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Abstract
In this paper we use the methodology introduced by Dhurandhar and Dobra (2009) for analyzing
the error of classifiers and the model selection measures, to analyze decision tree algorithms. The
methodology consists of obtaining parametric expressions for the moments of the generalization
error (GE) for the classification model of interest, followed by plotting these expressions for inter-
pretability. The major challenge in applying the methodology to decision trees, the main theme of
this work, is customizing the generic expressions for the moments of GE to this particular classifica-
tion algorithm. The specific contributions we make in this paper are: (a) we primarily characterize
a subclass of decision trees namely, Random decision trees, (b) we discuss how the analysis extends
to other decision tree algorithms and (c) in order to extend the analysis to certain model selection
measures, we generalize the relationships between the moments of GE and moments of the model
selection measures given in (Dhurandhar and Dobra, 2009) to randomized classification algorithms.
An empirical comparison of the proposed method with Monte Carlo and distribution free bounds
obtained using Breiman’s formula, depicts the advantages of the method in terms of running time
and accuracy. It thus showcases the use of the deployed methodology as an exploratory tool to
study learning algorithms.
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1. Introduction

Consider the problem of estimating how a given classification algorithm (rather than a particular
classifier) performs on a given joint distribution over the input-output space (X ×Y ). As opposed
to the general setup in machine learning where the distribution is unknown and only independent
and identically distributed (i.i.d.) samples are available, in this scenario, in principle, the behavior
of classification algorithm can be accurately studied. If this problem be solved efficiently, it offers
an alternative line of study for classification algorithms and potentially unique insights into the
non-asymptotic behavior of learning algorithms.

While the problem of estimating classification algorithm performance on a given distribution
might look simple, solving it efficiently poses significant technical hurdles. The most natural way
of studying a classification algorithm would be to sample N datapoints from the given distribution,
train the algorithm to produce a classifier, test the classifier on a few sampled test sets and report
the average error computed over these test sets. A shortcoming of the above approach is that based
on just one single instance of the algorithm (since the algorithm was trained on a single data set of
size N) we conclude about its general behavior. A straightforward extension of the above approach
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to make the results more relevant in studying the algorithm would be to sample multiple data sets
of size N, train on each of them to produce different classifiers, compute the test error for each of
the classifiers and calculate the average and variance of the obtained test errors. This procedure
would be a better indicator of the behavior of the algorithm than the previous case since we study
multiple instances of the algorithm than just an isolated instance. Ideally, we would want to study
the behavior of the algorithm by training it on all possible data sets of size N producing a variety of
classifiers and then evaluating the expected value and variance of the generalization error (GE) of
each of these classifiers. The GE of a classifier ζ is given by,

GE(ζ) = E [λ(ζ(x),y)]

= P [ζ(x) 6=y]

where λ(., .) is a 0-1 loss function, x is an input and y is an output and the expectation is over the
input-output space X ×Y . The expected value and variance of GE over all possible classifiers1 are
denoted by,

EZ(N) [GE(ζ)] ,

Var(GE(ζ)) = EZ(N)×Z(N)

[

GE(ζ)GE(ζ′)
]

−EZ(N) [GE(ζ)]2

where Z(N) represents the space of all possible classifiers produced by training the classification al-
gorithm on all data sets of size N (denoted by D(N)), drawn from the joint distribution. With this we
have shown that the moments provide a natural and informative avenue for studying classification
algorithms. The question that now arises is, can we compute them efficiently. In our previous work
(Dhurandhar and Dobra, 2009), we presented a general framework for computing these quantities
for an arbitrary classification algorithm efficiently. By extensive use of the linearity of expectation
and change of the order of sums (and integrals), the moments of GE can be expressed in terms of
the behavior of the classification algorithm on specific inputs rather than on the whole space, thus
reducing the complexity from an exponential in the size of the input space to linear for the com-
putation of the first moment and quadratic for the second moment. As part of this prior work, the
generic expressions to compute the moments were customized for the Naive Bayes Classification
algorithm. In the present work we customize the generic expressions to compute moments of the
generalization error for a more popular classification algorithm: Random decision trees.

The specific contributions we make are: We develop a characterization for a subclass of decision
trees. In particular, we characterize Random decision trees which are an interesting variant with re-
spect to three popular stopping criteria namely; fixed height, purity and scarcity (i.e., fewer than
some threshold number of points in a portion of the tree). The analysis directly applies to categori-
cal as well as continuous attributes with split points predetermined for each attribute. Moreover, the
analysis in Section 3.3 is applicable to even other deterministic attribute selection methods based on
information gain, gini gain etc. These and other extensions of the analysis to continuous attributes
with dynamically chosen split points is discussed in Section 5. In the experiments that ensue the
theory, we compare the accuracy of the derived expressions with direct Monte Carlo (i.e., hold-out-
set estimation) and Breiman’s strength and correlation based bounds (Breiman, 2001) on synthetic

1. Expectations over Z(N) are more general than over D(N) since the classification algorithm can be randomized.
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distributions as well as on distributions built on real data. Notice that using the expressions, the
moments can be computed without explicitly building the tree. We also extend the relationships be-
tween the moments of GE and moments of cross validation error (CE), leave-one-out error (LE) and
hold-out-set error (HE) given in Dhurandhar and Dobra (2009) which were applicable only to de-
terministic classification algorithms, to be made applicable to randomized classification algorithms.

2. Preliminaries

Model selection for classification is one of the major challenges in Machine Learning and Data-
mining. Given an i.i.d. sample from the underlying probability distribution, the classification model
selection problem consists in building a classifier by selecting among competing models. Ideally
the model selected minimizes GE. Since GE cannot be directly computed, part of the sample is
used to estimate GE through measures such as cross validation, hold-out-set, leave-one-out, etc.
Though certain rules of thumb are followed by practitioners w.r.t. training size and other parameters
specific to the validation measures in evaluating models through empirical studies (Kohavi, 1995;
Blum et al., 1999) and certain asymptotic results exist (Vapnik, 1998; Shao, 1993), the fact remains
that most of these models and model selection measures are not well understood in real life (non-
asymptotic) scenarios (e.g., what fraction should be test and training, what should be the value k in
k-fold cross validation etc.). This lack of deep understanding limits our ability of using the models
most effectively and maybe more importantly trusting the models to perform well in a particular
application.

Recently, a novel methodology was proposed in Dhurandhar and Dobra (2009) to study the
behavior of models and model selection measures. Since the methodology is at the core of the
current work, we briefly describe it together with the motivation for using this type of analysis for
classification in general and decision trees in particular.

2.1 What is the Methodology?

The methodology for studying classification models consists of studying the behavior of the first
two central moments of the GE of the classification algorithm studied. The moments are taken over
the space of all possible classifiers produced by the classification algorithm, by training it over all
possible data sets sampled i.i.d. from some distribution. The first two moments give enough infor-
mation about the statistical behavior of the classification algorithm to allow interesting observations
about the behavior/trends of the classification algorithm w.r.t. any chosen data distribution.

2.2 Why have such a Methodology?

The answers to the following questions shed light on why the methodology is necessary if tight
statistical characterization is to be provided for classification algorithms.

1. Why study GE ? The biggest danger of learning is overfitting the training data. The main idea
in using GE as a measure of success of learning instead on the empirical error on a given data
set is to provide a mechanism to avoid this pitfall. Implicitly, by analyzing GE all the input is
considered.

