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Abstract

Most discriminative techniques for detecting instances from object categories in still images con-
sist of looping over a partition of a pose space with dedicated binary classifiers. The efficiency of
this strategy for a complex pose, that is, for fine-grained descriptions, can be assessed by measur-
ing the effect of sample size and pose resolution on accuracy and computation. Two conclusions
emerge: (1) fragmenting the training data, which is inevitable in dealing with high in-class varia-
tion, severely reduces accuracy; (2) the computational cost at high resolution is prohibitive due to
visiting a massive pose partition.

To overcome data-fragmentation we propose a novel framework centered on pose-indexed fea-
tures which assign a response to a pair consisting of an image and a pose, and are designed to be
stationary: the probability distribution of the response is always the same if an object is actually
present. Such features allow for efficient, one-shot learning of pose-specific classifiers. To avoid
expensive scene processing, we arrange these classifiers in a hierarchy based on nested partitions
of the pose; as in previous work on coarse-to-fine search, this allows for efficient processing.

The hierarchy is then folded” for training: all the classifiers at each level are derived from one
base predictor learned from all the data. The hierarchy is “unfolded” for testing: parsing a scene
amounts to examining increasingly finer object descriptions only when there is sufficient evidence
for coarser ones. In this way, the detection results are equivalent to an exhaustive search at high
resolution. We illustrate these ideas by detecting and localizing cats in highly cluttered greyscale
scenes.

Keywords: supervised learning, computer vision, image interpretation, cats, stationary features,
hierarchical search

1. Introduction

This work is about a new strategy for supervised learning designed for detecting and describing
instances from semantic object classes in still images. Conventional examples include faces, cars
and pedestrians. We want to do more than say whether or not there are objects in the scene; we
want to provide a description of the pose of each detected instance, for example the locations of
certain landmarks. More generally, pose could refer to any properties of object instantiations which
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are not directly observed; however, we shall concentrate on geometric descriptors such as scales,
orientations and locations.

The discriminative approach to object detection is to induce classifiers directly from training
data without a data model. Generally, one learns a pose-specific binary classifier and applies it many
times (Rowley et al., 1998; Papageorgiou and Poggio, 2000; Viola and Jones, 2004; LeCun et al.,
2004). Usually, there is an outer loop which visits certain locations and scales with a sliding window,
and a purely learning-based module which accommodates all other sources of variation and predicts
whether or not a sub-window corresponds to a target. Parsing the scene in this manner already
exploits knowledge about transformations which preserve object identities. In particular, translating
and scaling the training images to a reference pose allows for learning a base classifier with all the
training examples. We refer to such learning methods, which use whole image transforms in order
to normalize the pose, as “data-aggregation” strategies.

However such transforms, which must be applied online during scene parsing as well as offline
during training, may be costly, or even ill-defined, for complex poses. How does one “normalize”
the pose of a cat? In such cases, an alternative strategy, which we call “data-fragmentation,” is to
reduce variation by learning many separate classifiers, each dedicated to a sub-population of objects
with highly constrained poses and each trained with only those samples satisfying the constraints.
Unfortunately, this approach to invariance might require a massive amount of training data due to
partitioning the data. As a result, the discriminative approach has been applied almost exclusively
to learning rather coarse geometric descriptions, such as a facial landmark and in-plane orientation,
by some form of data-aggregation. Summarizing: aggregating the data avoids sparse training but
at the expense of costly image transforms and restrictions on the pose; fragmenting the data can,
in principle, accommodate a complex pose but at the expense of crippling performance due to
impoverished training.

A related trade-off is the one between computation and pose resolution. Sample size permit-
ting, a finer subpopulation (i.e., higher pose resolution) allows for training a more discriminating
classifier. However, the more refined the pose partitioning, the more online computation because
regardless of how the classifiers are trained, having more of them means more costly scene pars-
ing. This trade-off is clearly seen for cascades (Viola and Jones, 2004; Wu et al., 2008): at a high
true positive rate, reducing false positives could only come at the expense of considerable compu-
tation due to dedicating the cascade to a highly constrained pose, hence increasing dramatically the
number of classifiers to train and evaluate in order to parse the scene.

To set the stage for our main contribution, a multi-resolution framework, we attempted to quan-
tify these trade-offs with a single-resolution experiment on cat detection. We considered multiple
partitions of the space of poses at different resolutions or granularities. For each partition, we built
a binary classifier for each cell. There are two experimental variables besides the resolution of the
partition: the data may be either fragmented or aggregated during training and the overall cost of
executing all the classifiers may or may not be equalized. Not surprisingly, the best performance
occurs with aggregated training at high resolution, but the on-line computational cost is formidable.
The experiment is summarized in an Appendix A and described in detail in Fleuret and Geman
(2007).

Our framework is designed to avoid these trade-offs. It rests on two core ideas. One, which
is not new, is to control online computation by using a hierarchy of classifiers corresponding to
a recursive partitioning of the pose space, that is, parameterizations of increasing complexity. A
richer parametrization is considered only when “necessary”, meaning the object hypothesis cannot
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Figure 1. An idealized example of stationary features. The pose of the scissors could be the loca-
tions of the screw and the two tips, in which case one might measure the relative frequency
a particular edge orientation inside in a disc whose radius and location, as well as the cho-
sen orientation, depends on the pose. If properly designed, the response statistics have a
distribution which is invariant to the pose when in fact a pair of scissors is present (see
§3.3).

be ruled out with a simpler one (see, e.g., Fleuret and Geman, 2001; Stenger et al., 2006). (Note
that cascades are efficient for a similar reason - they are coarse-to-fine in terms of background
rejection.) However, hierarchical organization alone is unsatisfactory because it does not solve the
data-fragmentation problem. Unless data can be synthesized to generate many dedicated sets of
positive samples, one set per node in the hierarchy, the necessity of training a classifier for every
node leads to massive data fragmentation, hence small node-specific training sets, which degrades
performance.

The second idea, the new one, is to avoid data-fragmentation by using pose-specific classifiers
trained with “stationary features”, a generalization of the underlying implicit parametrization of the
features by a scale and a location in all the discriminative learning techniques mentioned earlier.
Each stationary feature is “pose-indexed” in the sense of assigning a numerical value to each com-
bination of an image and a pose (or subset of poses). The desired form of stationarity is that, for any
given pose, the distribution of the responses of the features over images containing an object at that
pose does not depend on the pose. Said another way, if an image and an object instance at a given
pose are selected, and only the responses of the stationary features are provided, one cannot guess
the pose. This is illustrated in Figure 1. knowing only the proportion of edges at a pose-dependent
orientation in the indicated disk provides no information about the pose of the scissors.

