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Abstract

Support vector machines for classification have the advantage that the curse of dimensionality is
circumvented. It has been shown that a reduction of the dimension of the input space leads to
even better results. For this purpose, we propose two information criteria which can be computed
directly from the definition of the support vector machine. We assess the predictive performance of
the models selected by our new criteria and compare them to existing variable selection techniques
in a simulation study. The simulation results show that the new criteria are competitive in terms of
generalization error rate while being much easier to compute. We arrive at the same findings for
comparison on some real-world benchmark data sets.

Keywords: information criterion, supervised classification, support vector machine, variable se-
lection

1. Introduction

We study classification using the support vector machine (SVM). We start from a training set
{(xi,yi)} containing n observations. Each p-dimensional observation x; = (Xi1,...,Xjp) has a class
label y; assigned to it, which is either +1 or —1. We wish to find a function f(-) such that for an
observation x the predicted class y = +1 if f(x) is positive, and y = —1 if f(X) is negative. We want
this function to assign the correct class labels to the training observations (low training error rate)
and to accurately classify new observations (low generalization error rate). Working with a subset
of the p variables X1, ..., Xjp reduces variability of the class-label estimator and might lead to better
out-of-sample predictions.

It is only true to some extent that variable selection would not be necessary in the support vector
machine setting since it manages to circumvent the so-called “curse of dimensionality” (see, for
example, Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001; Scholkopf and Smola, 2002).
While the SVM approach avoids fitting a number of parameters equal to the dimension of the input
space, there remains the high probability of a perfect separation in high-dimensional problems. For
example, if pis larger than the number of observations, it is always possible to perfectly separate the
two classes of training data by a hyperplane. In general, the risk of overfitting will increases with
the dimension for most data configurations. Hence, the risk of obtaining a decision rule with poor
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generalization properties (high generalization error rate) cannot be avoided. Guyon et al. (2002)
illustrate this and show that variable selection can further improve the SVM'’s performance.

Variable selection techniques can be divided into three categories. Filters select subsets of vari-
ables as a pre-processing step, independently of the prediction method. Wrappers use the classifica-
tion method to score subsets of variables. Finally, embedded methods include variable selection into
the construction of the classifier. In this paper we propose new information criteria for SVMs, yield-
ing a wrapper method where we consider the SVM merely as a black box. We refer to Guyon and
Elisseeff (2003) for an introduction to variable and feature selection in Machine Learning. Informa-
tion criteria are a standard tool for model selection in traditional statistics. Information criteria for
variable selection assign a numerical value to each subset of the variables under consideration. The
subset with the lowest value of the information criterion is then selected. Examples are the Akaike
information criterion (AIC, Akaike, 1973) and the Bayesian information criterion (BIC, Schwarz,
1978). Claeskens and Hjort (2008) survey and explain the use of common information criteria for
statistical variable selection in likelihood-based models, we refer to there for more references.

For support vector machines only very few information criteria have been developed. The kernel
regularisation information criterion (KRIC) of Kobayashi and Komaki (2006) was originally pro-
posed for parameter tuning of the SVM. We apply it for variable selection. However, the KRIC has
a complicated definition and is computationally expensive for large sample sizes. In this paper two
new information criteria are proposed, one shares properties with AIC, the other with BIC. We want
the new criteria to select a preferably compact subset of variables with good predictive properties.
We will show that submodels selected by the new criteria are as performing as the ones chosen by
the KRIC, while they incur substantially less computational overhead. We also make a comparison
with using cross-validated error rate based criteria, as in Kearns et al. (1997). An important contri-
bution of this paper is that our numerical comparisons show that the popular, but time consuming,
cross-validation criteria are outperformed in generalization error by the new information criteria,
where the latter are coming at almost no additional computational cost.

Alternative approaches perform variable selection in feature space instead of in input space
(Shih and Cheng, 2005), or select a set of “maximally separating directions” in the input space
(Fortuna and Capson, 2004). These methods, however, do not select a set of original input variables.
Various other authors have suggested different formulations for the SVM such that variable selection
is performed automatically. Examples of such embedded methods can be found in Bi et al. (2003),
Zhu et al. (2004), Neumann et al. (2005), Lee et al. (2006), Wang et al. (2006), Zhang (2006), and
Lin and Zhang (2006).

In Section 2 we define the support vector machine setting, we review existing information cri-
teria and we describe ranking techniques to speed up the variable selection process. In Section 3,
we define the new information criteria and highlight their advantages. Section 4 contains the results
of a simulation study and in Section 5 we compare the different techniques on a few real-world
benchmark data sets. Section 6 concludes and gives some directions for further research.

2. Problem Setting

In this Section we first review the definition of a support vector machine. Afterwards some existing
variable selection techniques are discussed. Finally we present the ranking techniques that will be
used in this paper.
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2.1 The Support Vector Machine

We denote the training sample (x;,yi), 1 <i < n, with x; a p-dimensional vector of explicative
variables, and y; € {—1,+1} the class label. The goal is to estimate a target function f(x) in the
space of explicative variables such that f(x;) > 0 fory; = +1, and f(x;) <0 fory; = —1.

