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Abstract
Pointwise consistent, feasible procedures for estimating contemporaneous linear causal structure
from time series data have been developed using multiple conditional independence tests, but no
such procedures are available for non-linear systems. We describe a feasible procedure for learning
a class of non-linear time series structures, which we call additive non-linear time series. We show
that for data generated from stationary models of this type, two classes of conditional independence
relations among time series variables and their lags can be tested efficiently and consistently us-
ing tests based on additive model regression. Combining results of statistical tests for these two
classes of conditional independence relations and the temporal structure of time series data, a new
consistent model specification procedure is able to extract relatively detailed causal information.
We investigate the finite sample behavior of the procedure through simulation, and illustrate the
application of this method through analysis of the possible causal connections among four ocean
indices. Several variants of the procedure are also discussed.

Keywords: conditional independence test, contemporaneous causation, additive model regression,
Granger causality, ocean indices

1. Introduction

For stationary time series of four or more dimensions, Swanson and Granger (1997) proposed to
determine contemporaneous causation—causal influences occurring more rapidly than the sampling
interval of the time series data—by regressing each time series variable on all lags of all variables
considered and using the residuals to test for vanishing partial correlations. Using search procedures
for directed acyclic graphical linear models, in particular, the PC algorithm (Spirtes et al., 2000),
Bessler et al. (2002), Demiralp and Hoover (2003), and Hoover (2005) generalized Swanson and
Granger’s procedure to allow specification searches for contemporaneous linear systems among all
partial orderings of the dependencies among the variables. Moneta (2003) derived the correction
needed for the fact that the correlations are obtained from residuals of a regression, and applied it to
a set of cointegrated variables.

All these methods are designed for linear systems with joint Normal distributions, and allow
neither unrecorded (latent) common causes nor feedbacks. One source of these limitations is the
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search algorithm used by all of these procedures, PC, which is known to be consistent only in the
absence of feedback relations and latent common causes. In principle, some of these difficulties
can be met by replacing PC with related algorithms: the FCI algorithm (Spirtes et al., 2000), which
allows latent variables, or an algorithm due to Richardson and Spirtes (1999) that allows linear
feedback relations, though no algorithm is available that is consistent for search for linear causal
models when both latent variables and feedback may be present.

More fundamentally, PC and related algorithms require conditional independence information
about the random variables as input, and are therefore limited to distribution families for which
conditional independence tests of arbitrary order are available, such as Multinomial and Normal
distributions. (Another group of causal inference algorithms that are based on model scores, such
as Bayesian posteriors, are unable to handle either latent variables or feedbacks, except under ex-
tra constraints (Silva et al., 2006; Drton et al., 2006). For non-Gaussian linear models with latent
variables, independent component analysis based algorithms (Hoyer et al., 2006) could be more
informative than PC and FCI.) Extending the PC and related algorithms based on conditional inde-
pendence constraints to a larger class of systems that includes nonlinear continuous models requires
more general conditional independence tests. We begin by considering some of the difficulties
involved with finding such tests.

In theory, using nonparametric density estimation, we can test conditional independence for
any set of random variables which have a joint density with respect to the Lebesgue measure. For
example, let the joint density of {X ,Y,Z} be fXY Z(x,y,z), the joint density of {X ,Z} be fXZ(x,z),
the joint density of {Y,Z} be fY Z(y,z), and the marginal density of Z be fZ(z). We could test if
X and Y are independent given Z by testing if the Hellinger distance between fXY Z(x,y,z) fZ(z)
and fXZ(x,z) fYZ(y,z) is 0. For example, Su and White (2007) propose a conditional independence
test for stationary time series satisfying certain conditions, based on a weighted Hellinger distance
between fX |Y Z(x;y,z) and fX |Z(x;z), where fX |Y Z(x;y,z) and fX |Z(x;z) are densities of the conditional
distributions of X given {Y,Z} and Z respectively. However, this approach requires nonparametric
density estimation of multivariate distributions, which is subject to the curse of dimensionality: as
the number of variables increases, the data points become sparse rapidly in the space spanned by
the variables.

Baek and Brock (1992) and Hiemstra and Jones (1994) proposed a nonparametric method in-
tended for Granger causality testing of nonlinear time series. Consider a bivariate time series
{Xt ,Yt}, t = 1, · · ·, let X

m
t = (Xt , · · · ,Xt+m−1) for some m, they proposed to test if X

m
t and Y

b
t−b

are independent given X
a
t−a by testing the following null hypothesis:

P
(

‖Xm
t −X

m
s ‖∞ < e | ‖Xa

t−a−X
a
s−a‖∞ < e, ‖Y b

t−b−Y
b

s−b‖∞ < e
)

= P
(

‖Xm
t −X

m
s ‖∞ < e | ‖Xa

t−a−X
a
s−a‖∞ < e

)

.

Unfortunately, only under some specific conditions is the above null hypothesis equivalent to
the hypothesis that X

m
t is independent of Y

b
t−b given X

a
t−a (Diks and Panchenko, 2006).

Bell et al. (1996) considered additive model regression (Hastie and Tibshirani, 1990) for condi-
tional independence tests in their study of nonlinear Granger causality. An additive model assumes
that the response variable Y is a linear combination of univariate smooth functions of predictors
X = {X1, · · · ,Xp} plus an independent error term. That is:
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Y =
p

∑
i=1

fi(Xi)+ ε (1)

where it is possible that fi(Xi) = 0 for some i ∈ {1, · · · , p}. Assuming Equation (1), additive model
regression could be used to test if the response variable Y and some predictors Xa ⊆X are inde-
pendent conditional on the other predictors Xb = X \Xa, because Y is independent of Xa given
Xb if and only if E[Y |X] is constant in Xa}.

Additive regression works well as a conditional independence test in the study of Granger
causality when no contemporaneous causation is allowed among time series, because the only type
of conditional independence relations to be tested is the one described above. For example, in Bell
et al. (1996), two additive models were fitted: one model for estimating the conditional expectation
of a variable XT+1 given its T lags {X1, X2, · · ·, XT}, another for conditional expectation of XT+1

given {X1, X2, · · ·, XT} and {Y1, Y2, · · ·, YT}. The F test was used to compare these two regression
models: if the test failed to reject the first model, XT+1 was judged independent of {Y1, Y2, · · ·, YT}
given {X1, X2, · · ·, XT}.