Given that objects are present, a stationary feature evaluated at one pose is then the “same” as
at any other, but not in a literal, point-wise sense as functions, but rather in the statistical, pop-
ulation sense described above. In particular, stationary features are not “object invariants” in the
deterministic sense of earlier work (Mundy and Zisserman, 1992) aimed at discovering algebraic
and geometric image functionals whose actual values were invariant with respect to the object pose.
Our aim is less ambitious: our features are only “invariant” in a statistical sense. But this is enough
to use all the data to train each classifier.

Of course the general idea of connecting features with object poses is relatively common in ob-
ject recognition. As we have said, pose-indexing is done implicitly when transforming images to a
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reference location or scale, and explicitly when translating and scaling Haar wavelets or edge detec-
tors to compute the response of a classifier for a given location and scale. Surprisingly, however, this
has not been formulated and analyzed in general terms, even though stationarity is all that is needed
to aggregate data while maintaining the standard properties of a training set. Stationarity makes
it possible, and effective, to analytically construct an entire family of pose-specific classifiers—all
those at a given level of the hierarchy—using one base classifier induced from the entire training set.
In effect, each pose-specific classifier is a “deformation” of the base classifier. Hence the number
of classifiers to train grows linearly, not exponentially, with the depth of the pose hierarchy. This
is what we call a folded hierarchy of classifiers: a tree-structured hierarchy is collapsed, like a fan,
into a single chain for training and then expanded for coarse-to-fine search.

The general formulation opens the way for going beyond translation and scale, for example
for training classifiers based on checking consistency among parts or deformations of parts instead
of relying exclusively on their marginal appearance. Such a capability is indeed exploited by the
detector we designed for finding cats and greatly improves the performance compared to individual
part detection. This gain is shown in Figure 2, the main result of the paper, which compares ROC
curves for two detectors, referred to as “H+B” and “HB” in the figure. In the “H+B” case, two
separate detectors are trained by data aggregation, one dedicated to heads and the other to bodies;
the ROC curve is the best we could do in combining the results. The “HB” detector is a coordinated
search based on stationary features and a two-level hierarchy; the search for the belly location in
the second-level is conditional on a pending head location and data fragmentation is avoided with
pose-indexed features in a head-belly frame. A complete explanation appears in § 6.

In §2, we summarize previous, related work on object detection in still images. Our notation
and basic ideas are formally introduced in 83, highlighting the difference between transforming the
signal and the features. The motivational experiment, in which we substantiate our claims about the
forced trade-offs when conventional approaches are applied to estimating a complex pose, could be
read at this point; see Appendix A. Embedding pose-indexed classifiers in a hierarchy is described
in 84 and the base classifier, a variation on boosting, is described in §5. In 86 we present our
main experiment - an application of the entire framework, including the specific base features, pose
hierarchy and pose-indexed features, to detecting cats in still images. Finally, some concluding
remarks appear in §7.

2. Related Work

We characterize other work in relation to the two basic components of our detection strategy: ex-
plicit modeling of a hidden pose parameter, as in many generative and discriminative methods, and
formulating detection as a controlled “process of discovery” during which computation is invested
in a highly adaptive and unbalanced way depending on the ambiguities in the data.

2.1 Hidden Variables

A principal source of the enormous variation in high-dimensional signals (e.g., natural images) is
the existence of a hidden state which influences many components (e.g., pixel intensities) simulta-
neously, creating complex statistical dependencies among them. Still, even if this hidden state is of
high dimension, it far simpler than the observable signal itself. Moreover, since our objective is to
interpret the signal at a semantic level, much of the variation in the signal is irrelevant.
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Figure 2: ROC curves for head-belly detection. The criterion for a true detection is that the esti-
mates of the head location, head size and belly location all be close to the true pose (see
8 6.6). The H+B detector is built from separate head and body detectors while the HB
detector is built upon pose indexed features (see § 6.5).

In fact, conditioning on the value of the hidden state, which means, in practice, testing for the
presence of a target with a given pose, often leads to very simple, yet powerful, statistical models by
exploiting the increased degree of independence among the components of the signal. This means
decisions about semantic content can be based on directly aggregating evidence (naive Bayes). The
problem is computational: there are many possible hidden states.

The extreme application of this conditioning paradigm is classical template matching (Grenan-
der, 1993): if the pose is rich enough to account for all non-trivial statistical variation, then even
a relatively simple metric can capture the remaining uncertainty, which is basically noise. But this
requires intense online computation to deform images or templates many times. One motivation of
our approach is to avoid such online, global image transformations.

Similarly, the purest learning techniques, such as boosting (Viola and Jones, 2004) and convolu-
tion neural networks (LeCun et al., 2004), rely on explicitly searching through a subset of possible
scales and locations in the image plane; that is, coarse scale and coarse location are not learned.
Nor is invariance to illumination, usually handled at the feature level. However, invariance to other
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geometric aspects of the pose, such as rotation, and to fine changes in scale and translation, are
accommodated implicitly, that is, during classifier training.

On the contrary, “Part and Structure” models and other generative (model-based) approaches
aim at more complex representations in terms of properties of “parts” (Li et al., 2003; Schneiderman
and Kanade, 2004; Crandall and Huttenlocher, 2006). However, tractable learning and computation
often require strong assumptions, such as conditional independence in appearance and location.
In some cases, each part is characterized by the response of a feature detector, and the structure
itself—the arrangement of parts—can either be captured by a complex statistical model, incurring
severe computation in both training and testing, or by a simple model by assuming conditional
independence among part locations given several landmarks, which can lead to very efficient scene
parsing with the use of distance transforms. Some of these techniques do extend to highly articulated
and deformable objects; see, for example, Huttenlocher and Felzenszwalb (2005). Still, modeling
parts of cats (heads, ears, paws, tails, etc.) in this framework may be difficult due to the low
resolution and high variation in their appearance, and in the spatial arrangements among them.
Compositional models (Geman et al., 2002; Zhu and Mumford, 2006; Ommer et al., 2006) appear
promising. Among these, in the “patchwork of parts” model (citepamit-trouve2007, the feature
extractors are, like here, defined with respect to the pose of the object to detect, in that case a series
of control points. This strategy allows for aggregating training samples with various poses through
the estimation of common distributions of feature responses.

2.2 A Process of Discovery

We do not regard the hidden pose as a “nuisance” parameter, secondary to detection itself, but rather
as part of what it means to “recognize” an object. In this regard, we share the view expressed in Ge-
man et al. (2002), Crandall and Huttenlocher (2006) and elsewhere that scene interpretation should
go well beyond pure classification towards rich annotations of the instantiations of the individual
objects detected.

In particular, we envision detection as an organized process of discovery, as in Amit et al. (1998),
and we believe that computation is a crucial issue and should be highly concentrated. Hierarchical
techniques, which can accomplish focusing, are based on a recursive partitioning of the pose space
(or object/pose space), which can be either ad-hoc (Geman et al., 1995; Fleuret and Geman, 2001)
or learned (Stenger et al., 2006; Gangaputra and Geman, 2006). There is usually a hierarchy of clas-
sifiers, each one trained on a dedicated set of examples—those carrying a pose in the corresponding
cell of the hierarchy. Often, in order to have enough data to train the classifiers, samples must be
generated synthetically, which requires a sophisticated generative model.

