
Journal of Machine Learning Research 9 (2008) 1679-1709 Submitted 6/07; Revised 12/07; Published 8/08

Value Function Based Reinforcement Learning in
Changing Markovian Environments

Balázs Csanád Csáji BALAZS.CSAJI@SZTAKI.HU

László Monostori∗ LASZLO.MONOSTORI@SZTAKI.HU

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende utca 13–17, Budapest, H–1111, Hungary

Editor: Sridhar Mahadevan

Abstract

The paper investigates the possibility of applying value function based reinforcement learning (RL)
methods in cases when the environment may change over time. First, theorems are presented which
show that the optimal value function of a discounted Markov decision process (MDP) Lipschitz
continuously depends on the immediate-cost function and the transition-probability function. De-
pendence on the discount factor is also analyzed and shown to be non-Lipschitz. Afterwards, the
concept of (ε,δ)-MDPs is introduced, which is a generalization of MDPs and ε-MDPs. In this
model the environment may change over time, more precisely, the transition function and the cost
function may vary from time to time, but the changes must be bounded in the limit. Then, learning
algorithms in changing environments are analyzed. A general relaxed convergence theorem for
stochastic iterative algorithms is presented. We also demonstrate the results through three classical
RL methods: asynchronous value iteration, Q-learning and temporal difference learning. Finally,
some numerical experiments concerning changing environments are presented.

Keywords: Markov decision processes, reinforcement learning, changing environments, (ε,δ)-
MDPs, value function bounds, stochastic iterative algorithms

1. Introduction

Stochastic control problems are often modeled by Markov decision processes (MDPs) that con-
stitute a fundamental tool for computational learning theory. The theory of MDPs has grown ex-
tensively since Bellman introduced the discrete stochastic variant of the optimal control problem
in 1957. These kinds of stochastic optimization problems have great importance in diverse fields,
such as engineering, manufacturing, medicine, finance or social sciences. Several solution methods
are known, for example, from the field of [neuro-]dynamic programming (NDP) or reinforcement
learning (RL), which compute or approximate the optimal control policy of an MDP. These meth-
ods succeeded in solving many different problems, such as transportation and inventory control (Van
Roy et al., 1996), channel allocation (Singh and Bertsekas, 1997), robotic control (Kalmár et al.,
1998), production scheduling (Csáji and Monostori, 2006), logical games and problems from finan-
cial mathematics. Many applications of RL and NDP methods are also considered by the textbooks
of Bertsekas and Tsitsiklis (1996), Sutton and Barto (1998) as well as Feinberg and Shwartz (2002).

∗. Also faculty in Mechanical Engineering at the Budapest University of Technology and Economics.

c©2008 Balázs Csanád Csáji and László Monostori.

CSÁJI AND MONOSTORI

The dynamics of (Markovian) control problems can often be formulated as follows:

xt+1 = f (xt ,at ,wt), (1)

where xt is the state of the system at time t ∈ N, at is a control action and wt is some disturbance.
There is also a cost function g(xt ,at) and the aim is to find an optimal control policy that minimizes
the [discounted] costs over time (the next section will contain the basic definitions). In many appli-
cations the calculation of a control policy should be fast and, additionally, environmental changes
should also be taken into account. These two criteria are against each other. In most control appli-
cations during the computation of a control policy the system uses a model of the environment. The
dynamics of (1) can be modeled with an MDP, but what happens when the model is wrong (e.g., if
the transition function is incorrect) or the dynamics have changed? The changing of the dynamics
can also be modeled as an MDP, however, including environmental changes as a higher level MDP
very likely leads to problems which do not have any practically efficient solution methods.

The paper argues that if the model was “close” to the environment, then a “good” policy based
on the model cannot be arbitrarily “wrong” from the viewpoint of the environment and, moreover,
“slight” changes in the environment result only in “slight” changes in the optimal cost-to-go func-
tion. More precisely, the optimal value function of an MDP depends Lipschitz continuously on the
cost function and the transition probabilities. Applying this result, the concept of (ε,δ)-MDPs is in-
troduced, in which these functions are allowed to vary over time, as long as the cumulative changes
remain bounded in the limit.

Afterwards, a general framework for analyzing stochastic iterative algorithms is presented. A
novelty of our approach is that we allow the value function update operator to be time-dependent.
Then, we apply that framework to deduce an approximate convergence theorem for time-dependent
stochastic iterative algorithms. Later, with the help of this general theorem, we show relaxed conver-
gence properties (more precisely, κ-approximation) for value function based reinforcement learning
methods working in (ε,δ)-MDPs.

The main contributions of the paper can be summarized as follows:

1. We show that the optimal value function of a discounted MDP Lipschitz continuously depends
on the immediate-cost function (Theorem 12). This result was already known for the case
of transition-probability functions (Müller, 1996; Kalmár et al., 1998), however, we present
an improved bound for this case, as well (Theorem 11). We also present value function
bounds (Theorem 13) for the case of changes in the discount factor and demonstrate that this
dependence is not Lipschitz continuous.

2. In order to study changing environments, we introduce (ε,δ)-MDPs (Definition 17) that are
generalizations of MDPs and ε-MDPs (Kalmár et al., 1998; Szita et al., 2002). In this model
the transition function and the cost function may change over time, provided that the accu-
mulated changes remain bounded in the limit. We show (Lemma 18) that potential changes
in the discount factor can be incorporated into the immediate-cost function, thus, we do not
have to consider discount factor changes.

3. We investigate stochastic iterative algorithms where the value function operator may change
over time. A relaxed convergence theorem for this kind of algorithm is presented (Theorem
20). As a corollary, we get an approximation theorem for value function based reinforcement
learning methods in (ε,δ)-MDPs (Corollary 21).

1680

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

4. Furthermore, we illustrate our results through three classical RL algorithms. Relaxed conver-
gence properties in (ε,δ)-MDPs for asynchronous value iteration, Q-learning and temporal
difference learning are deduced. Later, we show that our approach could also be applied to
investigate approximate dynamic programming methods.

5. We also present numerical experiments which highlight some features of working in vary-
ing environments. First, two simple stochastic iterative algorithms, a “well-behaving” and a
“pathological” one, are shown. Regarding learning, we illustrate the effects of environmental
changes through two problems: scheduling and grid world.

2. Definitions and Preliminaries

Sequential decision making under the presence of uncertainties is often modeled by MDPs (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz, 2002). This section
contains the basic definitions, the applied notations and some preliminaries.

Definition 1 By a (finite, discrete-time, stationary, fully observable) Markov decision process (MDP)
we mean a stochastic system characterized by a 6-tuple 〈X,A,A , p,g,α〉, where the components
are as follows: X is a finite set of discrete states and A is a finite set of control actions. Mapping
A : X → P (A) is the availability function that renders a set of actions available to each state where
P denotes the power set. The transition function is given by p : X×A → ∆(X), where ∆(X) is the
set of all probability distributions over X. Let p(y |x,a) denote the probability of arrival at state y
after executing action a ∈ A(x) in state x. The immediate-cost function is defined by g : X×A → R,
where g(x,a) is the cost of taking action a in state x. Finally, α ∈ [0,1) denotes the discount rate.

An interpretation of an MDP can be given, which viewpoint is often taken in RL, if we consider
an agent that acts in an uncertain environment. The agent receives information about the state of the
environment x, at each state x the agent is allowed to choose an action a ∈ A(x). After the action
is selected, the environment moves to the next state according to the probability distribution p(x,a)
and the decision-maker collects its one-step cost, g(x,a). The aim of the agent is to find an optimal
behavior (policy), such that applying this strategy minimizes the expected cumulative costs.

Definition 2 A (stationary, Markovian) control policy determines the action to take in each state.
A deterministic policy, π : X → A, is simply a function from states to control actions. A randomized
policy, π : X → ∆(A), is a function from states to probability distributions over actions. We denote
the probability of executing action a in state x by π(x)(a) or, for short, by π(x,a). Unless indicated
otherwise, we consider randomized policies.

For any x̃0 ∈ ∆(X) initial probability distribution of the states, the transition probabilities p
together with a control policy π completely determine the progress of the system in a stochastic
sense, namely, they define a homogeneous Markov chain on X,

x̃t+1 = P(π)x̃t ,

where x̃t is the state probability distribution vector of the system at time t and P(π) denotes the
probability transition matrix induced by control policy π,

[P(π)]x,y = ∑
a∈A

p(y |x,a)π(x,a).

1681

CSÁJI AND MONOSTORI

Definition 3 The value or cost-to-go function of a policy π is a function from states to costs, Jπ :
X → R. Function Jπ(x) gives the expected value of the cumulative (discounted) costs when the
system is in state x and it follows policy π thereafter,

Jπ(x) = E

[
N

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x

]
, (2)

where Xt and Aπ
t are random variables, Aπ

t is selected according to control policy π and the distri-
bution of Xt+1 is p(Xt ,Aπ

t). The horizon of the problem is denoted by N ∈N∪{∞}. Unless indicated
otherwise, we will always assume that the horizon is infinite, N = ∞.

Definition 4 We say that π1 ≤ π2 if and only if ∀x ∈ X : Jπ1(x) ≤ Jπ2(x). A control policy is (uni-
formly) optimal if it is less than or equal to all other control policies.

There always exists at least one optimal policy (Sutton and Barto, 1998). Although there may
be many optimal policies, they all share the same unique optimal cost-to-go function, denoted by
J∗. This function must satisfy the Bellman optimality equation (Bertsekas and Tsitsiklis, 1996),
T J∗ = J∗, where T is the Bellman operator, defined for all x ∈ X, as

(T J)(x) = min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y |x,a)J(y)
]
.

Definition 5 We say that function f : X → Y , where X , Y are normed spaces, is Lipschitz continu-
ous if there exists a β ≥ 0 such that ∀x1,x2 ∈ X : ‖ f (x1)− f (x2)‖Y ≤ β‖x1 − x2‖X , where ‖·‖X and
‖·‖Y denote the norm of X and Y , respectively. The smallest such β is called the Lipschitz constant
of f . Henceforth, assume that X = Y . If the Lipschitz constant β < 1, then the function is called a
contraction. A mapping is called a pseudo-contraction if there exists an x∗ ∈ X and a β ≥ 0 such
that ∀x ∈ X , we have ‖ f (x)− x∗‖X ≤ β‖x− x∗‖X .

Naturally, every contraction mapping is also a pseudo-contraction, however, the opposite is not
true. The pseudo-contraction condition implies that x∗ is the fixed point of function f , namely,
f (x∗) = x∗, moreover, x∗ is unique, thus, f cannot have other fixed points.