2. Why study the moments instead of the distribution of GE ? Ideally, we would study the dis-
tribution of GE instead of moments in order to get a complete picture of what is its behavior.
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Studying the distribution of discrete random variables, except for very simple cases, turns out
to be very hard. The difficulty comes from the fact that even computing the probability of
a single point is intractable since all combinations of random choices that result in the same
value for GE have to be enumerated. On the other hand, the first two central moments coupled
with distribution independent bounds such as Chebychev and Chernoff give guarantees about
the worst possible behavior that are not too far from the actual behavior (small constant fac-
tor). Interestingly, it is possible to compute the moments of a random variable like GE without
ever explicitly writing or making use of the formula for the cumulative distribution function.
What makes such an endeavor possible is extensive use of the linearity of expectation.

3. Why characterize a class of classifiers instead of a single classifier ? While the use of GE as
the success measure is standard practice in Machine Learning, characterizing classes of clas-
sifiers instead of the particular classifier produced on a given data set is not. From the point of
view of the analysis, without large testing data sets it is not possible to evaluate directly GE
for a particular classifier. By considering classes of classifiers to which a classifier belongs,
an indirect characterization is obtained for the particular classifier. This is precisely what
Statistical Learning Theory (SLT) does; there the class of classifiers consists in all classifiers
with the same VC dimension. The main problem with SLT results is that classes based on
VC dimension are too large, thus results tend to be pessimistic. In our methodology, the class
of classifiers consists only of the classifiers that are produced by the given classification al-
gorithm from data sets of fixed size from the underlying distribution. This is the probabilistic
smallest class in which the particular classifier produced on a given data set can be placed in.

2.3 How do we Implement the Methodology ?

One way of approximately estimating the moments of GE over all possible classifiers for a particular
classification algorithm is by directly using Monte Carlo. If we use Monte Carlo directly, we first
need to produce a classifier on a sampled data set then test on a number of test sets sampled from the
same distribution acquiring an estimate of the GE of this classifier. Repeating this entire procedure
a few times we would acquire estimates of GE for different classifiers. Then by averaging the error
of these multiple classifiers we would get an estimate of the first moment of GE. The variance of
GE can also be similarly estimated. The problem with this procedure is that the space of all possible
data sets can be huge. For instance, if we have d attributes each taking m values then the number of
possible data sets of size N is Nmd

−1. Even for any reasonable assignment to N (say, 100), m (say
2) and d (say 3) the number of experiments that need to be performed to guarantee accurate (if not
exact) estimation of the moments seems unreasonable.

Another way of estimating the moments of GE, is by obtaining parametric expressions for them.
If this can be accomplished the moments can be computed exactly. Moreover, by dexterously ob-
serving the manner in which expressions are derived for a particular classification algorithm, in-
sights can be gained into analyzing other algorithms of interest. Though deriving the expressions
may be a tedious task, using them we obtain highly accurate estimates of the moments. In this paper,
we propose this second alternative for analyzing a subclass of decision trees. The key to the analysis
is focusing on the learning phase of the algorithm. In cases where the parametric expressions are
computationally intensive to compute directly, we show that approximating individual terms using
Monte Carlo we obtain accurate estimates of the moments when compared to directly using Monte
Carlo (first alternative) for the same computational cost.
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If the moments are to be studied on synthetic data then the distribution is anyway assumed and
the parametric expressions can be directly used. If we have real data an empirical distribution can
be built on the data set and then the parametric expressions can be used.

2.4 Applications of the Methodology

It is important to note that the methodology is not aimed towards providing a way of estimating
bounds for GE of a classifier on a given data set (i.e., finding distribution free bounds). The primary
goal is creating an avenue in which learning algorithms can be studied precisely, that is, studying
the statistical behavior of a particular algorithm w.r.t. a chosen/built distribution. Below, we discuss
the two most important perspectives in which the methodology can be applied.

2.4.1 ALGORITHMIC PERSPECTIVE

If a researcher/practitioner designs a new classification algorithm, he/she needs to validate it. Stan-
dard practice is to validate the algorithm on a relatively small (5-20) number of data sets and to
report the performance. By observing the behavior of only a few instances of the algorithm the
designer infers its quality. Moreover, if the algorithm under performs on some data sets, it can be
sometimes difficult to pinpoint the precise reason for its failure. If instead he/she is able to derive
parametric expressions for the moments of GE, the test results would be more relevant to the par-
ticular classification algorithm, since the moments are over all possible data sets of a particular size
drawn i.i.d. from some chosen/built distribution. Testing individually on all these data sets is an
impossible task. Thus, by computing the moments using the parametric expressions the algorithm
would be tested on a plethora of data sets with the results being highly accurate. Moreover, since
the testing is done in a controlled environment, that is, all the parameters are known to the designer
while testing, he/she can precisely pinpoint the conditions under which the algorithm performs well
and the conditions under which the algorithm under performs.

2.4.2 DATA SET PERSPECTIVE

If an algorithm designer validates his/her algorithm by computing moments as mentioned earlier, it
can instill greater confidence in the practitioner searching for an appropriate algorithm for his/her
data set. The reason for this being, if the practitioner has a data set which has a similar structure
or is from a similar source as the test data set on which an empirical distribution was built and
favorable results reported by the designer, then this would mean that the results apply not only to
that particular test data set, but to other similar type of data sets and since the practitioner’s data set
belongs to this similar collection, the results would also apply to his. Note that a distribution is just
a weighting of different data sets and this perspective is used in the above exposition.

3. Computing Moments

In this section we first provide the necessary technical groundwork, followed by customization of
the expressions for decision trees. We now introduce some notation that is used primarily in this
section. X is a random vector modeling input whose domain is denoted by X . Y is a random
variable modeling output whose domain is denoted by Y (set of class labels). Y (x) is a random
variable modeling output for input x. ζ represents a particular classifier with its GE denoted by
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GE(ζ). Z(N) denotes a set of classifiers obtained by application of a classification algorithm to
different samples of size N.

3.1 Technical Framework

The basic idea in the generic characterization of the moments of GE, is to define a class of classifiers
induced by a classification algorithm and an i.i.d. sample of a particular size from an underlying
distribution. Each classifier in this class and its GE act as random variables, since the process of
obtaining the sample is randomized. Since GE(ζ) is a random variable, it has a distribution. Quite
often though, characterizing a finite subset of moments turns out to be a more viable option than
characterizing the entire distribution. Based on these facts, we revisit the expressions for the first
two moments around zero of the GE of a classifier,

EZ(N) [GE(ζ)] =

∑
x∈X

P [X =x] ∑
y∈Y

PZ(N) [ζ(x)=y]P [Y (x) 6=y] ,

EZ(N)×Z(N)

[

GE(ζ)GE(ζ′)
]

=

∑
x∈X

∑
x′∈X

P [X =x]P
[

X =x′
]

·

∑
y∈Y

∑
y′∈Y

PZ(N)×Z(N)

[

ζ(x)=y∧ζ′(x′)=y′
]

·

P [Y (x) 6=y]P
[

Y (x′) 6=y′
]

From the above equations we observe that for the first moment we have to characterize the behav-
ior of the classifier on each input separately while for the second moment we need to observe its
behavior on pairs of inputs. In particular, to derive expressions for the moments of any classifica-
tion algorithm we need to characterize PZ(N) [ζ(x)=y] for the first moment and PZ(N)×Z(N)[ζ(x)=
y∧ζ′(x′)=y′] for the second moment.2 The values for the other terms denote the error of the clas-
sifier for the first moment and errors of two classifiers for the second moment which are obtained
directly from the underlying joint distribution. For example, if we have data with a class prior p for
class 1 and 1-p for class 2. Then the error of a classifier classifying data into class 1 is 1-p and the
error of a classifier classifying data into class 2 is given by p. We now focus our attention on relating
the above two probabilities, to probabilities that can be computed using the joint distribution and
the classification model viz. Decision Trees.