Our work is also related to early work on hierarchical template-matching (Gavrila, 1998) and
hierarchical search of pose space using branch and bound algorithms (Huttenlocher and Rucklidge,
1993), and to the cascade of classifiers in Viola and Jones (2004) and Wu et al. (2008).

Relative to the tree-based methods, we use the stationary features to aggregate data and build
only one base classifier per level in the hierarchy, from which all other classifiers are defined analyt-
ically. Finally, the fully hierarchical approach avoids the dilemma of cascades, namely the sacrifice
of selectivity if the pose space is coarsely explored and the sacrifice of computation if it is finely
explored, that is, the cascades are dedicated to a very fine subset of poses.
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3. Stationary Features

We regard the image as a random variable | assuming values in I. The set of possible poses for
an object appearing in | is . We only consider geometric aspects of pose, such as the sizes of
well-defined parts and the locations of distinguished points.

Let 71,...,9 be apartition of . Aswe will see in 8 4, we are interested in partitions of varying
granularities for the global process of detection, ranging from rather coarse resolution (small K) to
rather fine resolution (larger K), but in this section we consider one fixed partition.

For every k =1...K, let Yx be a Boolean random variable indicating whether or not there is a
target in | with pose in 9%. The binary vector (Y1,...,Yk) is denoted Y.

In the case of merely detecting and localizing an object of fixed size in a gray-scale image of
size W x H, natural choices would be 7 = [0,1]%" and 9 = [0,W] x [0, H], the image plane itself;
that is, the pose reduces to one location. If the desired detection accuracy were 5 pixels, then the
pose cells might be disjoint 5 x 5 blocks and K would be approximately % On the other hand, if
the pose accommodated scale and multiple points of interest, then obviously the same accuracy in
the prediction would lead to a far larger K, and any detection algorithm based on looping over pose
cells would be highly costly.

We denote by 7 a training set of images labeled with the presences of targets

7= { (I(t)’Y(t)) }1<t<T ’

where each 11 is a full image, and Y is the Boolean vector indicating the pose cells occupied by
targets in 1Y), We write
&1 — RN,

for a family of N image features such as edge detectors, color histograms, Haar wavelets, etc.
These are the “base features” (&1,...,&n) which will be used to generate our stationary feature
vector. We will write &(1) when we wish to emphasize the mapping and just & for the associated
random variable. The dimension N is sufficiently large to account for all the variations of the feature
parameters, such as locations of the receptive fields, orientations and scales of edges, etc.

In the next section, § 3.1, we consider the problem of “data-fragmentation”, meaning that spe-
cialized predictors are trained with subsets of the positive samples. Then, in § 3.2, we formalize
how fragmentation has been conventionally avoided in simple cases by normalizing the signal itself;
we then propose in 8 3.3 the idea of pose-indexed, stationary features, which avoids global signal
normalization both offline and online and opens the way for dealing with complex pose spaces.

3.1 Data Fragmentation

Without additional knowledge about the relation between Y and I, the natural way to predict Yy for
eachk =1...K is to train a dedicated classifier

fx: I —{0,1}

{ (I(t)’Y"(t)) }1§t§T

derived from Z". This corresponds to generating a single sample from each training scene, labeled
according to whether or not there is a target with pose in 9%. This is data-fragmentation: training

with the training set
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Y, the pose space

7,...,9, a partition of the pose space 9

Z,aW x H pixel lattice

I=1{0,...,255}7%, a set of gray-scale images of size W x H

I, a random variable taking values in I

Yk, @ Boolean random variable indicating if there is a target in | with pose in 9%
Y =(Y1,...,YKk)

T, the number of training images, each with or without targets

T ={(1W,YY)},_ 7, the training set

fx: I — {0, 1}, a predictor of Yy based on the image

Q, number of image features

&: 1 — RN, afamily of base image features

Y:{1,...,K} x I — I, an image transformation intended to normalize a given pose
X:{1,...,K} x I — R, afamily of pose-indexed features

X(k), the r.v. corresponding to X(k,I)

9: R — {0, 1}, a predictor trained from all the data

Table 1: Notation

fx involves only those data which exactly satisfy the pose constraint; no synthesis or transforma-
tions are exploited to augment the number of samples available for training. Clearly, the finer the
partitioning of the pose space ¢, the fewer positive data points are available for training each fy.

Such a strategy is evidently foolhardy in the standard detection problems where the pose to be
estimated is the location and scale of the target since it would mean separately training a predictor
for every location and every scale, using as positive samples only full scenes showing an object at
that location and scale. The relation between the signal and the pose is obvious and normalizing
the positive samples to a common reference pose by translating and scaling them is the natural
procedure; only one classifier is trained with all the data. However, consider a face detection task
for which the faces to detect are known to be centered and of fixed scale, but are of unknown out-of-
plane orientation. Unless 3D models are available, from which various views can be synthesized, the
only course of action is data-fragmentation: partition the pose space into several cells corresponding
to different orientation ranges and train a dedicated, range-specific classifier with the corresponding
positive samples.

3.2 Transforming the Signal to Normalize the Pose

As noted above, in simple cases the image samples can be normalized in pose. More precisely, both
training and scene processing involve normalizing the image through a pose-indexed transformation

Wi {l,... KyxI—T1.

The “normalization property” we desire with respect to ¢ is that the conditional probability distri-
bution of &(Y(k, 1)) given Yy = 1 be the same for every 1 <k <K.

The intuition behind this property is straightforward. Consider for instance a family of edge de-
tectors and consider again a pose consisting of a single location z. In such a case, the transformation
Y applies a translation to the image to move the center of pose cell 9% to a reference location. If
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a target was present with a pose in 9% in the original image, it is now at a reference location in the
transformed image, and the distribution of the response of the edge detectors in that transformed
image does not depend on the initial pose cell 9%.

We can then define a new training set

{ (E (llJ(k, I(t))) ’Yk(t)) }1§k§K,1§t§T

with elements residing in RN x {0,1}. Due to the normalization property, and under mild conditions,
the new training set indeed consists of independent and identically distributed components (see the
discussion in the following section). Consequently, this set allows for training a classifier

g:RN —{0,1}
from which we can analytically define a predictor of Yy for any k by

fie(1) =g @ (W(k,1))).

This can be summarized algorithmically as follows: In order to predict if there is a target in image
I with pose in 9, first normalize the image with ( so that a target with pose in 9% would be moved
to a reference pose cell, then extract features in that transformed image using &, and finally evaluate
the response of the predictor g from the computed features.