It is known that the Bellman operator is a supremum norm contraction with Lipschitz constant
α. In case we consider stochastic shortest path (SSP) problems, which arise if the MDP has an
absorbing terminal (goal) state, then the Bellman operator becomes a pseudo-contraction in the
weighted supremum norm (Bertsekas and Tsitsiklis, 1996).

From a given value function J, it is straightforward to get a policy, for example, by applying a
greedy and deterministic policy (w.r.t. J), that always selects actions with minimal costs,

π(x) ∈ argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y |x,a)J(y)
]
.

Similarly to the definition of Jπ, one can define action-value functions of control polices,

Qπ(x,a) = E

[
N

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x,Aπ
0 = a

]
,

1682

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where the notations are the same as in (2). MDPs have an extensively studied theory and there exist
a lot of exact and approximate solution methods, for example, value iteration, policy iteration, the
Gauss-Seidel method, Q-learning, Q(λ), SARSA and TD(λ)—temporal difference learning (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz, 2002). Most of these
reinforcement learning algorithms work by iteratively approximating the optimal value function
and typically consider stationary environments.

If J is “close” to J∗, then the greedy policy with one-stage lookahead based on J will also be
“close” to an optimal policy, as it was proven by Bertsekas and Tsitsiklis (1996):

Theorem 6 Let M be a discounted MDP and J is an arbitrary value function. The value function
of the greedy policy based on J is denoted by Jπ. Then, we have

‖Jπ − J∗‖∞ ≤
2α

1−α
‖J− J∗‖∞ ,

where ‖·‖∞ denotes the supremum norm, namely ‖ f‖∞ = sup{| f (x)| : x ∈ domain(f)}. Moreover,
there exists an ε > 0 such that if ‖J− J∗‖∞ < ε then J∗ = Jπ.

Consequently, if we could obtain a good approximation of the optimal value function, then we
immediately had a good control policy, as well, for example, the greedy policy with respect to our
approximate value function. Therefore, the main question for most RL approaches is that how a
good approximation of the optimal value function could be achieved.

3. Asymptotic Bounds for Generalized Value Iteration

In this section we will briefly overview a unified framework to analyze value function based rein-
forcement learning algorithms. We will use this approach later when we prove convergence prop-
erties in changing environments. The theory presented in this section was developed by Szepesvári
and Littman (1999) and was extended by Szita et al. (2002).

3.1 Generalized Value Functions and Approximate Convergence

Throughout the paper we denote the set of value functions by V which contains, in general, all
bounded real-valued functions over an arbitrary set X , for example, X = X, in the case of state-
value functions, or X = X×A, in the case of action-value functions. Note that the set of value
functions, V = B(X), where B(X) denotes the set of all bounded real-valued functions over set X ,
is a normed space, for example, with the supremum norm. Naturally, bounded functions constitute
no real restriction in case of analyzing finite MDPs.

Definition 7 We say that a sequence of random variables, denoted by Xt , κ-approximates random
variable X with κ ≥ 0, in a given norm, if we have

P

(
limsup

t→∞
‖Xt −X‖ ≤ κ

)
= 1. (3)

Hence, the “meaning” of this definition is that sequence Xt converges almost surely to an environ-
ment of X and the radius of this environment is less than or equal to a given constant κ. Naturally,
this definition is weaker (more general) than the probability one convergence, which arises as a
special case, when κ = 0. In the paper we will always consider convergence in the supremum norm.

1683

CSÁJI AND MONOSTORI

3.2 Relaxed Convergence of Generalized Value Iteration

A general form of value iteration type algorithms can be given as follows,

Vt+1 = Ht(Vt ,Vt),

where Ht is a random operator on V ×V →V (Szepesvári and Littman, 1999). Consider, for exam-
ple, the SARSA (state-action-reward-state-action) algorithm which is a model-free policy evaluation
method. It aims at finding Qπ for a given policy π and it is defined as

Qt+1(x,a) = (1− γt(x,a))Qt(x,a)+ γt(x,a)(g(x,a)+αQt(Y,B)),

where γt(x,a) denotes the stepsize associated with state x and action a at time t; Y and B are random
variables, Y is generated from the pair (x,a) by simulation, that is, according to the distribution
p(x,a), and the distribution of B is π(Y). In this case, Ht is defined as

Ht(Qa,Qb)(x,a) = (1− γt(x,a))Qa(x,a)+ γt(x,a)(g(x,a)+αQb(Y,B)), (4)

for all x and a. Therefore, the SARSA algorithm takes the form Qt+1 = Ht(Qt ,Qt).

Definition 8 We say that the operator sequence Ht κ-approximates operator H : V → V at V ∈ V
if for any initial V0 ∈ V the sequence Vt+1 = Ht(Vt ,V) κ-approximates HV .

The next theorem (Szita et al., 2002) will be an important tool for proving convergence results
for value function based RL algorithms in varying environments.

Theorem 9 Let H be an arbitrary mapping with fixed point V ∗, and let Ht κ-approximate H at V ∗

over set X . Additionally, assume that there exist random functions 0 ≤ Ft(x) ≤ 1 and 0 ≤ Gt(x) ≤ 1
satisfying the four conditions below with probability one

1. For all V1,V2 ∈ V and for all x ∈ X ,

|Ht(V1,V
∗)(x)−Ht(V2,V

∗)(x)| ≤ Gt(x) |V1(x)−V2(x)| .

2. For all V1,V2 ∈ V and for all x ∈ X ,

|Ht(V1,V
∗)(x)−Ht(V1,V2)(x)| ≤ Ft(x)‖V ∗−V2‖∞ .

3. For all k > 0, ∏n
t=k Gt(x) converges to zero uniformly in x as n increases.

4. There exist 0 ≤ ξ < 1 such that for all x ∈ X and sufficiently large t,

Ft(x) ≤ ξ(1−Gt(x)).

Then, Vt+1 = Ht(Vt ,Vt) κ′-approximates V ∗ over X for any V0 ∈ V , where κ′ = 2κ/(1−ξ).

Usually, functions Ft and Gt can be interpreted as the ratio of mixing the two arguments of
operator Ht . In the case of the SARSA algorithm, described above by (4), X = X×A, Gt(x,a) =
(1− γt(x,a)) and Ft(x,a) = αγt(x,a) would be a suitable choice.

One of the most important aspects of this theorem is that it shows how to reduce the problem
of approximating V ∗ with Vt = Ht(Vt ,Vt) type operators to the problem of approximating it with a
V ′

t = Ht(V ′
t ,V

∗) sequence, which is, in many cases, much easier to be dealt with. This makes, for
example, the convergence of Watkins’ Q-learning a consequence of the classical Robbins-Monro
theory (Szepesvári and Littman, 1999; Szita et al., 2002).

1684

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

4. Value Function Bounds for Environmental Changes

In many control problems it is typically not possible to “practise” in the real environment, only a
dynamic model is available to the system and this model can be used for predicting how the environ-
ment will respond to the control signals (model predictive control). MDP based solutions usually
work by simulating the environment with the model, through simulation they produce simulated ex-
perience and by learning from these experience they improve their value functions. Computing an
approximately optimal value function is essential because, as we have seen (Theorem 6), close ap-
proximations to optimal value functions lead directly to good policies. Though, there are alternative
approaches which directly approximate optimal control policies (see Sutton et al., 2000). However,
what happens if the model was inaccurate or the environment had changed slightly? In what follows
we investigate the effects of environmental changes on the optimal value function. For continuous
Markov processes questions like these were already analyzed (Gordienko and Salem, 2000; Favero
and Runggaldier, 2002; de Oca et al., 2003), hence, we will focus on finite MDPs.

The theorems of this section have some similarities with two previous results. First, Munos and
Moore (2000) studied the dependence of the Bellman operator on the transition-probabilities and the
immediate-costs. Later, Kearns and Singh (2002) applied a simulation lemma to deduce polynomial
time bounds to achieve near-optimal return in MDPs. This lemma states that if two MDPs differ only
in their transition and cost functions and we want to approximate the value function of a fixed policy
concerning one of the MDPs in the other MDP, then how close should we choose the transitions and
the costs to the original MDP relative to the mixing time or the horizon time.

4.1 Changes in the Transition-Probability Function

First, we will see that the optimal value function of a discounted MDP Lipschitz continuously
depends on the transition-probability function. This question was analyzed by Müller (1996), as
well, but the presented version of Theorem 10 was proven by Kalmár et al. (1998).

Theorem 10 Assume that two discounted MDPs differ only in their transition functions, denoted
by p1 and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
nα‖g‖∞
(1−α)2 ‖p1 − p2‖∞ ,

recall that n is the size of the state space and α ∈ [0,1) is the discount rate.

A disadvantage of this theorem is that the estimation heavily depends on the size of the state
space, n. However, this bound can be improved if we consider an induced matrix norm for transition-
probabilities instead of the supremum norm. The following theorem presents our improved estima-
tion for transition changes. Its proof can be found in the appendix.

Theorem 11 With the assumptions and notations of Theorem 10, we have

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X×A×X → R type functions, for example, f (x,a,y) = p(y |x,a),

‖ f‖1 = max
x,a ∑

y∈X

| f (x,a,y) | . (5)

1685

CSÁJI AND MONOSTORI

If we consider f as a matrix which has a column for each state-action pair (x,a) ∈ X×A and a
row for each state y ∈ X, then the above definition gives us the usual “maximum absolute column
sum norm” definition for matrices, which is conventionally denoted by ‖·‖1.

It is easy to see that for all f , we have ‖ f‖1 ≤ n‖ f‖∞, where n is size of the state space.
Therefore, the estimation of Theorem 11 is at least as good as the estimation of Theorem 10. In
order to see that it is a real improvement consider, for example, the case when we choose a particular
state-action pair, (x̂, â), and take a p1 and p2 that only differ in (x̂, â). For example, p1(x̂, â) =
〈1,0,0, . . . ,0〉 and p2(x̂, â) = 〈0,1,0, . . . ,0〉, and they are equal for all other (x,a) 6= (x̂, â). Then, by
definition, ‖p1 − p2‖1 = 2, but n‖p1 − p2‖∞ = n. Consequently, in this case, we have improved the
bound of Theorem 10 by a factor of 2/n.

4.2 Changes in the Immediate-Cost Function

The same kind of Lipschitz continuity can be proven in case of changes in the cost function.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-costs functions, g1

and g2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

4.3 Changes in the Discount Factor

The following theorem shows that the change of the value function can also be estimated in case
there were changes in the discount rate (all proofs can be found in the appendix).

