inconsistent
training set. Learning is formulated as minimization of a regularized risk functional which can be
further transformed to a convex quadratic programming (QP) task suitable for optimization. The
original SVMs are designed for learning the classifiers which estimate a single label. In the recent
years, the SVMs have been extended for learning linear classifiers which can estimate a set of inter-
dependent labels. In particular, the Hidden Markov Support Vector Machines (Altun and Hofmann,
2003; Altun et al., 2003) and the Max-Margin Markov Networks (Taskar et al., 2004b) were pro-
posed for learning max-sum classifiers with an acyclic neighboring structure. In this case, learning
requires solving a QP task with a huge number of linear constraints proportional to the cardinality
of the output space of the classifier. In analogy to the perceptron, this task is tractable if there ex-
ists an efficient algorithm that solves the loss-augmented classification (LAC) task which involves
optimizing (1) with the loss function added to the objective function F(x,y;q,g) (c.f. Section 3.2
for details). For additively decomposable loss functions, the LAC task becomes an instance of the
max-sum problem easily solvable by the DP provided the neighbourhood structure is acyclic.

Learning of the Associative Markov Networks (AMN) with an arbitrary neighbourhood struc-
ture E was proposed by Taskar et al. (2004a). The AMN is the max-sum classifier with the quality
functions g restricted in a way similar to the Potts model. The LAC task was approximated by a
linear programming (LP) relaxation specially derived for the AMN model. Incorporating an LP re-
laxation into the SVM QP task, Taskar et al. (2004a) constructed a new compact QP task which has
only a polynomial number of constraints. Even though the resulting QP task is polynomially solv-
able, general purpose QP solvers do not provide a practical solution since they scale poorly with
the problem and training set size. Recently, Taskar et al. (2006) proposed a reformulation of the
structured learning problem as a convex-concave saddle-point problem which is efficiently solvable
by the dual extragradient algorithm. This new framework is applicable for structured classifiers for
which a certain projection step can be solved. Taskar et al. (2006) showed that the projection step
is tractable for the max-sum classifiers with supermodular functions g and binary labels |Y | = 2.

Tsochantaridis et al. (2005) proposed a general framework for learning linear classifiers with an
interdependent labels. Their approach is based on solving the underlying SVM QP task by a cutting
plane algorithm which requires as a subroutine an algorithm solving the LAC task for the particular
classifier. The approach cannot be directly applied for the general max-sum classifiers since the
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LAC task is not tractable. An alternative approach to the cutting plane algorithm was proposed by
Ratliff and Bagnell (2006) who used subgradient methods for optimizing the SVM QP task. This
approach also relies on an efficient solution to the LAC task.

An approximated cutting plane algorithm was proposed in Finley and Joachims (2005) to learn
a specific structured model for correlation clustering. The inference as well as the corresponding
LAC task of this clustering model are NP-complete. The authors suggested to replace an exact
solution of the LAC task required in the cutting plane algorithm by its polynomially solvable LP
relaxation.

1.2 Contributions

In this article, we build on the previously published approaches which use the perceptron and the
SVMs for learning the max-sum classifiers. We propose learning algorithms for three classes of
max-sum classifiers for which, up to our knowledge, the discriminative approaches have not been
applied yet. Namely, the contributions of the article are as follows:

• We formulate and solve the problem of learning the supermodular max-sum classifier with
an arbitrary neighbourhood structure E and without any restriction on the number of labels
|Y | (Taskar et al., 2006, consider only two labels). We propose a variant of the perceptron
algorithm for learning from a consistent training set. For an inconsistent training set, we
extend the cutting plane algorithm of Tsochantaridis et al. (2005) such that it maintains the
quality functions g supermodular during the course of the algorithm thus making the LAC
task efficiently solvable.

• We formulate and solve the problem of learning the max-sum classifier with a strictly trivial
equivalent which is a subclass of max-sum classifiers with a trivial equivalent. We will show
in Section 2 that the latter class can be equivalently characterized by the fact that the LP
relaxation (Schlesinger, 1976; Koster et al., 1998; Chekuri et al., 2001; Wainwright et al.,
2002) is tight for it. It is known, that the class of problems with a trivial equivalent contains
acyclic problems (Schlesinger, 1976) and supermodular problems (Schlesinger and Flach,
2000). We will extend this result to show that problems with a strictly trivial equivalent which
we can learn contain the acyclic and the supermodular max-sum problems with a unique
solution.

Learning of the max-sum classifiers with a strictly trivial equivalent leads to an optimization
problem with a polynomial number of linear constraints. We propose variants of the per-
ceptron and of the cutting plane algorithm for learning from a consistent and an inconsistent
training set, respectively. In this case, the LAC task does not require any specialized max-sum
solver since it can be solved exhaustively. Moreover, the QP task to which we transform the
learning problem is of the same form as the QP task required for ordinary multi-class SVMs
(Crammer and Singer, 2001) which allows using existing optimization packages.

• We formulate the problem of learning the general max-sum classifier, that is, without any
restriction on the neighborhood structure E and the quality functions g. We show that the
learning problem can be solved approximately by a variant of the cutting plane algorithm
proposed by Finley and Joachims (2005) which uses the LP relaxation to solve the LAC task
approximately. In contrast to Taskar et al. (2004a), we do not incorporate the LP relaxation
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to the SVM QP task but we keep it separately which allows to exploit existing solvers for LP
relaxation of the max-sum problem.

For a simplicity, we will concentrate on the max-sum classifier (1). All the proposed methods,
however, are applicable whenever the set of labels Y is finite and the quality functions are linear in
parameters, that is, they are of the form qt(xt ,yt) = 〈w,Ψt(xt ,yt)〉 and gtt ′(yt ,yt) = 〈w,Ψtt ′(yt ,yt ′)〉
where w ∈ R

d is a parameter vector and Ψt : X ×Y → R
d , Ψtt ′ : Y ×Y → R

d are arbitrary fixed
mappings. Furthermore, all the proposed algorithms can be introduced in the form containing
only dot products between Ψt(x,y) and Ψtt ′(y,y′) which allows to use the kernel functions (Vap-
nik, 1998).

1.3 Structure of the Article

The article is organized as follows. In Section 2, we describe three classes of the max-sum classifiers
for which we will later derive learning algorithms. Perceptron algorithm and the SVM framework
for learning linear classifiers with an interdependent labels is reviewed in Section 3. In Section 4,
we formulate problems of learning the max-sum classifiers from a consistent training set and we
propose variants of the perceptron algorithm for their solution. In Section 5, we formulate problems
of learning the max-sum classifiers from inconsistent training set using the SVM framework. In
Section 6, we propose an extended cutting plane algorithm to solve the learning problem defined in
Section 5. Section 7 describes experiments. Finally, in Section 8 we give conclusions.

2. Classes of Max-Sum Problems

In the rest of the article, we consider the max-sum problems P = (T ,E ,Y ,q,g,x) in which (T ,E)
is an arbitrary undirected connected graph and q are arbitrary quality functions. The three classes
of the max-sum problems described below differ in the structure of the finite set of labels Y and the
quality functions g.

2.1 General Max-Sum Problem and LP Relaxation

The first class which we consider is the general max-sum problem with no restrictions imposed on
Y and g. Solving (1) when P is a general max-sum problem is known to be NP-complete. An ap-
proximate solution can be found by the linear programming (LP) relaxation proposed independently
by Schlesinger (1976), Koster et al. (1998), Chekuri et al. (2001), and Wainwright et al. (2002). We
introduce only the basic concepts of the LP relaxation necessary for this article. For more details
on the topic we refer to the mentioned publications or to a comprehensive survey in Werner (2007)
from which we adopted notation and terminology.

Let (T ×Y ,EY ) denote an undirected graph with edges EY = {{(t,y),(t ′,y′)} | {t, t ′}∈E ,y,y′ ∈
Y }. This graph corresponds to the trellis diagram used to visualize Markov chains. Each node
(t,y) ∈ T ×Y and each edge {(t,y),(t ′,y′)} ∈ EY is assigned the numbers βt(y) and βtt ′(y,y′), re-

spectively. Let βββ ∈R
|T ||Y |+|E ||Y |2 be an ordered tuple which contains elements βt(y), (t,y)∈ T ×Y

and βtt ′(y,y′), {(t,y),(t ′,y′)} ∈ EY . Let ΛP denote a set of relaxed labelings which contains vectors
βββ satisfying

∑
y′∈Y

βtt ′(y,y
′) = βt(y) , {t, t ′} ∈ E ,y ∈ Y , ∑

y∈Y
βt(y) = 1 , t ∈ T , βββ ≥ 0 .
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The LP relaxation of (1) reads

βββ∗ = argmax
βββ∈ΛP

[

∑
t∈T

∑
y∈Y

βt(y)qt(y,xt)+ ∑
(t,t ′)∈E

∑
(y,y′)∈Y 2

βtt ′(y,y
′)gtt ′(y,y

′)

]

. (3)

It can be seen that solving (3) with an additional constraint βββ ∈ {0,1}T is an integer programming
problem equivalent to (1). Further, we will introduce concepts of equivalent problems, equivalent
transformations and trivial problems which are tightly connected to the LP relaxation.

A representation of the max-sum problem P = (T ,E ,Y ,q,g,x) is not minimal since there exists
an infinite number of equivalent max-sum problems P′ = (T ,E ,Y ,q′,g′,x) with different quality
functions (q′, g′) but the same quality for all labelings: the max-sum problems P and P′ are called
equivalent if F(x,y;q,g) = F(x,y;q′,g′) for all y ∈ Y T (Schlesinger, 1976; Wainwright et al.,
2002).

Next, we introduce a transformation of a max-sum problem to its arbitrary equivalent. These
equivalent transformations are originally due to Schlesinger (1976) and recently are also known
as reparametrization in Wainwright et al. (2002) and Kolmogorov (2006). Let ϕtt ′ : Y → R and
ϕt ′t : Y → R be a pair of functions introduced for each pair of neighbouring objects {t, t ′} ∈ E , that
is, we have 2|E | functions in total. The value ϕtt ′(y) is called potential at label y of an object t in the
direction t ′. Note that the potentials correspond to messages in belief propagation (see, for example,
Pearl, 1988; Yedidia et al., 2005). We will use ϕϕϕ∈R

2|E ||Y | to denote an ordered tuple which contains
elements ϕtt ′(y), {t, t ′} ∈ E , y ∈Y and ϕt ′t(y′), {t, t ′} ∈ E , y′ ∈ Y . Let N (t) = {t ′ ∈ T | {t, t ′} ∈ E}
denote the set of objects neighbouring with the object t ∈ T . Finally, let Pϕϕϕ = (T ,E ,Y ,qϕϕϕ,gϕϕϕ,x)
denote the max-sum problem constructed from the max-sum problem P = (T ,E ,Y ,q,g,x) by the
following transformation

gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y
′)+ϕtt ′(y)+ϕt ′t(y

′) , {t, t ′} ∈ E ,y,y′ ∈ Y , (4a)

qϕϕϕ
t (y,xt) = qt(y,xt)− ∑

t ′∈N (t)

ϕtt ′(y) , t ∈ T ,y ∈ Y . (4b)

By substituting (4) to F(x,y;q,g) = F(x,y;q′,g′) it is easy to show that the problems P and Pϕϕϕ are
equivalent for arbitrary potentials ϕϕϕ. Moreover, it has been shown (Schlesinger, 1976; Kolmogorov,
2006) that the converse is also true, that is, if any two max-sum problems are equivalent then they
are related by (4) for some potentials ϕϕϕ.

Now, we can define the class of trivial max-sum problems. Node (t,y) is called maximal if
qt(y,xt) = maxy∈Y qt(y,xt) and edge {(t,y),(t ′,y′)} is called maximal if gtt ′(y,y′) = maxy,y′∈Y gtt ′(y,y′).
The max-sum problem P is called trivial if there exists a labeling y which can be formed only from
the maximal nodes and edges. Checking whether a given P is trivial leads to an instance of a con-
straint satisfaction problem CSP (also called consistent labeling problem) (Rosenfeld et al., 1976;
Haralick and Shapiro, 1979). The CSP is NP-complete in general and it is equivalent to solving a
max-sum problem when the quality functions (q,g) take only two values {−∞,0}. Let U(x;q,g) be
a height (also called energy) of the max-sum problem P defined as a sum of qualities of the maximal
nodes and the maximal edges, that is,

U(x;q,g) = ∑
t∈T

max
y∈Y

qt(y,xt)+ ∑
{t,t ′}∈E

max
y,y′∈Y

gtt ′(y,y
′) . (5)

Comparing (1) and (5) shows that U(x;q,g) is an upper bound on the quality of the optimal labeling,
that is, U(x;q,g) ≥ maxy∈Y T F(x,y;q,g). It is easy to see that the upper bound is tight if and only
if the max-sum problem is trivial. The following result is central to the LP relaxation:
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Theorem 1 Schlesinger (1976); Werner (2005) Let C be a class of equivalent max-sum problems.
Let C contain at least one trivial problem. Then any problem in C is trivial if and only if it has
minimal height.