However, the use of additive model regression as a general purpose nonlinear conditional inde-
pendence test is problematic, even for variables that are known to be related via additive models.
Generally speaking, it is not always valid to use additive model regression to test conditional in-
dependence relations other than those between the response variable and some predictors given the
other predictors. First, in some cases, additive model regression may miss some conditional de-
pendencies. Consider a causal system with two exogenous variables X1 and X2, and an endogenous
variable Y such that Y = X2

1 + X2
2 + εY , where X1,X2 and εY are independent Gaussian variables.

Although the predictors X1 and X2 are dependent given the response variable Y , the conditional
expectation of X1 given Y and X2 estimated using additive model regression will be constant in X2.
Second, even worse, in some cases additive model regression may miss some conditional indepen-
dencies. Consider a system with two exogenous variables X1 and X2, and five endogenous variables
W = X1 + X2 + εW , Y = W 2 + εY , U = log(X1)+ εU , V = log(X2)+ εV , and Z = U +V + εZ . Al-
though the two response variables Y and Z are independent conditional on the predictors X1 and X2,
Z will be present in the conditional expectation of Y given {X1,X2,Z} estimated by additive model
regression. (Note that Y contains a term 2X1X2, and eZ = eεU +εV +εZ X1X2.)

Nevertheless, additive model regression has some very attractive features. First, and probably
most importantly, it is not subject to the curse of dimensionality. In fact, Stone (1985) shows that the
rate of convergence for an additive model regression is the same as that for a univariate smoother,
which is much faster than a general multidimensional nonparametric regression method. The second
major advantage of additive model regression is that it is possible to identify the contribution of each
predictor to the response variable, thus allowing an intuitive interpretation of the fitted models.

In the following sections, we define a additive non-linear time series model by imposing lin-
ear constraints only among contemporaneous variables. We show that two families of conditional
independence relations can be tested consistently among variables in a additive non-linear time se-
ries model using additive model regression. That is, asymptotically, additive model regression will
neither miss any conditional independence relations nor report any spurious conditional indepen-
dence relations when applied to data generated from a additive non-linear time series model to test
those two families of conditional independence relations. We propose an inference procedure for
nonlinear time series data that requires only information about these two families of conditional
independence relations.
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2. Additive Non-linear Time Series Models

Below we present the definition of a family of nonlinear time series models for which additive model
regression based conditional independence test is possible. Here Xt is a p dimensional observed
time series, Ut a q dimensional unobserved time series, and εt a p dimensional white noise.
Definition: A p dimensional time series {X}t = {· · ·, X1, · · ·, XT , · · ·}, where Xt = {Xt,1, · · · ,Xt,p},
is generated from a lag T additive non-linear model if it satisfies the following conditions:

C1 For i = 1, · · · , p,

Xt,i = ∑
1≤ j≤p, j,i

c j,iXt, j + ∑
1≤k≤p,1≤l≤T

fk,i,l(Xt−l,k)+
q

∑
m=1

bm,iUt,m + εt,i (2)

where bm,i’s and c j,i’s are constants, and fk,i,l’s are smooth univariate functions

C2 · · · ,ε1,1, · · · ,ε1,p,ε2,1, · · · ,εt,i, · · · and · · · ,U1,1, · · · ,U1,q,U2,1, · · · ,Ut, j, · · · are jointly indepen-
dent, with εt,i ∼ N(0,σ2

1,i) and Ut, j ∼ N(0,σ2
2, j).

C3 There is a k and an i such that fk,i,T (·) , 0

C4 There is no sequence of indices { j1, j2, · · · , jm} such that c j1, j2 , c j2, j3 , · · ·, c jm−1, jm , c jm, j1 are
all nonzero.

The model is additive because Equation (2) includes both linear terms and arbitrary smooth
terms. It is also recursive in the sense that given an initialization of Xt−T , · · · ,Xt−1, all the later
points in the time series, starting from Xt , can be generated inductively.

A additive non-linear model can be causally interpreted in the following way:

• Xt, j is a direct cause of Xt,i if and only if c j,i , 0 in Equation (2), (for the definition of direct
cause, see Spirtes et al., 2000; Pearl, 2000);

• Xt−l, j is a direct cause of Xt,i if and only if f j,i,l(·) , 0 in Equation (2);

• Latent common causes are allowed only for variables in the same time tier, and Xt,i and Xt, j

have a latent common cause Ut,m if and only if there is an m such that bm,ibm, j , 0.

Note that both Ut and εt are multi-dimensional Gaussian white noise and both are unobserved.
However, for i = 1, · · · , p, εt,i can only be a direct cause of Xt,i, where for m = 1, · · · ,q, Ut,m

can be a direct cause of several variables in Xt .

• Condition C4 means that no contemporaneous feedback is allowed. If condition C4 is vio-
lated, Xt, jm would be a direct cause of Xt, j1 , while at the same time Xt, j1 would be a (possibly
indirect) cause of Xt, jm .

Note that using results of Richardson and Spirtes (1999) the method described in Section 3
can be modified to allow contemporaneous feedback.

A additive non-linear model can be represented by a directed graph consisting of nodes for
XT+1,1, · · · ,XT+1,p and their direct causes, and directed edges between nodes for the direct influences
between the corresponding variables. We call this graph a unit causal graph for the corresponding
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Figure 1: Unit causal graph and repetitive causal graph

time series. A unit causal graph can be extended to a repetitive causal graph by including all
the variables in X1, · · ·, XT+1. Moreover, if there is an edge between XT+1,i and Xt, j, where
1≤ t ≤ T +1, then similar edges will be added between XT+1−l, j and Xt−l,i for 1≤ l ≤ t−1. Figure
1 shows a unit causal graph and a segment of the corresponding repetitive graph. (The circled
variables are latent variables.) In the remaining part of this paper, all time series causal models are
represented by unit causal graphs.

Additive non-linear time series models make it possible to use the additive regression method,
which is not subject to the curse of dimensionality, to test conditional independence for nonlinear
time series. For a time series {X}t generated from a lag T additive non-linear model, the following
holds:

Proposition 1: Let X1
t and X2

t be any two distinct entries of random vector Xt , X
c
t any subset,

possibly empty, of Xt \ {X1
t ,X2

t }, and X
d
t any subset, possibly empty, of Xt \ {X1

t }. Let X
l =

{Xt−T , · · · ,Xt−1}, and X
e = X

l \{Xt−i, j} for some Xt−i, j ∈X
l .
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• For any x
d
t and x

l , conditional on X
d
t = x

d
t and X

l = x
l , X1

t has a normal distribution
N(µ1|a,σ2

1|a) such that µ1|a is a linear combination of x
d
t and smooth univariate functions of

entries of x
l , and σ1|a is independent of t, x

l and x
d
t . Thus, X1

t is independent of Xt−i, j

conditional on X
e and X

d
t if and only if µ1|a, the conditional expectation of X 1

t given X
d
t =

x
d
t and X

l = x
l , is constant in xl, j.