We start with linear support vector machines, where f(x) is of the form f(x) = w’x+b. For
binary classification this function is obtained by solving the minimisation problem

n X /y. >1-_E§.
min }HWHZJFC & > subject to i(w X'_er) z1-&, 1)
whE | 2 & & >0i=1,....n.

The &; are slack margin variables, indicating how close a point x; lies to the separating boundary
(if & < 1), or how badly it is misclassified (if & > 1). The tuning parameter C controls how much
weight is put on trying to achieve perfect separation.

The dual problem can be solved more easily, and has the following form:

n <o < i=1...
{O_G._C, i=1,...,n, @

.1, .
min{-a'Qa —  a;} subject to
Here q; is the weight given to the observation (x;,y;), and Q is a positive semi-definite matrix with
entries Q; j = yiyjX/xj. The vector w can be found from w = 3! ; yiaix;. The negative intercept b is
found by computing b = 0.5(ro —ry), where

o ZO>yiai>—C(QG)i -1

o a)—1
r = 20<y.a.<C(Q )I and ry=
20<yiai <C 1 20>yi0(i >—C 1

If no i exist for which 0 < y;a; < C, then define

=3, Q) -, max(Qu)).
and analogously for ry, with yj = —1. Note that we can write & = [1 — yia]+, where [x]. =
max{0,x} and where a; = f(x;).

The linear SVM can be extended towards more complex decision functions in a rather straight-
forward way. Therefore we replace the inner products x!x; in the definition of Q by a more general
kernel function K(x;,x;). See Cristianini and Shawe-Taylor (2000) for the properties that these
kernel functions must have. This leads to a more general decision function

f(x) = _iYiaiK(XiaX) +b. ©)

Popular choices for the kernel function in (3) are the linear kernel, where the kernel function is
K(x,z) = X'z, the polynomial kernel of the form K(x,z) = (co+ yx'z)9, and the radial basis kernel
K(x,z) = exp(—Y||x — z||?), where co, y and d are regularization parameters that can be tuned for
optimal performance of the classifier. In this more general setting, we have

n
Iwl[?="Y yiyjoiaiK(x,x;) = a'Qu
i,J=1

for the squared norm of the weight vector, where Q; ; = yiy;K(Xi, ;).
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2.2 Existing Variable Selection Techniquesfor SVM

We compare our new methods (Section 3) to variable selection based on (ten-fold) cross-validation
(CV), guaranteed risk minimisation (GRM, Vapnik, 1982) and the kernel regularisation information
criterion (KRIC) by Kobayashi and Komaki (2006). Each of these will be explained in more detail
below.

Ten-fold cross-validation divides the training data in ten parts of roughly equal size. One part is
left out, the other nine parts are the training data and are used to fit the SVM. This SVM is applied
to the part that is left out to obtain an estimate of the error rate. This process is repeated ten times
(each time a different part is left out) to obtain the CV generalization error rate £(S) as the average
of the ten separate error rates. We select the model with the lowest value of €(S), where S ranges
over all subsets of variables under consideration. Another common method is five-fold CV. The
lower the number of folds, the less computing time is required, but the higher the variability of
the estimates of the generalization error. Note that n—fold CV is the same as the computationally
infeasible leave-one-out CV.

General risk minimisation (Vapnik, 1982) is derived from the estimated generalization error
rate, using

GRM(S) :é(S)+|§|(1+ 1+&(S)(n/19])). (4)

Here, |S| stands for the number of input variables in the set S and n is the number of observations
in the training sample. We select the model with the lowest value of GRM(S), where S ranges over
all subsets of variables under consideration. Kearns et al. (1997) compare CV, GRM and mini-
mum description length (Rissanen, 1989). Their experiments have demonstrated that none of the
criteria is consistently better than the others. Note that the computational overhead for computing
these measures can be immense, since we need to train ten support vector machines to estimate the
generalization error rate for only one submodel.

We now define the KRIC of Kobayashi and Komaki (2006). This criterion was originally de-
veloped to tune the constant C in the SVM definition (1), and by extension to tune the kernel pa-
rameters. We use it without much adjustment for variable selection. Denote by X; s the subvector of
Xi, consisting of elements xjj with j € S, and similarly for other vectors. We estimate the SVM (1)
using the observations (x; s,Vi), yielding the vectors ws,bs and &s, where the subscript S refers to
the subset of variables under consideration. In the dual problem (2), we have as= (ds1,...,0sn)
and [Qslik = YiykK(Xi,s, Xk s). The decision rule fg(x) is as in (3), and we set aj s = fs(x; s). Next,
we define vectors ts and mgs of length n, with components

yi exp(—nai sy;)
1+exp(—naisyi)’

exp(—nai syi)
1+exp(—naisyi))?

and mgj = —n

tsi:nz( =1,...,n.