This suggests to solve the max-sum problem P by searching for an equivalent Pϕϕϕ with the minimal
height, which leads to

ϕϕϕ∗ = argmin
ϕϕϕ

U(x;qϕϕϕ,gϕϕϕ) . (6)

The problem (6) can be expressed as an LP task which is known to be a dual to the LP relaxation (3).
Having ϕϕϕ∗ one can try to verify whether Pϕϕϕ∗

is trivial, that is, whether there exists a labeling com-
posed of the maximal nodes and edges of Pϕϕϕ∗

. If such labeling is found then it is the optimal solution
of the max-sum problem P. Otherwise, one can use heuristics to find an approximate solution by
searching for such labeling which contains as much maximal nodes and edges as possible.

Though (6) is solvable in polynomial time, a general purpose LP solvers are applicable only for
small instances. A specialized solvers for LP relaxation were published in Koval and Schlesinger
(1976). Recently, Wainwright et al. (2002) and Kolmogorov (2006) proposed a tree-reweighted
algorithm based on minimizing a more general upper bound composed of trees spanning the graph
(T ,E) of which (5) is a special case.

We propose a learning algorithm for a general max-sum classifier which requires an arbitrary
LP relaxation solver as a subroutine. We only require that the LP solver returns an approximate
solution ŷ and an upper bound on maxy∈Y T F(x,y;q,g).

2.2 Supermodular Max-Sum Problems

Definition 1 A function gtt ′ : Y ×Y → R is supermodular if

1. The set of labels Y is totally ordered; w.l.o.g. we consider Y = {1,2, . . . , |Y |} endowed with
the natural order.

2. For each four-tuple (yt ,y′t ,yt ′ ,y′t ′) ∈ Y 4 of labels such that yt > y′t and yt ′ > y′t ′ the following
inequality holds:

gtt ′(yt ,yt ′)+gtt ′(y
′
t ,y

′
t ′) ≥ gtt ′(yt ,y

′
t ′)+gtt ′(y

′
t ,yt ′). (7)

A max-sum problem in which the label set Y is totally ordered and all the functions g are supermod-
ular is called a supermodular max-sum problem. In addition, we will also consider the max-sum
problem in which the inequalities (7) are fulfilled strictly. In this case the corresponding max-sum
problem will be called strictly supermodular.

A naive approach to check whether a given max-sum problem is supermodular amounts to
verifying all |E | · |Y |4 inequalities in (7). We will use a more effective way which requires to check
only |E | · (|Y |−1)2 inequalities thanks to the following well-known theorem:

Theorem 2 The function gtt ′ : Y ×Y →R is supermodular if for each each pair of labels (y,y′) ∈ Y 2

such that y+1 ∈ Y , y′ +1 ∈ Y the following inequality holds

gtt ′(y,y
′)+gtt ′(y+1,y′ +1) ≥ gtt ′(y,y

′ +1)+gtt ′(y+1,y′). (8)
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Proof The proof follows trivially from the equality

gtt ′(yt ,yt ′)+gtt ′(y
′
t ,y

′
t ′)−gtt ′(yt ,y

′
t ′)−gtt ′(y

′
t ,yt ′)

= ∑
yt>z≥y′t

yt′>z′≥y′
t′

[

gtt ′(z,z
′)+gtt ′(z+1,z′ +1)−gtt ′(z,z

′ +1)−gtt ′(z+1,z′)

]

,

and the fact that all the summands are non-negative by the condition (8).

A similar proposition holds for strictly supermodular problems: a max-sum problem is strictly
supermodular if for each pair of neighboring objects {t, t ′}∈E and for each pair of labels (y,y′) ∈ Y 2

such that y+1 ∈ Y , y′ +1 ∈ Y the following inequality holds:

gtt ′(y,y
′)+gtt ′(y+1,y′ +1) > gtt ′(y,y

′ +1)+gtt ′(y+1,y′). (9)

In this paper, we exploit the fact that the optimal solution of the supermodular problems can be
found in a polynomial time (Schlesinger and Flach, 2000). Kolmogorov and Zabih (2002) proposed
an efficient algorithm for the binary case |Y | = 2 which is based on transforming the supermodular
max-sum problem to the max-flow problem from the graph theory. A not widely known extension
for a general case |Y |> 2 was proposed in Kovtun (2004) and Schlesinger (2005). We will propose
learning algorithms which require an arbitrary solver for the supermodular max-sum problem as a
subroutine.

2.3 Max-Sum Problems with Strictly Trivial Equivalent

In this section we consider max-sum problems with a strictly trivial equivalent which is a subclass
of problems with a trivial equivalent described in Section (2.1). The main reason for defining this
subclass is that these problems are more suitable for learning than problems with a trivial equiv-
alent. It was shown (Schlesinger, 1976; Schlesinger and Flach, 2000) that problems with a trivial
equivalent contain two well-known polynomially solvable subclasses of max-sum problems: (i) the
problems with an acyclic neighborhood structure E and (ii) the supermodular problems. We will
give a similar result which applies for the problems with a strictly trivial equivalent. In particu-
lar, we will show that the class of problems with a strictly trivial equivalent contains all acyclic
and supermodular problems which have a unique solution. This shows that learning algorithms for
the max-sum classifiers with a strictly trivial equivalent introduced below are applicable for a wide
range of polynomially solvable problems.

Max-sum problems with a trivial equivalent are those for which LP relaxation (6) is tight,
that is, U(x;qϕϕϕ∗

,gϕϕϕ∗
) = maxy∈Y T F(x,y;q,g), and thus maxy∈Y T F(x,y;q,g) can be computed in

a polynomial time. The tight LP relaxation, however, does not imply that the optimal solution
y∗ = argmaxy∈Y T F(x,y;q,g) can be found in a polynomial time. As we mentioned, to find y∗ from
(qϕϕϕ∗

,gϕϕϕ∗
) requires searching for a labeling formed only by the maximal nodes and edges which need

not be unique. Finding such labeling leads to the CSP which is NP-complete. We exploit the fact
that the labeling can be found trivially if all the maximal nodes and edges are unique. As a result,
the optimal solution y∗ can be found in a polynomial time by solving the LP relaxation and finding
the maximal nodes and edges.
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Definition 2 Max-sum problem P is strictly trivial if:

1. There exists a unique maximal node (t,y) for each object t ∈ T .

2. For each maximal edge {(t,y),(t ′,y′)} ∈ EY the nodes (t,y) and (t ′,y′) are maximal.

It is clear that a strictly trivial problem has a unique solution which is composed of all maximal
nodes and edges. Checking whether a given problem is strictly trivial requires only O(|T ||Y |+
|E ||Y |2) operations, that is, finding the maximal nodes and edges and checking if they are unique
and if they form a labeling.

Recall that the max-sum problem P has a strictly trivial equivalent if there exists a strictly trivial
problem which is equivalent to P. Finally, we give a theorem which asserts that the class of prob-
lems with a strictly trivial equivalent includes at least the acyclic problems and the supermodular
problems which have a unique solution.

Theorem 3 Let P = (T ,E ,Y ,q,g,x) be a max-sum problem and let P have a unique solution. If
(T ,E) is an acyclic graph or quality functions g are supermodular then P is equivalent to some
strictly trivial problem.

Proof is given in Appendix A.

3. Discriminative Approach to Learning Structured Linear Classifiers

In this section, we review the discriminative approach to learning linear classifiers which we will
later apply to the max-sum classifiers.

Let x ∈ XXX and y ∈ YYY be observations and labels generated according to some fixed unknown
distribution P(x,y). We are interested in designing a classifier f : XXX → YYY which estimates labels
from observations. Let L : YYY ×YYY → R be a loss function penalizing a prediction f (x) by a penalty
L(y, f (x)) provided the true output is y. The goal is to find a classifier which minimizes the expected
(Bayesian) risk

R[ f ] =
Z

XXX×YYY
L(y, f (x)) dP(x,y) .

The risk R[ f ] cannot be directly minimized because the distribution P(x,y) is unknown. Instead, we
are given a finite training set L = {(x j,y j) ∈XXX ×YYY | j ∈ J } i.i.d. sampled from P(x,y).

The discriminative approach to learning classifiers does not require estimation of a probability
distribution. It is based on direct optimization of parameters of a classifier in order to minimize a
substitutional risk functional which approximates the desired risk R[ f ] and can be computed from a
finite training set. Let us consider a class of linear classifiers

f (x;w) = argmax
y∈YYY

〈w,Ψ(x,y)〉 . (10)

The classifier is determined by a parameter vector w∈R
d and some fixed mapping Ψ : XXX ×YYY →R

d .
A simple proxy for R[ f (•;w)] is the empirical risk

Remp[ f (•;w)] =
1
m ∑

j∈J
L(y j, f (x j;w)) .
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Let us assume a class of loss functions which satisfy L(y,y′) = 0 if y = y′ and L(y,y′) > 0 if y 6= y′.
Further, we will distinguish two learning scenarios: (i) learning from a consistent training set and (ii)
learning from an inconsistent training set. The training set L is consistent if there exists a parameter
vector w∗ such that the empirical risk of the linear classifier is zero, that is, Remp[ f (•;w∗)] = 0. In
the opposite case, the training set is inconsistent.

In Section 3.1, we review the perceptron algorithm suitable for learning linear classifiers from a
consistent training set. The Support Vector Machine (SVM) approach to learning from an inconsis-
tent training set is described in Section 3.2.

3.1 Learning from a Consistent Training Set Using the Perceptron Algorithm

In the case of a consistent training set L , the learning problem is to find parameters w∗ of the linear
classifier (10) such that the empirical risk Remp[ f (•;w∗)] = 0. This amounts to finding parameters
w∗ which satisfy the set of non-linear equations

y j = argmax
y∈YYY

〈w,Ψ(x,y)〉 , j ∈ J . (11)

In the rest of the article, we will assume that the training set does not contain examples with the same
observations x j = x j′ but different labelings y j 6= y j′ , that is, we will search for a classifier which
returns a unique labeling for each example from the training set. It is convenient to transform (11)
to an equivalent problem of solving a set of linear strict inequalities

〈w,Ψ(x j,y j)〉 > 〈w,Ψ(x j,y)〉 , j ∈ J ,y ∈YYY \{y j} ,

which, using Ψ̂(x j,y j,y) = Ψ(x j,y j)−Ψ(x j,y), can be written in a compact form

〈w,Ψ̂(x j,y j,y)〉 > 0 , j ∈ J ,y ∈YYY \{y j} . (12)

An efficient method to solve the problem (12) is the perceptron algorithm:

Algorithm 1 Perceptron algorithm

1: Set w := 0.

2: Find a violated inequality in (12), that is, find indices j∗ ∈ J , y∗ ∈YYY \{y j∗} such that

〈w,Ψ̂(x j∗ ,y j∗ ,y∗)〉 ≤ 0 .

3: If there is no violated inequality then w solves (12) and the algorithm halts. Otherwise update
the current solution

w := w+ Ψ̂(x j∗ ,y j∗ ,y∗) ,

and go to Step 2.

Provided the training set L is consistent, that is, the inequalities (12) are satisfiable, the percep-
tron terminates after a finite number of iterations (Novikoff, 1962). The number of iterations of the
perceptron algorithm does not depend on the number of inequalities of (12). This property is crucial
for the problems with a very large number of inequalities, which are of interest in our article.
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In Step 2, the perceptron algorithm needs to find a violated inequality in (12). This subtask can
be solved by computing the classifier responses ŷ j = f (x j;w), j ∈ J by evaluating (10). If for some
j ∈ J the response ŷ j 6= y j, that is, the classifier commits an error on the j-th example, then the
indices ( j, ŷ j) identify the violated inequality. As a result, the perceptron algorithm is applicable
for learning of an arbitrary linear classifier for which the classification task (10) can be evaluated
efficiently.