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, denoted by
α1,α2 ∈ [0,1). Let the corresponding optimal value functions be J∗

1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

The next example demonstrates, however, that this dependence is not Lipschitz continuous.
Consider, for example, an MDP that has only one state x and one action a. Taking action a loops
back deterministically to state x with cost g(x,a) = 1. Suppose that the MDP has discount factor
α1 = 0, thus, J∗1 (x) = 1. Now, if we change the discount rate to α2 ∈ (0,1), then |α1 −α2| < 1 but
‖J∗1 − J∗2‖∞ could be arbitrarily large, since J∗2 (x) → ∞ as α2 → 1.

At the same time, we can notice that if we fix a constant α0 < 1 and only allow discount factors
from the interval [0,α0], then this dependence became Lipschitz continuous, as well.

4.4 Case of Action-Value Functions

Many reinforcement learning algorithms, such as Q-learning, work with action-value functions
which are important, for example, for model-free approaches. Now, we investigate how the previ-
ously presented theorems apply to this type of value functions. The optimal action-value function,
denoted by Q∗, is defined for all state-action pair (x,a) by

Q∗(x,a) = g(x,a)+α ∑
y∈X

p(y |x,a)J∗(y),

1686

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where J∗ is the optimal state-value function. Note that in the case of the optimal action-value
function, first, we take a given action (which can have very high cost) and, only after that the action
was taken, follow an optimal policy. Thus, we can estimate ‖Q∗‖∞ by

‖Q∗‖∞ ≤ ‖g‖∞ +α‖J∗‖∞ .

Nevertheless, the next lemma shows that the same estimations can be derived for environmental
changes in the case of action-value functions as in the case of state-value functions.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-probability
functions or only in the immediate-cost functions or only in the discount factors. Let the correspond-
ing optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the bounds for ‖J∗1 − J∗2‖∞ of

Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 −Q∗

2‖∞.

4.5 Further Remarks on Inaccurate Models

In this section we saw that the optimal value function of a discounted MDP depends smoothly on
the transition function, the cost function and the discount rate. This dependence is of Lipschitz type
in the first two cases and non-Lipschitz for discount rates.

If we treat one of the MDPs in the previous theorems as a system which describes the “real”
behavior of the environment and the other MDP as our model, then these results show that even if the
model is slightly inaccurate or there were changes in the environment, the optimal value function
based on the model cannot be arbitrarily wrong from the viewpoint of the environment. These
theorems are of special interest because in “real world” problems the transition-probabilities and
the immediate-costs are mostly estimated only, for example, by statistical methods from historical
data. Later, we will see that changes in the discount rate can be traced back to changes in the
cost function (Lemma 18), therefore, it is sufficient to consider transition and cost changes. The
following corollary summarizes the results.

Corollary 15 Assume that two discounted MDPs (E and M) differ only in their transition functions
and their cost functions. Let the corresponding transition and cost functions be denoted by pE , pM

and gE , gM , respectively. The corresponding optimal value functions are denoted by J∗
E and J∗M.

The value function in E of the deterministic and greedy policy (π) with one stage-lookahead that is
based upon J∗M is denoted by Jπ

E . Then,

‖Jπ
E − J∗E‖∞ ≤

2α
1−α

[
‖gE −gM‖∞

1−α
+

cα‖pE − pM‖1

(1−α)2

]
,

where c = min{‖gE‖∞ ,‖gM‖∞} and α ∈ [0,1) is the discount factor.

The proof simply follows from Theorems 6, 11 and 12 and from the triangle inequality. Another
interesting question is the effects of environmental changes on the value function of a fixed control
policy. However, it is straightforward to prove (Csáji, 2008) that the same estimations can be derived
for ‖Jπ

1 − Jπ
2 ‖∞, where π is an arbitrary (stationary, Markovian, randomized) control policy, as the

estimations of Theorems 10, 11, 12 and 13.
Note that the presented theorems are only valid in case of discounted MDPs. Though, a large

part of the MDP related research studies the expected total discounted cost optimality criterion, in

1687

CSÁJI AND MONOSTORI

some cases discounting is inappropriate and, therefore, there are alternative optimality approaches,
as well. A popular alternative approach is to optimize the expected average cost (Feinberg and
Shwartz, 2002). In this case the value function is defined as

Jπ(x) = limsup
N→∞

1
N

E

[
N−1

∑
t=0

αtg(Xt ,A
π
t)

∣∣∣∣ X0 = x

]
,

where the notations are the same as previously, for example, as applied in Equation (2).
Regarding the validity of the results of Section 4 concerning MDPs with the expected average

cost minimization objective, we can recall that, in the case of finite MDPs, discounted cost offers
a good approximation to the other optimality criterion. More precisely, it can be shown that there
exists a large enough α0 < 1 such that ∀α ∈ (α0,1) optimal control policies for the discounted cost
problem are also optimal for the average cost problem (Feinberg and Shwartz, 2002). These policies
are called Blackwell optimal.

5. Learning in Varying Environments

In this section we investigate how value function based learning methods can act in environments
which may change over time. However, without restrictions, this approach would be too general to
establish convergence results. Therefore, we restrict ourselves to the case when the changes remain
bounded over time. In order to precisely define this concept, the idea of (ε,δ)-MDPs is introduced,
which is a generalization of classical MDPs and ε-MDPs. First, we recall the definition of ε-MDPs
(Kalmár et al., 1998; Szita et al., 2002).

Definition 16 A sequence of MDPs (Mt)
∞
t=1 is called an ε-MDP with ε > 0 if the MDPs differ

only in their transition-probability functions, denoted by pt for Mt , and there exists an MDP with
transition function p, called the base MDP, such that supt ‖p− pt‖ ≤ ε.

5.1 Varying Environments: (ε,δ)-MDPs

Now, we extend the idea described above. The following definition of (ε,δ)-MDPs generalizes the
concept of ε-MDPs in two ways. First, we also allow the cost function to change over time and,
additionally, we require the changes to remain bounded by parameters ε and δ only asymptotically,
in the limit. A finite number of large deviations is tolerated.

Definition 17 A tuple 〈X,A,A ,{pt}
∞
t=1,{gt}

∞
t=1,α〉 is an (ε,δ)-MDP with ε,δ ≥ 0, if there exists

an MDP 〈X,A,A , p,g,α〉, called the base MDP, such that

1. limsup
t→∞

‖p− pt‖ ≤ ε

2. limsup
t→∞

‖g−gt‖ ≤ δ

The optimal value function of the base MDP and of the current MDP at time t (which MDP has
transition function pt and cost function gt) are denoted by J∗ and J∗t , respectively.

In order to keep the analysis as simple as possible, we do not allow the discount rate parameter α
to change over time; not only because, for example, with Theorem 13 at hand, it would be straight-
forward to extend the results to the case of changing discount factors, but even more because, as

1688

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

Lemma 18 demonstrates, the effects of changes in the discount rate can be incorporated into the
immediate-cost function, which is allowed to change in (ε,δ)-MDPs.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount factors,
denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it differs only in the
immediate-cost function from M1, thus its discount factor is α1, and it has the same optimal value
function as M2. The immediate-cost function of M3 is

ĝ(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗2(y),

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost function
of M1 and M2; and J∗2 (y) denotes the optimal cost-to-go function of M2.

On the other hand, we can notice that changes in the cost function cannot be traced back to
changes in the transition function. Consider, for example, an MDP with a constant zero cost func-
tion. Then, no matter what the transition-probabilities are, the optimal value function remains zero.
However, we may achieve non-zero optimal value function values if we change the immediate-cost
function. Therefore, (ε,δ)-MDPs cannot be traced back to ε-MDPs.

Now, we briefly investigate the applicability of (ε,δ)-MDPs and a possible motivation behind
them. When we model a “real world” problem as an MDP, then we typically take only the major
characteristics of the system into account, but there could be many hidden parameters, as well,
which may affect the transition-probabilities and the immediate-costs, however, which are not ex-
plicitly included in the model. For example, if we model a production control system as an MDP
(Csáji and Monostori, 2006), then the workers’ fatigue, mood or the quality of the materials may
affect the durations of the tasks, but these characteristics are usually not included in the model. Ad-
ditionally, the values of these hidden parameters may change over time. In these cases, we could
either try to incorporate as many aspects of the system as possible into the model, which would most
likely lead to computationally intractable results, or we could model the system as an (ε,δ)-MDP,
which would result in a simplified model and, presumably, in a more tractable system.

5.2 Relaxed Convergence of Stochastic Iterative Algorithms

In this section we present a general relaxed convergence theorem for a large class of stochastic
iterative algorithms. Later, we will apply this theorem to investigate the convergence properties of
value function based reinforcement learning methods in (ε,δ)-MDPs.

Many learning and optimization methods can be written in a general form as a stochastic itera-
tive algorithm (Bertsekas and Tsitsiklis, 1996). More precisely, as

Vt+1(x) = (1− γt(x))Vt(x)+ γt(x)((KtVt)(x)+Wt(x)), (6)

where Vt ∈ V , operator Kt : V → V acts on value functions, each γt(x) is a random variable which
determines the stepsize and Wt(x) is also a random variable, a noise parameter.

Regarding reinforcement learning algorithms, for example, (asynchronous) value iteration, Gauss-
Seidel methods, Q-learning and TD(λ) – temporal difference learning can be formulated this way.
We will show that under suitable conditions these algorithms work in (ε,δ)-MDPs, more precisely,
κ-approximation to the optimal value function of the base MDP will be proven.

Now, in order to provide our relaxed convergence result, we introduce assumptions on the noise
parameters, on the stepsize parameters and on the value function operators.

1689

CSÁJI AND MONOSTORI

Definition 19 We denote the history of the algorithm until time t by Ft , defined as

Ft = {V0, . . . ,Vt ,W0, . . . ,Wt−1,γ0, . . . ,γt} .

The sequence F0 ⊆ F1 ⊆ F2 ⊆ ... can be seen as a filtration, viz., as an increasing sequence of
σ-fields. The set Ft represents the information available at each time t.

Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) |Ft] = 0 and E
[
W 2

t (x) |Ft
]
< C < ∞.

Regarding the stepsize parameters, γt , we make the “usual” stochastic approximation assump-
tions. Note that there is a separate stepsize parameter for each possible state.

Assumption 2 For all x and t, 0 ≤ γt(x) ≤ 1, and we have with probability one

∞

∑
t=0

γt(x) = ∞ and
∞

∑
t=0

γ2
t (x) < ∞.