3.3 Stationary Features

The pose-indexed, image-to-image mapping Y is computationally intensive for any non-trivial trans-
formation. Even rotation or scaling induces a computational cost of O(W H) for every angle or scale
to test during scene processing, although effective shortcuts are often employed. Moreover, this
transformation does not exist in the general case. Consider the two instances of cats shown in Fig-
ure 3. Rotating the image does not allow for normalizing the body orientation without changing the
head orientation, and designing a non-affine transformation to do so would be unlikely to produce a
realistic cat image as well as be computationally intractable when done many times. Finally, due to
occlusion and other factors, there is no general reason a priori for  to even exist.

Instead, we propose a different mechanism for data-aggregation based on pose-indexed features
which directly assign a response to a pair consisting of an image and a pose cell and which satisfy a
stationarity requirement. This avoids assuming the existence of a normalizing mapping in the image
space, not to mention executing such a mapping many times online.

A stationary feature vector is a pose-indexed mapping
X:{1,...,K} x I - R?,
with the property that the probability distribution
P(X(k) =x|Yx=1), xeR® (1)

is the same for every k = 1,...,K, where X(k) denotes the random variable X(k,I).
The idea can be illustrated with two simple examples, a pictorial one in Figure 1 and a numerical
onein § 3.4.
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Figure 3: Aggregating data for efficient training by normalizing the pose at the image level is diffi-
cult for complex poses. For example, linear transformations cannot normalize the orien-
tation of the body without changing that of the head.

In practice, the relationship with &, the base feature vector, is simply that the components of the
feature vector X(k) are chosen from among the components of &; the choice depends on k. In this
case, We can write

X(K) = (Emk)» &k - - Emo(k))»

where {ry(k),...,mo(k)} C {1,...,N} is the ordered selection for index k. The ordering matters
because we want (1) to hold and hence there is a correspondence among individual components of
X(k) from one pose cell to another.

Note: We shall refer to (1) as the “stationarity” or “weak invariance” assumption. As seen below,
this property justifies data-aggregation in the sense of yielding an aggregated training set satisfying
the usual conditions. Needless to say, however, demanding that this property be satisfied exactly is
not practical, even arguably impossible. In particular, with our base features, various discretizing
effects come into play, including using quantized edge orientations and indexing base features with
rectangular windows. Even designing the pose-indexed features to approximate stationarity by ap-
propriately selecting and ordering the base features is non-trivial; indeed, it is the main challenge
in our framework. Still, using pose-indexed features which are even approximately stationary will
turn out to be very effective in our experiments with cat detection.

The contrast between signal and feature transformations can be illustrated with the following
commutative diagram: Instead of first applying a normalizing mapping @ to transform | in accor-
dance with a pose cell k, and then evaluating the base features, we directly compute the feature
responses as functions of both the image and the pose cell.
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Once provided with X, a natural training set consisting of TK samples is provided by

Togg = { (XU (00, Y @)

) }1§t§T,1§k§K '
Under certain conditions, the elements of this training set will satisfy the standard assumption of
being independent and identically distributed. One condition, the key one, is stationarity, but tech-
nically three additional conditions would be required: 1) property (1) extend to conditioning on
Yx = 0; 2) the “prior” distribution P(Yx = 1) be the same for every k =1,...,K; 3) for each t, the
samples X (k),k=1,...,K, be independent. The first condition says that the background distribu-
tion of the pose-indexed features is spatially homogeneous, the second that all pose cells are a priori
equally likely and the third, dubious but standard, says that the image data associated with different
pose cells are independent despite some overlap. In practice, we view these as rough guidelines; in
particular, we make no attempt to formally verify any of them.

It therefore makes sense to train a predictor g : R? — {0, 1} using the training set (2). We can
then define

f(1) =g(X(k, 1)), k=1,...,K.

Notice that the family of classifiers { fx } is also “stationary” in the sense that conditional distribution
of fx given Yx = 1 does not depend on k.

3.4 Toy Example

We can illustrate the idea of stationary features with a very simple roughly piecewise constant, one-
dimensional signal I(n),n=1,...,N. The base features are just the components of the signal itself:
&(1) = 1. The pose space is

7 ={(61,6;) € {1,....N}?, 1< 8; <8, <N}

and the partition is the finest one whose cells are individual poses {(61,6;)}; hence K = |9|. For
simplicity, assume there is at most one object instance, so we can just write Y = (081,6;) € 9" to
denote an instance with pose (81,6). For u = (uy,...,uy) € RN, the conditional distribution of I
givenY is

P(l=ulY =(061,68)) = H P(I(n) =un|Y = (61,62))

= @) [] @) [] ew

B2<n
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Figure 4: Examples of toy scenes

Figure 5: Hierarchical detection. Each ellipse on stands for a pose cell 9’[(((’), k=1,...,Kq,d =
1,...,D. Here, D=3 and K; =2, K, =4, K3 = 8. Gray ellipses correspond to pose
cells whose fk(d) respond positively, and dashed ellipses correspond to pose cells whose
classifiers are not evaluated during detection. As shown by the arrows, the algorithm

ignores all sub-cells of a cell whose classifier responds negatively.

where @, is a normal law with mean p and standard deviation 0.1. Hence the signal fluctuates around
0 on the “background” and around 1 on the target, see Figure 4.

We define a four-dimensional pose-indexed feature vector taking the values of the signal at the
extremities of the target, that is

X((01,02),1) = (1(81—1),1(61),1(82),1(62+1)).

Clearly,
P(X(01,82) = (X1,%2,X3,X4) | Yor.6, = 1) = @o(X1)@1(X2) @1(X3) Po(X4)

which is not a function of 6;,0,. Consequently, X is stationary and the common law in (1) is
@ X QL X @1 X @.
4. Folded Hierarchies

We have proposed normalizing the samples through a family of pose-indexed features instead of
whole image transforms in order to avoid fragmentation of the data. Since only one classifier must
be built for any partition of the pose space, and no longer for every cell of such a partition, neither
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the cost of learning nor the required size of the training set grows linearly with the number K of
pose cells in the partition. However, one main drawback remains: We must still visit all the pose
cells online, which makes the cost of scene processing itself linear in K.

A natural strategy to address computational cost is an hierarchical search strategy based upon a
recursive partitioning of 9. As in previous work (Fleuret and Geman, 2001; Gangaputra and Ge-
man, 2006), there is a succession of nested partitions of increasing resolution and a binary classifier
assigned to each cell. Given such a hierarchy, the detection process is adaptive: a classifier is eval-
uated for a certain pose cell only if all the classifiers for its ancestor cells have been evaluated and
responded positively.

Note: This is not a decision tree, both in terms of representation and processing. The hierarchy
recursively partitions the space of hidden variables not the feature space, and the edges from a node
to its children do not represent the possible values of a node classifier. Moreover, during processing,
a data point may traverse many branches at once and may reach no leaves or reach many leaves.