In the subsections that follow we assume the following setup. We consider the dimensionality
of the input space to be d. A1,A2, ...,Ad are the corresponding discrete attributes or continuous
attributes with predetermined split points. a1,a2, ...,ad are the number of attribute values/the number
of splits of the attributes A1,A2, ...,Ad respectively. mi j is the ith attribute value/split of the jth

attribute, where i ≤ a j and j ≤ d. Let C1,C2, ...,Ck be the class labels representing k classes and N
the sample size.

2. These probabilities and P [Y (x) 6=y] are conditioned on x. We omit explicitly writing the conditional since it improves
readability and is obvious from the context.
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Figure 1: The all attribute tree with 3 attributes A1, A2, A3, each having 2 values.
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Figure 2: Given 3 attributes A1, A2, A3, the path m11m21m31 is formed irrespective of the ordering
of the attributes. Three such permutations are shown in the above figure.

3.2 All Attribute Decision Trees (ATT)

Let us consider a decision tree algorithm whose only stopping criterion is that no attributes remain
when building any part of the tree. In other words, every path in the tree from root to leaf has all
the attributes. An example of such a tree is shown in Figure 1. It can be seen that irrespective of
the split attribute selection method (e.g., information gain, gini gain, randomized selection, etc.) the
above stopping criteria yields trees with the same leaf nodes. Thus although a particular path in one
tree has an ordering of attributes that might be different from a corresponding path in other trees,
the leaf nodes will represent the same region in space or the same set of datapoints. This is seen in
Figure 2. Moreover, since predictions are made using data in the leaf nodes, any deterministic way
of prediction would lead to these trees resulting in the same classifier for a given sample and thus
having the same GE. Usually, prediction in the leaves is performed by choosing the most numerous
class as the class label for the corresponding datapoint. With this we arrive at the expressions for
computing the aforementioned probabilities,

PZ(N) [ζ(x)=Ci] =

PZ(N)[ct(mp1mq2...mrdCi) > ct(mp1mq2...mrdC j),

∀ j 6= i, i, j ∈ [1, ...,k]]
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where x = mp1mq2...mrd denotes a datapoint which is also a path from root to leaf in the tree. We
refer to this path as a cell sometimes since it represents a rectangular region in a d dimensional
space. ct(mp1mq2...mrdCi) is the count of the datapoints in the cell mp1mq2...mrdCi. Henceforth,
when using the word ”path” we will strictly imply path from root to leaf. By computing the above
probability ∀ i and ∀ x we can compute the first moment of the GE for this classification algorithm.

Similarly, for the second moment we compute cumulative joint probabilities of the following
form:

PZ(N)×Z(N) [ζ(x)=Ci ∧ζ′(x′)=Cv] =
PZ(N)×Z(N)[ct(mp1...mrdCi) > ct(mp1...mrdC j),

ct(m f 1...mhdCv) > ct(m f 1...mhdCw),
∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where the terms have similar connotation as before. These probabilities can be computed exactly or
by using fast approximation techniques proposed in Dhurandhar and Dobra (2009).

3.3 Decision Trees with Non-trivial Stopping Criteria

We just considered decision trees which are grown until all attributes are exhausted. In real life
though we seldom build such trees. The main reasons for this could be any of the following: we
wish to build small decision trees to save space; certain path counts (i.e., number of datapoints in
the leaves) are extremely low and hence we want to avoid splitting further, as the predictions can
get arbitrarily bad; we have split on a certain subset of attributes and all the datapoints in that path
belong to the same class (purity based criteria); we want to grow trees to a fixed height (or depth).
These stopping measures would lead to paths in the tree that contain a subset of the entire set of
attributes. Thus from a classification point of view we cannot simply compare the counts in two
cells as we did previously. The reason for this being that the corresponding path may not be present
in the tree. Hence, we need to check that the path exists and then compare cell counts. Given the
classification algorithm, since the PZ(N) [ζ(x)=Ci] is the probability of all possible ways in which
an input x can be classified into class Ci for a decision tree it equates to finding the following kind
of probability for the first moment,

PZ(N) [ζ(x)=Ci] =

∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,

∀ j 6= i, i, j ∈ [1, ...,k]]

(1)

where p indexes all allowed paths by the tree algorithm in classifying input x. After the summation,
the right hand side term above is the probability that the cell pathpCi has the greatest count, with
the path ”pathp” being present in the tree. This will become clearer when we discuss different
stopping criteria. Notice that the characterization for the ATT is just a special case of this more
generic characterization.
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The probability that we need to find for the second moment is,

PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

=

∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,

ct(pathqCv) > ct(pathqCw), pathqexists,

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

(2)

where p and q index all allowed paths by the tree algorithm in classifying input x and x′ respectively.
The above two equations are generic in analyzing any decision tree algorithm which classifies inputs
into the most numerous class in the corresponding leaf. It is not difficult to generalize it further when
the decision in leaves is some other measure than majority. In that case we would just include that
measure in the probability in place of the inequality.

3.3.1 CHARACTERIZING Path Exists FOR THREE STOPPING CRITERIA

It follows from above that to compute the moments of the GE for a decision tree algorithm we need
to characterize conditions under which particular paths are present. This characterization depends
on the stopping criteria and split attribute selection method in a decision tree algorithm. We now
look at three popular stopping criteria, namely a) Fixed height based, b) Purity (i.e., entropy 0 or gini
index 0 etc.) based and c) Scarcity (i.e., too few datapoints) based. We consider conditions under
which certain paths are present for each stopping criteria. Similar conditions can be enumerated for
any reasonable stopping criteria. We then choose a split attribute selection method, thereby fully
characterizing the above two probabilities and hence the moments.

1. Fixed Height: This stopping criteria is basically that every path in the tree should be of length
exactly h, where h ∈ [1, ...,d]. If h = 1 we classify based on just one attribute. If h = d then
we have the all attribute tree.
In general, a path mi1m j2...mlh is present in the tree iff the attributes A1, A2, ..., Ah are chosen
in any order to form the path for a tree construction during the split attribute selection phase.
Thus, for any path of length h to be present we bi-conditionally imply that the corresponding
attributes are chosen.