Here we choose n = log(2) such that log(1 -+ exp(—nx)) and n[1 —x]; coincide for x = 0, see
Kobayashi and Komaki (2006) for further motivation. With A = C~1log2 the KRIC for the logistic
Bayesian model for SVMs is defined as

KRIC(S) = Z[iIog(lJrexp(—r]ai?syi)) (5)
+ trace((Qsdiag(ts) + Aln) "1Qs(diag(ms)? — n~tmgm)) |.
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Alternatively, Sollich’s Bayesian model for SVMs (Sollich, 2002) leads to a KRIC with a similar
form as the one in (5). Using

v(ais) = (1+exp(—2C)) *(exp(—C[1 —aj g4 ) +exp(—C[1 +ai g+ )),

the KRIC for the Sollich Bayesian model for SVMs is defined as
n
KRICS(S) = KRIC(S) —2nlog zlv(ai,s). (6)
i=

The computation of the KRIC includes inverting an n x n-matrix with only a few zeroes. Therefore,
the computation is time-consuming if the sample size n is large. Both the CV error rate and the
KRIC may require a prohibitive computing time when a large number of different models needs to
be evaluated.

2.3 Ranking Techniques

A full subset search is computationally not feasible even not for problems with only a small number
of dimensions (p = 15 for example). To dramatically reduce the number of models while still
selecting a model that is “almost” the best model, Chen et al. (2005) use a genetic algorithm, while
Peng et al. (2005) suggest a combined backward elimination/forward selection strategy. However,
both of these techniques still suffer from the possibility that a large number of models needs to be
checked before arriving at a solution.

Alternatively, variable ranking consists of assigning a “value of importance” to each variable
and sorting the variables according to their importance. This results in a series of p stacked models,
thus only p evaluations of the variable selection criterion are needed. The most commonly used
algorithm is the SVM recursive feature elimination (SVM-RFE) technique from Guyon et al. (2002).
For a linear SVM, the variables are ranked by w2, with w;j the j-th component of the weight vector
w. This technique assumes that the variables are standardized to have mean 0 and variance 1. The
extension proposed by Rakotomamonjy (2003) allows application to SVMs with a non-linear kernel.
We use the following SVM-RFE algorithm with variable influence

Alwsl|y =] [ws]|? = lws, 31|
as suggested by Rakotomamonjy (2003).

Step 1: Initialise S — {1,..., p}, the subset of unranked features, and r < (), the vector of ranked
features.

Step 2: Repeat the following steps until S = 0.

(a) Traina SVM on (xis,Vi), and compute ||ws||?> = a5Qs0s.

(b) For each j €S, train a new SVM on (X g j;,Yi)- This gives a value |wg(j[|* =
0, Qs\(j)0s(j) foreach j € S.

(c) Obtain jo = argmin; [[lws||? = [[ws,j[I?] and set S — S\ {jo} and r — (jo,r).
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The vector r contains the ranked variables, with the first element the most important one. A disad-
vantage of this method is that the number of SVMs to be trained is O(p?). This can be overcome by
using as instead of ag ¢j; in Step 2b, such that ||Ws\{j}||2 ~ aQg(j}0s Rakotomamonjy (2003)
argues that this will not affect the ranking significantly, while still allowing a major reduction in
computational time, bringing the number of SVMs to be estimated to O(p). We employ this ap-
proximation in the simulation study in Section 4 and in the real data examples in Section 5.

The most easy way to rank the variables is by filtering methods. Zhang et al. (2006) propose
using sj = |w;j(m;j +1 —mj __1)| for ranking, where m; 1 and m; _1 are the within-class means of
variable j. Shih and Cheng (2005) use the Fisher score

_ Imj 2 —mj
2 2
\/O5 41107 1

for a linear SVM, where 012#1 and 01-27_1 are the within-class variances of variable j. The main
advantage of using S; is that it is not necessary to train any SVM to rank the variables. The Fisher
score ranking is considered in Sections 4 and 5.

Sj

3. The New Information Criteria

As stated in the previous section, evaluating the CV error rate or the KRIC of a particular sup-
port vector machine model requires a high number of additional computations. For this reason, we
propose two new criteria which use information already available in the SVM, without additional
complicated computations. The criteria are based on how badly the SVM violates the margin con-
straints, which are written as S, &; s, where §; s is the margin slack of observation i in the support
vector machine trained on the variables with indices in S, where S is a subset of {1,...,p}. Alter-
natively, we can use the logarithm of this sum, analogous to Bai and Ng (2002) for selecting the
number of factors in factor analysis. However, in the SVM setting this has the drawback that the
value is undefined if the sum equals zero, which can happen if the data are perfectly separable. Also,
Bai and Ng (2002) advise using a log-transform for scalar invariance reasons. Since we follow the
advice to standardise the variables before training the SVM, for better ranking as explained in Sec-
tion 2.3, we automatically have scalar invariance of the sum of the margin slacks. For these reasons,
we choose not to take the log-transform.

Generally (but not always), ¥; &; s will decrease as more variables are added. Therefore we add
a penalty term related to the number of included variables to ensure a tradeoff between accuracy
and simplicity of the chosen model. We suggest adding a linear penalty term, such that we get an
information criterion of the form

1C(5) = 5 &-+Cnls| )

where S is the set of variables included in the model.