In case of a general max-sum classifier, the classification task is NP-complete so that using the
perceptron algorithm is not feasible. In Section 4 we will show, however, how to use the perceptron
for learning the strictly supermodular max-sum classifiers and the max-sum classifiers with a strictly
trivial equivalent.

3.2 Learning from Inconsistent Training Set Using SVM Approach

In practical applications, the training set is often inconsistent. SVMs (Vapnik, 1998) constitute a
popular approach to learning linear classifiers applicable to both consistent and inconsistent training
sets. The SVM learning is based on minimizing regularized risk which is a sum of the empirical risk
Remp[ f (•;w)] and a regularization term. Minimization of the regularization term corresponds to the
notion of large margin introduced to prevent over-fitting. Since the empirical risk is not convex for
most loss functions used in classification it is replaced by a convex piece-wise linear upper bound
which is more suitable for optimization. Originally, SVMs were designed for a binary case |YYY | = 2
and 0/1-loss function L0/1(y,y′) = [[y 6= y′]] where [[•]] equals 1 if the term inside the brackets
is satisfied and it is 0 otherwise. The multi-class variant of SVMs (|YYY | > 2) were introduced in
Vapnik (1998) and Crammer and Singer (2001) but it still assumes the 0/1-loss only function.

Taskar et al. (2004b) extended SVMs for learning the max-sum classifiers (1) with an acyclic
neighbourhood structure and they proposed using the additive loss function (14) suitable for these
problems. Recently, the approach was generalized by Tsochantaridis et al. (2005) who consider an
arbitrary structured linear classifier (10) and a general loss function. Learning of structured SVMs
classifiers leads to the following convex QP task

(w∗,ξξξ∗) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

, (13a)

subject to

〈w,Ψ(x j,y j)−Ψ(x j,y)〉 ≥ L(y j,y)−ξ j, j ∈ J ,y ∈YYY . (13b)

The objective function of (13) comprises the regularization term 1
2‖w‖2 and the sum 1

m ∑ j∈J ξ j

weighted by the regularization constant C > 0. It can be shown (Tsochantaridis et al., 2005) that
the sum 1

m ∑ j∈J ξ j is an upper bound on the empirical risk Remp[ f (•;w)] of the linear classifier (10).
Thus the learning objective is to minimize an upper bound on the empirical risk and to penalize
parameters with high ‖w‖2. The loss function can be an arbitrary function L : YYY ×YYY → R which
satisfies L(y,y′) = 0 if y = y′ and ∞ > L(y,y′) > 0 if y 6= y′. In cases which are of interest in our
article, the set YYY = Y T and a reasonable choice is the additive loss function, also known as the
Hamming distance, which is defined as

L∆(y,y′) = ∑
t∈T

[[yt 6= y′t ]] , (14)
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that is, it counts the number of misclassified objects. The trade-off between the regularization term
and the upper bound is controlled by the constant C. A suitable setting is usually found by tuning C
on an independent data set or using the cross-validation.

The number of constraints (13b) equals to m|YYY |. In the structured learning |YYY | is huge, for
example, in the case of the max-sum classifiers it grows exponentially because |YYY | = |Y ||T |. As
a result, the QP task (13) is not tractable for general purpose QP solvers. Tsochantaridis et al.
(2005) proposed a specialized cutting plane algorithm to approximate (13) by a reduced QP task
which has the same objective function (13a) but uses only a small subset of the constraints (13b).
The efficiency of the approximation relies on the sparseness of the solution (13) which means that
majority of the linear inequality constraints (13b) are inactive and they can be excluded without
affecting the solution. To select the constraints, the cutting plane algorithm requires solving the
LAC task

y∗ = argmax
y∈YYY

[

L(y j,y)+
〈

w,Ψ(x j,y)
〉

]

. (15)

Similarly to the perceptron algorithm, the cutting plane algorithm is applicable for learning of an
arbitrary linear classifier for which the LAC task (15) can be solved efficiently.

In case of a general max-sum classifier and an additive loss function the LAC task becomes an
instance of a general max-sum problem. Even though a general max-sum problem can be solved
only approximately, we will show that it suffices to solve the learning problem (13) with a good
precision. Moreover, we will be able to determine how the found solution differs from the optimal
one. In case of a supermodular max-sum classifier we will augment the learning problem (13) in
such a way that the obtained quality functions will be supermodular and thus the task (15) becomes
solvable precisely in a polynomial time. Finally, in case of a max-sum problem with a strictly trivial
equivalent, we will give a new formulation of the learning problem which does not require solving
the task (15) at all since the number of constraints will be sufficiently small to use an exhaustive
search.

4. Learning a Max-Sum Classifier from a Consistent Training Set

In this section, we assume that the training set is consistent with respect to a given max-sum classi-
fier. This means that there exists at least one max-sum classifier in a given class which classifies all
training examples correctly. We will introduce variants of the perceptron algorithm which, provided
the assumption holds, find a classifier in a finite number of iterations. In practice, however, there is
no general way to verify whether the assumption holds unless the perceptron halts. Consequently, if
the perceptron algorithm does not halt after a reasonable number of iterations we cannot draw any
conclusion about the solution. In Section 5, we will avoid this drawback using the SVM approach
able to deal with inconsistent training sets.

To use the perceptron algorithm, we will reformulate the learning problem as an equivalent
task of satisfying a set of linear strict inequalities. A keystone of the perceptron algorithm is an
efficient procedure to find a violated inequality in the underlying set which amounts to classifying
the examples from the training set. Therefore, using the perceptron algorithm is not feasible for the
general max-sum problem whose evaluation is NP-complete. Nevertheless, we will formulate the
learning problem even for this case because it will serve as a basis for constructing the algorithm for
an inconsistent training set. Next, we will derive learning algorithms for strictly supermodular max-
sum classifiers and max-sum classifiers with a strictly trivial equivalent. For these two classes, max-
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sum classifiers can be evaluated efficiently by polynomial-time algorithms which makes possible to
use the perceptron. Moreover, in the case of a max-sum classifier with a strictly trivial equivalent,
learning will require finding a violated inequality from only a polynomially-sized set which can be
accomplished exhaustively without any max-sum solver.

4.1 General Max-Sum Classifier

Problem 1 (Learning a general max-sum classifier from a consistent training set). For a given
training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such that

y j = argmax
y∈Y T

F(x j,y;q,g), j ∈ J . (16)

It can be seen, that the general max-sum classifier (1) can be represented as the linear clas-
sifier (10). In particular, the quality functions q and g are merged to a single parameter vector
w = (q;g) ∈ R

d of dimension d = |T ||Y ||X |+ |E ||Y |2. Further, we have XXX = X T and YYY = Y T .
The mapping Ψ : X T ×Y T → R

d can be constructed of indicator functions in such a way that
F(x,y;q,g) = 〈w,Ψ(x,y)〉.

Following the approach of learning linear classifiers described in Section 3.1, we can reformu-
late Problem 1 to an equivalent problem of solving a huge set of linear inequalities

F(x j,y j;q,g) > F(x j,y;q,g) , j ∈ J ,y ∈ Y T \{y j} . (17)

To find a solution of (17) by the perceptron, we would need an efficient algorithm to compute
a response of a general max-sum classifier. Because solving a max-sum problem is NP-complete
in general, using the perceptron algorithm is not tractable. In Section 5.1, we will use the formu-
lation (17) as a basis for constructing an algorithm for learning from an inconsistent training set.
In this case, it will be possible to use the LP relaxation to approximate the response of a max-sum
classifier.

4.2 Strictly Supermodular Max-Sum Classifier

Problem 2 (Learning strictly supermodular max-sum classifier from a consistent training set). For
a given training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such that
equations (16) are satisfied and the quality functions g are strictly supermodular, that is, g satisfy
the condition (9).

Similarly to the general case, we reformulate Problem 2 as an equivalent problem of solving a
set of strict linear inequalities

F(x j,y j;q,g) > F(x j,y;q,g) , j ∈ J ,y ∈ Y T \{y j} , (18a)

gtt ′
(

y,y′
)

+gtt ′
(

y+1,y′ +1
)

> gtt ′
(

y,y′ +1
)

+gtt ′
(

y+1,y′
)

,

{t, t ′} ∈ E ,(y,y′) ∈
{

1, . . . , |Y |−1
}2

.

}

(18b)

The system (18) comprises two sets of linear inequalities (18a) and (18b). The inequali-
ties (18a) enforce an error-less response of a max-sum classifier on the training set. The inequal-
ities (18b), if satisfied, guarantee that the quality functions g are strictly supermodular (c.f. Sec-
tion 2.2).
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To apply the perceptron algorithm we need an efficient method to find a violated inequality
in (18). In the case of the inequalities (18b), it can be accomplished by an exhaustive search since
there are only |E |(|Y |− 1)2 inequalities. To find a violated inequality in (18a), where the number
m(|Y ||T | − 1) grows exponentially, we need to compute the response of a max-sum classifier on
the training examples. This can be done efficiently provided the inequalities (18b) are already
satisfied as it guarantees that the qualities g are supermodular. Thus we use the perceptron algorithm
to repeatedly solve the inequalities (18b) and, as soon as (18b) are satisfied, we find a violated
inequality in (18a) by solving a supermodular max-sum problem. The proposed variant of the
perceptron to solve (18) is as follows:

Algorithm 2 Learning strictly supermodular max-sum classifier by perceptron

1: Set q := 0 and g := 0.

2: Find a violated inequality in (18b), that is, find a quadruple {t, t ′} ∈ E , y,y′ ∈ Y such that

gtt ′(y,y
′)+gtt ′(y+1,y′ +1)−gtt ′(y,y

′ +1)−gtt ′(y+1,y′) ≤ 0 .

3: If no such quadruple (t, t ′,y,y′) exists then (g are already supermodular) go to Step 4. Otherwise
use the found (t, t ′,y,y′) to update current g by

gtt ′(y,y′) := gtt ′(y,y′)+1 , gtt ′(y+1,y′ +1) := gtt ′(y+1,y′ +1)+1 ,
gtt ′(y,y′ +1) := gtt ′(y,y′ +1)−1 , gtt ′(y+1,y′) := gtt ′(y+1,y′)−1 ,

and go to Step 2.

4: Find a violated inequality in (18a), that is, find an index j ∈ J and a labeling y such that

y j 6= y := argmax
y′∈Y T

F(x j,y′;q,g) .

5: If no such ( j, y) exist than (q,g) solve the task (18) and the algorithm halts. Otherwise use the
found ( j, y) to update current q and g by

gtt ′(y
j
t ,y

j
t ′) := gtt ′(y

j
t ,y

j
t ′)+1, gtt ′(yt ,yt ′) := gtt ′(yt ,yt ′)−1 , {t, t ′} ∈ E ,

qt(y
j
t ,x

j
t ) := qt(y

j
t ,x

j
t )+1, qt(yt ,x

j
t ) := qt(yt ,x

j
t )−1 , t ∈ T .

and go to Step 2.

Since Algorithm 2 is nothing but the perceptron algorithm applied to the particular set of lin-
ear constraints (18), the Novikoff’s theorem (Novikoff, 1962) readily applies. Thus Algorithm 2
terminates in a finite number of iterations provided (18) is satisfiable, that is, if there exists a super-
modular max-sum classifier f (•;q,g) with zero empirical error risk on the training set L .
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4.3 Max-Sum Classifier with a Strictly Trivial Equivalent

Problem 3 (Learning max-sum classifier with a strictly trivial equivalent from a consistent training
set). For a given training set L = {(x j,y j) ∈ X T ×Y T | j ∈ J } find quality functions q and g such
that equations (16) are satisfied and the max-sum problems P j = (T ,E ,Y ,q,g,x j), j ∈ J have a
strictly trivial equivalent.

In Problem 3, we again search for a max-sum classifier which classifies all training examples
correctly but, in addition, all max-sum problems P j, j ∈ J should have a strictly trivial equivalent.
This means that if we compute a response of a max-sum classifier which solves Problem 3 for each
training example using LP relaxation we get a unique labeling equal to that in the training set.