2. Purity: This stopping criteria implies that we stop growing the tree from a particular split
of a particular attribute if all datapoints lying in that split belong to the same class. We call
such a path pure else we call it impure. In this scenario, we could have paths of length 1 to d
depending on when we encounter purity (assuming all datapoints don’t lie in 1 class). Thus,
we have the following two separate checks for paths of length d and less than d respectively.

a) Path mi1m j2...mld present iff the path mi1m j2...ml(d−1) is impure and attributes A1, A2, ...,

Ad−1 are chosen above Ad , or mi1m j2...ms(d−2)mld is impure and attributes A1, A2, ..., Ad−2, Ad

are chosen above Ad−1, or ... or m j2...mld is impure and attributes A2, ..., Ad are chosen above
A1.
This means that if a certain set of d−1 attributes are present in a path in the tree then we split
on the dth attribute iff the current path is not pure, finally resulting in a path of length d.

b) Path mi1m j2...mlh present where h < d iff the path mi1m j2...mlh is pure and attributes
A1, A2, ..., Ah−1 are chosen above Ah and mi1m j2...ml(h−1) is impure or the path mi1m j2...mlh
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is pure and attributes A1, A2, ..., Ah−2, Ah are chosen above Ah−1 and mi1m j2...ml(h−2)mlh is
impure or ... or the path m j2...mlh is pure and attributes A2, ..., Ah are chosen above A1 and
m j2...mlh is impure.
This means that if a certain set of h−1 attributes are present in a path in the tree then we split
on some hth attribute iff the current path is not pure and the resulting path is pure.

The above conditions suffice for ”path present” since the purity property is anti-monotone
and the impurity property is monotone.

3. Scarcity: This stopping criteria implies that we stop growing the tree from a particular split
of a certain attribute if its count is less than or equal to some pre-specified pruning bound. Let
us denote this number by pb. As before, we have the following two separate checks for paths
of length d and less than d respectively.

a) Path mi1m j2...mld present iff the attributes A1, ...,Ad−1 are chosen above Ad and ct(mi1m j2...

ml(d−1)) > pb or the attributes A1, ...,Ad−2,Ad are chosen above Ad−1 and ct(mi1m j2...

ml(d−2)mnd) > pb or ... or the attributes A2, ...,Ad are chosen above A1 and ct(mi2m j3...mld) >

pb.

b) Path mi1m j2...mlh present where h < d iff the attributes A1, ...,Ah−1 are chosen above Ah

and ct(mi1m j2...ml(h−1)) > pb and ct(mi1m j2...mlh) ≤ pb or the attributes A1, ...,Ah−2,Ah are
chosen above Ah−1 and ct(mi1m j2...ml(h−2)mnh) > pb and ct(mi1m j2...mnh) ≤ pb or ... or the
attributes A2, ...,Ah are chosen above A1 and ct(mi2m j3...mlh) > pb and ct(mi1m j2...mlh)≤ pb.
This means that we stop growing the tree under a node once we find that the next chosen
attribute produces a path with occupancy ≤ pb.

The above conditions suffice for ”path present” since the occupancy property is monotone.

We observe from the above checks that we have two types of conditions that need to be eval-
uated for a path being present namely, i) those that depend on the sample viz. mi1m j2...ml(d−1)

is impure or ct(mi1m j2...mlh) > pb and ii) those that depend split attribute selection method viz.
A1, A2, ..., Ah are chosen. The former depends on the data distribution which we have specified to
be a multinomial. The latter we discuss in the next subsection. Note that checks for a combination
of the above stopping criteria can be obtained by appropriately combining the individual checks.

3.4 Split Attribute Selection

In decision tree construction algorithms, at each iteration we have to decide the attribute variable
on which the data should be split. Numerous measures have been developed (Hall and Holmes,
2003). Some of the most popular ones aim to increase the purity of a set of datapoints that lie in
the region formed by that split. The purer the region, the better the prediction and lower the error
of the classifier. Measures such as, i) Information Gain (IG) (Quinlan, 1986), ii) Gini Gain (GG)
(Breiman et al., 1984), iii) Gain Ratio (GR) (Quinlan, 1986), iv) Chi-square test (CS) (Shao, 2003)
etc. aim at realizing this intuition. Other measures using Principal Component Analysis (Smith,
2002), Correlation-based measures (Hall, 1998) have also been developed. Another interesting yet
non-intuitive measure in terms of its utility is the Random attribute selection measure. According
to this measure we randomly choose the split attribute from available set. The decision tree that this
algorithm produces is called a Random decision tree (RDT). Surprisingly enough, a collection of
RDTs quite often outperform their seemingly more powerful counterparts (Liu et al., 2005). In this
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paper we study this interesting variant. We do this by first presenting a probabilistic characterization
in selecting a particular attribute/set of attributes, followed by simulation studies. Characterizations
for the other measures can be developed in similar vein by focusing on the working of each measure.
As an example, for the deterministic purity based measures mentioned above the split attribute
selection is just a function of the sample and thus by appropriately conditioning on the sample we
can find the relevant probabilities and hence the moments.

Before presenting the expression for the probability of selecting a split attribute/attributes in
constructing a RDT we extend the results in Dhurandhar and Dobra (2009) where relationships
were drawn between the moments of HE, CE, LE (just a special case of cross validation) and GE,
to be applicable to randomized classification algorithms. The random process is assumed to be
independent of the sampling process. This result is required since the results in Dhurandhar and
Dobra (2009) are applicable to deterministic classification algorithms and we would be analyzing
RDT’s. With this we have the following lemma.

Lemma 1 Let D and T be independent discrete random variables, with some distribution defined
on each of them. Let D and T denote the domains of the random variables. Let f (d, t) and g(d, t)
be two functions such that ∀t ∈ T ED [ f (d, t)] = ED [g(d, t)] and d ∈ D . Then, ET ×D [ f (d, t)] =
ET ×D [g(d, t)]

Proof

ET ×D [ f (d, t)] = ∑
t∈T

∑
d∈D

f (d, t)P[T = t,D = d]

= ∑
t∈T

∑
d∈D

f (d, t)P[D = d]P[T = t]

= ∑
t∈T

ED [g(d, t)]P[T = t]

= ET ×D [g(d, t)].

The result is valid even when D and T are continuous, but considering the scope of this paper we
are mainly interested in the discrete case. This result implies that all the relationships and expres-
sions in Dhurandhar and Dobra (2009) hold with an extra expectation over the t ′s, for randomized
classification algorithms where the random process is independent of the sampling process.

3.5 Random Decision Trees

In this subsection we explain the randomized process used for split attribute selection and provide
the expression for the probability of choosing an attribute/a set of attributes. The attribute selection
method we use is as follows. We assume a uniform probability distribution in selecting the attribute
variables, that is, attributes which have already not been chosen in a particular branch, have an
equal chance of being chosen for the next level. The random process involved in attribute selection
is independent of the sample and hence the lemma 1 applies. We now give the expression for
the probability of selecting a subset of attributes from the given set for a path. This expression is
required in the computation of the above mentioned probabilities used in computing the moments.
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For the first moment we need to find the following probability. Given d attributes A1, A2, ..., Ad the
probability of choosing a set of h attributes where h ∈ {1,2, ...,d} is,

P[h attributes chosen] =
1

(

d
h

)

since choosing without replacement is equivalent to simultaneously choosing a subset of attributes
from the given set.

For the second moment when the trees are different (required in the finding of variance of
CE since, the training sets in the various runs in cross validation are different, that is, for finding
EZ(N)×Z(N) [GE(ζ)GE(ζ′)]), the probability of choosing l1 attributes for path in one tree and l2

attributes for path in another tree where l1, l2 ≤ d is given by,

P[l1 attribute path in tree 1, l2 attribute path in tree 2] =
1

(

d
l1

)(

d
l2

)

since the process of choosing one set of attributes for a path in one tree is independent of the process
of choosing another set of attributes for a path in a different tree.