A first choice is to take C(n) constant in (7). It is interesting to note that IC(S) is then,
up to constant factors, an easily computable approximation of the KRIC of Kobayashi and Ko-
maki (2006), hereby providing a theoretical justification for its use. To better understand this,
note first that log (1 + exp(—naivgyi)) is a continuous approximation of the hinge loss function
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N[l —yiai g+ =n&sforall 1 <i<n. Hence, the first term of the KRIC can be approximated, up
to a constant factor, by ¥;¢&; s. For the approximation of the second term in (5), rewrite

W = (Qgdiag(ts) 4+ Aly) ~1Qs(diag(ms)? — n~tmgm})
= Vdiag(ts) *(diag(ms)? —n~'mgmy),

with V = (A+ Alp) 1A a symmetric, positive semi-definite matrix and A = Qsdiag(ts). Denoting
A~ the generalised inverse of A, and using a series expansion around A = 0, gives that the leading
term of V. = A= (1 +AA~)~!Ais equal to A-A. This expansion converges as long as the eigenvalues
of AA~ are strictly less than one, which can be obtained by taking A small enough. We now use
a singular value decomposition of both A and A~ and use the fact that the singular values of A~
are the reciprocals of the non-zero singular values of A, to obtain that the product A“Aisanxn
diagonal matrix with on the diagonal |S| ones and the remaining entries zero. Thus, the leading term
of trace(W ) equals the sum of |S| diagonal entries of the matrix diag(ts) ~*(diag(ms)? —n—tmgmk)).
The i-th diagonal element of this matrix is equal to

%tgﬂméi = nTlexp(—naLsyi).
To further facilitate computations we replace this by 1, motivated by the fact that na; sy; is often
small. Although this approximation might be crude for a single term, we found empirically that it
works well for the summation over the entire training set. Hence, we arrive at the approximation
trace(W) = |S| which is the linear penalty term in (7).

Taking the constant value C(n) = 2, leads to our first new support vector machine information
criterion (SVMIC):

SVMICa(S) = _izi +2[8). ®)

The newly proposed criterion SVMICa for support vector machines shares the form of the penalty
with the well-known Akaike (1973) information criterion. This AIC is defined as minus twice the
value of the maximised log likelihood of the model, plus two times the number of parameters to
be estimated (that is, 2|S|). Because the penalty 2|S| is not dependent on the sample size n, we
expect that both criteria share some properties, such as having the tendency to not select the most
parsimonious model. For the AIC, Woodroofe (1982) has shown that in the limit for n — oo, the
expected number of superfluous parameters is less than one.

To support the definition of SVMICa , we ran a simulation experiment and compared the values
of KRIC and SVMICa for 100 models. The sample size is n = 50, with 10 variables of which only
the first 4 variables are different from zero. A detailed description of the simulation setting can be
found in Section 4. We used a linear kernel. Figure 1 reports these numerical results and shows
a high correlation (0.975) between the values of the two criteria. Other simulation settings gave
comparable correlation values.

Our second proposed criterion follows the spirit of Bayesian information criterion (BIC) by
Schwarz (1978). This criterion is defined similarly as the AIC, but instead of the penalty 2|S|, it
uses log(n)|S|. The BIC has been shown to be consistent (Haughton, 1988, 1989). This means that
if the true model is contained in the search list, the criterion will (in the limit for n — oo) select this
correct model. For a related construction for factor models, see Bai and Ng (2002). This motivates
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KRIC

20 25 30 35 40 45
SVMICa

Figure 1: Values of KRIC and SVMICa in a simulation experiment, showing high correlation
(0.975).

us to take C(n) = log(n), and we define our second criterion
n
SVMICh(S) = Zléi +1log(n)|S|. 9)
i=

It is immediate that the computational cost of both SVMICs is much lower than of the cross-
validated error rate (10 more SVMs to train for 10-fold cross-validation) and of the kernel regulari-
sation information criterion KRIC (which needs computations of the order O(n®) due to the matrix
inversion). The best case is when the §; s are directly available. Computing the SVMICs is only an
O(n) computation in that case, and usually even less when employing the property that

Cis#0<ais=1.

When only asand Qs are available, &; s is computed using the relation

Eis= [1—yi él Gj,s[Qs]ij}

ijs>0

+.

This means that in the worst case, the computation time of the SV MICs is O(n?), which is still faster
than using either CV error rate or KRIC.
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4. Simulation Results

We perform M = 100 simulation runs with the following settings. We generate n € {25, 50,100,200}
independent observations xj, 1 <i < n of dimension p € {25,50,100,200}, with distribution
A((0,0%l,) where 0% = 1. For each observation we generate a class label y; € {—1,+1}, with
P(yi =1) =1/2. Finally, we let p=(1/2,-1/2,-1/2,1/2,0,...,0) of dimension p, and set
Xi < Xi + Yill to separate the two classes to some extent. This implies that the optimal separat-
ing hyperplane is x'u = 0, such that y = +1 if X’y > 0, resulting in a generalization error rate of
®(—||u|l2/0), with ® the cumulative distribution function of a standard normal. In our example,
with 0 =1 and ||u||2 = 1, we find an optimal generalization error rate of 0.159.