Because the equivalent transformations (4) cover the whole class of equivalent problems, the
problem P = (T ,E ,Y ,q,g,x) has a strictly trivial equivalent if and only if there exist potentials
ϕϕϕ such that Pϕϕϕ is strictly trivial. Recall that the strictly trivial problem has unique maximal nodes
and edges (cf. Definition 2). Consequently, if the problem P has a strictly trivial equivalent and
its optimal solution is y∗ then there must exist potentials ϕϕϕ such that the following set of linear
inequalities holds

qϕϕϕ
t (y∗t ,xt) > qϕϕϕ

t (y,xt) , t ∈ T ,y ∈ Y \{y∗t } , (19a)

gϕϕϕ
tt ′(y

∗
t ,y

∗
t ′) > gϕϕϕ

tt ′(y,y
′) , {t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y∗t ,y

∗
t ′)} . (19b)

Note, that (19) is a set of |T ||Y |+ |E ||Y |2 strict inequalities which are linear in (q, g) and ϕϕϕ
as can be seen after substituting (4) to (19). By replicating (19) for max-sum problems P j =
(T ,E ,Y ,q,g,x j), j ∈ J whose unique solutions are required to be y j, j ∈ J we obtain an equivalent
formulation of Problem 3 which requires satisfaction of a set of strict linear inequalities

qϕϕϕ j

t (y j
t ,x

j
t ) > qϕϕϕ j

t (y,x j
t ) , j ∈ J , t ∈ T ,y ∈ Y \{y j

t } , (20a)

gϕϕϕ j

tt ′ (y
j
t ,y

j
t ′) > gϕϕϕ j

tt ′ (y,y
′) , j ∈ J ,{t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y j

t ,y
j
t ′)} . (20b)

The system (20) is to be solved with respect to the quality functions (q, g) and the potentials ϕϕϕ j,
j ∈ J introduced for each P j, j ∈ J . Note that the number of inequalities in the problem (20) is
substantially smaller compared to the learning of a general max-sum classifier. In particular, (20)
contains only m|T |(|Y |−1)+m|E |(|Y |2−1) inequalities compared to m(|Y ||T |−1) for a general
max-sum classifier. Therefore a violated inequality in (20) can be easily selected by an exhaustive
search. The proposed variant of the perceptron to solve (20) is as follows:

Algorithm 3 Learning the max-sum classifier with a strictly equivalent by perceptron

1: Set g := 0, q := 0 ,ϕϕϕ j := 0 , j ∈ J .

2: Find a violated inequality in (20a), that is, find a triplet j ∈ J , t ∈ T , y ∈ Y \{y j
t } such that

qt(y
j
t ,x

j
t )− ∑

t ′∈N (t)

ϕ j
tt ′(y

j
t ) ≤ qt(y,x

j
t )− ∑

t ′∈N (t)

ϕ j
tt ′(y) .

3: If no such triplet ( j, t,y) exists then go to Step 4. Otherwise update q and ϕϕϕ j by

ϕ j
tt ′(y

j
t ) := ϕ j

tt ′(y
j
t )−1 , ϕ j

tt ′(y) := ϕ j
tt ′(y)+1 , t ′ ∈ N (t) ,

qt(y
j
t ,x

j
t ) := qt(y

j
t ,x

j
t )+1 , qt(y,x

j
t ) := qt(y,x

j
t )−1 .
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4: Find a violated inequality in (20b), that is, find a quintuple j ∈ J , {t, t ′} ∈ E , (y,y′) ∈ Y 2 \
{(y j

t ,y
j
t ′)} such that

gtt ′(y
j
t ,y

j
t ′)+ϕ j

tt ′(y
j
t )+ϕ j

t ′t(y
j
t ′) ≤ gtt ′(y,y

′)+ϕ j
tt ′(y)+ϕ j

t ′t(y
′) .

5: If no such quintuple ( j, t, t ′,y,y′) exists and no update was made in Step 3 then the current
(q,g,ϕϕϕ j, j ∈ J ) solves the task (20) and the algorithm halts. Otherwise update g and ϕϕϕ j by

ϕ j
tt ′(y

j
t ) := ϕ j

tt ′(y
j
t )+1 , ϕ j

t ′t(y
j
t ′) := ϕ j

t ′t(y
j
t ′)+1 ,

ϕ j
tt ′(y) := ϕ j

tt ′(y)−1 , ϕ j
t ′t(y

′) := ϕ j
t ′t(y

′)−1 ,

gtt ′(y
j
t ,y

j
t ′) := gtt ′(y

j
t ,y

j
t ′)+1 , gtt ′(y,y′) := gtt ′(y,y′)−1 .

and go to Step 2.

By the Novikoff’s theorem, Algorithm 3 terminates in a finite number of iterations provided
(20) is satisfiable, that is, if there exists a max-sum classifier f (•;q,g) with zero empirical risk on
L and all max-sum problems P j = (T ,E ,Y ,q,g,x j), j ∈ J have a strictly trivial equivalent.

5. Learning a Max-Sum Classifier from an Inconsistent Training Set

In this section, we formulate problems of learning max-sum classifiers from an inconsistent training
set using the SVM framework described in Section 3.2. We will formulate the learning problems
for a general max-sum classifier, a supermodular max-sum classifier, and a max-sum classifier with
a strictly trivial equivalent. In all cases, learning will amount to solving an instance of a convex QP
task. In Section 6, we will propose an extended version of the cutting plane algorithm (Tsochan-
taridis et al., 2005) which can solve these QP tasks efficiently.

In Section 4, we showed that learning of max-sum classifiers can be expressed as satisfying
a set of strict linear inequalities. In the case of an inconsistent training set, however, these linear
inequalities become unsatisfiable. Therefore we augment linear inequalities with non-negative slack
variables, which relaxes the problem and makes it always satisfiable. In analogy to the SVM,
we will minimize the Euclidean norm of an optimized parameters and the sum of slack variables.
The problems are formulated in such a way that the sum of slack variables is a piece-wise linear
upper bound on the empirical risk for a certain loss function. We will consider two different loss
functions. In case of a general max-sum classifier and a supermodular max-sum classifier, we will
use the additive loss function L∆(y,y′) = ∑t∈T Lt(yt ,y′t) where Lt : Y ×Y →R is any function which
satisfies Lt(y,y′) = 0 for y = y′ and Lt(y,y′) > 0 otherwise. The Hamming distance L∆(y,y′) =

∑t∈T [[y 6= y′]] is the particular case of the additive loss which seems to be a reasonable choice
in many (not necessarily all) applications. In case of a max-sum classifier with a strictly trivial
equivalent, we will consider the 0/1-loss function L0/1(y,y′) = [[y 6= y′]]. The 0/1-loss function
penalizes equally all incorrect predictions regardless of how many labels are misclassified. The
additive loss is preferable to the 0/1-loss function in most structured classification problems. On the
other hand, there are applications for which the 0/1-loss function is a natural choice, for example,
problems with small number of objects like the one presented in Section 7.2.
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5.1 General Max-Sum Classifier

Problem 4 (Learning a general max-sum classifier from an inconsistent training set). For a given
training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and a regularization constant C find quality func-
tions q and g solving the following QP task

(g∗,q∗,ξξξ∗) = argmin
g,q,ξξξ

[

1
2

(

‖g‖2 +‖q‖2)+
C
m ∑

j∈J
ξ j

]

, (21a)

subject to
F(x j,y j;q,g)−F(x j,y;q,g) ≥ L∆(y j,y)−ξ j , j ∈ J , y ∈ Y T . (21b)

The QP task (21) fits to the formulation (13) of structured SVM learning with the max-sum clas-
sifier (1) plugged in. The number of optimized parameters (q;g) ∈ R

d equals to d = |X ||Y ||T |+
|Y |2|E |. The main difficulty in solving (21) stems from the huge number n = m|Y ||T | of the linear
inequalities (21b) which define the feasible set.

For a later use, it is convenient to rewrite the QP task (21) using a compact notation

(w∗,ξξξ∗) = argmin
w,ξξξ

QP(w,ξξξ) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(22)

where I1 ∪ ·· ·∪ Im = I = {1, . . . ,n}, Iu ∩ Iv = { /0}, u 6= v, denote disjoint sets of indices such that
each i ∈ I has assigned an unique pair ( j,y), j ∈ J , y ∈ Y T ; the vector w = (q;g) ∈ R

d comprises
both the optimized quality functions and (zi ∈ R

d ,bi ∈ R), i ∈ I , are constructed correspondingly
to inscribe the inequalities (21b).

In Section 6, we will introduce a variant of the cutting plane algorithm to solve the QP task (21)
(or (22), respectively). The cutting plane algorithm requires a subroutine which solves the LAC
task (15). Using the compact notation, the LAC task reads u j = argmaxi∈I j

(bi −〈w,zi〉). Since this
is NP-complete in general, we will use an LP relaxation which solves the task approximately. We
will show that it is possible to assess the quality of the found solution (w,ξξξ) in terms of the objective
of the learning task, that is, it is possible to bound the difference QP(w,ξξξ)−QP(w∗,ξξξ∗). Further,
we will prove that when the LAC task is solved exactly then the cutting plane algorithm finds an
arbitrary precise solution QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ ε, ε > 0, after a finite number of iterations. This
guarantee does not apply for learning of the general max-sum classifier when an LP relaxation
providing only an approximate solution is used. Though there is no theoretical guarantee, we will
experimentally show that using an LP relaxation is sufficient to find a practically useful solution.

5.2 Supermodular Max-Sum Classifier

Problem 5 (Learning a supermodular max-sum classifier from an inconsistent training set). For a
given training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and a regularization constant C find quality
functions q and g solving the following QP task

(g∗,q∗,ξξξ∗) = argmin
g,q,ξξξ

[

1
2

(

‖g‖2 +‖q‖2)+
C
m ∑

j∈J
ξ j

]

, (23a)
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subject to

F(x j,y j;q,g)−F(x j,y;q,g) ≥ L∆(y j,y)−ξ j , j ∈ J , y ∈ Y T , (23b)

gtt ′
(

y,y′
)

+gtt ′
(

y+1,y′ +1
)

≥ gtt ′
(

y,y′ +1
)

+gtt ′
(

y+1,y′
)

,

{t, t ′} ∈ E ,(y,y′) ∈
{

1, . . . , |Y |−1
}2

.

}

(23c)

Compared to the task (21) of learning a general max-sum classifier, the task (23) defined for the
supermodular max-sum classifier contains additional linear constraints (23c). The added con-
straints (23c), when satisfied, guarantee that the found quality function g is supermodular. The
total number of constraints increases to n = m|Y ||T | + |E |(|Y | − 1)2. A compact form of the QP
task (23) reads

(w∗,ξξξ∗) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi , i ∈ I0 ,
〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(24)

where bi = 0, i ∈ I0, and zi, i ∈ I0, account for the added supermodular constraints (23c).
In Section 6, we introduce a variant of the cutting plane algorithm which maintains the con-

straints (23c) satisfied. Thus the quality functions are always supermodular and the LAC task can
be solved precisely by efficient polynomial-time algorithms. As a result, we can guarantee that
the cutting plane algorithm finds a solution with an arbitrary finite precision in a finite number of
iterations.

5.3 Max-sum Classifier with Strictly Trivial Equivalent

Problem 6 (Learning a max-sum classifier with a strictly trivial equivalent from an inconsistent
training set). For a given training set L =

{

(x j,y j) ∈ X T ×Y T ∣
∣ j ∈ J

}

and regularization con-
stant C find quality functions q and g that solve the following QP task

(g∗,q∗,ξξξ∗,ϕϕϕ j∗, j ∈ J ) = argmin
g,q,ξξξ,ϕϕϕ j, j∈J

[

1
2

(

‖g‖2 +‖q‖2 + ∑
j∈J

‖ϕϕϕ j‖2)+
C
m ∑

j∈J
ξ j

]

, (25a)

subject to

qϕϕϕ j

t (y j
t ,x

j
t )−qϕϕϕ j

t (y,x j
t ) ≥ 1−ξ j , j ∈ J , t ∈ T , y ∈ Y \{y j

t } ,

gϕϕϕ j

tt ′ (y
j
t ,y

j
t ′)−gϕϕϕ j

tt ′ (y,y
′) ≥ 1−ξ j , j ∈ J , {t, t ′} ∈ E , (y,y′) ∈ Y 2 \{(y j

t ,y
j
t ′)} ,

ξ j ≥ 0 , j ∈ J .