• For any x2
t , x

c
t and x

l , conditional on X2
t = x2

t , X
c
t = x

c
t , and X

l = x
l , X1

t has a normal
distribution N(µ1|b,σ2

1|b) such that µ1|b is a linear combination of x2
t , xc

t , and smooth univariate

functions of entries of x
l , and σ1|b is constant in t, x2

t , x
c
t , and x

l . Thus, X1
t is independent

of X2
t conditional on X

c
t and X

l if and only if, µ1|b, the conditional expectation of X 1
t given

X2
t = x2

t , X
c
t = x

c
t , and X

l = x
l , is constant in x2

t .

Proposition 1 implies that it is possible to use additive model regression to test the following two
types of conditional independence relations among variables in a additive non-linear model. First,
we can test if X1

t and X2
t are independent conditional on X

c
t and X

l by estimating the conditional
expectation of X1

t given {X2
t } ∪X

c
t ∪X

l using additive model regression, and check if X 2
t is a

significant predictor for X1
t using statistical tests such as the F test (Bell et al., 1996) or the BIC

scores (Huang and Yang, 2004). Similarly, if Xt−i, j is not a significant predictor for X 1
t in the additive

model regression of X1
t against X

l and X
d
t , we would say X1

t and Xt−i, j are independent conditional
on X

d
t and X

e.
To make the above tests valid, we also need the assumption that additive model regression

is an (asymptotically) consistent estimator of conditional expectations such as E[X 1
t |X

d
t ,X l] and

E[X1
t |X

2
t ,Xc

t ,X l]. Fortunately, it has been shown that, given a stationary nonlinear time series
{X}t , nonparametric estimation of the conditional mean E[Xt |Xt−1, · · · ,Xt−T ] is asymptotically
consistent and/or asymptotically normal, provided certain conditions are satisfied (Robinson, 1983;
Truong and Stone, 1992; Chen and Tsay, 1993; Tjøstheim and Auestad, 1994; Härdle et al., 1997;
Cai and Masry, 2000; Huang and Yang, 2004). Generally speaking, besides some regularity condi-
tions on the density of Xt ∪X

l and smoothness condition on E[Xt |X
l], {X}t should satisfy some

form of α mixing condition. {X}t is α mixing if for some α(n)→ 0,

sup{|P(A∩B)−P(A)P(B)| : A ∈ Ft ,B ∈ Gn+t} ≤ α(n)

where Ft is the σ-field generated by Xt ,Xt−1, · · ·, and Gn+t the σ-field generated by Xt+n,Xt+n+1,
· · · .

A concept closely related to α mixing is geometric ergodicity. A stationary time series {X}t is
geometrically ergodic if there is a function M(x) < ∞ and a constant ρ < 1 such that for all x:

sup
A
|P(Xn ∈ A|X0 = x)−π(A)| ≤M(x)ρn

where π is the stationary distribution of {X}t . For stationary time series, geometric ergodicity
implies α mixing for an α(n) of exponential rate (Davydov, 1973). Sufficient conditions for a
nonlinear time series to be geometrically ergodic can be found in Chan and Tong (1994), An and
Huang (1996), and Cline and Pu (1999). In particular, Xia and An (1999) provides a set of sufficient
conditions for the geometric ergodicity of time series generated by projection pursuit models, of
which our additive non-linear model is a special case.
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3. A Causal Inference Algorithm

Consider a time series {X}t = {X1, · · · ,Xt , · · ·} are generated from a lag T additive non-linear
model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t be any two entries of Xt , X
b
t be any subset, possi-

bly empty, of Xt \{X1
t }, X

c
t be any subset, possibly empty, of Xt \{X1

t ,X2
t }, Xt−i, j any variable in

X
l , and X

e = X
l \{Xt−i, j}. Using additive model regression, we can test two types of conditional

independence relations: 1), if X 1
t and X2

t are independent given X
c
t and X

l , and 2), if X1
t and Xt−i, j

are independent given X
b
t and X

e. These pieces of information are not generally sufficient for
currently available causal inference algorithms, such as the PC and FCI, to be informative: these
procedures require (in the worst case) complete conditional independence information. However,
starting from the same principle behind the PC and FCI algorithms, we describe a procedure that
requires only these two types of conditional independence information. The procedure, which is ca-
pable of producing very informative causal structures, takes advantage of the constraints on possible
causal relations among the random variables imposed by additive non-linear models, for example,
Xt2,k cannot be a cause of Xt1, j if t1 < t2, no latent common cause exists for Xt2,k and Xt1, j if t1 , t2,
etc.

The following propositions are needed to justify our procedure. We assume familiarity with
notions from the graphical modeling literature, including the notion of d-separation (Pearl, 2000),
and faithfulness (Spirtes et al., 2000). In summary:

Formally a causal graph G is defined as an ordered pair 〈V ,E〉, where V is the set of variables
in G, and E the set of edges in G. An edge e in E is again defined as an ordered pair 〈Vi,Vj〉,
where Vi and V j are two variables in V . Given an edge e = 〈Vi,Vj〉 in graph G, we say that Vi is a
direct cause of V j in G. The subgraph Gm induced by Vm, where Vm is a subset of V , is defined
as an ordered pair 〈Vm,En〉 such that an edge e = 〈Vi,Vj〉 is in En if and only if e is in E and the
two variables {Vi,Vj} are both in Vm. A vertex is a collider on an undirected path in a directed
acyclic graph (DAG) if and only if it is the second member of both of two edges on the path, that
is, two edges on the path are directed into it. Two vertices X , Y (representing random variables)
are d-separated with respect to a set Z of vertices if and only if every undirected path between the
variables contains a collider having no directed path into a member of Z or contains a non-collider
that is a member of Z. A joint distribution on the variables (vertices) of a DAG is faithful if and
only if all conditional independence relations follow from the d-separation property applied to the
DAG.

In the three propositions below, {X1, · · · ,Xt , · · ·} form a time series generated from a lag T
additive non-linear model, X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t are any two entries of Xt , and
X

e = X
l \{Xt−i, j} for some Xt−i, j ∈X

l

Proposition 2: The d-separation relations among the variables in Xt conditional on X
l in a repet-

itive causal graph Gc are the same as the d-separation relations among the variables in Xt in the
subgraph of Gc induced by Xt .