During each simulation run, we standardize the variables to improve the numerical performance
of the SVM algorithm. The variables are ranked using either the Fisher score or based on the
variable influence on w, as described in Section 2.3. For each of the nested models obtained in the
variable ranking step, we compute (i) SVMICa and (ii) SVMICDb as in (8) and (9). We compare their
performance to (iii) ten-fold CV, (iv) Vapnik’s GRM as in (4), (v) KRIC for the logistic Bayesian
model for SVMs as in (5), and (vi) KRIC for the Sollich model for SVMs as in (6). An important
remark is that for ten-fold CV, we employ the CVV2 method, which includes the feature selection
procedure in each cross-validation step, as suggested by Zhang et al. (2006). Computing the CV
error rate in the usual way can lead to a (severely) biased estimate of the generalization error, and
using CV2 reduces this bias.

The experiment is repeated with two different kernels (i) a linear kernel K(x1,x2) = X} x2 leading
to a linear decision rule (ii) a quadratic kernel K(x1,X2) = (yXjx2 +1)2, with y= 1/p, the inverse
of the number of variables, leading to a quadratic decision rule. The tuning parameter C in each
SVM that we train is chosen to be C = 1, as we standardize the explicative variables a priori. This
is also the standard setting for C for the svmprocedure in the R software package. We experimented
with other values of C in the range from 0.1 up to 10, and found only minor differences in the
simulation outcomes. We test the accuracy of the classifiers computed from the selected input
variables by estimating their generalization (out-of-sample) error rate from a test sample of 10000
new observations. These observations are generated in the same way as the training sample.

Table 1 reports the generalization error rates, obtained by averaging over the 100 simulation
runs. An overall observation is that the error-rate based selection criteria (CV and GRM) have the
worst performance. The performances of the KRICs and the new SVMICs are comparable. More
precisely, we observe that the KRICs are better as a variable selection method for small sample sizes
(n = 25), while the SVMICs give better results for larger sample sizes. This is especially apparent
when the quadratic kernel is used. For a small number of observations compared to the number
of variables, we also note that SVMICa slightly outperforms SVMICb in terms of generalization
error rate, and that the opposite is true with many observations and fewer variables. The differences
in generalization error rates become smaller as the number of variables grows. This is particularly
true for CV, whose relative performance becomes better at large sample sizes. But SVMICa and
SVMICb are still somewhat ahead, and have the advantage that they are much easier (and less
time-intensive) to compute than the other criteria, included the KRICs having a computation time
of order O(n%). Note that, as n grows, the generalization error rates of the models obtained by
our two suggested criteria are converging towards the theoretically obtained minimal generalization
error rate of 15.9%. Investigating which variable ranking criterion is better, results in case of linear

549



CLAESKENS, CROUX AND VAN KERCKHOVEN

Linear kernel
n p SVMICa SVMICb CcVv GRM KRIC KRICS
25 25 322 294 326 316 335 318 36.2 345 313 29.0 315 299
50 346 316 353 326 353 335 374 354 344 332 344 332
100 374 339 373 350 378 344 386 357 370 349 371 349
50 25 244 216 246 232 271 255 311 296 257 249 260 259
50 285 233 277 248 295 263 314 305 298 287 302 297
100 309 246 291 250 31.0 280 321 309 31.0 301 31.3 308
100 25 199 185 19.6 189 246 238 301 301 21.8 20.6 223 217
50 229 192 202 190 258 254 299 296 269 26.8 273 278
200 25 178 170 169 168 227 215 289 293 18.7 180 192 189
Quadratic kernel
n p SVMICa SVMICb CcVv GRM KRIC KRICS
25 25 31.3 307 342 338 338 329 377 366 295 284 302 301
50 358 353 39.3 385 396 385 436 426 333 330 339 341
100 433 433 483 484 28 427 49.2 487 371 371 37.7 382
50 25 227 213 250 243 267 259 318 317 236 225 248 251
50 244 230 268 26.8 298 281 339 335 276 271 29.1 293
100 264 256 308 30.2 341 338 40.3 401 311 309 325 328
100 25 194 185 199 191 238 19.2 306 302 200 200 217 220
50 19.7 185 198 195 242 220 305 307 226 226 247 251
200 25 20.1 203 171 168 224 214 294 296 183 181 203 20.6

Table 1: Simulated average generalization error rate (%) for the six methods using two different
kernels. For each method, the number on the left resulted from ranking by variable influ-
ence on ||w||2, and the number on the right in each column is from ranking by the Fisher
scores S;j.

kernels to a strong preference for ranking with the Fisher score. For the quadratic kernel, it is
slightly better to rank the variables based on variable influence on ||w||?.