For the second moment when the tree is the same (required in the finding of variance of GE and
HE, that is, for finding EZ(N)

[

GE(ζ)2
]

), the probability of choosing two sets of attributes such that
the two distinct paths resulting from them co-exist in a single tree is given by the following. Assume
we have d attributes A1, A2, ..., Ad . Let the lengths of the two paths (or cardinality of the two sets)
be l1 and l2 respectively, where l1, l2 ≤ d. Without loss of generality assume l1 ≤ l2. Let p be the
number of attributes common to both paths. Notice that p ≥ 1 is one of the necessary conditions
for the two paths to co-exist. Let v ≤ p be those attributes among the total p that have same values
for both paths. Thus p− v attributes are common to both paths but have different values. At one
of these attributes in a given tree the two paths will bifurcate. The probability that the two paths
co-exist given our randomized attribute selection method is computed by finding out all possible
ways in which the two paths can co-exist in a tree and then multiplying the number of each kind
of way by the probability of having that way. A detailed proof is given in the Appendix A. The
expression for the probability based on the attribute selection method is,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(p− v)probi

where vPri =
v!

(v−i)! denotes permutation and probi =
1

d(d−1)...(d−i)(d−i−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
is

the probability of the ith possible way. For fixed height trees of height h, (l1 − i− 1)!(l2 − i− 1)!
becomes (h− i−1)!2 and probi = 1

d(d−1)...(d−i)(d−i−1)2...(d−h+1)2 .

3.6 Putting Things Together

We now have all the ingredients that are required for the computation of the moments of GE. In
this subsection we combine the results derived in the previous subsections to obtain expressions for
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PZ(N) [ζ(x)=Ci] and PZ(N)×Z(N) [ζ(x)=Ci ∧ζ′(x′)=Cv] which are vital in the computation of the
moments.

Let s.c.c.s. be an abbreviation for stopping criteria conditions that are sample dependent. Con-
versely, s.c.c.i. be an abbreviation for stopping criteria conditions that are sample independent or
conditions that are dependent on the attribute selection method. We now provide expressions for the
above probabilities categorized by the 3 stopping criteria.

3.6.1 FIXED HEIGHT

The conditions for ”path exists” for fixed height trees depend only on the attribute selection method
as seen in Section 3.3.1. Hence the probability used in finding the first moment is given by,

PZ(N) [ζ(x)=Ci]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists, ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.i., ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), ∀ j 6= i, i, j ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), ∀ j 6= i, i, j ∈ [1, ...,k]]
(

d
h

)

where h is the length of the paths or the height of the tree. The probability in the last step of the
above derivation can be computed from the underlying joint distribution. The probability for the
second moment when the trees are different is given by,

PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),∀ j 6= i,

∀w 6= v, i, j,v,w ∈ [1, ...,k]] ·PZ(N)×Z(N)[s.c.c.i.]

=
1

(

d
h

)2 (∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]).

The probability for the second moment when the trees are the same is given by,
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PZ(N)

[

ζ(x)=Ci ∧ζ(x′)=Cv
]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),∀ j 6= i, ∀w 6= v, i, j,

v,w ∈ [1, ...,k]] ·PZ(N)[s.c.c.i.]

= ∑
p,q

b

∑
t=0

bPrt(h− t −1)!2(r− v)probtPZ(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where r is the number of attributes that are common in the 2 paths, b is the number of attributes that
have the same value in the 2 paths, h is the length of the paths and probt =

1
d(d−1)...(d−t)(d−t−1)2...(d−h+1)2 . As before, the probability comparing counts can be computed from
the underlying joint distribution.

3.6.2 PURITY AND SCARCITY

The conditions for ”path exists” in the case of purity and scarcity depend on both the sample and the
attribute selection method as can be seen in 3.3.1. The probability used in finding the first moment
is given by,

PZ(N) [ζ(x)=Ci]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists, ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.i,s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p

PZ(N)[ct(pathpCi) > ct(pathpC j),s.c.c.s., ∀ j 6= i, i, j ∈ [1, ...,k]]

dChp−1(d −hp +1)

where hp is the length of the path indexed by p. The joint probability of comparing counts and
s.c.c.s. can be computed from the underlying joint distribution. The probability for the second
moment when the trees are different is given by,
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PZ(N)×Z(N)

[

ζ(x)=Ci ∧ζ′(x′)=Cv
]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw),

pathqexists,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i,

∀w 6= v, i, j,v,w ∈ [1, ...,k]] ·PZ(N)×Z(N)[s.c.c.i.]

=
1

dChp−1dChq−1(d −hp +1)(d −hq +1)
(∑

p,q
PZ(N)×Z(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]])

where hp and hq are the lengths of the paths indexed by p and q. The probability for the second
moment when the trees are the same is given by,

PZ(N)

[

ζ(x)=Ci ∧ζ(x′)=Cv
]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j), pathpexists,ct(pathqCv) > ct(pathqCw), pathqexists,

∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

= ∑
p,q

PZ(N)[ct(pathpCi) > ct(pathpC j),ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v,

i, j,v,w ∈ [1, ...,k]]PZ(N)[s.c.c.i.]

= ∑
p,q

b

∑
t=0

bPrt(hp − t −2)!(hq − t −2)!(r− v)probt

(d −hp +1)(d −hq +1)
PZ(N)[ct(pathpCi) > ct(pathpC j),

ct(pathqCv) > ct(pathqCw),s.c.c.s.,∀ j 6= i, ∀w 6= v, i, j,v,w ∈ [1, ...,k]]

where r is the number of attributes that are common in the 2 paths sparing the attributes chosen as
leaves, b is the number of attributes that have the same value, hp and hq are the lengths of the 2 paths
and without loss of generality assuming hp ≤ hq probt = 1

d(d−1)...(d−t)(d−t−1)2...(d−hp)2(d−hp−1)...(d−hq)
.

As before, the probability of comparing counts and s.c.c.s. can be computed from the underlying
joint distribution.

Using the expressions for the above probabilities the moments of GE can be computed. In next
section we perform experiments on synthetic as well as distributions built on real data to portray the
efficacy of the derived expressions.

4. Experiments

To exactly compute the probabilities for each path the time complexity for fixed height trees is
O(N2) and for purity and scarcity based trees it is O(N3). Hence, computing exactly the proba-
bilities and consequently the moments is practical for small values of N. For larger values of N,
we propose computing the individual probabilities using Monte Carlo. In the empirical studies we
report, we initially set N to small value and compute the error (i.e., expected value + standard de-
viation) exactly, using the derived expressions (which is thus the golden standard) and compare it
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Figure 3: Errors of Fixed height trees (top row figures), Purity trees (center row figures) and
Scarcity trees (bottom row figures) with N = 100 are shown. The leftmost figures are
for d = 5 and binary splits, the center figures are for d = 5 and ternary splits and the
rightmost figures are for d = 8 and binary splits. h = 3 for Fixed height trees and pb = N

10
for Scarcity based trees.
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Figure 4: Errors of Fixed height trees with N = 10000 and h = 3 are shown. In the top row d = 5
and splits are binary, in the center row d = 5 and splits are ternary and in the last row
d = 8 and splits are binary.
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Figure 5: Errors of Purity trees with N = 10000 are shown. In the top row d = 5 and splits are
binary, in the center row d = 5 and splits are ternary and in the last row d = 8 and splits
are binary.
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Figure 6: Errors of Scarcity trees with N = 10000 and pb = N
10 are shown. In the top row d = 5 and

splits are binary, in the center row d = 5 and splits are ternary and in the last row d = 8
and splits are binary.
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Figure 7: Comparison between AF and MC on three UCI data sets for trees prunned based on fixed
height (h = 3), purity and scarcity (pb = N

10 ).