Proof: See Moneta (2003), proposition 4. �

Proposition 3: Consider a time series {X}t = {X1, · · · ,Xt , · · ·} generated from a lag T additive
non-linear model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t and X2

t be any two entries of Xt . Assuming
faithfulness, if there is a variable Xt−i, j ∈X

l such that X2
t and Xt−i, j are independent conditional on

X
e = X

l \{Xt−i, j}, but Xt−i, j and X1
t are not independent conditional on X

e, then X1
t is not a cause

of X2
t .

973



CHU AND GLYMOUR

Proof: Suppose X1
t is a cause of X2

t , then there must be a directed path P′ from X1
t to X2

t such
that each vertex on P′ is in Xt . If Xt−i, j and X1

t are dependent given X
e, there must be a path P

d-connecting Xt−i, j and X1
t given X

e. Thus, no variable in X
e is a non-collider on path P, and all

the colliders on path P must be observed ancestors of X
e, hence must be in X

e. (Note that the
set of observed ancestors of X

e is either X
e or X

e ∪{Xt−i, j}). This implies that P must be into
X1

t , because otherwise either P would be a direct path from X 1
t to Xt−i, j, which is not allowed, or

there must be a collider on P that is both a descendant of X 1
t and an element of X

e, which also is
impossible. By appending the direct path P′ to P, we get a path d-connecting Xt−i, j and X2

t given
X

e, which is a contradiction. �
Proposition 4: Consider a time series {X}t = {X1, · · · ,Xt , · · ·} generated from a lag T additive
non-linear model. Let X

l = {Xt−1, · · · ,Xt−T}, X1
t be any entry of Xt , Xt−i, j be any variable in X

l ,
X

d
t be the set of all observed contemporary direct causes of X 1

t , and X
e = X

l \{Xt−i, j}. Assuming
faithfulness, Xt−i, j and X1

t are dependent conditional on X
d
t and X

e if and only if:

• either Xt−i, j is a direct cause of X1
t ,

• or there is a path P between X 1
t and Xt−i, j, with 〈W1, · · ·, Wm〉 being the set of observed

variables on P between X1
t and Xt−i, j and ordered along the direction from X 1

t to Xt−i, j, such
that:

1. Wi ∈Xt for i = 1, · · · ,m;

2. X1
t and W1 have a latent common cause;

3. if Wi ∈X
d
t then Wi is a collider on P;

4. Wi is a (possibly indirect) cause of X 1
t for i = 1, · · · ,m;

5. Xt−i, j is a direct cause of Wm.

Proof: The if part of the proposition is trivial, here we only prove the only if part.
Suppose Xt−i, j is not a direct cause of X1

t , then there is a path P d-connecting Xt−i, j and X1
t

conditional on X
d
t and X

e. Let W = 〈W1, · · · ,Wm〉 be the set of observed variables on P between
X1

t and Xt−i, j, ordered along the direction from X 1
t to Xt−i, j.

To show that Wi ∈Xt for i = 1, · · · ,m, we note that if W j is the first element in W such that
Wj <Xt , it must belong to X

e, where W j−1 is in Xt . Because there is no observed variable between
Wj−1 and W j on P, by the definition of additive non-linear models, there must be a direct edge from
Wj to Wj−1 on P (let X1

t =W0 when j = 1). This means that W j is not a collider on P, hence P cannot
d-connect X1

t and Xt−i, j conditional on X
e and X

d
t , which contradicts our assumption. Using the

same argument, given that Wm ∈Xt , it is easy to see that Xt−i, j must be a direct cause of Wm.
Next we show that W1 and X1

t must have a latent common cause. Assume that there is no latent
common cause for W1 and X1

t . Because there is no observed variable between W1 and X1
t on P, they

must be adjacent on P, hence there must be a direct causal relation between X 1
t and W1. Consider

the two alternative cases:

• First, suppose that W1 is a direct cause of X1
t . Then W1 ∈X

d
t , and is a non-collider on P,

hence P cannot d-connecting Xt−i, j and X1
t conditional on X

d
t and X

e.
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• Second, suppose X1
t is a direct cause of W1. Then there must be a variable Wi for some

i ≥ 1 such that the subpath {X 1
t ,W1, · · · ,Wi} of P is a directed path from X 1

t to Wi, and Wi

is a collider on P. This would imply that Wi has to be a cause of X1
t , for otherwise neither

Wi nor any of its descendants belong to X
d
t , which means that P cannot d-connect X 1

t and
Xt−i, j conditional on X

e and X
d
t . But allowing Wi to be a cause of X1

t would make the path
X1

t ,W1, · · · ,Wi,X1
t a directed cycle, which is impossible.

It is obvious that if Wi ∈X
d
t , then it must be a collider on P. To show that Wi is a cause of X1

t ,
we note that if W j is a collider on P, it must be a cause of X 1

t , for otherwise neither W j nor any of
its descendants belongs to X

d
t , hence P cannot d-connect X 1

t and Xt−i, j conditional on X
e and X

d
t .

Therefore Wi must be a cause of X1
t , because it is either a collider on P, or a cause of a collider on

P. �
Given propositions 2, 3, and 4, we propose a three-step procedure for inference to unit causal

graphs from time series data generated by additive non-linear models. The output of this causal
inference procedure is a Partial Ancestral Graph (PAG). Roughly speaking, a PAG is a graph con-
sisting of a list of vertices representing observed random variables, and 3 types of end points, −,
◦, and >, which are combined to form the following 4 types of edges representing causal relations
between random variables.

• X → Y means that X is a (possibly indirect) cause of Y .

• X ↔ Y means that there is a latent variable Z that is a (possibly indirect) cause of both X and
Y .

• X �→ Y means either X → Y or X ↔ Y .

• X�Y means either X →Y , or Y �→ X . In other words, X�Y means that X and Y cannot
be d-separated by any other observed variables.

For detailed explanation of PAGs, see Spirtes et al. (2000). Following Spirtes et al. (2000), we
also use * as a meta symbol to represent any of the three end points.

Below is a constraint based additive non-linear time series causal inference procedure for non-
linear time series with latent common causes. The conditional independence information required
by the procedure can be obtained using additive model regression based conditional independence
tests mentioned in the previous section. Here we assume that the time series data satisfies various
conditions for the asymptotic consistency and normality of the additive model estimator, and that an
upper bound Tmax on the unknown true lag number T of the additive non-linear model has been set,
either using the procedures in Tjøstheim and Auestad (1994) or Huang and Yang (2004), or based on
background knowledge. So long as Tmax is no less than T , the following procedure asymptotically
obtains a correct PAG. Of course, choosing a Tmax much higher than T will reduce the efficiency of
the procedure.