Figure 2 presents the values of the 100 simulated generalization errors as boxplots, giving insight
in the variability of the variable selection methods. For most of the cases it turns out that cross-
validation is highly variable, while GRM has a small variability. This good property of GRM is,
however, accompanied by a much higher average generalization error rate. Comparing the different
information criteria shows that SVMICa is quite comparable to the KRICs. The SVMICb has a
larger variability. In the setting with small sample size (n = 25) and relatively large number of
variables (100), all methods, except for GRM, are comparable with respect to variability, but GRM
has again the largest median error rate. Our main conclusion from this analysis is that SVMICa has
a similar variability than the KRIC criteria, but SVMICDb has a larger variability. Recall that the
average error rates, as reported in Table 1, were of similar magnitude for all the four information
criteria. Hence, when needing to choosing between the two newly proposed information criteria,
we have a preference for SVMICa.

Given the variability of the generalization errors over the 100 simulation runs, see the boxplots
in Figure 2, it is important to test whether the averages reported in Table 1 are also significantly
different from each other. We performed standard t-tests, and most difference are indeed signifi-
cant. For example, for the settings presented in Figure 1, we obtained that, at the 1% level, (a) all
differences are significant, except between SVMICb and the 2 KRiCs (b) all differences are signif-
icant, except between SVMICa and the 2 KRICs (c) all differences are significant, except between
SVMICb and the 2 KRICs (d) the differences with the GRM method are significant, the others not.
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Figure 2: Generalization error rates for 100 simulation experiments, for n = 100, p = 25 (a) linear
kernel, ranking with ||w]||?, (b) linear kernel, ranking with Fisher score, (c) quadratic
kernel, ranking with ||w||2, and for (d) n = 25, 100 variables, linear kernel and ranking
with ||wl|2.

Furthermore, we investigate which models are actually chosen by the different criteria. This
information is reported in Table 2. For each setting, it shows how many times the correct subset of
input variables, containing only the first four input variables, was chosen (C, correct). This table
also shows how many times a too-sparse group of variables was selected (U, underfitting), and how
many times a too-rich group of variables was chosen (O, overfitting). So an overfit means that all
correct variables are selected, but in addition some superfluous ones, while an underfit selects a
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Kernel: Linear Quadratic

Modelsselected: C U O R cC u O R
n=25p=25 SVMICa 1 22 1 76 3 36 0 61
SVMICb 0 42 0 58 0 64 0 36

cVv 0 38 4 58 1 40 5 54

GRM 0 77 0 23 0 75 0 25

KRIC 1 1 7 91 0 1 25 74

KRICS 0 0 9 91 0 0 49 51

n=200;p=25 SVMICa 22 0 76 2 2 0 9 o0
SVMICbh 77 9 10 4 67 14 6 13

cv 7 48 43 2 4 43 49 4

GRM 1 98 1 0 1 99 0O 0

KRIC 6 0 93 1 8 0 84 8

KRICS 1 0 99 0 0 0 100 O

n=25p=100 SVMICa 0 8 0 92 0 35 0 65
SVMICb 0 20 0 80 0 63 0 37

cVv 0 23 6 71 0 33 10 57

GRM 0 56 0 44 0 64 0 36

KRIC 0 1 0 99 0 0 41 59

KRICS 0 0 1 99 0 0 56 44

Table 2: Simulated frequencies of selected models, with variable ranking done by influence on
[lw||%. Here “C’ denotes correct selection, ‘U’ is underfitting, ‘O’ is overfitting, and ‘R’ for
all other situations.

subset of the important variables, but no irrelevant variables are included. The good performance
of SVMICa and SVMICb might be due to the fact that these criteria seem to have the tendency to
select a set of variables which includes all significant ones as the number of observations grows. The
simulation results indicate that SVMICa behaves like AIC with its tendency to overfit. The SVMICb
seems to share the property of BIC that it selects the correct model more often, if at least this true
model is one of the possibilities to select from. The cross-validated error rate, and the general risk
minimisation in particular, seem to have the tendency to ignore variables which nevertheless are
important. As a consequence, the models that these criteria select are of poor predictive quality.
The two KRICs of Kobayashi and Komaki (2006) share the overselection property exhibited by
SVMICa, but the KRICs select excessive variables even more frequently than SVMICa. This can
explain why these criteria perform somewhat worse when the number of observations is large, and
why they outperform the proposed SVMICs when the number of observations is small, since the
latter tend to underfit the model in the case of few observations.

This concludes the results for the case of two populations coming from an identical distribution,
differing only in mean. Another case that we examined is where the variances of the two populations
differ from each other. We performed a simulation study, in a similar way as the previous one, where
the samples have been drawn from A((, 1) for class +1, and from A’(—2p,4l,) for class —1.