(25b)

The problem (25) is derived from the problem (20) which was formulated for a consistent training
set. In the consistent case, it is required that each max-sum problem P j has a strictly trivial equiva-
lent whose unique solution equals to the desired labeling y j given in the training set. In the case of
an inconsistent training set, we allow some max-sum problems to violate this requirement. To this
end, each subset of linear inequalities in (25b) which corresponds to the given max-sum problem
P j is relaxed by a single non-negative slack variable ξ j. If a slack variable ξ j ≥ 1 then either the
solution of the max-sum problem P j differs from y j or P j has no trivial equivalent. The number of
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such max-sum problems is upper bounded by ∑m
j∈J ξ j which is included into the objective function

of (25a). Thus it corresponds to minimization of an upper bound on the empirical risk with the 0/1-
loss functions. The objective function also contains the Euclidean norm of the quality functions
(q, g) and the potentials ϕϕϕ j. Including the potentials ϕϕϕ j into the objective function is somewhat
arbitrary since it penalizes the transformation of max-sum problems to their trivial equivalents. An
advantage of including the potentials is the fact that the dual representation of the task (25) has a
simpler form which corresponds to the QP task of an ordinary multi-class SVM. Another variant is
to remove the potentials from the objective function which corresponds to including a set of linear
constraints to the dual task of (25) making the problem more difficult.

Compared to the previous learning problems, the number of variables d = |X ||Y ||T |+|Y |2|E |+
2m|E ||Y | in (25) is increased by 2m|E ||Y |, however, the number of linear constraints n = m|E |(|Y |2−
1)+ m|T |(|Y |− 1)+ m is drastically smaller. In particular, n grows only polynomially compared
to the exponential growth in the previous cases.

The QP task (25) can be rewritten into the compact form (22), that is, the same QP task as
required when learning the general max-sum classifier. Unlike the general case, the optimized
parameters w now comprise w = (q;g;ϕϕϕ1; . . . ;ϕϕϕm) ∈ R

d and the vectors zi, i ∈ I , are constructed
correspondingly. However, as mentioned above, the main difference is much smaller n = |I |. As
a result, the LAC task required by the cutting plane algorithm can be easily accomplished by an
exhaustive search.

6. Algorithm for Quadratic Programming Tasks

In this section, we propose an algorithm to solve the QP tasks (21), (23) and (25) required for learn-
ing the max-sum classifiers from inconsistent training sets. We extend the cutting plane algorithm
by Tsochantaridis et al. (2005) and its approximate version by Finley and Joachims (2005) in two di-
rections. First, we will consider a more general QP task (23) which contains linear inequalities both
with and without slack variables. Moreover, the inequalities without slack variables are required
to be satisfied during the whole course of the algorithm. This extension is necessary for learning
a supermodular max-sum classifier. Second, we propose to use a different stopping conditions to
halt the algorithm. The original algorithm by Tsochantaridis et al. (2005) halts the optimization
as soon as the linear constraints of a QP task are violated by a prescribed constant ε > 0 at most.
We will use a stopping condition which is based on the duality gap. This allows us to control the
precision of the found solution directly in terms of the optimized objective function. Moreover, the
stopping condition can be easily evaluated even when the LAC task is solved only approximately
by an LP relaxation which is useful for learning general max-sum classifiers. Finally, we will prove
that the proposed algorithm converges in a finite number of iterations even in the case of a general
max-sum classifier where the LAC task is NP-complete. We point out that the proof is similar to
that of Tsochantaridis et al. (2005) but is technically simpler and it applies for the extended cutting
plane algorithm proposed here. A general QP task which covers all the QP tasks (21), (23) and (25)
reads

(w∗,ξξξ∗) = argmin
w,ξξξ

QP(w,ξξξ) = argmin
w,ξξξ

[

1
2
‖w‖2 +

C
m ∑

j∈J
ξ j

]

,

s.t. 〈w,zi〉 ≥ bi , i ∈ I0 ,
〈w,zi〉 ≥ bi −ξ j , j ∈ J , i ∈ I j ,

(26)
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where I = I0 ∪ I1 ∪·· ·∪ Im = {1, . . . ,n}, Ii ∩ I j = { /0}, i 6= j are index sets. Note that we obtain the
QP task (21) and (25) by setting I0 = { /0}. The Wolf dual of (26) reads

ααα∗ = argmax
ααα

QD(ααα) = argmax
ααα

[

〈b,ααα〉−
1
2
〈ααα,Hααα〉

]

,

s.t. ∑
i∈I j

αi =
C
m

, j ∈ J ,

αi ≥ 0 , i ∈ I ,

(27)

where H is a positive semi-definite matrix [n× n] which contains the dot products Hi, j = 〈zi,z j〉.
The primal variables (w∗,ξξξ∗) can be computed from the dual variables ααα∗ by

w∗ = ∑
i∈I

α∗
i zi , ξ∗j = max

i∈I j

(bi −〈w∗,zi〉) , j ∈ J .

Note that the vectors zi, i ∈ I appear in (27) only as dot products and thus the kernel functions can
be potentially used.

It is not tractable to solve the QP task directly neither in the primal form nor in the dual form
due to the exponential number of constraints or variables, respectively. The cutting plane algorithm
alleviates the problem by exploiting the sparseness of maximal margin classifiers. Sparseness means
that only a small portion of constraints of the primal task are active in the optimal solution, or
equivalently, a small portion of dual variables are non-zero.

We denote I = I0 ∪ I 1 ∪·· ·∪ I m disjoint subsets of selected indices from I = I0 ∪ I1 ∪·· ·∪ Im,
that is, I j ⊆ I j, j ∈ J , while I0 is always the same. The reduced task is obtained from (27) by
considering only the selected variables {αi | i ∈ I} while the remaining variables {αi | i ∈ I \I} are
fixed to zero, that is, the reduced dual QP task reads

ααα = argmax
ααα

[

∑
i∈I

αibi −
1
2 ∑

i∈I
∑
j∈I

αiα jHi j

]

, (28a)

s.t. ∑
i∈I j

αi =
C
m

, j ∈ J ,

αi ≥ 0 , i ∈ I ,
αi = 0 , i ∈ I \ I .

(28b)

To solve the reduced task (28), it is enough to maintain explicitly just the selected variables and
thus its size scales only with |I |. The cutting plane algorithm tries to select the subsets I =
I0 ∪ I 1 ∪ ·· · ∪ I m such that (i) |I | is sufficiently small to make the reduced task (28) solvable by
standard optimization packages and (ii) the obtained solution well approximates the original task.
The proposed extension of the cutting plane algorithm is as follows:

Algorithm 4 A cutting plane algorithm for QP task (26)

1: Select arbitrarily
(

I j := {u j}, u j ∈ I j
)

, j ∈ J . Set the desired precision ε > 0.

2: For selected indices I = I0 ∪I 1 ∪·· ·∪I m solve the reduced task (28) to obtain ααα and compute
the primal variable w := ∑i∈I αizi.
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3: For all j ∈ J do:

3a: Solve the LAC task
u j := argmax

i∈I j

(bi −〈w,zi〉) , (29)

and set ξ j := bu j −〈w,zu j〉. If (29) is solved only approximately (when using LP relax-

ation) then set ξ j to the smallest available upper bound on bu j −〈w,zu j〉.

3b: Set I j := I j ∪{u j} provided the following condition holds

C
m

(bu j −〈w,zu j〉)− ∑
i∈I j

αi(bi −〈w,zi〉) >
ε
m

. (30)

4: If the current solution (w,ξξξ,ααα) satisfies the stopping condition

QP(w,ξξξ)−QD(ααα) ≤ ε , (31)

or if the condition (30) was violated for all j ∈ J then halt. Otherwise go to Step 2.

Note that Algorithm (4) explicitly maintains only the selected variables {αi | i ∈ I} and the
corresponding pairs {(bi,zi) | i ∈ I}. In Step 3a, the algorithm requires a subroutine to solve the
LAC task (29). We consider two different variants of the algorithm. First, the task (29) can be solved
precisely which applies to learning of supermodular max-sum classifiers and max-sum classifiers
with a strictly trivial equivalent. Second, the task (29) can be solved only approximately, which
applies to the general case when the max-sum problem is solved by an LP relaxation. The key
property of an LP relaxation which we exploit here is that it provides an upper bound on the optimal
solution of a max-sum problem, that is, an upper bound on the quantity bu j −〈w,zu j〉.

In Step 3b, the condition (30) is evaluated to decide whether adding the constraint 〈w,zu j〉 ≥
bu j −ξ j to the reduced QP task (28) brings a sufficient improvement or not. In Lemma 1 introduced
below, we show that adding at least one constraint guarantees a minimal improvement regardless
of whether the LAC problem is solved precisely or approximately. The algorithm halts when no
constraint is added in Step 3b. This situation occurs only if the algorithm has converged to a solution
which satisfies the stopping condition (31) provided the LAC task is solved exactly (cf. Theorem 4
and its proof).

Let us discuss the stopping condition (31). Note that the primal (w,ξξξ) and the dual variables
ααα are feasible during entire progress of the algorithm. This holds even in the case when an LP
relaxation is used to solve (29) since the ξ j, j ∈ J are set to upper bounds on their optimal values.
Having feasible primal and dual variables, we can use the weak duality theorem to write

QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ QP(w,ξξξ)−QD(ααα) ,

which implies that any solution satisfying the stopping condition (31) differs from the optimal so-
lution by at most ε. Note that the precision parameter ε used in the original stopping condition of
Tsochantaridis et al. (2005) can also be related to the duality gap. Namely, it can be shown that ε
approximate solution satisfies QP(w,ξξξ)−QD(ααα) ≤Cε.

Finally, we show that the algorithm converges in a finite number of iterations. The proof is based
on Lemma 1 which asserts that a minimal improvement ∆min > 0 of the dual objective function is
guaranteed provided at least one new variable was added in Step 3(b) to the reduced task, that is,
the condition (30) was satisfied for at least one j ∈ J .
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Lemma 1 Provided at least one new variable was added in Step 3(b) of Algorithm 4 the improve-
ment in the dual objective function QD(ααα) obtained after solving the reduced task is not less that

∆min = min

{

ε
2m

,
ε2

8C2R2

}

, where R = max
j∈J

max
i∈I j

‖zi‖ .

Proof of Lemma 1 is given in Appendix B.
Using Lemma 1, it is easy to show that Algorithm 4 halts after a finite number of iterations.

Note that the proof applies even for the case when the LAC task (29) is solved only approximately.

Theorem 4 Let us assume that the primal QP task (26) is bounded and feasible. Algorithm 4 halts
for arbitrary ε > 0 after at most T iterations, where

T =
(

QD(ααα∗)−QD(ααα1)
)

max

{

2m
ε

,
8C2R2

ε2

}

, R = max
j∈J

max
i∈I j

‖zi‖ ,

and ααα1 is the solution of the reduced task obtained after the first iteration of Algorithm 4.

Proof Algorithm 4 halts if either the stopping condition (31) holds or no new variable was added
in Step 3(b). Provided the algorithm does not halt in Step 4, the dual objective functions QD(ααα) is
improved by at least ∆min > 0 which is given in Lemma 1. Since the difference QD(ααα∗)−QD(ααα1)
is bounded from above the algorithm cannot pass through the Step 4 infinite number times and we
can write

T ≤
QD(ααα∗)−QD(ααα1)

∆min
=
(

QD(ααα∗)−QD(ααα1)
)

max

{

2m
ε

,
8C2R2

ε2

}

< ∞ .

The bound on a maximal number of iterations (or the bound on ∆min, respectively) given in
Theorem 4 is obtained based on the worst case analysis. As a result, the bound is an over-pessimistic
estimate of the number of iterations usually required in practice. Because the bound is not useful for
computing practical estimates of the number of iterations, we do not derive its particular variants
for the QP tasks (21), (23) and (25).

Finally, we give a theorem which asserts that the stopping condition (31) is always satisfied after
Algorithm 4 halts provided the LAC task (29) is solved exactly, that is, the found solution achieves
the desired precision QP(w,ξξξ)−QP(w∗,ξξξ∗) ≤ ε.

Theorem 5 Let us assume that the LAC task (29) is solved exactly and the assumptions of Theo-
rem 4 hold. In this case the condition (31) holds after Algorithm 4 halts.