The symbols in the following procedure are defined in the same way as in the beginning of this
section, except that X

l is redefined as X
l = {Xt−1, · · · ,Xt−Tmax}.

1. Identify contemporary causal relations

(a) For all choices of X1
t , X2

t , and X
c
t , determine if X1

t is independent of X2
t conditional on

X
c
t and X

l .
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(b) Treat the above conditional independence relations as if they were conditional indepen-
dence relations between X 1

t and X2
t given X

c
t .

• Feed these conditional independencies to a causal inference algorithm allowing
presence of latent common causes, such as the FCI algorithm. Derive the PAG for
the contemporary causal structure among variables in Xt . Call this PAG πt .

• For all choices of X1
t , identify the set of possible contemporaneous direct causes

of X1
t , where X2

t is a possible contemporaneous direct cause of X 1
t if in πt either

X2
t �( X1

t , or X2
t �→ X1

t , or X2
t → X1

t . Denote by PCDC(X1
t ) the set of possible

contemporaneous direct causes of X 1
t .

2. Identify lagged causal relations.

(a) Create a new graph π f such that the vertices in π f are {Xt ,Xt−1, · · · ,Xt−T}, and the
edges in π f are exactly the same as the edges in πt .

(b) For all choices of X1
t , Xt−i, j, and X

b
t , determine if X1

t and Xt−i, j are independent given
X

e and X
b
t

• For all choices of X1
t , identify the set of possible lagged direct causes of X 1

t , where
a lagged variable Xt−i, j is a possible lagged direct cause of X 1

t if for all X
d
t ⊆

PCDC(X1
t ), Xt−i, j and X1

t are dependent given X
d
t and X

e. Denote by PLDC(X1
t )

the set of possible lagged direct causes of X 1
t

• For all choices of X1
t , identify the set of permanent lagged predictors of X 1

t , where
Xt−i, j is a permanent lagged predictor of X 1

t if for all X
b
t ⊆ (Xt \ {X1

t }), Xt−i, j

and X1
t are dependent given X

b
t and X

e. Denote by PLP(X1
t ) the set of permanent

lagged predictors of X1
t

(c) Add edges representing the lagged causes of each variable in Xt to π f :

i. For all choices of X1
t , add an edge Xt−i, j→ X1

t to π f if Xt−i, j ∈ PLP(X1
t ).

ii. For all choices of X1
t , add an edge Xt−i, j → X1

t to π f if Xt−i, j ∈ PLDC(X1
t ), and

Xt−i, j is not adjacent to any other variable in π f .

3. Orient the contemporary PAG according to the following rule:

(a) Repeat the following procedure until no more changes can be made to π f .

i. If Xt−i, j→ X1
t �∗X

2
t is in π f , and Xt−i, j and X2

t are not adjacent, then:
If Xt−i, j and X2

t are independent given X
e, but dependent given X 1

t and X
e, then

orient the edge between X 1
t and X2

t as X1
t ←∗X

2
t

ii. If Xt−i, j→ X1
t �∗X

2
t is in π f , and Xt−i, j and X2

t are not adjacent, then:
If Xt−i, j and X2

t are dependent conditional on X
e, but independent conditional on

X1
t and X

e, then orient the edge between X 1
t and X2

t as X1
t → X2

t

(b) Apply the orientation step of FCI algorithm to further orient the contemporary PAG π f .

Proposition 2 provides justification for the first step in this procedure, proposition 3 the third
step. Proposition 4 is needed for the second step, as we can see that the set of contemporaneous
direct causes of a variable X 1

t is a subset of PCDC(X1
t ), thus by proposition 4 we have:
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Lagged direct causes of X1
t ⊆ PLP(X1

t )⊆ PLDC(X1
t ) ⊆ Lagged causes of X1

t

Note that step 2(c) is designed to make the procedure more robust.

The complexity of the above procedure is primarily determined by step 1(a), where k2k−1 addi-
tive model regressions are performed to test the conditional independence relations required by the
later steps.

We want to emphasize that the above procedure can be modified in various ways to accommo-
date changes in the assumptions about the time series data generating models. In the last section
(Section 6) of this paper, we discuss in details about different extensions of the above procedure.

4. Simulation Study

In this section, we conduct a simple simulation study to evaluate the performance of the additive
non-linear causal inference algorithm presented in Section 3. In particular, we would like to see
if the additive non-linear algorithm can provide a viable solution to the problem of nonlinear time
series causal inference. For comparison, we also apply a causal inference procedure designed for
linear time series to the simulated data. Because there is no currently available efficient automated
causal inference algorithm for linear time series with contemporaneous causal relations, the linear
procedure used for comparison actually is an extension of our additive non-linear causal inference
procedure under the assumption that the time series data are generated from linear models. (Bessler
et al. 2002, Demiralp and Hoover 2003, Moneta 2003 and Hoover 2005 discussed efficient ways
of identifying the contemporaneous causal pattern, that is, the Markov equivalence classes (MEC)
of the causal graphs for contemporaneous variables assuming causal sufficiency. However, their
procedures are not complete because, when the MEC consists of multiple contemporaneous causal
graphs, these procedures all require further background information to uniquely identify the con-
temporaneous causal graph before proceeding to derive the causal pattern for both contemporaneous
and lagged variables. Oxley et al. (2004) provides a less efficient algorithm for linear time series
that treats a k-dimensional lag p structural vector autoregressive model (SVAR(p)) as a linear causal
model with k(p+1) variables.) The linear procedure differs from the additive non-linear algorithm
only in step 1: unlike the original algorithm which uses additive regression to test conditional inde-
pendence, the linear procedure uses linear regression instead.

We use the Mersenne Twister algorithm implemented in java package RngPack (version 1.1a)
for random number generation, and the gam function in the R package gam (version 0.97) for addi-
tive model regression.