The results of this simulation are summarized in Tables 3 and Table 4. We observe similar
results as in the case where both populations had equal variance. Selection based on CV error rate
and on GRM still perform rather poor. As before, the performances of the KRICs and SVMICs
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Linear kernel
n p SVMICa SVMICb Ccv GRM KRIC KRICS
25 25 289 280 301 29.2 304 284 327 316 290 275 288 277
50 333 302 342 313 361 314 353 331 327 307 325 305
100 356 315 357 323 360 326 369 337 348 326 348 330
200 365 332 364 344 364 342 366 356 364 335 36.1 337
50 25 233 205 239 219 26.1 249 289 286 242 236 246 243
50 271 217 257 227 277 252 291 284 277 268 276 271
100 283 231 274 237 287 252 299 287 284 267 284 275
100 25 190 174 181 174 227 215 276 276 205 20.0 21.0 209
50 218 17.8 19.3 180 235 227 269 270 248 25.0 250 255
200 25 170 161 159 156 214 20.7 270 270 179 170 183 178
Quadratic kernel
n p SVMICa SVMICb Ccv GRM KRIC KRICS
25 25 29.2 289 318 318 31.8 287 354 347 25.7 249 258 26.2
50 361 358 39.6 40.0 381 376 28 424 305 308 31.3 323
100 421 417 482 481 422 423 494 487 350 36.0 36.2 381
200 501 501 50.1 501 47 444 50.1 50.1 389 400 404 418
50 25 205 193 235 222 259 245 306 302 190 191 195 199
50 231 222 26.1 262 283 276 332 327 238 239 251 261
100 265 258 304 304 345 337 405 404 282 288 301 323
100 25 146 152 185 164 20.8 19.9 278 271 142 145 145 149
50 179 170 184 178 220 215 277 283 181 185 195 203
200 25 9.9 9.8 129 132 196 176 29.3 268 101 103 9.7 9.8

Table 3: As Table 1, but now for two populations with different variances.

Kernel: Linear Quadratic

Models selected: C u O R cC U O R
n=25p=25 SVMICa 0 22 1 77 1 36 0 63
SVMICb 0 47 0 53 1 57 0 42

CcVv 1 40 1 58 1 39 8 52

GRM 0 76 0 24 0 70 0 30

KRIC 0 0 6 94 0 0 25 75

KRICS 0 0 8 92 0 0 50 50

n=200; p=25 SVMICa 11 0 85 4 0 20 0 80
SVMICb 69 10 16 5 0 45 0 55

Ccv 6 56 37 1 0 33 4 63

GRM 0 100 O 0 0 56 0 44

KRIC 5 0 93 2 0 0 40 60

KRICS 0 0 99 1 0 0 53 47

n=25p=200 SVMICa O 1 0 99 0 52 0 48
SVMICh 0 8 0 092 0 54 0 46

CVv 0 22 2 76 0 2 5 73

GRM 0 46 0 54 0 54 0 46

KRIC 0 1 0 99 0 0 46 54

KRICS 0 0 0 100 0 0 56 44

Table 4: As Table 2, but now for two populations with different variances.

are similar. More precisely, the SVMICs have an improved performance with respect to the KRICs
when the sample size is large (n > 50) and the linear kernel is used, and the KRICs work slightly
better for small sample sizes (n = 25). For the quadratic kernel, we notice a good performance of
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the KRICs, which is only matched by SVMICa for larger sample sizes. From Table 4 we can again
make the same observations as before when the linear kernel is used. For the quadratic kernel the
SVMICs have more difficulty selecting all the relevant variables than the KRICs, which explains
why the latter criteria have an improved performance here.

We also conducted a simulation experiment where the input variables were strongly correlated.
First, the observations were generated as in the first simulation experiment. Then, we applied the
transformation

Xij = PXik; + Eij with &jj ~ N(O,pz) i.i.d.

wherei=1,...,n, kj is chosen arbitrarily between 1 and 4, and 4 < j < p/2, such that about half of
the unimportant input variables are correlated with the four important ones. The parameter |p| < 1
controls the degree of correlation. We have chosen p = 0.8 and found similar results (not reported)
as for the case where the variances of both class-population differ.

5. Testson Real Data Sets

We compare the performance of the new methods with that of the other discussed criteria on several
real-world data sets. We use some of the benchmark data sets used in Rakotomamonjy (2003), and
in Ratsch et al. (2001). The data sets used are the Pima Indians Diabetes database (768 observations,
8 variables), the Statlog Cleveland Heart Disease database (303 observations, 14 variables), and Leo
Breiman’s ringnorm and twonorm data sets (both 7400 observations, 20 variables). These data sets
are available from the UCI Machine Learning Repository (the first two), and the Delve Repository
(last two). We perform 100 random splits of the data in a training sample and a test sample, where
the size of the training sample is chosen as v/2n, with n the total number of observations in the data
set. We chose the size of the training set such that there is a sufficient amount of observations in
the test sample to estimate the generalization (out-of-sample) error rate. The training sample size
is relatively small, such that the computation time for the KRIC remains within bounds. For each
of these partitions we perform variable selection on the training sample exactly as in the simulation
study. We first rank the variables to retain p stacked subsets of input variables, and then use the
information criteria to select the variables that best explain the training data. Then, we predict the
class labels for the test sample, and use these predictions to estimate the generalization error rate.
We use variable ranking based on variable influence on ||w||? as well as on Fisher score, and we use
a linear, quadratic and radial kernel.

The estimated generalization error rates are presented in Table 5 for each data set and estimation
setting. We observe that the KRICs are the preferred choice of variable selection criterion in terms
of generalization error rate for the “twonorm’ and *heart’ data sets. For the ‘ringnorm’ and ‘diabetes’
data sets the difference in performance between the KRICs and our newly proposed SVMICs is less
pronounced. The predictive performance of the models selected by SVMICa are for most settings
comparable to that of the KRIC, while being much faster to compute. These results are consistent
across all settings. The CV error rate and especially the GRM have a poor performance, which is in
line of the results obtained in the simulation.