The crucial difference with previous work is that, using stationary features, only one classifier
must be trained for each level, not one classifier for each cell. In essence, the hierarchy is “folded”
(like a fan) for training: The entire learning strategy described in 83 is repeated for each level in the
hierarchy. This is quite straightforward and only summarized below.

Consider a sequence of partitions of &

{ylm),...,yéj)}, 1<d<D,

for which any cell 99 for k = 1,...,Kq1, is a (disjoint) union of cells at the next level d + 1.
Consequently, we can identify every ka(d) with the node of a multi-rooted tree: A leaf node for
d = D and an internal node otherwise. A three-level hierarchy is shown in Figure 5.

Given such a pose hierarchy, we can construct a scene parsing algorithm aimed at detecting all
instances of objects at a pose resolution corresponding to the finest partition. Again, the processing
strategy is now well-known. This algorithm has the desirable property of concentrating computation
on the ambiguous pose-image pairs.

Let Yk(d) denote a Boolean random variable indicating whether or not there is a target in | with
pose in ka(d) and let X(@ denote a pose-indexed feature vector adapted to the partition {9/1((”,...,
QfK(j)}. For each level d, we train a classifier g(@) exactly as described in §3.3, and define a predictor

of v, by
() =@ (X k1))

The hierarchy is “unfolded” for testing and the predictors are evaluated in an adaptive way by
visiting the nodes (cells) according to breadth-first “coarse-to-fine” search. A classifier is evaluated
if and only if all its ancestors along the branch up to its root have been evaluated and returned a
positive response. In particular, once a classifier at a node responds negatively, none of the descen-
dant classifiers are ever evaluated. The result of the detection process is the list of leaves which are
reached and respond positively. In this way, pose cells corresponding to obvious non-target regions
such as flat areas are discarded early in the search and the computation is invested the ambiguous
areas, for example, parts of images with “cat-like” shape or texture.
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5. Base Classifier

As described in 84, given a family of pose-indexed features and a hierarchical partitioning of the
pose space, we build a binary classifier g(@) for each level d in the hierarchy, trained from a set
of examples of the type described in 83.3. In this section we describe that classifier, dropping the
superscript d for clarity. The actual parameter values we used for the experiments on cat detection
are given in 86.5.

Evidently, inducing such a mapping g is a standard machine learning problem. A simple candi-
date is a thresholded linear combination of V stumps trained with Adaboost (Freund and Schapire,
1999):

1 if i ail{x5i2n} >p
g(x) = -

0 otherwise.

Here, xJ is the j’th coordinate of the feature vector.

For any given true positive rate n, the threshold p in g, and more generally the thresholds p(@
in g(@,1 <d < D, are chosen to achieve on a validation set a targeted decreasing sequence of true
positive rates yielding n.

To select the stumps, that is the aj, & and Tj, special attention must be given to the highly un-
balanced populations we are dealing with. Of course in our detection problem, the prior distribution
is very skewed, with an extremely low probability of the presence of a target at a pose picked at
random. Correspondingly, the number of samples we have from the positive population (cats in our
case) is orders of magnitude smaller than the number of samples we can easily assemble from the
negative population. Still, any tractable sampling of the negative population is still too sparse to
account for the negative sub-population which lives close to positive examples. To address these
issues, we propose a variation the standard weighting-by-sampling in order to approximate standard
Adaboost using a training set containing one million negative examples.

The popular cascade approach handles that dilemma with bootstrapping: training each level with
a sample of negative examples which survive the filtering of the previous classifiers in the cascade.
In this way the sampling is eventually concentrated on the “difficult” negative samples. This is
similar in practice to what boosting itself is intended to do, namely ignore easily classified samples
and concentrate on the difficult ones. We avoid the complexity of tuning such a cascade by using all
the negative examples through an asymmetric, sampling-based version of standard boosting. This
provides an excellent approximation to the exact weighting for a fraction of the computational cost.

When picking a stump we approximate the weighted error with an error computed over all
positive samples and a random subset of negative samples drawn according to the current boosting
weights. Hence, we keep the response of the strong classifier up-to-date on S~ 108 samples, but we
pick the optimal weak learners at every step based on M ~10* samples.

More precisely, at a certain iteration of the boosting procedure, let ws denote the weight of
samples=1,...,S, letYs € {0,1} be its true class, and let

Wneg = z Ws1iv—o
5
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be the total weight of the negative samples. We sample independently M indices Si,...,Sy in
{1,...,S} according to the negative sample density

Loy
P(Sm=s) = 200 g M
Wheg
Then we re-weight the training samples as follows:
, Q)s |f Ys - l
= m:Sp=:s .
“ Oheg [I{m - Sm = s}| otherwise.

M

This can be seen as an approximation to the distribution on the full training set obtained by (1) keep-
ing all positive samples with their original weights, and (2) selecting a random subset of negative
samples according to their original weights, and giving them a uniform weight.

However, sampling the negative examples at every boosting step is computationally very ex-
pensive, mainly because it requires loading into memory all the training images, and extracting the
edge features at multiple scales. Consequently, we decompose the total number of stumps V into
B blocks of U stumps, and run this sampling strategy at the beginning of every block. We also
sample a subset of R features among the millions of features available at the beginning of every
block. Hence, our overall learning process can be seen as a standard boosting procedure decom-
posed into B blocks of U steps. At the beginning of every block, we sample M negative samples
among S according to their current boosting weight and we sample R features uniformly among the
Q to consider. We then run U boosting steps based on these features and these training samples.

This process ensures that any sample for which the classifier response is strongly incorrect
will eventually be picked. In our experiments we sample ten negative examples for every positive
example. From a computational perspective this sampling is negligible as it only accounts for about
1% of the total training time.

6. Cat Detection

We now specialize everything above to cat detection. The original training images and available
ground truth are described in 86.1. Then, in 86.2, we define a family of highly robust, base image
features based on counting edge frequencies over rectangular areas, and in §6.3 we propose a way to
index such features with the pose of a cat defined by its head location and scale and belly location.
The specific pose cell hierarchy is described in §6.4 and choice of parameters for the classifiers in
86.5. Finally, the results of our experiments are presented in §6.6, including the similarity criteria
used for performance evaluation, the post-processing applied to the raw detections in order to reduce
“duplicate” detections and the manner of computing ROC curves.

6.1 Cat Images and Poses

The cat images were randomly sampled from the web site RateMyKitten® and can be downloaded
from http: //wwv. i di ap. ch/fol ded- ctf. Images of cluttered scenes without cats, mostly home
interiors, were sampled from various web sites. The complete database we are using has 2,330
images containing a total of 1,988 cats.

1. Web site can befound at ht t p: / / www. r at enyki tt en. com
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Figure 6: Each target is labeled by hand with a pose (h,r,b) € Z x R* x Z specifying the head
location, the head radius and the belly location.