Intuitively, the first requirement guarantees that the stepsizes are able to overcome the effects of
finite noises, while the second criterion ensures that they eventually converge.

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping with
Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1,V2 ∈ V ,

‖KtV1 −KtV2‖∞ ≤ βt ‖V1 −V2‖∞ .

Let us introduce a common Lipschitz constant β0 = limsup
t→∞

βt , and assume that β0 < 1.

Because our aim is to analyze changing environments, each Kt operator can have different fixed
points and different Lipschitz constants. However, to avoid the progress of the algorithm to “slow
down” infinitely, we should require that limsupt→∞ βt < 1. In the next section, when we apply this
theory to the case of (ε,δ)-MDPs, each value function operator can depend on the current MDP at
time t and, thus, can have different fixed points.

Now, we present a theorem (its proof can be found in the appendix) that shows how the function
sequence generated by iteration (6) can converge to an environment of a function.

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by iteration
(6). Then, for any V ∗,V0 ∈ V , the sequence Vt κ-approximates function V ∗ with

κ =
4ρ

1−β0
where ρ = limsup

t→∞
‖V ∗

t −V ∗‖∞.

This theorem is very general, it is valid even in the case of non-finite MDPs. Notice that V ∗ can
be an arbitrary function but, naturally, the radius of the environment of V ∗, which the sequence Vt

almost surely converges to, depends on limsupt→∞ ‖V ∗
t −V ∗‖∞.

If we take a closer look at the proof, we can notice that the theorem is still valid if each Kt

is only a pseudo-contraction but, additionally, it also attracts points to V ∗. Formally, it is enough
if we assume that for all V ∈ V , we have ‖KtV −KtV ∗

t ‖∞ ≤ βt ‖V −V ∗
t ‖∞ and ‖KtV −KtV ∗‖∞ ≤

βt ‖V −V ∗‖∞ for a suitable βt < 1. This remark could be important in case we want to apply
Theorem 20 to changing stochastic shortest path (SSP) problems.

1690

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

5.2.1 A SIMPLE NUMERICAL EXAMPLE

Consider a one dimensional stochastic process characterized by the iteration

vt+1 = (1− γt)vt + γt(Kt(vt)+wt), (7)

where γt is the learning rate and wt is a noise term. Let us suppose we have n alternating operators
ki with Lipschitz constants bi < 1 and fixed points v∗i where i ∈ {0, . . . ,n−1},

ki(v) = v+(1−bi)(v
∗
i − v).

The current operator at time t is Kt = ki (thus, V ∗
t = v∗i and βt = bi) if i ≡ t (mod n), that is, if i is

congruent with t modulo n: if they have the same remainder when they are divided by n. In other
words, we apply a round-robin type schedule for the operators.

Figure 1 shows that the trajectories remained close to the fixed points. The figure illustrates the
case of two (−1 and 1) and six (−3,−2,−1,1,2,3) alternating fixed points.

0 500 1000 1500
-4

-2

0

2

4

6

8

10

t ~ iterations iterationst ~

v(t) v(t)

fixed points

fixed points

-4

-2

0

2

4

6

8

10

0 500 1000 1500

Figure 1: Trajectories generated by (7) with two (left) and six (right) fixed points.

5.2.2 A PATHOLOGICAL EXAMPLE

During this example we will restrict ourselves to deterministic functions. According to the Banach
fixed point theorem, if we have a contraction mapping f over a complete metric space with fixed
point v∗ = f (v∗), then, for any initial v0 the sequence vt+1 = f (vt) converges to v∗. It could be
thought that this result can be easily generalized to the case of alternating operators. For example,
suppose we have n alternating contraction mappings ki with Lipschitz constants bi < 1 and fixed
points v∗i , respectively, where i ∈ {0, . . . ,n−1}, and we apply them iteratively starting from an
arbitrary v0, viz., vt+1 = Kt(vt), where Kt = ki if i ≡ t (mod n). One may think that since each ki

attracts the point towards its fixed point, the sequence vt converges to the convex hull of the fixed
points. However, as the following example demonstrates, this is not the case, since it is possible
that the point moves away from the convex hull and, in fact, it gets farther and farther after each
iteration.

Now, let us consider two one-dimensional functions, ki : R→R, where i∈ {a,b}, defined below
by Equation (8). It can be easily proven that these functions are contractions with fixed points v∗i

1691

CSÁJI AND MONOSTORI

and Lipschitz constants bi (in Figure 2, v∗a = 1, v∗b = −1 and bi = 0.9).

ki(v) =





v+(1−bi)(v∗i − v) if sgn(v∗i) = sgn(v− v∗i),

v∗i +(v∗i − v)+(1−bi)(v− v∗i) otherwise,
(8)

where sgn(·) denotes the signum1 function. Figure 2 demonstrates that even if the iteration starts
from the middle of the convex hull (from the center of mass), v0 = 0, it starts getting farther and
farther from the fixed points in each step when we apply ka and kb after each other. Nevertheless,

0 1 2 3 4 5 …-1-2-3-4-5…

v
b
* v

a
*v0

0 1 2 3 4 5-1-2-3-4-5… …

v1 = k
a
(v0)

0 1 2 3 4 5-1-2-3-4-5… …

v2 = k
b
(v1)

1

v
b
* v

a
*v0

0.9

2.92.61

v1

0 1 2 3 4 5-1-2-3-4-5… …

v2

4.61

v3= k
a
(v2)

v
b
* v

a
*

v
b
* v

a
*

4.149

v(0)

v(1)

v(2)

v(3)

t ~ iterations

t ~ iterations

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100
-20

-15

-10

-5

0

5

10

15

20

v(t)

v(t)

Figure 2: A deterministic pathological example, generated by the iterative application of (8). The
left part demonstrates the first steps, while the two images on the right-hand side show
the behavior of the trajectory in the long run.

the following argument shows that sequence vt cannot get arbitrarily far from the fixed points.
Let us denote the diameter of the convex hull of the fixed points by ρ. Since this convex hull
is a polygon (where the vertices are fixed points) ρ = maxi, j ‖v∗i − v∗j‖. Furthermore, let β0 be
defined as β0 = maxi bi and dt as dt = mini ‖v∗i − vt‖. Then, it can be proven that for all t, we have
dt+1 ≤ β0(2ρ+dt). If we assume that dt+1 ≥ dt , then it follows that dt ≤ dt+1 ≤ β0(2ρ+dt). After
rearrangement, we get the following inequality

dt ≤
2β0 ρ
1−β0

= φ(β0,ρ).

Therefore, dt > φ(β0,ρ) implies that dt+1 < dt . Consequently, if vt somehow got farther than
φ(β0,ρ), in the next step it would inevitably be attracted towards the fixed points. It is easy to
see that this argument is valid in an arbitrary normed space, as well.

1. sgn(x) = 0 if x = 0, sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0.

1692

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

5.3 Reinforcement Learning in (ε,δ)-MDPs

In case of finite (ε,δ)-MDPs we can formulate a relaxed convergence theorem for value function
based reinforcement learning algorithms, as a corollary of Theorem 20. Suppose that V consists of
state-value functions, namely, X = X. Then, we have

limsup
t→∞

‖J∗− J∗t ‖∞ ≤ d(ε,δ),

where J∗t is the optimal value function of the MDP at time t and J∗ is the optimal value function
of the base MDP. In order to calculate d(ε,δ), Theorems 11 (or 10), 12 and the triangle inequality
could be applied. Assume, for example, that we use the supremum norm, ‖·‖∞, for cost functions
and ‖·‖1, defined by Equation (5), for transition functions. Then,

d(ε,δ) =
εα‖g‖∞
(1−α)2 +

δ
1−α

,

where g is the cost function of the base MDP. Now, by applying Theorem 20, we have

Corollary 21 Suppose that we have an (ε,δ)-MDP and Assumptions 1-3 hold. Let Vt be the se-
quence generated by iteration (6). Furthermore, assume that the fixed point of each operator Kt is
J∗t . Then, for any initial V0 ∈ V , the sequence Vt κ-approximates J∗ with

κ =
4d(ε,δ)

1−β0
.

Notice that as parameters ε and δ go to zero, we get back to a classical convergence theorem for
this kind of stochastic iterative algorithm (still in a little bit generalized form, since βt might still
change over time). Now, with the help of these results, we will investigate the convergence of some
classical reinforcement learning algorithms in (ε,δ)-MDPs.

5.3.1 ASYNCHRONOUS VALUE ITERATION IN (ε,δ)-MDPS

The method of value iteration is one of the simplest reinforcement learning algorithms. In ordinary
MDPs it is defined by the iteration Jt+1 = T Jt , where T is the Bellman operator. It is known that the
sequence Jt converges in the supremum norm to J∗ for any initial J0 (Bertsekas and Tsitsiklis, 1996).
The asynchronous variant of value iteration arises when the states are updated asynchronously, for
example, only one state in each iteration. In the case of (ε,δ)-MDPs a small stepsize variant of
asynchronous value iteration can be defined as

Jt+1(x) = (1− γt(x))Jt(x)+ γt(x)(TtJt)(x),

where Tt is the Bellman operator of the current MDP at time t. Since there is no noise term in
the iteration, Assumption 1 is trivially satisfied. Assumption 3 follows from the fact that each
Tt operator is an α contraction where α is the discount factor. Therefore, if the stepsizes satisfy
Assumption 2 then, by applying Corollary 21, we have that the sequence Jt κ-approximates J∗ for
any initial value function J0 with κ = (4d(ε,δ))/(1−α).

1693

CSÁJI AND MONOSTORI

5.3.2 Q-LEARNING IN (ε,δ)-MDPS

Watkins’ Q-learning is a very popular off-policy model-free reinforcement learning algorithm (Even-
Dar and Mansour, 2003). Its generalized version in ε-MDPs was studied by Szita et al. (2002). The
Q-learning algorithm works with action-value functions, therefore, X = X×A, and the one-step
Q-learning rule in (ε,δ)-MDPs can be defined as follows

Qt+1(x,a) = (1− γt(x,a))Qt(x,a)+ γt(x,a)(T̃tQt)(x,a), (9)

(T̃tQt)(x,a) = gt(x,a)+α min
B∈A(Y)

Qt(Y,B),

where gt is the immediate-cost function of the current MDP at time t and Y is a random variable
generated from the pair (x,a) by simulation, that is, according to the probability distribution pt(x,a),
where pt is the transition function of the current MDP at time t.