From these results, and the results obtained in Section 4, we suggest to use either the SVMICa
or the SVMICb if a preliminary analysis of the data or a priori knowledge indicates that the true
decision function is almost linear. When it differs strongly from a linear function, the researcher has
a choice between the ease of computation of the support vector machine information criteria, or the
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Ranking: ~ Variable influence on ||w|| Fisher scores
Data Kernel: Linear Quadratic Radial Linear Quadratic Radial
Diabetes  SVMICa 28.6 28.5 29.2 28.0 28.2 28.4
SVMICb 29.0 28.9 29.2 28.6 28.5 28.9
cVv 28.6 29.1 29.1 28.8 28.5 29.3
GRM 29.6 29.7 29.6 29.1 29.2 29.3
KRIC 28.5 28.2 29.4 275 28.1 29.6
KRICS 28.6 28.5 29.7 28.3 28.6 29.7
Heart SVMICa 27.0 27.4 27.7 27.6 28.0 28.3
SVMICh 27.6 28.9 28.9 28.2 29.3 29.5
cv 27.6 28.6 27.2 26.8 28.0 28.8
GRM 29.3 30.3 294 28.8 304 30.6
KRIC 25.4 23.4 23.8 24.5 23.2 23.8
KRICS 25.3 235 25.2 25.2 23.7 25.0
Ringnorm  SVMICa 31.1 16.4 8.4 30.8 15.6 6.5
SVMIChb 34.9 20.2 13.5 35.2 224 13.4
cVv 33.9 321 26.6 32.8 25.6 21.2
GRM 39.2 41.3 38.6 39.3 38.4 37.3
KRIC 30.1 16.3 6.0 29.6 15.9 44
KRICS 29.9 16.0 3.1 29.2 15.4 25
Twonorm  SVMICa 9.9 9.3 11.4 10.1 8.9 9.4
SVMICb 135 14.1 15.9 15.0 15.2 16.0
cv 20.5 21.0 19.8 21.0 21.1 20.8
GRM 31.4 31.7 31.6 30.8 31.2 31.3
KRIC 8.0 7.5 11.0 6.8 6.8 9.2
KRICS 75 6.0 4.0 6.6 55 4.8

Table 5: Generalization error rates (%) for variable selection applied to four data sets. Two variable
ranking schemes and three types of kernel are used for each of the criteria.

somewhat improved predictive performance, though with higher computational cost, of the kernel
regularization information criterion.

Finally, we applied the newly proposed information criteria for variable selection to two large
data sets, the “Madelon” (n = 2000, p = 500) and “Arcene” data (n = 100, p = 10000). These data
sets were part of the NIPS 2003 feature selection, and are described in detail in Guyon et al. (2006).
Given the high dimensionality of these data, the variables were ranked according to the Fisher score.
We used a linear kernel and computed balanced error rates (BER), that is the average of the error
rate of the positive class and the error rate of the negative class. When using SVMICa we obtain a
BER of 43.0% for the Madelon data, and 31.1% for the Arcene data. For SVMICb we get 37.3%
and 31.1%, respectively. In Guyon et al. (2006, 2007) the BER of other feature selection methods
is presented, and it turns out that several other methods yield much better performance on these
data. A possible explication is that we used a standard SVM, without any optimal tuning of the
regularization parameters.
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6. Conclusions

In this paper we considered the problem of variable selection in support vector machines. We
proposed two new information criteria, SVMICa and SVMICb, which allow us to evaluate the
suitability of the selected subset of variables for predictive purposes, without much additional com-
putational costs. We provided an argumentation for these criteria, linking SVMICa to the KRIC
of Kobayashi and Komaki (2006), and justifying SVMICb with the need for a consistent selection
criterion. We demonstrated the effectiveness of these criteria in a simulation study, where we com-
pared their predictive performance to the KRIC, cross-validation and general risk minimization.
Especially for decision functions which are close to an affine function, we found that SVMICa and
SVMICD performed the best of all tested criteria, and were also the easiest to compute. For more
complicated decision functions, we found that SVMICa still performs well for selecting models with
good generalization properties. We repeated the experiment on several real data examples, and the
result confirmed the good properties of these newly proposed criteria. In particular we showed that
cross-validation criteria are outperformed in generalization error by the new information criteria,
where the latter are coming at almost no additional computational cost.

The aim of our paper was to propose an information criterion for a standard SVM. We do not
claim that the procedure is outperforming other very advanced feature selection methods, which are
not relying on a standard SVM. Obtaining information criteria for other machine learners is an inter-
esting topic for future research. Another research question is how suitable the information criteria
are for optimal tuning of the regularization and other parameters of the SVM, without necessarily
selecting a subset of input variables. Finally, it would be interesting to continue on the theoretical
verification of the good performance of our two proposed criteria, and for example try to obtain
consistency results for the SVM information criteria.
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