Each cat was manually annotated with one circle roughly outlining the head, from which the
head size (diameter) and head location (center) are derived, and one point placed more or less, quite
subjectively, at the center of mass, which we have referred to as the “belly” location (see Figure 6).
Hence, the pose of a cat is (h,r,b) where h is the location in the image plane Z of the center of the
head, r its radius, and b is the belly location.

For each experiment, we split this database at random into a training set containing 75% of the
images and a test set containing the other 25%. Two-thirds of the training set are used for choosing
the weak learners and one-third for the thresholds.

6.2 Base Image Features

As described in 83, the pose-indexed features are defined in terms of base image features. First,
an image is processed by computing, at every location z € Z, the responses of eight edge-detectors
similar to those proposed in Amit et al. (1998) (see Figures 7 and 8), but at three different scales,
ending up with 24 Boolean features ei1(z),...,€24(z) corresponding to four orientations and two
polarities. In addition, we add a variance-based binary test eg(z) which responds positively if the
variance of the gray levels in a 16 x 16 neighborhood of z exceeds a fixed threshold. Our features
are based on counting the number of responses of these 25 detectors over a rectangular areas (Fan,
2006), which can be done in constant time by using 25 integral images (Simard et al., 1999).

From these edge maps and the raw gray levels we define the following three types of base image
features:

1. Edge proportion: The proportion of an edge type in a rectangular window. Given a rectan-
gular window W and an edge type A € {0,1,...,24}, the response is the number of pixels z in
W for which ey (z) = 1, divided by the total number of pixels in W if A = 0 or by the number
of pixels inW for which eg(z) =1 if A > 0.
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Figure 7: Our edge-detectors: For each of four orientations and two polarities, an edge is detected at
a certain location (the dark circle) if the absolute difference between the intensities of the
two pixels linked by the thick segment is greater than each of the six intensity differences
for pixels connected by a thin segment.

Figure 8: Result of the edge detector. Each one of the eight binary images in the two bottom rows
corresponds to one orientation of the edge detectors of Figure 7.
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Figure 9: From the centroid of any pose cell, we define three reference frames: The head frame is
centered on the head center, of size twice the head size; the belly frame is centered on the
belly and of size four times the head size; the head-belly frame is centered on the middle
point between the head and the belly, of height twice the head size, of width twice the
distance between the head and the belly, and is tilted accordingly.

2. Edge orientation histogram distance: Given again two rectangular windows W1 and W5,
and a scale s, the response is the L' norm between the empirical eight-bin histograms of
orientations corresponding to the eight edge detectors at scale s.

3. Gray-scale histogram distance: Given two rectangular windows W; and W5, the response is
the L! norm between the sixteen-bin empirical histograms of gray-scales for the two windows.

The rational behind the features of type 1 is to endow the classifiers with the ability to check for
the presence of certain pieces of outlines or textures. The motivation for types 2 and 3 is to offer the
capability of checking for similarity in either edge or gray-scale statistics between different parts of
the image, typically to check for a silhouette in the case of very blurry contours. Some examples of
features actually picked during the training are shown in Figures 10 and 11.

6.3 Indexing Features by Pose

As formalized in 83.3, a pose-indexed feature is a real-valued function of both a pose cell and an
image. The features described in the previous section are standard functionals of the image alone.
Since the response of any of them depends on counting certain edge types over rectangular windows
in the image, we construct our family of pose-indexed features indirectly by indexing both the edge
types and the window locations with the pose cell.
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Figure 10: Registration on the true poses of the first feature selected in the HB detector (see 86.5),
which compares edge orientation histograms. Both windows are defined relative to the
head frame.

For any pose cell index k, we compute the average head location h = hy, the average belly
location b = by, and the average head radius r = ry of the pose cell 9. From these parameters we
compute three reference frames, as shown on Figure 9:

1. The head frame is a square centered on h and of size 4r.
2. The belly frame is a square centered on b and of size 8r.

3. The head-belly frame is a rectangle centered on the midpoint of h and b, tilted accordingly,
and of height 4r and width twice ||h —Db||.

Note that the definition of such a frame actually involves the definition of a vector basis, hence
an orientation. The three types of frames are oriented according to the relative horizontal locations
of the head and belly of the cat, so a reflection around a horizontal axis of the image, hence of the
cat pose, would move the points defined in these frames consistently.

We add to the parameterization of each feature window a discrete parameter specifying in which
of these three reference frames the window is defined. Windows relative to the head or the belly
frame are simply translated and scaled accordingly. Windows relative to the head-belly frame are
translated so that their centers remain fixed in the frame, and are scaled according to the average of
the height and width of the frame. See Figures 10 and 11.

Finally, we add another binary flag to windows defined in the head-belly frame to specify if the
edge detectors are also registered. In that case, the orientation of the edges is rotated according to
the tilt of the head-belly frame.
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Figure 11: Registration on the true poses of the third feature selected in the second level of the HB
detector (see §6.5), which compares grayscale histograms. One window is relative to
the head-belly frame, and the second one to the belly frame.

6.4 Hierarchy of Poses

We only consider triples (h,r,b) which are consistent with the relative locations seen on the training
set. For instance, this discards poses with very large ratios ||h —bl|/r. However, h and b may be
very close together, for example when the belly is behind the head, or very far apart, for example
when the cat is stretched out. Hence the full pose space is " C Zx R" x Z.

We use a hierarchy with only D = 2 levels in order to concentrate on folded learning with
stationary features. The first level {9,1(1)’.“,9,}((11)} is based on first restricting the head radius
to [25,200], and on splitting that domain into 15 sub-intervals of the form [r,21/5r]. For each
such scale interval, we divide the full lattice Z into non-overlapping regular squares of the form
[Xn,Xn -+ /5] X [Yn,Yn +r/5]. This procedure creates K; ~ 50,000 head parameter cells [xn,Xn +
r/5] x [yn,Yn +r/5] x [r,2/°r] for a 640 x 480 image. For any such cell, the admissible domain
for the belly locations is the convex envelope of the belly locations seen in the training examples,
normalized in location and scale with respect to the head location and radius.

The second level {9”1(2), ey QfK(zz)} is obtained by splitting the belly location domain into regular
squares [Xp,Xp -+ /2] x [yb,Yp -+ r/2]. There are ~ 500 such belly squares, hence the total number
of pose cells in the second level is K ~ 2.5 x 107.

The top-left illustration in Figure 12 depicts the cells in the first level of the hierarchy as open
circles and cells in the second level as black dot connected to an open circle “kept alive” during
processing the first level. More specifically, as shown in Figure 12, the algorithmic process corre-
sponding to this two-level hierarchy is as follows:
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Figure 12: Parsing a scene with a two-level hierarchy to find cats: First, a classifier g1 is evaluated
over a sublattice of possible head locations and all alarms above a very low threshold
are retained. Then a classifier g is evaluated for each pair of head-belly locations on
a sublattice consistent with the retained head alarms and with observed statistics about
joint head-belly locations. For clarity, the depicted discretization of the pose space is
idealized, and far coarser than in the actual experiments; for an image of size 640 x 480
pixels, we consider ~ 50,000 head pose cells and ~ 2.5 x 107 head-belly pose cells.