The simulated data are generated from the four causal structures shown in Figure 2. Note that
in this simulation study the true PAGs happen to have no circles, and can be represented by the
same graphs in Figure 2. The chain-like contemporaneous causal structure is chosen to evaluate
the ability of our algorithm to identify the direction of those contemporaneous causal relations that
could not be detected using previous algorithms (Bessler et al., 2002; Demiralp and Hoover, 2003;
Moneta, 2003; Hoover, 2005). For each causal structure, we consider the following four types of
models, characterized by the type of functional relations between an effect variable and its direct
causes:
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Figure 2: Causal graphs and true PAGs of simulation data

• Trigonometric lag models: Each contemporaneous variable is a linear combination of other
contemporaneous variables and univariate trigonometric functions of lagged variables. For
example, in one model, we have:

Yt = 0.5Xt + sin(2Yt−1)− cos(10Zt−2)+ εY .

• Polynomial lag models: Each contemporaneous variable is a linear combination of other
contemporaneous variables and univariate polynomial functions of lagged variables. For ex-
ample, in one model, we have:

Yt = 0.5Xt +0.3Y 2
t−1−0.1Z3

t−2 + εY .

• Linear lag models: Each contemporaneous variable is a linear combination of other contem-
poraneous variables and lagged variables. For example, in one model, we have:

Yt = 0.5Xt +0.3Yt−1−0.1Zt−2 + εY .

• Trigonometric contemporaneous models: Each contemporaneous variable is a linear combi-
nation of univariate trigonometric functions of other contemporaneous variables and lagged
variables. For example, in one model, we have:

Yt = cos(Xt)+ sin(2Yt−1)− cos(10Zt−2)+ εY .
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Note that these models do not belong to the family of additive non-linear time series models,
for they violate the assumption C1.

In total we have 16 data generating models, with 12 of them being additive non-linear time
series models (including 4 linear time series models). For each of the 16 models, we generate 4
random time series data sets of length 200, 500, 1000, and 2000 respectively. For each data set, we
run both the additive non-linear procedure and the linear procedure. The upper bound Tmax of the
true lag number T is set to 3 for all simulations, (T is equal to 2 for 12 of the data generating models
based on casual structure (A), (B), and (C) in Figure 2, and 1 for the other 4 models based on casual
structure (D)). The learned PAGs are compared with the true PAGs, which are also represented by
the graphs in Figure 2.

The additive non-linear procedure presented in Section 3 requires, for each contemporane-
ous variable, say Xt , the following two types of conditional independence information: (1) if Xt

is independent of another contemporaneous variable, say Yt , given all the lagged variables L =
{Xt−2,Xt−1,Yt−2, Yt−1, Zt−2, Zt−1} and a subset of the remaining contemporaneous variables, say,
{Zt}; and (2), if Xt is independent of a lagged variable, say Xt−1, given all the other lagged variables
and a subset of contemporaneous variables, say, {Zt}. These conditional independence relations are
tested by checking if E[Xt |L,Zt ] is constant in Yt or Xt−1 respectively. For example, to test if Xt−1 is
present in E[Xt |L,Zt ], we follow Huang and Yang (2004) by starting from a model A, where Xt is
regressed against L and Zt , and searching for a submodel of A with the lowest BIC score. If Xt−1 is
present in this submodel with lowest BIC score, it is present in E[Xt |L,Zt ]. Otherwise, it is not.

The simulation results are summarized in Figure 3. Each of the four panes in Figure 3 summa-
rizes the results of 16 simulated time series data sets generated from the same type of models. We
use the average error rates to evaluate the performance of the two algorithms. The definitions of
the various error rates are similar to those in Spirtes and Meek (1995). Consider a p dimensional
time series data. An edge omission error occurs when two variables are adjacent in the true PAG
but not in the learned PAG. An edge commission error occurs when two variables are adjacent in
the learned PAG but absent in the true PAG.

The edge omission error rate is defined as:

Eo =
Number of edge omission errors
Number of edges in the true PAG

.

The edge commission error rate is defined as:

Ec =
Number of edge commission errors

Maximum number of possible edge commission errors
.

When inferring causal structure from a p dimensional time series data set, if the upper bound of the
true lag number is set to Tmax, the maximum number of possible edge commission errors is equal to:

p2Tmax +
p(p−1)

2
−Number of edges in the true PAG

where p2Tmax + p(p−1)/2 is the maximum number of edges can be found in the unit causal graph
for any p-dimension lag Tmax time series model.

The solid lines in each pane of Figure 3 represent the average omission error rates for different
time series lengths; the dotted lines represent the average commission error rates. Blue lines with
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Figure 3: Error rate for edge discovery

circles represent results obtained by the additive non-linear algorithm, red lines with triangles the
results by the linear procedure.

The pane with label “Trig Contemp” gives the results for data generated from the trigonometric
contemporaneous models. We choose these models in the simulation study precisely because they
lie outside of the family of additive non-linear time series models, for they violate the functional
assumption (C1) in the definition of additive non-linear time series models. The simulation results
suggest that, when the assumption C1 is violated, the additive non-linear algorithm can still discover
most of the edges. However, as the length of time series increases, the average number of extra edges
also increases, apparently because the data generating models are not additive non-linear time series
models. The linear procedure is not satisfactory, missing most of the edges in the true models.
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The panes labeled with “Trig Lag” and “Poly Lag” show the results for trigonometric lag models
and polynomial lag models, both of which are genuine additive non-linear time series models. The
additive non-linear algorithm performs very well for the trigonometric lag models, but less than
satisfactory for polynomial lag models. Its performance for polynomial lag models, however, does
improve as the length of time series increases. The linear procedure performs poorly in both cases,
missing at least half of the edges.

The pane with label “Lin Lag” provides the results for linear lag models. Given that a linear
lag model is simply a linear time series model, which is a special case of additive non-linear time
series model, we expect that both algorithms should perform very well, as they do. This, on the one
hand, suggests that the linear procedure is a good choice for linear time series causal inference, on
the other hand, implies that the additive non-linear algorithm does not suffer from overfitting.

We also compare the average error rates for orientation of the edges among contemporaneous
variables by the additive non-linear algorithm and the linear procedure. Suppose Xt and Yt are
adjacent in both the learned PAG and the true PAG, an arrowhead omission error occurs if the edge
is oriented as Xt ∗→Yt in the true PAG, but as Xt ∗—Yt or Xt ∗( Yt in the learned PAG. Similarly, an
arrowhead commission error occurs if the edge is oriented as Xt —∗ Yt or Xt �∗Yt in the true PAG,
but as Xt ←∗Yt in the learned PAG. Let E be the set of edges among contemporaneous variables
in the true PAG such that the pairs of variables connected by these edges are also adjacent in the
learned PAG. The arrowhead omission error rate is defined as:

Ao =
Number of arrowhead omission errors

∑e∈E Number of arrowheads in e
.