Operator T̃t is randomized, but as it was shown by Bertsekas and Tsitsiklis (1996) in their
convergence theorem for Q-learning, it can be rewritten in a form as follows

(T̃tQ)(x,a) = (K̃tQ)(x,a)+W̃t(x,a),

where W̃t(x,a) is a noise term with zero mean and finite variance, and K̃t is defined as

(K̃tQ)(x,a) = gt(x,a)+α ∑
y∈X

pt(y | x,a) min
b∈A(y)

Q(y,b).

Let us denote the optimal action-value function of the current MDP at time t and the base MDP by
Q∗

t and Q∗, respectively. By using the fact that J∗(x) = mina Q∗(x,a), it is easy to see that for all
t, Q∗

t is the fixed point of operator K̃t and, moreover, each K̃t is an α contraction. Therefore, if the
stepsizes satisfy Assumption 2, then the Qt sequence generated by iteration (9) κ-approximates Q∗

for any initial Q0 with κ = (4d(ε,δ))/(1−α).
In some situations the immediate costs are randomized, however, even in this case the relaxed

convergence of Q-learning would follow as long as the random immediate costs had finite expected
value and variance, which is required for satisfying Assumption 1.

5.3.3 TEMPORAL DIFFERENCE LEARNING IN (ε,δ)-MDPS

Temporal difference learning, or for short TD-learning, is a policy evaluation algorithm. It aims at
finding the corresponding value function Jπ for a given control policy π (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998). It can also be used for approximating the optimal value function,
for example, if we apply it together with the policy iteration algorithm.

First, we briefly review the off-line first-visit variant of TD(λ) in case of ordinary MDPs. It can
be shown that the value function of a policy π can be rewritten in a form as

Jπ(x) = E

[
∞

∑
m=0

(αλ)mDπ
α,m

∣∣∣∣ X0 = x

]
+ Jπ(x),

where λ ∈ [0,1) and Dπ
α,m denotes the “temporal difference” coefficient at time m,

Dπ
α,m = g(Xm,Aπ

m)+αJπ(Xm+1)− Jπ(Xm),

1694

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

where Xm, Xm+1 and Aπ
m are random variables, Xm+1 has p(Xm,Aπ

m) distribution and Aπ
m is a random

variable for actions, it is selected according to the distribution π(Xm).
Based on this observation, we can define a stochastic approximation algorithm as follows. Let

us suppose that we have a generative model of the environment, for example, we can perform
simulations in it. Each simulation produces a state-action-reward trajectory. We can assume that all
simulations eventually end, for example, there is an absorbing termination state or we can stop the
simulation after a given number of steps. Note that even in this case we can treat each trajectory
as infinitely long, viz., we can define all costs after the termination as zero. The off-line first-visit
TD(λ) algorithm updates the value function after each simulation,

Jt+1(x
t
k) = Jt(x

t
k)+ γt(x

t
k)

∞

∑
m=k

(αλ)m−kdα,m,t , (10)

where xt
k is the state at step k in trajectory t and dα,m,t is the temporal difference coefficient,

dα,m,t = g(xt
m,at

m)+αJt(x
t
m+1)− Jt(x

t
m).

For the case of ordinary MDPs it is known that TD(λ) converges almost surely to Jπ for any
initial J0 provided that each state is visited by infinitely many trajectories and the stepsizes satisfy
Assumption 2. The proof is based on the observation that iteration (10) can be seen as a Robbins-
Monro type stochastic iterative algorithm for finding the fixed point of Jπ = HJπ, where H is a
contraction mapping with Lipschitz constant α (Bertsekas and Tsitsiklis, 1996). The only difference
in the case of (ε,δ)-MDPs is that the environment may change over time and, therefore, operator
H becomes time-dependent. However, each Ht is still an α contraction, but they potentially have
different fixed points. Therefore, we can apply Theorem 20 to achieve a relaxed convergence result
for off-line first-visit TD(λ) in changing environments under the same conditions as in the case of
ordinary MDPs.

The convergence of the on-line every-visit variant can be proven in the same way as in the case
of ordinary MDPs, viz., by showing that the difference between the two variants is of second order
in the size of γt and hence inconsequential as γt diminishes to zero.

5.3.4 APPROXIMATE DYNAMIC PROGRAMMING

Most RL algorithms in their standard forms, for example, with lookup table representations, are
highly intractable in practice. This phenomenon, which was named “curse of dimensionality” by
Bellman, has motivated approximate approaches that result in more tractable methods, but often
yield suboptimal solutions. These techniques are usually referred to as approximate dynamic pro-
gramming (ADP). Many ADP methods are combined with simulation, but their key issue is to
approximate the value function with a suitable approximation architecture: V ≈ Φ(r), where r is a
parameter vector. Direct ADP methods collect samples by using simulation, and fit the architecture
to the samples. Indirect methods obtain parameter r by using an approximate version of the Bellman
equation (Bertsekas, 2007).

The power of the approximation architecture is the smallest error that can be achieved, η =
infr ‖V ∗−Φ(r)‖, where V ∗ is the optimal value function. Suppose that η > 0, then no algorithm
can provide a result whose distance from V ∗ is less than η. Hence, the maximum that we can hope
for is to converge to an environment of V ∗ (Bertsekas and Tsitsiklis, 1996). In what follows, we
briefly investigate the connection of our results with ADP.

1695

CSÁJI AND MONOSTORI

In general, many direct and indirect ADP methods can be formulated as follows

Φ(rt+1) = Π
(
(1− γt)Φ(rt)+ γt(Bt(Φ(rt))+Wt)

)
, (11)

where rt ∈ Θ is an approximation parameter, Θ is the parameter space, for example, Θ ⊆ R
p,

Φ : Θ → F is an approximation architecture where F ⊆ V is a Hilbert space that can be repre-
sented by using Φ with parameters from Θ. Function Π : V → F is a projection mapping, it renders
a representation from F to each value function from V . Operator Bt : F → V acts on (approxi-
mated) value functions. Finally, γt denotes the stepsize and Wt is a noise parameter representing the
uncertainties coming from, for example, the simulation.

Operator Bt is time-dependent since, for example, if we model an approximate version of opti-
mistic policy iteration, then in each iteration the control policy changes and, therefore, the update
operator changes, as well. We can notice that if Π was a linear operator (see below), Equation (11)
would be a stochastic iterative algorithm with Kt = ΠBt . Consequently, the algorithm described by
Equation (6) is a generalization of many ADP methods, as well.

Now, we show that a convergence theorem for ADP methods can also be deduced by using
Theorem 20. In order to apply the theorem, we should ensure that each update operator be a con-
traction. If we assume that every Bt is a contraction, we should require two properties from Π to
guarantee that the resulted operators remain contractions. First, Π should be linear. Operator Π is
linear if it is additive and homogeneous, more precisely, if ∀V1,V2 : Π(V1 +V2) = Π(V1)+ Π(V2)
and ∀V : ∀α : Π(αV) = αΠ(V), where α is a scalar. This requirement allows the separation
of the components. Moreover, Π should be nonexpansive w.r.t. the supremum norm, namely:
∀V1,V2 : ‖Π(V1)−Π(V2)‖ ≤ ‖V1 −V2‖. Then, the update operator of the algorithm, Kt = ΠBt ,
is guaranteed to be a contraction.

If we assume that V ∗
t is the fixed point of Kt , thus, (ΠBt)V ∗

t =V ∗
t and βt is the Lipschitz constant

of Kt with limsupt→∞ βt = β0 < 1, we can deduce a convergence theorem for ADP methods, as a
corollary of Theorem 20. Suppose that Assumptions 1-2 hold and each Bt is a contraction as well
as Π is linear and supremum norm nonexpansive, then Φ(rt) κ-approximates V ∗ for any initial r0

with κ = 4ρ/(1− β0), where ρ = limsupt→∞ ‖V ∗
t −V ∗‖. In case all of the fixed points were the

same, viz., ∀t : V ∗
0 = V ∗

t , then Φ(rt) would converge to V ∗
0 almost surely, consequently, Φ(rt) would

κ-approximate V ∗ with κ = ‖V ∗
0 −V ∗‖.

Naturally, these results are quite loose, since we did not make strong assumptions on the applied
algorithm and on the approximation architecture. They only illustrate that the approach we took,
which allows time-dependent update operators and analyzes approximate convergence, could also
provide results for ordinary MDPs, for example, in the case of ADP.

6. Experimental Results

In this section we present two numerical experiments. The first one demonstrates the effects of
environmental changes during Q-learning based scheduling. The second one presents a parameter
analysis concerning the effectiveness of SARSA in (ε,δ)-type grid world domains.

6.1 Environmental Changes During Scheduling

Scheduling is the allocation of resources over time to perform a collection of jobs. Each job consists
of a set of tasks, potentially with precedence constraints, to be executed on the resources. The

1696

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

job-shop scheduling problem (JSP) is one of the basic scheduling problems (Pinedo, 2002). We
investigated an extension of JSP, called the flexible job-shop scheduling problem (FJSP), in which
some of the resources are interchangeable, that is, there may be tasks that can be executed on several
resources. This problem can be formulated as a finite horizon MDP and can be solved by Q-learning
based methods (Csáji and Monostori, 2006).

170

190

210

230

250

270

290

310

330

1 20 40 60 80 100 120 140 160 180

170

190

210

230

250

270

290

310

330

1 20 40 60 80 100 120 140 160 180 200 200

t ~ t ~time time

k(t) k(t)

(a) (b)

k’(t)

Figure 3: The black curves, κ(t), show the performance measure in case there was a resource break-
down (a) or a new resource availability (b) at time t = 100; the gray curve in (a), κ’(t),
demonstrates the case the policy would be recomputed from scratch.

200

220

240

260

280

300

320

340

360

1 20 40 60 80 100 120 14060 80 100 120 140 160 180 200

k(t)

(a) (b)

t ~ t ~time time

160 180

200

220

240

260

280

300

320

340

360

1 20 40 200

k(t)

Figure 4: The black curves, κ(t), show the performance measure during resource control in case
there was a new job arrival (a) or a job cancellation (b) at time t = 100.

In order to investigate the effects of environmental changes during scheduling, numerical ex-
periments were initiated and carried out. The aim of scheduling was to minimize the maximum
completion time of the tasks, which performance measure is called “makespan”. The adaptive
features of the Q-learning based approach were tested by confronting the system with unexpected
events, such as: resource breakdown, new resource availability (Figure 3), new job arrival or job
cancellation (Figure 4). In Figures 3 and 4 the horizontal axis represents time, while the vertical one,
the achieved performance measure. The figures were made by averaging hundred random samples.
In these tests a fixed number of 20 resources were used with few dozens of jobs, where each job
contained a sequence of tasks. In each case there was an unexpected event at time t = 100. After
the change took place, we considered two possibilities: we either restarted the iterative scheduling
process from scratch or we continued the learning using the current (obsolete) value function. We
experienced that the latter approach is much more efficient. That was one of the reasons why we
started to study how the optimal value function of an MDP depends on the dynamics of the system.