Proof We show that the assumption that no new variable was added in Step 3(b) and the condi-
tion (31) is violated leads to a contradiction. If no variable was added then the condition (30) is
violated for all j ∈ J . Summing up the violated conditions (30) yields

∑
j∈J

[

C
m

(

bu j −〈w,zu j〉
)

− ∑
i∈I j

αi (bi −〈w,zi〉)

]

≤ ∑
j∈J

ε
m

. (32)

88



DISCRIMINATIVE LEARNING OF MAX-SUM CLASSIFIERS

The vector ααα is the optimal solution of the reduced task which includes all the variables {αi | i ∈ I0}.
Therefore by the complementary slackness (Karush-Kuhn-Tucker conditions) we have

∑
i∈I0

αi(bi −〈w,zi〉) = 0 . (33)

By adding (33) to (32) and using w = ∑i∈I αizi, ξ j = bu j −〈w,zu j〉 we get

∑
j∈J

[

C
m

(

bu j −〈w,zu j〉
)

− ∑
i∈I j

αi (bi −〈w,zi〉)

]

− ∑
i∈I 0

αi (bi −〈w,zi〉) ≤ ε

C
m ∑

j∈J

(

bu j −〈w,zu j〉
)

−∑
i∈I

αi (bi −〈w,zi〉) ≤ ε

C
m ∑

j∈J
ξ j −∑

i∈I
αibi + 〈w,w〉 ≤ ε .

The last inequality can be equivalently written as QP(w,ξξξ)−QD(ααα) ≤ ε which is in contradiction
to the assumption that (31) is violated.

To summarize, in case when the LAC task (29) is solved exactly Algorithm 4 finds a solution
with an arbitrary finite precision ε > 0 in a finite number of iterations. In case when the task (29) is
solved only approximately by an LP relaxation Algorithm 4 always halts after a finite number of iter-
ations but there is no guarantee that the desired precision was attained. The attained precision, how-
ever, can be determined by evaluating the duality gap QP(w,ξξξ)−QD(ααα) ≥ QP(w,ξξξ)−QP(w∗,ξξξ∗).

In next sections, we will apply Algorithm 4 to the three particular instances of the QP tasks (21), (23)
and (25).

6.1 General Max-Sum Classifier

In this section, we discuss optimization of the QP task (21) (or its compact form (22), respectively)
using Algorithm 4.

In Step 1 of Algorithm 4, we have to select the initial subsets (I j = {u j},u j ∈ I j), j ∈ J . A
simple way is to use u j = ( j,y j), which is equivalent to selecting the primal constraints 〈w,zi〉 ≥
bi−ξ j with zi = 0 and bi = 0. Note that the task (21) does not contain the primal constraints without
slack variables which implies that the subset I0 = { /0}.

The LAC task (29) required in Step 2a of Algorithm 4 amounts to solving an instance of a
general max-sum problem

ŷ j = argmax
y∈Y T

[

L∆(y,y j)−F(x j,y j;q,g)+F(x j,y;q,g)

]

= argmax
y∈Y T

[

∑
t∈T

(

qt(yt ,x
j
t )+ [[y j

t 6= yt ]]
)

+ ∑
{t,t ′}∈E

gtt ′(yt ,yt ′)

]

. (34)

The obtained labeling ŷ j is then used to construct the vector z( j,ŷ j) = Ψ(x j,y j)−Ψ(x j, ŷ j). Because
the task (34) is NP-complete in general, we use an LP relaxation discussed in Section 2.1. This
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means that the found ŷ j is not optimal but it is usually good enough to satisfy the condition (30)
which then leads to a guaranteed improvement of the optimized dual objective (cf. Lemma 1). LP
relaxation algorithms also provides an upper bound UB j on the optimal solution of (34) which is
essential to compute feasible ξ j, j ∈ J in Step 3(a) of Algorithm 4. In particular, ξ j is computed as

ξ j = UB j −F(x j,y j;q,g).

6.2 Supermodular Max-Sum Classifier

In this section, we discuss optimization of the QP task (23) (or its compact form (24), respectively)
using Algorithm 4.

The initialization in Step 1 of Algorithm 4 can be carried out in the same way as described in
Section 6.1. Since the QP task (24) involves the primal constraints 〈w,zi〉 ≥ bi, i ∈ I0, without slack
variables the corresponding zi, i ∈ I0, must be included in the reduced QP task during the entire
progress of Algorithm 4. The size |I0| = |E |(|Y | − 1)2 grows only quadratically which allows to
use standard optimization packages.

The LAC task (29) is of the same form as that for a general max-sum problem, that is, it requires
solving (34). Unlike the general case, the task (34) can be solved exactly by a polynomial-time
algorithms provided the quality functions g obey the supermodularity condition. The requirement of
supermodularity is expressed by the primal conditions 〈w,zi〉 ≥ 0, i ∈ I0 which are always included
in the reduced task (28) and thus they should be always satisfied. There is one numerical issue,
however, concerning a finite precision of QP solvers used to optimize the reduced task. It is possible
that the primal constraints on supermodularity are slightly violated even if the reduced task is solved
with a high precision. This might potentially (even though we have not observed the problem in
practice) cause problems when solving the LAC task which relies on the supermodularity of g.
An easy solution to avoid the problem is to add the primal constraints 〈w,zi〉 ≥ 0, i ∈ I0 with w =

∑i∈I αizi to the dual reduced task (28). In particular, we can solve the reduced task (28) subject to the
constraints (28b) augmented by additional constraints ∑i∈I αiHi j ≥ 0 , j ∈ I0. Note that adding of
the additional constraints changes just the feasible set but it does not change the solution. Solving the
reduced task with the added constraints by using any QP solver which produces a feasible solution
with a finite precision (e.g., interior point methods) guarantees that the supermodularity constraints
are satisfied.

6.3 Max-Sum Classifier with Strictly Trivial Equivalent

Unlike the previous two cases, the QP task (25) (or its compact form (22) respectively) contains
only n = m|E |(|Y |2 − 1) + m|T |(|Y | − 1) + m linear constraints. The form of the QP task (25)
is the same as required for learning of an ordinary multi-class SVM (Crammer and Singer, 2001)
which makes it possible to use existing optimization packages. The problem can be also solved by
the proposed Algorithm 4. In this case, an initialization of the subset (I j = {u j},u j ∈ I j), j ∈ J
performed in Step 1, can simply select the indices which correspond to the constraints ξ j ≥ 0, j ∈ J .
The LAC task (29) required in Step 3a can be solved exhaustively which means that we do not need
any max-sum solver during the learning stage.

90



DISCRIMINATIVE LEARNING OF MAX-SUM CLASSIFIERS

7. Experiments

Even though this article focuses primarily on theory, we present some examples to demonstrate
functionality of the proposed learning algorithms. The examples are not meant to be a comprehen-
sive evaluation.

7.1 Image Segmentation

We consider the problem of learning a classifier for segmentation of color images. We compare a
general max-sum classifier, a supermodular max-sum classifier and a standard multi-class SVMs
classifier (Crammer and Singer, 2001) as a baseline approach. In particular, we used the formula-
tions given in Problem 4 and Problem 5 for learning the general and supermodular classifiers from
the inconsistent training sets. To solve the LAC task required by Algorithm 4, we used an LP re-
laxation solver based on the Augmented Directed Acyclic Graph (ADAG) algorithm (Schlesinger
1976; see also the tutorial by Werner 2007).

We used the following three sets of color images (see Figure 1):

Microsoft Research (MSR) database: The original database 1 contains 240 images of 9 objects
along with their manual segmentation. We selected a subset of 32 images each of which
contains a combination of the following four objects: cow, grass, water and void. All images
are of size 213× 320 pixels. We created 3 random splits of the images into 10 training, 9
validation and 13 testing images. Reported results are averages taken over these three splits.

Shape-Sorter: We collected snapshots of a toy shape-sorter puzzle placed on a carpet. The snap-
shots are taken under varying view-angle and lighting conditions. The images contain 6
objects of different colors which we manually segmented. We split the images into a training
set containing 14 images of size 100×100 pixels, validation and testing sets each containing
4 images of size 200×200 pixels.

Landscape: The data set is created from a single landscape image of size 280× 600 which was
manually segmented into sky, border line and ground areas. We divided the landscape image
into 20 non-overlapping sub-windows of size 70×120 pixels. Finally, we split the 20 images
into 5 training, 4 validation and 11 testing images.

In this experiment we define the max-sum classifier as follows. The set of objects T = {(i, j) |
i ∈ {1, . . . ,H}, j ∈ {1, . . . ,W}} corresponds to the pixels of the input image of size H ×W . We
consider a 4-neighborhood structure of image pixels, that is, E contains undirected edges between
all pixels (i, j) ∈ T and (i′, j′) ∈ T which satisfy |i− i′|+ | j− j′| = 1. Each pixel t ∈ T is char-
acterized by its observable state xt and a label yt . The observable state xt ∈ X = R

3 is a vector
containing RGB color values of t-th pixel. The label yt ∈ Y = {1, . . . ,N} assigns t-th pixel to one
of N segments. We assume that the quality functions q : X ×Y → R and g : Y ×Y → R do not
depend on pixel t ∈ T (so called homogeneous model). The quality function q(x,y) = 〈wy,x〉 is
linear in parameter wy ∈ R

3, y ∈ Y , as well as the function g(y,y′) represented by a vector g ∈ R
N2

.
Hence the learned parameter vector w = (w1; . . . ;wN ;g) ∈ R

d is of dimension d = 3N + N2. For
the baseline approach we used a linear multi-class SVM which is equivalent to a max-sum classifier
with a constant quality function g(y,y′), that is, the interrelation between labels is neglected.

1. Database B1 can be found at https://research.microsoft.com/vision/cambridge/recognition/default.htm.
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Multi-class SVM General max-sum Supermodular max-sum

MSR-database 21.74% 14.16% 14.03%
Shape-Sorter 1.31% 0.91% 0.92%
Landscape 6.22% 0.69% 0.65%

Table 1: Performance of max-sum classifiers compared to an ordinary SVM classifier on three seg-
mentation data sets. The table contains average percentages of misclassified pixels per
image.

We stopped the cutting plane Algorithm 4 when either the precision (QP(w,ξξξ)−QD(ααα))/QP(w,ξξξ)≤
10−2 was attained or no improving constraint was found after solving the LAC task. For the super-
modular max-sum classifier the required precision was always attained since the LAC can be solved
exactly. For the general max-sum classifier the algorithm failed to converge only in a few cases when
the regularization constant C was set too high. The average time required for learning on an ordinary
desktop PC was around 11 hours for the MSR-database, 3 hours for the Shape-Sorter data set and 6
minutes for the Landscape data set. The bottleneck is solving the LAC task by the ADAG max-sum
solver which takes approximately 95% of the training time. Though we have not fully exploited this
possibility, the training time for the supermodular max-sum classifier can be considerably reduced
by using min-cut/max-flow algorithms to solve the LAC task. The min-cut/max-flow algorithms
optimized for a grid neighbourhood structure can achieve near real-time performance (Boykov and
Kolmogorov, 2004). For this reason the supermodular max-sum classifier is favourable when the
training time or the classification time is of importance.

The only free parameter of the learning algorithm is the regularization constant C which we
tuned on the validation images. The classifier with the best performance on the validation set was
then assessed on independent testing images. Due to a different size of images it is convenient to
present errors in terms of the normalized additive loss function L(y,y′) = 100

|T | ∑t∈T [[yt 6= y′t ]] cor-
responding to percentage of misclassified pixels in the image. Obtained results are summarized
in Table 1. It is seen that the max-sum classifiers significantly outperformed the multi-class SVM
on all data sets. Performances of the general and the supermodular max-sum classifiers are al-
most identical. This shows a good potential of the learning algorithm to extend applicability of
the polynomially solvable class of supermodular max-sum problems. Note that selecting a proper
supermodular function by hand is difficult due to an unintuitive form of the supermodularity condi-
tions (7). Figure 1 shows examples of testing images and their labeling estimated by the max-sum
classifier.

7.2 Learning the Rules of Sudoku

In this section, we demonstrate the algorithm for learning the max-sum classifier with a strictly
trivial equivalent. We will consider a problem of learning the game rules of a logic-based number
placement puzzle Sudoku2. Figures 2(a) and 2(b) show an example of the Sudoku puzzle and its
solution, respectively. The aim of the puzzle is to fill in a 9× 9 grid such that each column, each
row and each of 9 non-overlapping 3× 3 boxes contains the numbers from 1 to 9. A player starts

2. For more details and references see http://en.wikipedia.org/wiki/Sudoku .
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MSR-database

Shape-Sorter data set

Landscape data set

Figure 1: A sample from three data sets used in experiments. The figures show testing images
and their labelings estimated by the max-sum classifier. For the Landscape data set the
training and the validation sub-images are marked.
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Figure 2: Example of Sudoku puzzle: (a) input puzzle; (b) solution; (c) handwritten Sudoku grid
created from the USPS database.

from an incompletely filled grid which is constructed such a way that the proper puzzle has a unique
solution.