The arrowhead commission error rate is defined as:

Ac =
Number of arrowhead commission errors

∑e∈E Number of non-arrowheads in e
.

In Figure 4, the solid lines in each pane represent the average arrowhead omission error rates;
the dotted lines represent the average arrowhead commission error rates. As in Figure 3, blue
lines with circles represent results obtained by the additive non-linear algorithm, red lines with
triangles the results by the linear procedure. (Note that in the top two panels labeled respectively
with “Trig Contemp” and “Trig Lag”, the lines representing omission error and commission error for
the additive non-linear algorithm overlap. In the bottom two panels labeled respectively with “Poly
Lag” and “Lin Lag”, the lines representing commission error for the additive non-linear algorithm
and the linear algorithm overlap.)

There are two more scores to measure how close a learned PAG is to the true PAG, that is,
the tail omission error rate and the tail commission error rate. Suppose Xt and Yt are adjacent
in both the learned PAG and the true PAG, a tail omission error occurs if the edge is oriented as
Xt → Yt in the true PAG, but as Xt �∗Yt in the learned PAG. A tail commission error occurs if the
edge is oriented as Xt �∗Yt in the true PAG, but as Xt → Yt in the learned PAG. Note that these
definitions are stated so that an arrowhead commission/omission error will not be counted again
as a tail omission/commission error. Because there is no circle in the true PAGs in this simulation
study, we can only compute the tail omission errors for the learn PAGs, shown in Figure 5. The tail
omission error rate is defined as:

To =
Number of tail omission errors

∑e∈E Number of tails in e
.
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Figure 4: Error rate for edge orientation: Arrowhead

The additive non-linear algorithm gives excellent results. For example, for the data sets gen-
erated from additive non-linear models, that is, the trigonometric lag models, the polynomial lag
models, and linear lag models, the additive non-linear algorithm makes no arrowhead commission
errors. The linear procedure performs quite well for polynomial lag models and linear lag models.

Although the scope of this simulation study is very limited, we can get some general idea about
the performance of our additive non-linear casual inference algorithm. If we count the number of
variables in a p dimensional lag T additive non-linear time series model as p(T + 1), then roughly
speaking, for longer time series, (80 or more observations per variable), the additive non-linear
algorithm outperforms the linear procedure in all situations, including cases where the true model is
more complex than the additive non-linear model and cases where the true model is a linear model.
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Figure 5: Error rates for edge orientation: Tail

For shorter time series, (less than 40 observations per variable), the additive non-linear model is
still better in general, but may be not as good as the linear procedure in some cases. Our suggestion
is that, for longer time series always choose the additive non-linear algorithm. For shorter time
series, if computational cost is critical, the linear procedure is a reasonable choice; otherwise we
still recommend the additive non-linear algorithm, or better yet, try both of them.

5. Case Study: Ocean Climate Indices

To illustrate the application of the additive non-linear causal inference algorithm for nonlinear time
series, we use it to study the causal relations among some ocean climate indices.
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Climate teleconnections are associations of geospatially remote climate phenomena produced
by atmospheric and oceanic processes. The most famous, and first established teleconnection, is the
association of the El Nino/Southern Oscillation (ENSO) with the failure of monsoons in India. A
variety of associations have been documented among sea surface temperatures (SST), atmospheric
pressure at sea level (SLP), land surface temperatures (LST) and precipitation over land areas. Since
the 1970s data from a sequence of satellites have provided monthly (and now daily) measurements
of such variables, at resolutions as small as 1 square kilometer. Measurements in particular spatial
regions have been clustered into time indexed indices for the regions, usually by principal com-
ponents analysis, but also by other methods. Climate research has established that some of these
phenomena are exogenous drivers of others, and has sought physical mechanisms for the telecon-
nections. We consider here whether constraints on such mechanisms can be obtained by data-driven
model selection from time series of ocean indices.

Our data set consists of the following 4 ocean climate indices, recorded monthly from 1958 to
1999, each forming a time series of 504 time steps:

SOI Southern Oscillation Index: Sea Level Pressure (SLP) anomalies between Darwin and Tahiti

WP Western Pacific: Low frequency temporal function of the ‘zonal dipole’ SLP spatial pattern
over the North Pacific.

AO Arctic Oscillation: First principal component of SLP poleward of 20◦ N

NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores and
Stykkisholmur, Iceland

To check stationarity, we conduct the augmented Dickey-Fuller (ADF) test. ADF tests for all 4
time series reject the null hypothesis that the tested series has a unit root against the alternative that
the series is stationary, with p values of the tests smaller than 0.01. As a complementary to ADF
tests, we also conduct the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For all 4 time series,
KPSS tests with lag truncation parameter set to 12 fail to reject the null hypothesis that the tested
series is (trend) stationary against the unit root alternative, with p values of the tests higher than
0.1. We also plot the autocorrelations for the 4 time series to check if the data satisfies the strong
mixing condition (Figure 6). The idea is that, if a time series satisfies the strong mixing condition,
its autocorrelation should decrease rapidly as the lag increases. From the plot, the auto correlations
of SOI do not decrease as quickly as for other indices, but they become insignificant when the lag
is above 12 months.

We assume that the 4 indices are generated from a lag 12 additive non-linear model. The choice
of 12 is partly based on the fact that the ocean indices are monthly data. Another concern is that
with a length of 504, the data would be too sparse for a model with a much longer lag. As in the
simulation study, the R package gam (version 0.97) is used in this analysis. We first remove any
linear trend from the data, then, following the causal inference procedure presented in Section 3,
derive a causal structure represented by a PAG for the 4 ocean climate indices. Figure 7 gives the
learned causal structure.

Because of the relative shorter length of the ocean indices data (10 observations per variable for
a lag 12 model), it is worth conducting another inference on the 4 ocean indices using the linear
procedure. The resulting causal structure is given in Figure 8.

984



ADDITIVE NON-LINEAR TIME SERIES CAUSAL INFERENCE

0 5 10 15 20

0.
0

0.
6

Lag

A
C

F
SOI

0 5 10 15 20

0.
0

0.
6

Lag

SOI & NAO

0 5 10 15 20

0.
0

0.
6

Lag

SOI & AO

0 5 10 15 20

0.
0

0.
6

Lag

SOI & WP

−20 −15 −10 −5 0

0.
0

0.
6

Lag

A
C

F

NAO & SOI

0 5 10 15 20

0.
0

0.
6

Lag

NAO

0 5 10 15 20

0.
0

0.
6

Lag

NAO & AO

0 5 10 15 20

0.
0

0.
6

Lag

NAO & WP

−20 −15 −10 −5 0

0.
0

0.
6

Lag

A
C

F

AO & SOI

−20 −15 −10 −5 0

0.
0

0.
6

Lag

AO & NAO

0 5 10 15 20
0.