1697

CSÁJI AND MONOSTORI

Recall that Theorems 10, 11 and 12 measure the amount of the possible change in the value
function in case there were changes in the MDP, but since these theorems apply supremum norm,
they only provide bounds for worst case situations. However, the results of our numerical exper-
iments, shown in Figures 3 and 4, are indicative of the phenomenon that in an average case the
change is much less. Therefore, applying the obsolete value function after a change took place is
preferable over restarting the optimization from scratch.

The results, black curves, show the case when the obsolete value function approximation was
applied after the change took place. The performance which would arise if the system recomputed
the whole schedule from scratch is drawn in gray in part (a) of Figure 3.

6.2 Varying Grid World

We also performed numerical experiments on a variant of the classical grid world problem (Sutton
and Barto, 1998). The original version of this problem can be briefly described as follows: an agent
wanders in a rectangular world starting from a random initial state with the aim of finding the goal
state. In each state the agent is allowed to choose from four possible actions: “north”, “south”,
“east” and “west”. After an action was selected, the agent moves one step in that direction. There
are some mines on the field, as well, that the agent should avoid. An episode ends if the agent finds
the goal state or hits a mine. During our experiments, we applied randomly generated 10×10 grid
worlds (thus, these MDPs had 100 states) with 10 mines. The immediate-cost of taking a (non-
terminating) step was 5, a cost of hitting a mine was 100 and the cost of finding the goal state was
−100.

In order to perform the experiment described by Table 1, we have applied the “RL-Glue” frame-
work2 which consists of open source softwares and aims at being a standard protocol for bench-
marking and interconnecting reinforcement learning agents and environments.

We have analyzed an (ε,δ)-type version of grid world, where the problem formed an (ε,δ)-
MDP. More precisely, we have investigated the case when for all time t, the transition-probabilities
could vary by at most ε ≥ 0 around the base transition-probability values and the immediate-costs
could vary by at most δ ≥ 0 around the base cost values.

During our numerical experiments, the environment changed at each time-step. These changes
were generated as follows. First, changes concerning the transition-probabilities are described. In
our randomized grid worlds the agent was taken to a random surrounding state (no matter what
action it chose) with probability η and this probability changed after each step. The new η was
computed according to the uniform distribution, but its possible values were bounded by the values
described in the first row of Table 1.

Similarly, the immediate-costs of the base MDP (cf. the first paragraph) were perturbed with a
uniform random variable that changed at each time-step. Again, its (absolute) value was bounded
by δ, which is presented in the first column of the table. The values shown were divided by 100 to
achieve the same scale as the transition-probabilities have.

Table 1 was generated using an (optimistic) SARSA algorithm, namely, the current policy was
evaluated by SARSA, then the policy was (optimistically) improved, more precisely, the greedy
policy with respect to the achieved evaluation was calculated. That policy was also soft, namely, it
made random explorations with probability 0.05. We have generated 1000 random grid worlds for
each parameter pairs and performed 10000 episodes in each of these generated worlds. The results

2. RL-Glue can be found at http://rlai.cs.ualberta.ca/RLBB/top.html.

1698

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

∆‖g‖ the bounds for the varying probability of arriving at random states ∼ ε
δ/100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 -55.5 -48.8 -41.4 -36.7 -26.7 -16.7 -8.5 2.1 14.2 31.7 46.0
0.1 -54.1 -46.1 -41.2 -34.5 -25.8 -15.8 -6.0 3.7 16.5 32.3 46.3
0.2 -52.5 -44.8 -40.1 -34.4 -25.3 -15.4 -5.8 4.0 17.6 33.1 48.1
0.3 -49.7 -42.1 -36.3 -31.3 -23.9 -14.2 -5.3 8.0 18.1 37.2 51.6
0.4 -47.4 -41.5 -34.7 -30.7 -22.2 -12.2 -2.3 8.8 20.2 38.3 52.0
0.5 -42.7 -41.0 -34.5 -24.8 -21.1 -10.1 -1.3 11.2 25.7 39.2 52.1
0.6 -36.1 -36.5 -29.7 -24.0 -16.8 -7.9 1.1 17.0 31.3 43.9 54.1
0.7 -30.2 -29.3 -29.3 -19.1 -13.4 -6.0 7.4 18.9 26.9 47.2 60.9
0.8 -23.1 -27.0 -21.4 -18.8 -10.9 -2.6 8.9 22.5 31.3 50.0 64.2
0.9 -14.1 -19.5 -21.0 -12.4 -7.5 0.7 13.2 23.2 38.9 52.2 68.1
1.0 -6.8 -10.7 -14.5 -7.1 -5.3 6.6 15.7 26.4 39.8 57.3 68.7

Table 1: The (average) cumulative costs gathered by SARSA in varying grid worlds.

presented in the table were calculated by averaging the cumulative costs over all episodes and over
all generated sample worlds.

The parameter analysis shown in Table 1 is indicative of the phenomenon that changes in the
transition-probabilities have a much higher impact on the performance. Even large perturbations in
the costs were tolerated by SARSA, but large variations in the transition-probabilities caused a high
decrease in the performance. An explanation could be that large changes in the transitions cause the
agent to loose control over the events, since it becomes very hard to predict the effects of the actions
and, hence, to estimate the expected costs.

7. Conclusion

The theory of MDPs provide a general framework for modeling decision making in stochastic dy-
namic systems, if we know a function that describes the dynamics or we can simulate it, for example,
with a suitable program. In some situations, however, the dynamics of the system may change, too.
In theory, this change can be modeled with another (higher level) MDP, as well, but doing so would
lead to models which are practically intractable.

In the paper we have argued that the optimal value function of a (discounted) MDP Lipschitz
continuously depends on the transition-probability function and the immediate-cost function, there-
fore, small changes in the environment result only in small changes in the optimal value function.
This result was already known for the case of transition-probabilities, but we have presented an
improved estimation for this case, as well. A bound for changes in the discount factor was also
proven, and it was demonstrated that, in general, this dependence was not Lipschitz continuous.
Additionally, it was shown that changes in the discount rate could be traced back to changes in the
immediate-cost function. The application of the Lipschitz property helps the theoretical treatment
of changing environments or inaccurate models, for example, if the transition-probabilities or the
costs are estimated statistically, only.

In order to theoretically analyze environmental changes, the framework of (ε,δ)-MDPs was
introduced as a generalization of classical MDPs and ε-MDPs. In this quasi-stationary model the

1699

CSÁJI AND MONOSTORI

transition-probability function and the immediate-cost function may change over time, but the cu-
mulative changes must remain bounded by ε and δ, asymptotically.

Afterwards, we have investigated how RL methods could work in this kind of changing envi-
ronment. We have presented a general theorem that estimated the asymptotic distance of a value
function sequence from a fixed value function. This result was applied to deduce a convergence
theorem for value function based algorithms that work in (ε,δ)-MDPs.

In order to demonstrate our approach, we have presented some numerical experiments, too.
First, two simple iterative processes were shown, a “well-behaving” stochastic process and a “patho-
logical”, oscillating deterministic process. Later, the effects of environmental changes on Q-learning
based flexible job-shop scheduling was experimentally studied. Finally, we have analyzed how
SARSA could work in varying (ε,δ)-type grid world domains.

We can conclude that value function based RL algorithms can work in varying environments,
at least if the changes remain bounded in the limit. The asymptotic distance of the generated value
function sequence from the optimal value function of the base MDP is bounded for a large class of
stochastic iterative algorithms. Moreover, this bound is proportional to the diameter of this set, for
example, to parameters ε and δ in the case of (ε,δ)-MDPs. These results were illustrated through
three classical RL methods: asynchronous value iteration, Q-learning and temporal difference learn-
ing policy evaluation. We showed, as well, that this approach could be applied to investigate the
convergence of ADP methods.

There are many potential further research directions. Now, as a conclusion to the paper, we
highlight some of them. First, analyzing the effects of environmental changes on the value func-
tion in case of the expected average cost optimization criterion would be interesting. A promising
direction could be to investigate environments with non-bounded changes, for example, when the
environment might drift over time. Naturally, this drift should also be sufficiently slow in order to
give the opportunity to the learning algorithm to track the changes. Another possible direction could
be the further analysis of the convergence results in case of applying value function approximation.
The classical problem of exploration and exploitation should also be reinvestigated in changing en-
vironments. Finally, for practical reasons, it would be important to find finite time bounds for the
convergence of stochastic iterative algorithms for (a potentially restricted class of) non-stationary
environments.

Acknowledgments

The work was supported by the Hungarian Scientific Research Fund (OTKA), Grant No. T73376,
and by the EU-project Coll-Plexity, 12781 (NEST). Balázs Csanád Csáji greatly acknowledges the
scholarship of the Hungarian Academy of Sciences. The authors are also very grateful to Csaba
Szepesvári for the helpful comments and discussions.

Appendix A. Proofs

In this appendix the proofs of Theorems 11, 12, 13, 20 and Lemmas 14, 18 can be found.

1700

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

Theorem 11 Assume that two MDPs differ only in their transition-probability functions, denoted by
p1 and p2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X×A×X → R type functions, for example, f (x,a,y) = p(y |x,a),

‖ f‖1 = max
x,a ∑

y∈X

| f (x,a,y) | .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =





argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p1(y | x,a)J∗1(y)

]
if J∗1 (x) ≤ J∗2 (x),

argmin
a∈A(x)

[
g(x,a)+α ∑

y∈X

p2(y | x,a)J∗2(y)

]
if J∗2 (x) < J∗1 (x)

If the argmin is ambiguous then any action that takes the minimum can be selected. Using the
Bellman optimality equation in the first step, ‖J∗1 − J∗2‖∞ can be estimated as follows,

∀x ∈ X : |J∗1 (x)− J∗2(x)| =

=

∣∣∣∣∣ min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p1(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g(x,a)+α ∑

y∈X

p2(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g(x, π̂(x))+α ∑
y∈X

p1(y | x, π̂(x))J∗1(y)−g(x, π̂(x))−α ∑
y∈X

p2(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤

∣∣∣∣∣α ∑
y∈X

p1(y | x, π̂(x))J∗1(y)− p2(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ =

=

∣∣∣∣∣α ∑
y∈X

(p1(y | x, π̂(x))− p2(y | x, π̂(x)))J∗1(y)+α ∑
y∈X

p2(y | x, π̂(x))(J∗1(y)− J∗2 (y))

∣∣∣∣∣ ≤

≤ α ∑
y∈X

|(p1(y | x, π̂(x))− p2(y | x, π̂(x)))J∗1(y)|+α ∑
y∈X

|p2(y | x, π̂(x))(J∗1(y)− J∗2(y))|,

where in the second step we have rewritten p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) as

p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) =

= p1(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗1(y)+ p2(y |x, π̂(x))J∗1(y)− p2(y |x, π̂(x))J∗2(y) =

1701

CSÁJI AND MONOSTORI

= (p1(y |x, π̂(x))− p2(y |x, π̂(x)))J∗1(y)+ p2(y |x, π̂(x))(J∗1(y)− J∗2 (y)).