Stopping Criteria Split ρ = 1 ρ = 0.36 ρ = 0.11 ρ = 0.02 ρ = 0

Fixed Height
N = 100, d = 5, h = 3 binary 29.67 1.49 0.56 0.34 0.51
N = 100, d = 5, h = 3 ternary 277.37 20.49 10.77 7.7 9.23
N = 100, d = 8, h = 3 binary 152.21 3.89 2.78 1.33 1.57

N = 10000, d = 5, h = 3 binary 41.89 2.99 1.25 0.78 0.71
N = 10000, d = 5, h = 3 ternary 575.15 30.9 15.71 11.87 10.8
N = 10000, d = 8, h = 3 binary 1813.86 7.21 3.86 2.56 2.3

Purity
N = 100, d = 5 binary 39.67 1154.1 5216.75 10783.19 13750.28
N = 100, d = 5 ternary 160.59 181.21 180.5 3281.83 6884.52
N = 100, d = 8 binary 2.8 1.9 1035.68 1211.7 1249.32

N = 10000, d = 5 binary 40.54 2897.3 11499.57 65581.6 422011.93
N = 10000, d = 5 ternary 1386.01 163245.31 675867.31 2662617.25 5781240
N = 10000, d = 8 binary 221.98 178913.85 712081.12 3113403.25 6885975

Scarcity
N = 100, d = 5 binary 17.17 17.59 17.5 17.2 17.08
N = 100, d = 5 ternary 34.10 33.55 32.88 32.18 31.52
N = 100, d = 8 binary 34.42 33.86 33.28 32.59 31.89

N = 10000, d = 5 binary 13.04 12.18 11.26 10.32 9.38
N = 10000, d = 5 ternary 61.01 60.34 59.51 58.64 57.76
N = 10000, d = 8 binary 2643.21 2642.56 2641.75 2640.89 2640.04

Table 1: The above table shows the upper bounds on EZ(N) [GE(ζ)] for different levels of correla-
tion (ρ) between the attributes and class labels obtained using Breiman’s formula.
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Stopping Criteria Pima Indians Balloon Shuttle Landing Control

Fixed Height 151.58 51.84 1.91
Purity 98.97 50.56 2.74

Scarcity 180.93 41.67 2.32

Table 2: The above table shows the upper bounds on EZ(N) [GE(ζ)] for 3 UCI data sets obtained
using Breiman’s formula.

with MC (i.e., hold-out-set estimation)3 for the same computational cost. We then choose a larger
N and show that the accuracy in estimating the error by using our expressions with Monte Carlo is
always greater than by directly using MC for the same computational cost. In fact, the accuracy of
using the expressions is never worse than MC even when MC is executed for 10 times the number
of iterations as those of our expressions. The true error or the golden standard against which we
compare the accuracy of these estimators in this scenario, (since the expressions are also approxi-
mated) is MC that is run for around 200 times the number of iterations as those of the expressions.
Moreover, in Tables 1 and 2 we depict the upper bounds on the error as computed using Breiman’s
strength and correlation based upper bound formula (Breiman, 2001).

4.1 Notation

In the experiments, AF refers to the estimates obtained by using the expressions in conjunction with
Monte Carlo. MC-i refers to simple Monte Carlo being executed for i times the number of iterations
as those of the expressions. Writing just MC denotes MC-1. The term True Error or TE refers to
the golden standard against which we compare AF and MC-i. This is relevant only for large N in
experiments on synthetic data and experiments on real data, since AF is itself the golden standard
for synthetic data experiments with a small N.

4.2 General Setup

We perform empirical studies on synthetic as well as real data. The experimental setup for synthetic
data is as follows: In our initial experiments we fix N to a 100 and then increase it to 10000. The
number of classes is fixed to two. We observe the behavior of the error for the three kinds of trees
with the number of attributes fixed to d = 5 and each attribute having 2 attribute values. We then
increase the number of attribute values to 3, to observe the effect that increasing the number of
split points has on the performance of the estimators. We also increase the number of attributes
to d = 8 to study the effect that increasing the number of attributes has on the performance. With
this we have a d + 1 dimensional contingency table whose d dimensions are the attributes and the
(d +1)th dimension represents the class labels. When each attribute has two values the total number
of cells in the table is c = 2d+1 and with three values the total number of cells is c = 3d × 2. If
we fix the probability of observing a datapoint in cell i to be pi such that ∑c

i=1 pi = 1 and the
sample size to N the distribution that perfectly models this scenario is a multinomial distribution

3. In hold-out set we build a tree, find the test error by averaging over multiple test sets. Perform this procedure multiple
times to obtain multiple test errors and find the average and variance of these test errors.
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with parameters N and the set {p1, p2, ..., pc}. In fact, irrespective of the value of d and the number
of attribute values for each attribute the scenario can be modeled by a multinomial distribution. In
the studies that follow the pi’s are varied and the amount of dependence between the attributes and
the class labels is computed for each set of pi’s using the Chi-square test (Connor-Linton, 2003).
More precisely, we sum over all i the squares of the difference of each pi with the product of
its corresponding marginals, with each squared difference being divided by this product, that is,

correlation = ∑i
(pi−pim)2

pim
, where pim is the product of the marginals for the ith cell. The behavior

of the error for trees with the three aforementioned stopping criteria is seen for different correlation
values and for a class prior of 0.5.

In case of real data, we perform experiments on distributions built on three UCI data sets. We
split the continuous attributes at the mean of the given data. We thus can form a contingency
table representing each of the data sets. The counts in the individual cells divided by the data set
size provide us with empirical estimates for the individual cell probabilities (pi’s). Thus, with the
knowledge of N (data set size) and the individual pi’s we have a multinomial distribution. Using
this distribution we observe the behavior of the error for the three kinds of trees with results being
applicable to other data sets that are similar to the original.

In Tables 1 and 2 we see the upper bounds computed using Breiman’s formula (Breiman, 2001):

κ (1−s2)
s2 where κ is the correlation between the random decision trees in an ensemble and s is the

strength of the resultant classifier.4 Since, we consider only single random decision trees in this
paper and not random forests κ = 1. To compute s we build a tree and calculate the necessary
probabilities. Knowing κ and s we find the upper bound on the GE for the particular classifier. Since,
we need an estimate of EZ(N) [GE(ζ)], we perform the above procedure multiple times thus building
multiple trees and computing an upper bound on GE for each. We then average the upper bounds
that we have computed and report the result as an estimate of the upper bound on EZ(N) [GE(ζ)].