Our goal is to learn a max-sum classifier (artificial player) able to solve arbitrary Sudoku puzzle.
A part of the rules is a priori known to the system while the rest is learned from examples of
incomplete puzzle and its correct solution. In a standard scenario, the learned classifier is validated
on a testing set. In this particular case, however, it is possible to show that the found max-sum
classifier solves correctly all the Sudoku puzzles (the number of Sudoku solutions is approximately
6.6×1027, that is, the number of puzzles is much larger).

Note, that the Sudoku puzzle can be naturally expressed as solving the constraint satisfaction
problem CSP which is a subclass of a max-sum labeling problem when the quality functions at-
tain only two values {0,−∞}. From this viewpoint, a max-sum classifier is a richer model than
necessarily needed for Sudoku puzzle.

Let us define the learning problem using the notation of this paper. Solving the puzzle is
equivalent to solving the max-sum problem (T ,E ,Y ,q,g,x). The set of objects T = {(i, j) | i ∈
{1, . . . ,9} , j ∈ {1, . . . ,9}} corresponds to the cells of a 9×9 grid. The neighbourhood structure

E = {{(i, j),(i′, j′)} | i = i′∨ j = j′∨ (di/3e = di′/3e∧d j/3e = d j′/3e)} ,

contains pairs of cells whose relation plays a role in the game rules, that is, the cells in rows,
columns, and the 3×3 boxes. The set of observations X = {�,1, . . . ,9} represents the input filling
of cells where the special symbol � means an empty cell. The set of labels Y = {1, . . . ,9} cor-
responds to numbers which a player can fill in. The quality functions q and g are assumed to be
homogeneous, that is, qt(x,y) = q(x,y) and gtt ′(y,y′) = g(y,y′). Moreover, the structure of quality
function q(y,x) is assumed to be q(y,x) = q(y) for y = x and q(y,x) = q� for x = � or x 6= y. The
particular values of quality functions (q;g) ∈ R

9×9+10, which specify the rules of the game, are
unknown to the system.

Using the setting introduced above, it is easy to see that the solution of a max-sum problem
(T ,E ,Y ,q,g,x) is a correct solution of the Sudoku puzzles if for any triplet (y,y′,y′′) ∈ Y 3 such
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q(y,x)
q�

-1870
y 1 2 3 4 5 6 7 8 9

q(y) 867 295 696 234 224 339 228 455 378

g(y,y′)
y/y′ 1 2 3 4 5 6 7 8 9

1 -552 19 47 66 65 73 61 66 73
2 84 -500 67 57 71 56 79 60 65
3 78 30 -437 48 48 47 68 50 54
4 73 -28 63 -266 55 53 76 56 60
5 23 67 57 47 -397 46 68 49 52
6 74 66 58 49 49 -448 69 49 54
7 -26 9 28 49 48 47 -342 48 54
8 36 77 60 49 49 46 67 -441 52
9 79 20 57 48 46 48 65 51 -441

Table 2: The quality functions q and g learned from examples. The learned functions q and g satisfy
the conditions (35) which guarantee the optimal solution.

that y′ 6= y′′ the quality functions satisfy the following conditions

q� < q(y) and g(y,y) < g(y′,y′′) . (35)

The first condition just forces the max-sum classifier to use the numbers from filled in cells as labels.
The second condition, in compliance with to the Sudoku rules, ensures that neighbouring cells will
not be assigned the same label. The conditions (35) allows us to verify whether the found classifier
is an optimal one.

Because a proper Sudoku puzzle have a unique solution it is natural to require that the max-sum
classifier also guarantees this condition. The conditions (35) show that the ground truth quality
function g(y,y′) is not supermodular. For this reasoning, Algorithm 3 for learning of the max-sum
classifier with a strictly trivial solution seems to be a reasonable choice.

We created 18 distinct training sets each containing a single example of an incomplete puzzle
and its correct solution. In all cases, the proposed Algorithm 3 converged to a solution after the
number of iterations ranging 12×103 to 95×103 approximately, which took less than one minute
on an ordinary desktop PC. The conditions (35) were satisfied for all the solutions found by an
algorithm, that is, an optimal max-sum classifier was found just from a single example (using more
general q and g would probably require more examples). Table 2 shows an example of the found
quality functions q and g. In this case, it is even possible to precisely compute the output of the
max-sum classifier by branch-and-bound algorithm since the depth searching tree is limited due the
requirement on a unique solution of the Sudoku and modest complexity tractable for human players.
Note, however, that no max-sum solver was required during the course of the learning algorithm.
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Multi-class SVM Max-Sum classifier

Linear 8.81% 7.20%
Gaussian kernel 5.80% 0.04%

Table 3: Recognition of Sudoku grids created from the USPS database.

7.3 Handwritten Character Recognition with Structured Outputs

In this section, we compare the max-sum classifier with a strictly trivial equivalent learned by the
Perceptron Algorithm 3 against an ordinary multi-class SVM classifier. To this end, we modified
the Sudoku problem from Section 7.2 in two ways. Firstly, the input observations are handwritten
digits taken from the USPS database. In particular, the input observation x ∈ X = R

256 is a vector
containing pixels of a grey-scale image 16× 16 which depicts a digit from 1 to 9. Secondly, the
input of the classifier is a fully solved Sudoku grid, that is, Y = {1, . . . ,9}, as the multi-class SVM
cannot solve an incomplete puzzle unlike the max-sum classifier. The neighbourhood structure
(T ,E) is the same as in the experiment from Section 7.2. Figure 2(c) shows and example of
input observations and Figure2(b) shows a corresponding labeling to be estimated by the max-sum
classifier.

Similarly to the experiment in Section 7.2, we considered a quality function g(y,y′) of a general
form g ∈ R

|Y |2 . However, we used two different forms of the quality functions q(x,y). First, a
linear function q(x,y) = 〈wy,x〉 which lead to learning a parameter vector w = (w1; . . . ;w|Y |;g) ∈

R
d of dimension d = 256|Y |+ |Y |2 = 2385. Second, we applied the Gaussian kernel function

defined as k(x,x′) = exp(−σ‖x−x′‖2) for some σ > 0. In this case, the quality function is q(x,y) =
〈vy,k(x)〉 where k(x) = (k(x,x j

t ) | t ∈ T , j = 1, . . . ,m) denotes a vector of kernel functions centered
in all training observations. The corresponding parameter vector w = (v1; . . . ;v|Y |;g) ∈ R

d was of
dimension d = m|T ||Y |+ |Y |2 = 7371.

We created a set of 30 examples of Sudoku grids x = (xt ∈ X | t ∈ T ) and their solutions
y = (yt ∈ Y | t ∈ T ). Note that a single grid x contains 9×9 = 81 digits from the USPS database.
We generated 3 random splits of the 30 examples into 10 training, 10 validation and 10 testing
examples. The Perceptron Algorithm 3 required a few seconds to converge to a solution with zero
training error when the linear kernel was used and around 3 minutes for the Gaussian kernel. The
optimal kernel width σ was tuned on the validation data. In addition, we also tuned the regularization
constant C for the multi-class SVM. The model with the best performance on the validation set was
then assessed on the testing data. Table 3 shows the average classification performance computed
over the 3 random splits.

It is seen that the max-sum classifier significantly outperforms the multi-class SVM regardless of
the used kernel functions. The classification error 5.80% achieved for the multi-class SVM with the
Gaussian kernel is slightly higher than 4.00% reported in Schölkopf et al. (1995). The reason is that
we trained on a smaller number of examples (namely, 810 compared to 7291). On the other hand,
the smaller training set is sufficient to achieve nearly error-less performance when the structure in
the output space is considered. In particular, the error of the max-sum classifier with the Gaussian
kernel is 0.04%. Note that without considering the structure a human recognition rate is 2.5% and
the best published machine performance is 2.6% (Schölkopf et al., 1995).
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8. Conclusions

In this article we have examined discriminative learning of max-sum classifiers. Learning of a max-
sum classifier leads to satisfying a set of linear inequalities or solving a QP task with linear inequal-
ity constraints. A characteristic feature of these tasks is a huge number of linear constraints which
is proportional to the number of possible responses (labelings) of a max-sum classifier. Efficient
optimization methods for solving these tasks are the perceptron and the cutting plane algorithm,
respectively. These methods manage to solve large problems provided the response of a max-sum
classifier can be evaluated efficiently. Direct application of these methods is not tractable because
computing a response of a general max-sum classifier is NP-complete.

We have proposed variants of the perceptron and the cutting plane algorithm for learning su-
permodular max-sum classifiers whose response can be computed efficiently in polynomial time.
We have augmented the optimization tasks by additional linear constraints which guarantee that a
max-sum classifier is supermodular. The perceptron and the cutting plane algorithm are modified
such that added constraints on supermodularity are maintained satisfied during the course of opti-
mization. This modification allows to compute the response of a max-sum classifier efficiently thus
making the learning problem tractable.

We have defined a class of max-sum classifiers with a strictly trivial equivalent which are solv-
able exactly in polynomial time by an LP relaxation. We have showed that this class covers at least
acyclic and supermodular max-sum classifiers with a unique solution. Another favorable property
of this class is that the learning problems contain only polynomially-sized sets of linear constraints.
As a result, the perceptron and the cutting plane algorithms do not require to call any max-sum
solver during the course of optimization.

We have proposed a variant of the cutting plane algorithm which can approximately solve the
learning problem formulated for the general max-sum classifier. The response of the max-sum
classifier is approximated by an LP relaxation for which specialized optimization algorithms exist.
Using an approximate response prohibits a guarantee that the cutting plane algorithm finds a solution
with an arbitrary precision. This is not an obstacle, however, for using the algorithm in practice as
we demonstrated experimentally.

Acknowledgments

Authors are deeply grateful to Prof. Michail I. Schlesinger for inspiring this work by many important
ideas which he delivered in personal communication and during his lectures on structural pattern
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Appendix A.

In this appendix we prove Theorem 3 introduced in Section 2.3. Prior to proving the theorem, we
will introduce the concept of local consistency (Schlesinger, 1976) and the theorem asserting that
the problems with a trivial equivalent contain the acyclic and supermodular problems (Schlesinger,
1976; Schlesinger and Flach, 2000).

Definition 3 The maximal node (t,y) is called locally consistent if for each neighboring object
t ′ ∈ N (t) there exists a maximal edge {(t,y),(t ′,y′)}. The maximal edge {(t,y),(t ′,y′)} is called
locally consistent if the nodes (t,y) and (t ′,y′) are maximal.

The maximal nodes and maximal edges which do not satisfy Definition 3 will be called locally
inconsistent.

Theorem 6 Schlesinger (1976); Schlesinger and Flach (2000) Let P = (T ,E ,Y ,q,g,x) be a max-
sum problem. If (T ,E) is an acyclic graph or quality functions g are supermodular then P is
equivalent to a trivial problem.

Recall, that P with the optimal solution y∗ ∈ Y T has a trivial equivalent Pϕϕϕ if there exist potentials
ϕϕϕ such that the following set of linear inequalities holds

qϕϕϕ
t (y∗t ,xt) ≥ qϕϕϕ

t (y,xt) , t ∈ T ,y ∈ Y \{y∗t } ,

gϕϕϕ
tt ′(y

∗
t ,y

∗
t ′) ≥ gϕϕϕ

tt ′(yt ,yt ′) , {t, t ′} ∈ E ,(y,y′) ∈ Y 2 \{(y∗t ,y
∗
t ′)} .

(36)

The system (36) differs from the definition of problems with a strictly trivial equivalent (19) just by
using the non-strict inequalities. Finally, we will prove two auxiliary lemmas:

Lemma 2 Let P be an acyclic problem which has a unique solution y∗ and let Pϕϕϕ be a trivial
equivalent of P. Then only two cases can occur: (i) Pϕϕϕ is strictly trivial or (ii) there is at least one
maximal locally inconsistent node or edge.