Now, let us recall (a special form of) Hölder’s inequality: let v1,v2 be two vectors and 1 ≤ q,r ≤ ∞
with 1/q + 1/r = 1. Then, we have ‖v1 v2‖(1) ≤ ‖v1‖(q) ‖v2‖(r), where ‖·‖(q) denotes vector norm,

for example, ‖v‖(q) = (∑i |vi|
q)1/q and ‖v‖(∞) = maxi |vi| = ‖v‖∞. Here, we applied the unusual

“(q)” notation to avoid confusion with the applied matrix norm. Notice that the first sum of the last
estimation can be treated as the (1)-norm of v1 v2, where

v1(y) = p1(y | x, π̂(x))− p2(y | x, π̂(x))) and v2(y) = J∗1 (y),

after which Hölder’s inequality can be applied with q = 1 and r = ∞ to estimate the sum. A similar
argument can be repeated in the case of the second sum with

v1(y) = p2(y | x, π̂(x)) and v2(y) = J∗1 (y)− J∗2 (y).

Then, after the two applications of Hölder’s inequality, we have for all x that

|J∗1 (x)− J∗2(x)| ≤ α‖p1(· | x, π̂(x))− p2(· | x, π̂(x))‖(1) ‖J∗1‖∞ +

+α‖p2(· | x, π̂(x))‖(1) ‖J∗1 − J∗2‖∞ ,

since ‖J∗1‖∞ ≤ ‖g‖∞ /(1−α), ‖p2(· | x, π̂(x))‖(1) = 1 and we have this estimation for all x,

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
1−α

max
x∈X

∑
y∈X

| p1(y |x, π̂(x))− p2(y |x, π̂(x)) |+α‖J∗1 − J∗2‖∞ ,

which formula can be overestimated, by taking the maximum over all actions, by

‖J∗1 − J∗2‖∞ ≤
α‖g‖∞
1−α

‖p1 − p2‖1 +α‖J∗1 − J∗2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-cost functions, denoted
by g1 and g2. Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =





argmin
a∈A(x)

[
g1(x,a)+α ∑

y∈X

p(y | x,a)J∗1(y)

]
if J∗1 (x) ≤ J∗2 (x),

argmin
a∈A(x)

[
g2(x,a)+α ∑

y∈X

p(y | x,a)J∗2(y)

]
if J∗2 (x) < J∗1 (x).

1702

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

If the argmin is ambiguous, then any action that takes the minimum can be selected. Using the
Bellman optimality equation in the first step, ‖J∗1 − J∗2‖∞ can be estimated as follows,

∀x ∈ X : |J∗1 (x)− J∗2(x)| =

=

∣∣∣∣∣ min
a∈A(x)

[
g1(x,a)+α ∑

y∈X

p(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g2(x,a)+α ∑

y∈X

p(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g1(x, π̂(x))+α ∑
y∈X

p(y | x, π̂(x))J∗1(y)−g2(x, π̂(x))−α ∑
y∈X

p(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤ |g1(x, π̂(x))−g2(x, π̂(x))|+α ∑
y∈X

p(y | x, π̂(x)) |J∗1 (y)− J∗2 (y)| ≤

≤ ‖g1 −g2‖∞ +α ∑
y∈X

p(y | x, π̂(x)) ‖J∗1 − J∗2‖∞ =

= ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ .

It is easy to see that if

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ ,

then
‖J∗1 − J∗2‖∞ ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, denoted by
α1,α2 ∈ [0,1). Let the corresponding optimal value functions be J∗

1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

Proof Let π∗
i denote a greedy and deterministic policy based on value function J∗

i , where i ∈ {1,2}.
Naturally, policy π∗

i is optimal if the discount rate is αi (Theorem 6). Then, let us introduce a
deterministic Markovian control policy π̂ defined as

π̂(x) =





π∗
1(x) if J∗1 (x) ≤ J∗2 (x),

π∗
2(x) if J∗2 (x) < J∗1 (x).

For any state x the difference of the two value functions can be estimated as follows,

|J∗1 (x)− J∗2(x)| =

1703

CSÁJI AND MONOSTORI

=

∣∣∣∣∣ min
a∈A(x)

[
g(x,a)+α1 ∑

y∈X

p(y | x,a)J∗1(y)

]
− min

a∈A(x)

[
g(x,a)+α2 ∑

y∈X

p(y | x,a)J∗2(y)

]∣∣∣∣∣ ≤

≤

∣∣∣∣∣g(x, π̂(x))+α1 ∑
y∈X

p(y | x, π̂(x))J∗1(y)−g(x, π̂(x))−α2 ∑
y∈X

p(y | x, π̂(x))J∗2(y)

∣∣∣∣∣ ,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s) and
ŝ = argmins f1(s), we have |mins f1(s)−mins f2(s)| ≤ | f1(ŝ)− f2(ŝ)|. Then,

∀x ∈ X : |J∗1 (x)− J∗2(x)| ≤

∣∣∣∣∣∑y∈X

p(y | x, π̂(x))(α1J∗1 (y)−α2J∗2 (y))

∣∣∣∣∣ ≤

≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where in the last step we used the following estimation of |α1J∗1 (y)−α2J∗2 (y)|,

|α1J∗1 (y)−α2J∗2 (y)| = |α1J∗1 (y)−α2J∗1 (y)+α2J∗1 (y)−α2J∗2 (y)| ≤

≤ |α1 −α2| |J
∗
1 (y)|+α2 |J

∗
1 (y)− J∗2(y)| ≤ |α1 −α2|

1
1−α1

‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where we applied the fact that for any state y we have,

|J∗1 (y)| ≤
∞

∑
t=0

αt
1 ‖g‖∞ =

1
1−α1

‖g‖∞ .

Because the estimation of |J∗1 (x)− J∗2(x)| is valid for all x, we have the following result

‖J∗1 − J∗2‖∞ ≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J1 − J2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-probability
functions or only in the immediate-cost functions or only in the discount factors. Let the correspond-
ing optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the bounds for ‖J∗1 − J∗2‖∞ of

Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 −Q∗

2‖∞.

Proof We will prove the theorem in three parts, depending on the changing components.
Case 1: Assume that the MDPs differ only in the transition functions, denoted by p1 and p2. We
will prove the same estimation as in the case of Theorem 11, more precisely, that

‖Q∗
1 −Q∗

2‖∞ ≤
α‖g‖∞
(1−α)2 ‖p1 − p2‖1 .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

1704

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

=

∣∣∣∣∣g(x,a)+α ∑
y∈X

p1(y |x,a)J∗1(y)−g(x,a)−α ∑
y∈X

p2(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤

∣∣∣∣∣α ∑
y∈X

(p1(y |x,a)J∗1(y)− p2(y |x,a)J∗2(y))

∣∣∣∣∣ ,

from which the proof continues in the same way as the proof of Theorem 11.
Case 2: Assume that the MDPs differ only in the immediate-cost functions, denoted by g1 and g2.
We will prove the same estimation as in the case of Theorem 12, more precisely,

‖Q∗
1 −Q∗

2‖∞ ≤
1

1−α
‖g1 −g2‖∞ .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

=

∣∣∣∣∣g1(x,a)+α ∑
y∈X

p(y |x,a)J∗1(y)−g2(x,a)−α ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤ ‖g1 −g2‖∞ +

∣∣∣∣∣α ∑
y∈X

p(y |x,a)(J∗1(y)− J∗2 (y))

∣∣∣∣∣ ≤ ‖g1 −g2‖∞ +α‖J∗1 − J∗2‖∞ .

The statement immediately follows after we apply Theorem 12 to estimate ‖J∗1 − J∗2‖∞.
Case 3: Assume that the MDPs differ only in the discount rates, denoted by α1 and α2. We will
prove the same estimation as in the case of Theorem 13, more precisely, that

‖Q∗
1 −Q∗

2‖∞ ≤
|α1 −α2|

(1−α1)(1−α2)
‖g‖∞ .

For all state-action pair (x,a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x,a)−Q∗

2(x,a)| =

=

∣∣∣∣∣g(x,a)+α1 ∑
y∈X

p(y |x,a)J∗1(y)−g(x,a)−α2 ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤

≤

∣∣∣∣∣α1 ∑
y∈X

p(y |x,a)J∗1(y)−α2 ∑
y∈X

p(y |x,a)J∗2(y)

∣∣∣∣∣ ≤ |α1 −α2|
1

1−α1
‖g‖∞ +α2 ‖J∗1 − J∗2‖∞ ,

where in the last step we applied the same estimation as in the proof of Theorem 13. The statement
immediately follows after we apply Theorem 13 to estimate ‖J∗1 − J∗2‖∞.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount factors,
denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it differs only in the
immediate-cost function from M1, thus its discount factor is α1, and it has the same optimal value
function as M2. The immediate-cost function of M3 is

ĝ(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗2(y),

1705

CSÁJI AND MONOSTORI

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost function
of M1 and M2; and J∗2 (y) denotes the optimal cost-to-go function of M2.
Proof First of all, let us overview some general statements that will be used in the proof.

Recall from Bertsekas and Tsitsiklis (1996) that we can treat the solution (the optimal value
function) of the infinite horizon problem as the limit of the finite horizon solutions. More precisely,
the Bellman optimality equation for the n-stage (finite horizon) problem is

J∗k (x) = min
a∈A(x)

[
g(x,a)+α ∑

y∈X

p(y | x,a)J∗k−1(y)
]
,

for all k ∈ {1, . . . ,n} and x ∈ X. Note that by definition, we have J∗0 (x) = 0. Moreover,

∀x ∈ X : J∗(x) = J∗∞(x) = lim
n→∞

J∗n (x).