1. The first stage loops over a sublattice of possible head locations and scales in the scene,
evaluates the response of the appropriate first-level classifier and retains all alarms using a
very low (i.e., conservative) threshold.

2. The second stage visits each location and scale tagged by the first stage, scans a sublattice of
all “consistent” belly locations (all those actually observed on training images) and evaluates
an appropriate second-level classifier for every such candidate pair of locations.
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6.5 Detectors

Whereas our aim is to detect both the head and the body, detecting the head alone is similar to
the well-studied problem of detecting frontal views of human faces. As stated earlier, if the pose
reduces to a single position, data-aggregation is straightforward by translating either whole images
or features. Still, detecting cat heads is a logical first step in trying to find cats since the head is
clearly the most stable landmark and the part of the cat with the least variation, assuming of course
that the head is visible, which is the case with our data (for the same reason that family photographs
display the faces of people). Moreover, comparing the performance of varying strategies (field of
view, “checking” for the belly separately, demanding “consistency”, etc.) provides some insight on
the nature of the problem and serves as a simple way of demonstrating the power of the base feature
set and the asymmetrical weighting by sampling. Detecting heads alone does not, however, expose
the full strength of the folded hierarchy; for that we need to address the harder task of accurately
estimating (h,r,b) for the visible cats, our core objective, and for which we will compare our pose-
indexed method with a more standard parts-based detector.

In all the experiments we present, the classifiers are trained as described in 85, with B = 25
blocks of U = 100 stumps (thresholded features), and we optimize over a sample of R = 10,000
pose-indexed features in every such block. The total number of negative samples we consider is
S ~ 108, and we sample M ~ 10* of these per block.

In measuring performance, we consider the two following detections strategies:

- H+B isastandard parts detector, implemented adaptively. The “+” between H and B indicates
that the two part detectors are trained separately.

The first level classifier g'* can only use pose-indexed feature defined relatively to the head
frame and the second level classifier g2 can only use pose-indexed features defined relatively
to the belly frame. Since that second-level detector is designed not to exploit the information
in the joint locations of the head and belly, the frames here have fixed orientation, and reflect-
ing the cat pose horizontally would move but not invert the frames. See 86.3 for details about
the orientations of the frames.

- HB is the hierarchical detector based on the two-level hierarchy and folded learning.

The difference with H+B is that HB uses stationary features in the second level which can
be defined relatively to any of the three reference frames (head, belly or head-belly) in order
to take into account the position of the head in searching for the belly. For instance, a pose-
indexed features in this detector could compare the texture between a patch located on the
head and a patch located on the belly.

6.6 Results

In order to be precise about what a constitutes a true detection, we define two criteria of similarity.
We say that two poses (h,r,b) and (h’,r",b’) collide if (1) The head radii are very similar: 1/1.25 <
r/r' <1.25; and (2) Either the head or belly locations are close: min(|[h—h'||,||b—b’|) <0.25v/rr’.
And we will say that two poses are similar if (1) The head radii are similar: 1/1.5 <r/r’ <1.5; (2)
the head locations are nearby each other: ||h —h’|| < 2v/rr’; and (3) the belly locations are nearby
each other: ||b —b’|| < 4+/rr’. See Figure 13.
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Figure 13: Two alarms are considered as similar if the head radii are similar and if, as shown on
this figure, the distance between the two head locations is less than the average head
radius, and if the distance between the belly locations is less than twice the average head
radius. See 86.6. Based on that criterion, if the true pose is the one shown in thin lines
and the thick poses are detections, only the leftmost one would be counted as a true hit.
The three others, shown in dashed lines, would be counted as false alarms.

Given these two criteria, the alarms kept after thresholding the classifier responses are post-
processed with a crude clustering. We visit the alarms in the order of the response of the detector,
and for each alarm we remove all others that collide with it. Then we visit these surviving alarms
again in the order of the response and for each alarm we remove all the other alarms which are
similar.

The procedure we use to produce ROC curves is the following. We run ten rounds in which
the training and test images are selected at random, and in each round we estimate the classifier
thresholds for achieving ten different true-positive rates | (see § 5). Hence, we generate 100 pairs
of rates, each consisting of a true-positive rate and an average number of false alarms per image.
An alarm is counted as true positive if there exists a cat in the image with a similar pose according
to the criterion described above.

The error rates in Figure 2 and Table 2 demonstrate the power of conditioning on the full pose.
Using stationary features to build classifiers dedicated to fine cells allows the search for one part
to be informed by the location of the other, and allows for consistency checks. This is more dis-
criminating than checking for individual parts separately. Indeed, the error rates are cut be a factor
of roughly two at very high true-positive rates and a factor of three at lower true-positive rates.
It should be emphasized as well that even the weaker ROC curve is impressive in absolute terms,
which affirms the efficacy of even the naive stationary features used by the H+B detector and the
modified boosting strategy for learning.

An example of how features selected in the second-level of the HB classifier exploit the full pose
can be seen in Figure 11. Such a feature allows the HB detector to check for highly discriminating
properties of the data, such as the continuity of appearance between the head and the belly, or
discontinuities in the direction orthogonal to the head-belly axis.

More then two-thirds of the false positives are located on or very near cats; see Figure 14. Such
false positives are exceedingly difficult to filter out. For instance, a false head detection lying around
or on the belly will be supported by the second-level classifier because the location of the true belly
will usually be visited.
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TP H+B HB
90% 12.84 5.85
80% 353 1.63
70% 135 0.50
60% 0.61 0.23
50% 033 0.12
40% 0.18 0.06
30% 0.10 0.03

Table 2: Average number of false alarms per images of size 640 x 480 vs. the true positive rate for
the head-belly detection, as defined by the similarity criterion of 86.6 and Figure 13.

Finally, we performed a similar experiment by testing the classifiers trained on the Ratemykitten
data set on a sample of cat images chosen from the PASCAL VOC2007 challenge set images.?
The PASCAL data set was assembled for evaluating methods for classification, that is, labeling
an entire image according to one of the object categories, rather than methods for object detection
and localization. There are 332 cat images in the PASCAL set; our test set consists of those 201
images for which the body is at least partially visible. This provides an even more challenging test
set than the images from Ratemykitten and the performance of our classifier is somewhat reduced.
For instance, at a true positive rate of 51%, the average number of false alarms per image of size
640 x 480 is 0.9. The results on a random sample of twenty of the 201 test images is shown in
Figure 15.