Proof We will show that violating both the assertions (i) and (ii) contradicts the assumption that y∗

is unique. Assuming Pϕϕϕ is not strictly trivial implies that there exists a maximal node (t,y0
t ) such

that y0
t 6= y∗t . Let us construct a labeling y0 such that y0

t belongs to y0. The remaining labels are
determined by repeating the following procedure (|T |−1) times:

• Let t ′ ∈ T be an object whose label y0
t ′ has been already determined and let t ′′ ∈ N (t ′) be

an object whose label y0
t ′′ has not been determined yet. Then set up the label y0

t ′′ such that
{(t ′,y0

t ′),(t
′′,y0

t ′′)} is a maximal edge.

The constructed labeling y0 is the optimal solution of P because it is composed of maximal nodes
and edges. Note that this simple construction of the optimal labeling is possible because the graph
(T ,E) is acyclic. Thus we have y0 6= y∗ because y0

t 6= y∗t which implies that y∗ is not unique.

Lemma 3 Let P be a supermodular problem with an unique solution y∗ and let Pϕϕϕ be a trivial
equivalent of P. Then only two cases can occur: (i) Pϕϕϕ is strictly trivial or (ii) there is at least one
maximal locally inconsistent node or edge.
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Proof We will show that violating both the assertions (i) and (ii) contradicts the assumption that
y∗ is unique. Let Y 0

t = {(t,y) | qϕϕϕ
t (y,xt) = maxy′∈Y qϕϕϕ

t (y′,xt)} denote a set of all maximal nodes
corresponding to the object t ∈ T . Let us construct the labeling yh = (yh

t | t ∈ T ) composed of
the highest maximal nodes; (t,yh

t ) is the highest maximal node if (t,yh
t ) ∈ Y 0

t and yh
t > y for all

(t,y) ∈ Y 0
t \{t,y0

t }. Recall, that the labels are fully ordered for the supermodular problems.
Now, we show that the labeling yh is optimal since all its edges {(t,yh

t ),(t
′,yh

t ′)} ∈ EY are also
maximal. Let us assume that there exists an edge {(t,yh

t ),(t
′,yh

t ′)} which is not maximal. Then, by
assumption of local consistency, there exist edges {(t,yh

t ),(t
′,yt ′)} and {(t,yt),(t ′,yh

t ′)} which are
maximal. Note that yt < yh

t and yt ′ < yh
t ′ because (t,yh

t ) and (t ′,yh
t ′) are the highest nodes. From the

condition of supermodularity (7) and (4a) we have

0 ≤ gtt ′(y
h
t ,y

h
t ′)+gtt ′(yt ,yt ′)−gtt ′(y

h
t ,yt ′)−gtt ′(yt ,y

h
t ′)

= gϕϕϕ
tt ′(y

h
t ,y

h
t ′)+gϕϕϕ

tt ′(yt ,yt ′)−gϕϕϕ
tt ′(y

h
t ,yt ′)−gϕϕϕ

tt ′(yt ,y
h
t ′) .

This condition, however, cannot be satisfied if the edge {(t,yh
t ),(t

′,yh
t ′)} is not maximal which is a

contradiction. Similarly, we can show that the labeling yl composed of the lowest maximal nodes
(defined analogically) is also optimal.

Finally, the assumption that Pϕϕϕ is not strictly trivial implies that for some object t ∈ T there
exists a maximal node (t,y0

t ) such that y0
t 6= y∗t . W.l.o.g. we can select (t,y0

t ) which is either the
highest maximal or the lowest maximal node. Thus y0

t∗ belongs either to the labeling yh or yl which
are optimal and differ from y∗. This contradicts the assumption that y∗ is unique.

Proof of Theorem 3: Let P be an acyclic or supermodular max-sum problem with the unique solu-
tion y∗ ∈ Y T . Let ϕϕϕ be the potentials such that the max-sum problem Pϕϕϕ is a trivial equivalent of
P. The existence of such Pϕϕϕ is guaranteed by Theorem 6. Then, by Lemma 2 and Lemma 3, Pϕϕϕ is
either strictly trivial or there exists a maximal node (t,y0

t ) or a maximal edge {(t,y0
t ),(t

′,y0
t ′)} which

are locally inconsistent, that is, (t,y0
t ) and {(t,y0

t ),(t
′,y0

t ′)} do not belong to y∗. We will introduce a
procedure which changes the potentials ϕϕϕ in such a way that the inconsistent maximal node (t,y0

t )
or inconsistent maximal edge {(t,y0

t ),(t
′,y0

t ′)}, respectively, become non-maximal while other max-
imal (non-maximal) nodes or edges remain maximal (non-maximal). Repeating this procedure for
all inconsistent maximal nodes and edges makes the inequalities (36) satisfied strictly, that is, the
problem Pϕϕϕ becomes strictly trivial which is to be proven. The procedures for elimination of incon-
sistent nodes and edges read:
Elimination of the inconsistent maximal node (t,y0

t ): Let t ′ ∈ N (t) be such a neighbor of t that
the set of edges Ett ′(y0

t ) = {{(t,y0
t ),(t

′,yt ′)} | yt ′ ∈ Y } does not contain any maximal edge. Let ε be
a number computed as

ε =
1
2

[

max
(y,y′)∈Y 2

gϕϕϕ
tt ′(y,y

′)−max
y′∈Y

gϕϕϕ
tt ′(y

0
t ,y

′)

]

.

Since Ett ′(y0
t ) does not contain maximal edges this implies ε > 0. Adding ε to the potential

ϕtt ′(y0
t ) := ϕtt ′(y0

t )+ ε decreases the quality qϕϕϕ
t (y0

t ,xt) = qt(y0
t ,xt)−∑t ′′∈N (t) ϕtt ′′(y0

t ) by ε and in-

creases the qualities gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y′) + ϕtt ′(y) + ϕt ′t(y′), {(t,y),(t ′,y′)} ∈ Ett ′(y0
t ) by ε. This

change makes the node (t,y0
t ) non-maximal while the edges Ett ′(y0

t ) remain non-maximal as before.
The qualities of other nodes and edges remain unchanged.
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Elimination of the inconsistent maximal edge {(t,y0
t ),(t

′,y0
t ′)}: W.l.o.g. let (t ′,y0

t ′) be a non-
maximal node. Notice, that all edges from Et ′t(y0

t ′) = {(t,yt),(t ′,y0
t ′)} | yt ∈ Y } are locally incon-

sistent and they cannot be a part of the optimal solution. Let ε be a number computed as

ε =
1
2

[

max
y∈Y

qϕϕϕ
t ′(y,xt ′)−qϕϕϕ

t ′(y
0
t ′ ,xt ′)

]

.

Because (t ′,y0
t ′) is non-maximal ε > 0. Subtracting ε from the potential ϕt ′t(y0

t ′) := ϕt ′t(y0
t ′)− ε

decreases the qualities gϕϕϕ
tt ′(y,y

′) = gtt ′(y,y′)+ ϕtt ′(y)+ ϕt ′t(y′), {(t,y),(t ′,y′)} ∈ Et ′t(y0
t ′) by ε and

increases the quality qϕϕϕ
t ′(y

0
t ′ ,xt ′) = qt ′(y0

t ′ ,xt ′)−∑t ′′∈N (t ′) ϕtt ′′(y0
t ′) by ε. This change makes all edges

from Et ′t(y0
t ′) non-maximal while the node (t ′,y0

t ′) remains non-maximal as before. The qualities of
other nodes and edges remain unchanged.

Appendix B.

In this appendix we prove Lemma 1 given in Section 6.
Proof of Lemma 1: We show that if a new variable was added then we can construct a vector βββ such
that optimizing the dual objective QD(ααα) over a line segment between the current solution ααα and the
vector βββ yields a guaranteed improvement. Since the reduced QP task solved in Step 2 optimizes in
the space of all selected variables which contains the line segment between ααα and βββ, the obtained
improvement cannot be smaller.

Let us assume an optimization of the dual objective QD(ααα) of the QP task (27) w.r.t. a line
segment between the current solution ααα and an arbitrary feasible vector βββ. The problem is equivalent
to searching for the maximum of an univariate quadratic function

QL(τ) = QD

(

(1− τ)ααα+ τβββ
)

= (1− τ)〈b,ααα〉+ τ〈b,βββ〉−
1
2
(1− τ)2〈ααα,Hααα〉− τ(1− τ)〈βββ,Hααα〉−

1
2

τ2〈βββ,Hβββ〉 ,

over the closed interval 0 ≤ τ ≤ 1. The maximum is attained at the vector

αααnew = (1− τ)ααα+ τβββ (37)

where
τ = argmax

0≤τ≤1
QL(τ) . (38)

The derivative of QL(τ) reads

∂QL(τ)
∂τ

= 〈b,βββ−ααα〉+(1− τ)〈ααα,Hααα〉− (1−2τ)〈βββ,Hααα〉− τ〈βββ,Hβββ〉 .

An objective function is improved, that is, QD(αααnew)−QD(ααα) > 0, iff the vector βββ satisfies

∂QL(τ)
∂τ

∣

∣

∣

∣

τ=0
= 〈βββ−ααα,b−Hααα〉 > 0 . (39)

100



DISCRIMINATIVE LEARNING OF MAX-SUM CLASSIFIERS

Provided (39) holds, the maximum of QL(τ) w.r.t. 0 ≤ τ ≤ 1 is attained within the open interval
0 < τ < 1 or on its boundary τ = 1. The maximum of QL(τ) w.r.t. unbounded τ can be found by
solving ∂QL

∂τ = 0 for τ. If the resulting τ exceeds 1 then the optimum of the line segment optimization
is attained at τ = 1. Thus we can write the solution of (38) in a closed form

τ = min

{

1,
〈βββ−ααα,b−Hααα〉
〈ααα−βββ,H(ααα−βββ)〉

}

. (40)

Analytical formulas for improvement can be derived substituting (37) and (40) to ∆ = QD(αααnew)−
QD(ααα). For τ < 1 we get

∆ =
〈βββ−ααα,b−Hααα〉2

2〈ααα−βββ,H(ααα−βββ)〉
, (41)

and for τ = 1 we get

∆ = 〈βββ−ααα,b−Hααα〉−
1
2
〈ααα−βββ,H(ααα−βββ)〉 ≥

1
2
〈βββ−ααα,b−Hααα〉 . (42)

The last inequality in (42) follows from 〈βββ−ααα,b−Hααα〉 ≥ 〈ααα−βββ,H(ααα−βββ)〉 which holds for τ = 1
as seen from (40).

Let us consider that a new variable with index u j was added in Step 3(b), that is, the condi-
tion (30) was satisfied. Using 〈w,zu j〉 = [Hααα]u j we can rewrite the condition (30) as

C
m

[b−Hααα]u j − ∑
i∈I j

αi[b−Hααα]i >
ε
m

. (43)

Let us construct the feasible vector βββ = (β1, . . . ,βn)
T as follows

βi =







C
m if i = u j ,
0 if i ∈ I j \{u j} ,

αi if i ∈ I \ I j .
(44)

As was shown above, optimization over the line segment yields an improvement provided (39)
holds. Substituting βββ constructed by (44) into the formula (39) we get

dQL

dτ

∣

∣

∣

τ=0
= 〈βββ−ααα,b−Hααα〉 =

C
m

[b−Hααα]u j − ∑
i∈I j

αi[b−Hααα]i >
ε
m

, (45)

where the last inequality follows from (43). This implies that optimizing w.r.t. line segment between
ααα and the vector βββ yields positive improvement. Now, we derive a lower bound on this improvement.
Combining (45) with (42) we immediately get

∆ ≥
ε

2m
for τ = 1 . (46)
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Before deriving the bound for τ < 1, we must find an upper bound on the denominator of (41). Let
us define A j =

{

ααα | ∑i∈I j
αi = C

m ,αi ≥ 0 ,∀i ∈ I j
}

. Then we can write

〈ααα−βββ,H(ααα−βββ)〉 ≤ max
j∈J

∥

∥

∥ ∑
i∈I j

αizi − ∑
i∈I j

βizi

∥

∥

∥

2

≤

(

2max
j∈J

max
ααα∈A j

∥

∥

∥ ∑
i∈I j

αizi

∥

∥

∥

)2

=
4C2

m2 max
j∈J

max
i∈I j

‖zi‖
2 .

(47)

Combining (45) and (47) with (41) yields

∆ ≥
ε2

8C2R2 for τ = 1 and R = max
j∈J

max
i∈I j

‖zi‖ . (48)

Taking the minimum of improvements (46) and (48) gives the bound on the minimal improvement.
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