Also recall that the n-stage optimal action value function is defined as

Q∗
k(x,a) = g(x,a)+α ∑

y∈X

p(y |x,a)J∗k−1(y),

for all x, a and k ∈ {1, . . . ,n}. We also have Q∗
0(x,a) = 0 and J∗n (x) = mina Q∗

n(x,a).
During the proof we will apply the solutions of suitable finite horizon problems, thus, in order

to avoid notational confusions, let us denote the optimal state and action value functions of M2 and
M3 by J∗, Q∗ and Ĵ∗, Q̂∗, respectively. The corresponding finite horizon optimal value functions
will be denoted by J∗n , Q∗

n and Ĵ∗n , Q̂∗
n, respectively, where n is the length of the horizon. We will

show that for all state x and action a we have Q∗(x,a) = Q̂∗(x,a), from which J∗ = Ĵ∗ follows. Let
us define ĝn for all n > 0 by

ĝn(x,a) = g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗n−1(y).

We will apply induction on n. For the case of n = 0 we trivially have Q∗
0 = Q̂∗

0, since both of them
are constant zero functions. Now, assume that Q∗

k = Q̂∗
k for k ≤ n, then

Q̂∗
n+1(x,a) = ĝn+1(x,a)+α1 ∑

y∈X

p(y |x,a)Ĵ∗n(y) =

= g(x,a)+(α2 −α1) ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)Ĵ∗n(y) =

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)
(
Ĵ∗n (y)− J∗n (y)

)
=

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y)+α1 ∑
y∈X

p(y |x,a)

(
min

b∈A(y)
Q̂∗

n(y,b)− min
b∈A(y)

Q∗
n(y,b)

)
=

= g(x,a)+α2 ∑
y∈X

p(y |x,a)J∗n(y) = Q∗
n+1(x,a).

We have proved that for all n: Q∗
n = Q̂∗

n. Consequently, Q∗(x,a) = limn→∞ Q∗
n(x,a) = limn→∞ Q̂∗

n(x,a)
= Q̂∗(x,a) and, thus, J∗(x) = mina Q∗(x,a) = mina Q̂∗(x,a) = Ĵ∗(x). Finally, note that for the case

1706

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

of the infinite horizon problem ĝ(x,a) = limn→∞ ĝn(x,a).

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by

Vt+1(x) = (1− γt(x))Vt(x)+ γt(x)((KtVt)(x)+Wt(x)),

then, for any V ∗,V0 ∈ V , the sequence Vt κ-approximates function V ∗ with

κ =
4ρ

1−β0
where ρ = limsup

t→∞
‖V ∗

t −V ∗‖∞.

The applied three main assumptions are as follows
Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) |Ft] = 0 and E
[
W 2

t (x) |Ft
]
< C < ∞.

Assumption 2 For all x and t, 0 ≤ γt(x) ≤ 1, and we have with probability one

∞

∑
t=0

γt(x) = ∞ and
∞

∑
t=0

γ2
t (x) < ∞.

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping with
Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1,V2 ∈ V ,

‖KtV1 −KtV2‖∞ ≤ βt ‖V1 −V2‖∞ .

Let us introduce a common Lipschitz constant β0 = limsup
t→∞

βt , and assume that β0 < 1.

Proof During the proof, our main aim will be to apply Theorem 9, thus, we have to show that the
assumptions of the theorem hold. Let us define operator Ht for all Va,Vb ∈ V by

Ht(Va,Vb)(x) = (1− γt(x))Va(x)+ γt(x)((KtVb)(x)+Wt(x)).

Applying this definition, first, we will show that V ′
t+1 = Ht(V ′

t ,V
∗) κ-approximates V ∗ for all V ′

0.

Because βt < 1 for all t and limsupt→∞ βt = β0 < 1, it follows that supt βt = β̃ < 1 and each Kt is β̃
contraction. We know that limsupt→∞ ‖V ∗−V ∗

t ‖∞ = ρ, therefore, for all δ > 0, there is an index t0

such that for all t ≥ t0, we have that ‖V ∗−V ∗
t ‖∞ ≤ ρ+δ. Using these observations, we can estimate

‖KtV ∗‖∞ for all t > t0, as follows

‖KtV
∗‖∞ = ‖KtV

∗−V ∗ +V ∗‖∞ ≤ ‖KtV
∗−V ∗‖∞ +‖V ∗‖∞ ≤

≤ ‖KtV
∗−V ∗

t +V ∗
t −V ∗‖∞ +‖V ∗‖∞ ≤ ‖KtV

∗−V ∗
t ‖∞ +‖V ∗

t −V ∗‖∞ +‖V ∗‖∞ ≤

≤ ‖KtV
∗−KtV

∗
t ‖∞ +ρ+δ+‖V ∗‖∞ ≤ β̃‖V ∗−V ∗

t ‖∞ +ρ+δ+‖V ∗‖∞ ≤

≤ (1+ β̃)ρ+(1+ β̃)δ+‖V ∗‖∞ ≤ (1+ β̃)ρ+2δ+‖V ∗‖∞ .

If we apply δ = (1− β̃)ρ/2, then for sufficiently large t (t ≥ t0) we have that

‖KtV
∗‖∞ ≤ 2ρ+‖V ∗‖∞ .

1707

CSÁJI AND MONOSTORI

Now, we can upper estimate V ′
t+1 = Ht(V ′

t ,V
∗), for all x ∈ X , V ′

0 ∈ V and t ≥ t0 by

V ′
t+1(x) = Ht(V

′
t ,V

∗)(x) = (1− γt(x))V
′

t (x)+ γt(x)((KtV
∗)(x)+Wt(x)) ≤

≤ (1− γt(x))V
′

t (x)+ γt(x)(‖KtV
∗‖∞ +Wt(x)) ≤

≤ (1− γt(x))V
′

t (x)+ γt(x)(‖V ∗‖∞ +2ρ+Wt(x)).

Let us define a new sequence for all x ∈ X by

Ṽt+1(x) =





(1− γt(x))Ṽt(x)+ γt(x)(‖V ∗‖∞ +2ρ+Wt(x)) if t ≥ t0,

V ′
t (x) if t < t0.

It is easy to see (for example, by induction from t0) that for all time t and state x we have that
V ′

t (x) ≤ Ṽt(x) with probability one, more precisely, for almost all ω ∈ Ω, where ω = 〈ω1,ω2, . . .〉
drives the noise parameter Wt(x) = wt(x,ωt) in both V ′

t and Ṽt . Note that Ω is the sample space of
the underlying probability measure space 〈Ω,F ,P〉.

Applying the “Conditional Averaging Lemma” of Szepesvári and Littman (1999), which is
a variant of the Robbins-Monro Theorem and requires Assumptions 1 and 2, we get that Ṽt(x)
converges with probability one to 2ρ + ‖V ∗‖∞ for all Ṽ0 ∈ V and x ∈ X . Therefore, because
V ′

t (x) ≤ Ṽt(x) for all x and t with probability one, we have that the sequence V ′
t (x) κ-approximates

V ∗(x) with κ = 2ρ for all function V ′
0 ∈ V and state x ∈ X .

Now, let us turn to Conditions 1-4 of Theorem 9. For all x and t, we define functions Ft(x) and
Gt(x) as Ft(x) = βtγt(x) and Gt(x) = (1− γt(x)). By Assumption 2, functions Ft(x),Gt(x) ∈ [0,1]
for all x and t. Condition 1 trivially follows from the definitions of Gt and Ht . For the proof of Con-
dition 2, we need Assumption 3, namely that each operator Kt is a contraction with respect to βt .
Condition 3 is a consequence of Assumption 2 and the definition of Gt . Finally, we have Condition
4 for any ε > 0 and sufficiently large t by defining ξ = β0 + ε. Applying Theorem 9 with κ = 2ρ,
we get that Vt κ′-approximates V ∗ with κ′ = 4ρ/(1−β0 − ε). In the end, letting ε go to zero proves
our statement.

References

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, Bel-
mont, Massachusetts, 3rd edition, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

B. Cs. Csáji. Adaptive Resource Control: Machine Learning Approaches to Resource Allocation
in Uncertain and Changing Environments. PhD thesis, Faculty of Informatics, Eötvös Loránd
University, Budapest, 2008.

B. Cs. Csáji and L. Monostori. Adaptive sampling based large-scale stochastic resource control.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), July 16-20,
Boston, Massachusetts, pages 815–820, 2006.

1708

REINFORCEMENT LEARNING IN CHANGING ENVIRONMENTS

R. Montes de Oca, A. Sakhanenko, and F. Salem. Estimates for perturbations of general discounted
Markov control chains. Applied Mathematics, 30:287–304, 2003.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning Research
(JMLR), 5:1–25, Dec. 2003.

G. Favero and W. J. Runggaldier. A robustness result for stochastic control. Systems and Control
Letters, 46:91–66, 2002.

E. A. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes: Methods and
Applications. Kluwer Academic Publishers, 2002.

E. Gordienko and F. S. Salem. Estimates of stability of Markov control processes with unbounded
cost. Kybernetika, 36:195–210, 2000.

Zs. Kalmár, Cs. Szepesvári, and A. Lőrincz. Module-based reinforcement learning: Experiments
with a real robot. Machine Learning, 31:55–85, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49:209–232, 2002.

A. Müller. How does the solution of a Markov decision process depend on the transition probabil-
ities? Technical report, Institute for Economic Theory and Operations Research, University of
Karlsruhe, 1996.

R. Munos and A. W. Moore. Rates of convergence for variable resolution schemes in optimal
control. In Proceedings of the 17th International Conference on Machine Learning (ICML),
pages 647–654. Morgan Kaufmann, San Francisco, CA, 2000.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2002.

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems. In Advances in Neural Information Processing Systems, volume 9, pages
974–980. The MIT Press, 1997.

R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in Neural Information Processing Systems, 12:
1057–1063, 2000.

Cs. Szepesvári and M. L. Littman. A unified analysis of value-function-based reinforcement learn-
ing algorithms. Neural Computation, 11(8):2017–2060, 1999.

I. Szita, B. Takács, and A. Lőrincz. ε-MDPs: Learning in varying environments. Journal of Machine
Learning Research (JMLR), 3:145–174, 2002.

B. Van Roy, D. Bertsekas, Y. Lee, and J. Tsitsiklis. A neuro-dynamic programming approach
to retailer inventory management. Technical report, Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA., 1996.

1709