4.3 Observations

In Figure 3 we observe the behavior of MC vs AF (the golden standard) for N = 100. We observe
that the estimates provided by MC are reasonable but not as accurate as AF for the same computa-
tional cost. The behavior of MC becomes worse as we increase the data set size (N) to 10000 as we
discuss now. Figure 4 depicts the error of Fixed height trees for different dimensionalities (5 and
8) and for different number of splits (binary and ternary). We observe here that AF is significantly
more accurate than both MC-1 and MC-10. In fact the performance of the 3 estimators namely, AF,
MC-1 and MC-10 remains more or less unaltered even with changes in the number of attributes and
in the number of splits per attribute. A similar trend is seen for both purity based trees Figure 5 as
well as scarcity based trees 6. Though in the case of purity based trees the performance of both MC-
1 and MC-10 is much superior as compared with their performance on the other two kinds of trees,
especially at low correlations. The reason for this being that, at low correlations the probability in
each cell of the multinomial is non-negligible and with N = 10000 the event that every cell contains
at least a single datapoint is highly likely. Hence, the trees we obtain with high probability using the
purity based stopping criteria are all ATT’s. Since in an ATT all the leaves are identical irrespective
of the ordering of the attributes in any path, the randomness in the classifiers produced, is only due
to the randomness in the data generation process and not because of the random attribute selection
method. Thus, the space of classifiers over which the error is computed reduces and MC performs

4. For further details refer to Breiman (2001) and Buttrey and Kobayashi (2003).
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well even for a relatively fewer number of iterations. At higher correlations and for the other two
kinds of trees the probability of smaller trees is reasonable and hence MC has to account for a larger
space of classifiers induced by not only the randomness in the data but also by the randomness in
the attribute selection method.

In case of real data too Figure 7, the performance of the expressions is significantly superior as
compared with MC-1 and MC-10. The performance of MC-1 and MC-10 for the purity based trees
is not as impressive here since the data set sizes are much smaller (in the tens or hundreds) compared
to 10000 and hence the probability of having an empty cell are not particularly low. Moreover, the
correlations are reasonably high (above 0.6).

By inspecting Tables 1 and 2 it is immediately apparent that the bound in Breiman (2001) when
applied to a single tree is ineffective in most situations—the prediction for the GE is larger than
1. For this formula to provide reasonable predictions, a large number of mostly uncorrelated trees
needs to be used so that the constant κ balances the influence of s.

4.4 Reasons for Superior Performance of Expressions

With simple MC, trees have to be built while performing the experiments. Since, the expectations
are over all possible classifiers, that is, over all possible data sets and all possible randomizations in
the attribute selection phase, the exhaustive space over which direct MC has to run is huge. No tree
has to be explicitly built when using the expressions. Moreover, the probabilities for each path can
be computed parallelly. Another reason as to why calculating the moments using expressions works
better is that the portion of the probabilities for each path that depend on the attribute selection
method are computed exactly (i.e., with no error) by the given expressions and the inaccuracies in
the estimates only occur due to the sample dependent portion in the probabilities.

5. Discussion

In the previous sections we derived the analytical expressions for the moments of the GE of decision
trees and depicted interesting behavior of RDT’s built under the 3 stopping criteria. It is clear that
using the expressions we obtain highly accurate estimates of the moments of errors for situations
of interest. In this section we discuss issues related to extension of the analysis to other attribute
selection methods and issues related to computational complexity of algorithm.

5.1 Extension

The conditions presented for the 3 stopping criteria namely, fixed height, purity and scarcity are
applicable irrespective of the attribute selection method. Commonly used deterministic attribute
selection methods include those based on Information Gain (IG), Gini Gain (GG), Gain ratio (GR)
etc. Given a sample the above metrics can be computed for each attribute. Hence, the above metrics
can be implemented as corresponding functions of the sample. For example, in the case of IG we
compute the loss in entropy (qlogq where the q’s are computed from the sample) by the addition of
an attribute as we build the tree. We then compare the loss in entropy of all attributes not already
chosen in the path and choose the attribute for which the loss in entropy is maximum. Following this
procedure we build the path and hence the tree. To compute the probability of path exists, we add
these sample dependent conditions in the corresponding probabilities. These conditions account for
a particular set of attributes being chosen, in the 3 stopping criteria. In other words, these conditions
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quantify the conditions in the 3 stopping criteria that are attribute selection method dependent. Sim-
ilar conditions can be derived for the other attribute selection methods (attribute with maximum gini
gain for GG, attribute with maximum gain ratio for GR) from which the relevant probabilities and
hence the moments can be computed. Thus, while computing the probabilities given in Equations
1 and 2 the conditions for path exists for these attribute selection methods depend totally on the
sample. This is unlike what we observed for the randomized attribute selection criterion where the
conditions for path exists depending on this randomized criterion, were sample independent while
the other conditions in purity and scarcity were sample dependent. Characterizing these probabili-
ties enables us in computing the moments of GE for these other attribute selection methods.

In the analysis that we presented, we assumed that the split points for continuous attributes were
determined apriori to tree construction. If the split point selection algorithm is dynamic, that is, the
split points are selected while building the tree, then in the path exists conditions of the 3 stopping
criteria we would have to append an extra condition namely, the split occurs at ”this” particular
attribute value. In reality, the value of ”this” is determined by the values that the samples attain for
the specific attribute in the particular data set, which is finite (since data set is finite). Hence, while
analyzing we can choose a set of allowed values for ”this” for each continuous attribute. Using
these updated set of conditions for the 3 stopping criteria the moments of GE can be computed.

Another interesting extension to the current work, in which we customized expressions for
RDT’s is to extend the analysis to Random Forests. Random Forests are essentially an ensem-
ble of RDT’s and the decision to classify a datapoint is based on a majority vote taken from this
ensemble. Hence, in the analysis to compute PZ(N) [ζ(x)=y] (which is the key ingredient in finding
the moments), we would have to compute the probability of the event that more than half of the trees
classify the input x into class y. The precise details as to how this might be accomplished efficiently
is a part of future research.

5.2 Scalability

The time complexity of implementing the analysis is proportional to the product of the size of
the input/output space5 and the number of paths that are possible in the tree while classifying a
particular input. To this end, it should be noted that if a stopping criterion is not carefully chosen
and applied, then the number of possible trees and hence the number of allowed paths can become
exponential in the dimensionality. In such scenarios, studying small or at best medium size trees is
feasible. For studying larger trees the practitioner should combine stopping criteria (e.g., pruning
bound and fixed height or scarcity and fixed height), that is, combine the conditions given for each
individual stopping criteria or choose a stopping criterion that limits the number of paths (e.g., fixed
height). Keeping these simple facts in mind and on appropriate usage, the expressions can assist in
delving into the statistical behavior of the errors for decision tree classifiers. Further speedup w/o
compromising much on accuracy is a challenge for the future.

5.3 Strengths and Limitations of the Applied Methodology

We now discuss the primary advantage and weakness of the approach taken by Statistical Learning
Theory (SLT) and our methodology from the point of view of studying classification algorithms.
SLT categorizes classification algorithms (actually the more general learning algorithms) into dif-

5. In case of continuous attributes the size of the input/output space is the size after discretization.
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ferent classes called Concept Classes. The concept class of a classification algorithm is determined
by its Vapnik-Chervonenkis (VC) dimension which is related to the shattering capability of the al-
gorithm. Distribution free bounds on the generalization error of a classifier built using a particular
classification algorithm belonging to a concept class are derived in SLT. The bounds are functions
of the VC dimension, the sample size and the training error. The strength of this technique is that
by finding the VC dimension of an algorithm we can derive error bounds for the classifiers built
using this algorithm without ever referring to the underlying distribution. A consequence of the
fact that the characterization is general is that the bounds are usually loose (Boucheron et al., 2005;
Williamson, 2001) which in turn results in making statements about any particular classifier and
hence classification algorithm weak.