0
0.

6

Lag

AO

0 5 10 15 20

0.
0

0.
6

Lag

AO & WP

−20 −15 −10 −5 0

0.
0

0.
6

Lag

A
C

F

WP & SOI

−20 −15 −10 −5 0

0.
0

0.
6

Lag

WP & NAO

−20 −15 −10 −5 0

0.
0

0.
6

Lag

WP & AO

0 5 10 15 20

0.
0

0.
6

Lag

WP

Figure 6: Autocorrelation plot for 4 times series

Without a gold standard, it is hard to say which method gives the more accurate information
in this case. But the graph obtained using the linear procedure is likely to miss some nonlinear
dependencies. For example, an arrow from SOIt−1 to AOt is present in Figure 7, but absent from
Figure 8. It turns out, when regressing AOt against SOIt−1, AOt−1 and NAOt−1 using additive model
regression, the estimated influence of SOIt−1 on AOt is clearly nonlinear (see Figure 9, where the
contribution of SOIt−1 to AOt is plotted as a smooth univariate function of SOIt−1). This is not
surprising given the complexity of the processes represented by the ocean climate indices, and illus-
trates the need of causal inference procedures that can be applied to data generated from nonlinear
models.

6. Discussion

Methods of causal inference, first developed in the machine learning literature, have been success-
fully applied to many diverse fields, including biology, medicine, and sociology (Pearl, 2000; Spirtes
et al., 2000). An essential and distinct feature of these methods is that they require comparatively
less domain knowledge about the system to be studied.
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Figure 7: Causal connections among 4 ocean climate indices, using the additive non-linear algo-
rithm

Figure 8: Causal connections among 4 ocean climate indices, using the linear procedure

This study extends the application of causal inference to nonlinear time series data. We present
a new procedure that combines semi-automated model search for causal structure with additive
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Figure 9: Nonlinear relation between SOIt−1 and AOt

model regression methods. The particular example is to ocean climate indices, but the component
procedures have been individually applied to econometric data with some success, suggesting that
the criteria for successful application of the joint procedures are statistical and causal rather than
domain specific.

Our approach is modular, and its two main components, that is, conditional independence testing
and causal model search, could be replaced by other comparable methods. Thus, with appropriate
data generated from appropriate mechanisms, related analyses could be conducted under weaker or
alternative assumptions. Below we briefly discuss several possible extensions of our method:

6.1 Nonstationary Nonlinear Time Series

In most of this paper we assume that the nonlinear time series are stationary, only because it has
been shown that for stationary nonlinear time series data satisfying certain conditions, nonparamet-
ric regression is asymptotically consistent. The algorithm and propositions proposed in this paper
do not require stationarity. However, to apply our algorithm to nonstationary nonlinear time series
data, we must find an efficient regression method to estimate the conditional expectations and con-
duct conditional independence tests. Cointegration analysis is not suitable for this purpose, because
it is mainly designed for and applicable to cointegrated linear time series (Engle and Granger, 1987;
Johansen, 1991). However, recent studies on applying nonparametric regression methods to nonsta-
tionary time series data (Phillips and Park, 1998; Karlsen and Tjøstheim, 2001; Bandi and Phillips,
2003; Karlsen et al., 2005) seem promising. Not surprisingly, the convergence rate of nonparametric
regression for nonstationary time series data may be slower than that of stationary data.
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6.2 Feedback Models

The original definition of additive non-linear models in Section 2 does not allow any feedback
among contemporaneous variables (see condition C4). To represent mutual influences among con-
temporary variables, we can remove condition C4 from the original definition. We also have to
drop the U terms in Equation 2 because the currently available algorithm capable of handling feed-
backs (Richardson and Spirtes, 1999) does not work in the presence of latent common causes. The
resulting definition defines a additive non-linear feedback model, which, compared to the additive
non-linear model, allows feedback, but not latent common causes. Propositions 1, 2, and 3 still hold
for the new model, proposition 4 needs some modification:
Proposition 4’: Let X

b
t be the set of all contemporary direct causes of X 1

t . Assuming there is no
latent common cause, Xt−i, j and X1

t are dependent conditional on X
b
t and X

e if and only if either
Xt−i, j is either a direct cause of X1

t , or a direct cause of a contemporaneous cause of X 1
t .

The only change needed in the causal inference procedure to handle data generated from ad-
ditive non-linear feedback models is, in step 1(b), that the FCI algorithm should be replaced by a
consistent causal inference algorithm capable of outputting cyclic graphs, such as the one proposed
in Richardson and Spirtes (1999).

6.3 Score Based Search Procedure

The causal inference procedure presented in Section 3 is constraint based. That is, the procedure re-
quires explicit conditional independence information as input, (although each conditional indepen-
dence constraint is obtained using a BIC score based model selection procedure). As we mentioned
in Section 3, the main advantage of this procedure and its modified version is that they can handle
the presence of latent common causes or feedbacks in the contemporaneous causal structure. (Drton
et al. 2006 provides a maximum likelihood estimation algorithm that allows the computation of BIC
scores for certain types of linear models with correlated error terms, though not for the contempo-
raneous causal structure of a additive non-linear model.) If we are willing to exclude feedbacks and
latent common causes, a simple two-step score based procedure can be used to infer causal infor-
mation from data generated by additive non-linear models. In the first step, a score based algorithm,
such as the GES algorithm (Meek, 1996; Chickering, 2002a,b), is applied to the residuals of additive
model regression of contemporaneous variables against all lags to obtain a causal pattern represent-
ing a Markov equivalence class πt of directed acyclic graphs for the contemporaneous variables. In
the second step, for each directed acyclic graph G belonging to the Markov equivalence class πt , we
generate a time series causal model M and compute its BIC score in the following way:

• Each contemporaneous variable X i
t is regressed against its parents in G and all the lagged

variables X
l . The BIC score method proposed in Huang and Yang (2004) is used to identify

the best submodel (with the lowest BIC score si). The significant predictors of X i
t in that best

submodel are direct causes of X i
t in causal model M.

• The BIC score of causal model M is ∑i si.

The causal model with the best (lowest) BIC score then is returned as the result of the score
based casual inference algorithm.
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