7. Conclusion

We have presented a novel detection algorithm for objects with a complex pose. Our main contri-
bution is the idea of stationary, pose-indexed features, a variation on deformable templates without
whole image transforms. This makes it possible to train pose-specific classifiers without clustering
the data, and hence without reducing the number of training examples. Moreover, combining simul-
taneous training with a sequential exploration of the pose space overcomes the main drawback of
previous coarse-to-fine strategies, especially for going beyond scale and translation. Unlike in ear-
lier variations, graded, tree-structured representations can now be learned efficiently because there
is only one classifier to train per level of the hierarchy rather than one per node.

We have illustrated these stationary features by detecting cats in cluttered still images. As
indicated earlier, the data are available at ht t p: / / www. i di ap. ch/ f ol ded- ct f . We chose boosting
with edge and intensity counts, but any base learning algorithm and any flexible base feature set
could be used. Indeed, the framework can accommodate very general features, for instance the
average color or average response of any local feature in an area defined by the pose. The resulting
algorithm is a two-stage process, first visiting potential head locations alone and then examining
additional aspects of the pose consistent with and informed by candidate head locations.

In principle, our approach can deal with very complex detection problems in which multiple
objects of interest are parametrized by a rich hidden pose. However, two basic limitations must

2. Website canbefound at htt p: // pascal | i n. ecs. sot on. ac. uk/ chal | enges/ VOCT/ voc2007/ .
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Figure 14: Detection results with stationary features and a folded two-level hierarchy on scenes
picked uniformly at random in the RateMykitten test set, with a true-positive rate of
71%. The circle shows the estimated head size and location, and the dot the estimated
belly location.
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Figure 15: Detection results with stationary features and a folded two-level hierarchy on scenes
picked uniformly at random in the PASCAL VOC2007 challenge test set, with a true-
positive rate of 50%. The circle shows the estimated head size and location, and the dot
the estimated belly location.

first be addressed. The first is the design of adequate stationary features. Whereas difficult, this
is far simpler than the search for full geometric invariants. Since the hidden state is explicitly
examined in traversing the hierarchy, there is no need to integrate over all possible values of the
hidden quantities. The second difficulty is labeling a training set with rich ground truth. One
way to tackle this problem is by exploiting other information available during training, for instance
temporal consistency if there are motion data. Our viewpoint is that small, richly annotated, training
sets are at least as appealing for general learning as large ones with minimal annotation.
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Figure 16: A few positive examples picked uniformly at random in the simplified setting of the
motivational experiment. Top row: samples from the head experiments. Bottom two
rows: samples from the head-belly experiments. The crosses depict the head and belly
centers provided on the training data. The boxes show the admissible pose domain ¢'.

Appendix A. Quantifying Trade-offs

We summarize two series of experiments designed to study the impact on accuracy of data-fragment-
ation, with and without controlling for total online computation. In both series the goal is to predict
the presence of a target with high accuracy in pose. A more detailed account of these experiments
can be found in Fleuret and Geman (2007).

A.1l Settings

Since training with fragmentation is not feasible for any complete partition of a complex pose space
at a realistic resolution, the images we consider in these experiments have been cropped from the
original data set so that the pose space 9 is already strongly constrained.

In the first series of experiments the target pose is the center of the cat head, constrained to
9 = [—-20,20] x [—-20,20] in a 100 x 100 image. It is this pose space that will be investigated
at different resolutions. The top row of Figure 16 shows a few of these scenes with a target. In
the second series of experiments the pose is the pair of locations (h,b) for the head and belly,
constrained to 9" = ([0,5] x [0,5]) x (|—80,80] x [—20,80]) in a 200 x 140 image centered at the
square. The two bottom rows of Figure 16 show a few of these scenes with a target.

In both series, our objective is to compare the performance of classifiers when the training data
are either fragmented or aggregated and when the computational cost is either equalized or not.
More precisely, we consider three partitions of 9 into K = 1, 4 and 16 pose cells. In each series,
we build four detection systems. Three of them are trained under data-fragmentation at the three
considered resolutions, namely K =1, K = 4 or K = 16 pose cells. The fourth classifier is trained
with the pose-indexed, stationary features at the finest resolution K = 16. The stationary features
are based on the head frame alone for the head experiments, and on both the head frame and the
head-belly frame for the head-belly experiments.
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The computational cost for evaluating one such classifier is proportional to the number of stumps
it combines. In the particular case of boosting, a classifier combining only a fixed number of weak
learners is still effective, and hence, unlike many discriminative methods, computation is easy to
control. This motivates a very simple strategy to equalize the cost among experiments: We simply
control the total number of feature evaluations.

As a measure of performance, we estimate the number of false alarms for any given true pos-
itive rate. In order to compare results across resolutions, the labeling of detections as true or false
positives occurs at the coarsest resolution. For simplicity, for the head-belly case, we only score the
estimated head location.

A.2 Results

The results demonstrate the gain in performance in constraining the population provided there is
no fragmentation of the data. In the head experiments, even with fragmentation, higher resolution
results in fewer false alarms. The improvement is marginal at high true positive rates, but increases
to two-fold for a true positive rate of 70%. This is not true for the head-belly experiments, where
sixteen pose cells do worse than four, with or without cost equalization, which can be explained to
some extent by the lower variation in the appearance of cat heads than full cat bodies, and hence
fewer samples may be sufficient for accurate head detection.

As expected, without controlling the on-line computational cost, aggregation with stationary
features is more discriminating than the fragmented classifiers in both experiments and at any true
positive rate, reducing the false positive rate by a factor of three to five. Still, the performance of
the classifiers when cost is equalized shows the influence of computation in this framework: at the
finest resolution, the number of false alarms in the head experiments increases by a factor greater
than four at any true-positive rate, and by two orders of magnitude in the head-belly experiments.

These results also demonstrate the pivotal role of computation if we are to extend this approach
to a realistically fine partition of a complex pose space. Consider an image of resolution 640 x 480
and a single scale range for the head. Obtaining an accuracy in the locations of the head and the
belly of five pixels requires more than 7 x 10° pose cells. Investing computation uniformly among
cells is therefore hopeless, and argues for an adaptive strategy able to distribute computation in a
highly special and uneven manner.

The conclusions drawn can be summarized in two key points:

1. The need for data-aggregation: Dealing with a rich pose by training specialized predictors
from constrained sub-populations is not feasible, both in terms of offline computation and
sample size requirements. Aggregation of data using stationary features appears to be a
sound strategy to overcome the sample size dilemma as it transfers the burden of learning to
the design of the features.

2. The need for adaptive search: If fragmentation can be avoided and a single classifier built
from all the data and analytically transformed into dedicated classifiers, the computation
necessary to cover a partition of a pose space of reasonable accuracy is not realistic if the
effort is uniformly distributed over cells.

As indicated, stationary features provide a coherent strategy for dealing with data-aggregation
but do not resolve the computational dilemma resulting from investigating many possible poses
during scene processing. Hierarchical representations largely do.
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