The idea behind the methodology pursued in this paper was to define a class of classifiers in-
duced by a given learning algorithm and i.i.d. data of a given size. As a consequence, this class of
classifiers is much smaller than the classes considered in SLT. Hence, the characterization of this
class is strongly connected to the behavior of the classifiers and hence the classification algorithm
(as seen in this paper for RDT’s). The downside of our method is the fact that we loose the strength
to make generalized statements to the extent that SLT makes, that is, bounds that are distribution
independent. While the process of characterizing classification algorithms employing the deployed
methodology might be tedious, we believe that it leads to a more precise study of individual learning
algorithms.

6. Conclusion

In this paper we have developed a general characterization for computing the moments of the GE
for decision trees. In particular we have specifically characterized RDT’s for three stopping criteria
namely, fixed height, purity and scarcity. Being able to compute moments of GE, allows us to
compute the moments of the various validation measures and observe their relative behavior. Using
the general characterization, characterizations for specific attribute selection measures (e.g., IG, GG
etc.) other than randomized can be developed as described before. As a technical result, we have
extended the theory in Dhurandhar and Dobra (2009) to be applicable to randomized classification
algorithms; this is necessary if the theory is to be applied to random decisions trees as we did in this
paper. The experiments reported in Section 4 had two purposes: (a) portray the manner in which
the expressions can be used as an exploratory tool to gain a better understanding of decision tree
classifiers, and (b) show that the methodology in Dhurandhar and Dobra (2009) together with the
developments in this paper provide can prove to be a superior analysis tool when compared with
other techniques such as Monte Carlo and distribution free bounds.

More work needs to be done to explore the possibilities and test the limits of the kind of anal-
ysis that we have performed. However, if learning algorithms are analyzed in the manner that we
have shown, it would aid us in studying them more precisely, leading to better understanding and
improved decision-making in the practice of model selection.
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Appendix A.

The probability that two paths of lengths l1 and l2 (l2 ≥ l1) co-exist in a tree based on the randomized
attribute selection method is given by,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(r− v)probi

where r is the number of attributes common in the two paths, v is the number attributes with the
same values in the two paths, vPri = v!

(v−i)! denotes permutation and

probi = 1
d(d−1)...(d−i)(d−i−1)2...(d−l1+1)2(d−l1)...(d−l2+1)

.
We now prove the above result. The derivation of the above result will become clearer through

the following example. Consider the total number of attributes to be d as usual. Let A1, A2 and A3 be
three attributes that are common to both paths and also having the same attribute values. Let A4 and
A5 be common to both paths but have different attribute values for each of them. Let A6 belong to
only the first path and A7, A8 to only the second path. Thus, in our example l1 = 6, l2 = 7, r = 5 and
v = 3. For the two paths to co-exist notice that atleast one of A4 or A5 has to be at a lower depth than
the non-common attributes A6, A7, A8. This has to be true since, if a non-common attribute say A6 is
higher than A4 and A5 in a path of the tree then the other path cannot exist. Hence, in all the possible
ways that the two paths can co-exist, one of the attributes A4 or A5 has to occur at a maximum depth
of v+1, that is, 4 in this example. Figure 8a depicts this case. In the successive tree structures, that
is, Figure 8b, Figure 8c the common attribute with distinct attribute values (A4) rises higher up in
the tree (to lower depths) until in Figure 8d it becomes the root. To find the probability that the two
paths co-exist we sum up the probabilities of such arrangements/tree structures. The probability
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of the subtree shown in Figure 8a is 1
d(d−1)(d−2)(d−3)(d−4)2(d−5)2(d−6)

considering that we choose

attributes w/o replacement for a particular path. Thus the probability of choosing the root is 1
d , the

next attribute is 1
d−1 and so on till the subtree splits into two paths at depth 5. After the split at depth

5 the probability of choosing the respective attributes for the two paths is 1
(d−4)2 , since repetitions

are allowed in two separate paths. Finally, the first path ends at depth 6 and only one attribute has
to be chosen at depth 7 for the second path which is chosen with a probability of 1

d−6 . We now find
the total number of subtrees with such an arrangement where the highest common attribute with
different values is at depth of 4. We observe that A1, A2 and A3 can be permuted in whichever way
w/o altering the tree structure. The total number of ways of doing this is 3!, that is, 3Pr3. The
attributes below A4 can also be permuted in 2!3! w/o changing the tree structure. Moreover, A4 can
be replaced by A5. Thus, the total number of ways the two paths can co-exist with this arrangement is
3Pr32!3!2. The probability of the arrangement is hence given by, 3Pr32!3!2

d(d−1)(d−2)(d−3)(d−4)2(d−5)2(d−6)
.

Similarly, we find the probability of the arrangement in Figure 8b where the common attribute
with different values is at depth 3 then at depth 2 and finally at the root. The probabilities for
the successive arrangements are 3Pr23!4!2

d(d−1)(d−2)(d−3)2(d−4)2(d−5)2(d−6)
, 3Pr14!5!2

d(d−1)(d−2)2(d−3)2(d−4)2(d−5)2(d−6)

and 3Pr05!6!2
d(d−1)2(d−2)2(d−3)2(d−4)2(d−5)2(d−6)

respectively. The total probability for the paths to co-exist is
given by the sum of the probabilities of these individual arrangements.

In the general case, where we have v attributes with the same values the number of arrangements
possible is v + 1. This is because the depth at which the two paths separate out lowers from v + 1
to 1. When the bifurcation occurs at v + 1 the total number of subtrees is vPrv(l1 − v− 1)!(l2 −
v−1)!(r− v) with this arrangement. vPrv is the permutations of the common attributes with same
values. (l1 − v− 1)! and (l2 − v− 1)! are the total permutations of the attributes in path 1 and 2
respectively after the split. r− v is the number of choices for the split attribute. The probability of
any one of the subtrees is 1

d(d−1)...(d−v)(d−v−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
since until a depth of v + 1

the two paths are the same and then from v+2 the two paths separate out. The probability of the first
arrangement is thus, vPrv(l1−v−1)!(l2−v−1)!(r−v)

d(d−1)...(d−v)(d−v−1)2...(d−l1+1)2(d−l1)...(d−l2+1)
. For the second arrangement with

the bifurcation occurring at a depth of v, the number of subtrees is vPrv−1(l1−v)!(l2−v)!(r−v) and
the probability of any one of them is 1

d(d−1)...(d−v+1)(d−v)2...(d−l1+1)2(d−l1)...(d−l2+1)
. The probability

of the arrangement is thus vPrv−1(l1−v)!(l2−v)!(r−v)
d(d−1)...(d−v+1)(d−v)2...(d−l1+1)2(d−l1)...(d−l2+1)

. Similarly, the probabilities
of the other arrangements can be derived. Hence the total probability for the two paths to co-exist
which is the sum of the probabilities of the individual arrangements is given by,

P[l1 and l2 length paths co− exist] =
v

∑
i=0

vPri(l1 − i−1)!(l2 − i−1)!(r− v)
d(d −1)...(d− i)(d − i−1)2...(d− l1 +1)2(d − l1)...(d− l2 +1)

.
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