
Journal of Machine Learning Research 9 (2008) 1369-1398 Submitted 1/08; Revised 4/08; Published 7/08

Coordinate Descent Method for Large-scale L2-loss Linear Support
Vector Machines

Kai-Wei Chang B92084@CSIE.NTU.EDU.TW

Cho-Jui Hsieh B92085@CSIE.NTU.EDU.TW

Chih-Jen Lin CJLIN@CSIE.NTU.EDU.TW

Department of Computer Science
National Taiwan University
Taipei 106, Taiwan

Editor: Leon Bottou

Abstract
Linear support vector machines (SVM) are useful for classifying large-scale sparse data. Prob-
lems with sparse features are common in applications such as document classification and natural
language processing. In this paper, we propose a novel coordinate descent algorithm for training
linear SVM with the L2-loss function. At each step, the proposed method minimizes a one-variable
sub-problem while fixing other variables. The sub-problem is solved by Newton steps with the
line search technique. The procedure globally converges at the linear rate. As each sub-problem
involves only values of a corresponding feature, the proposed approach is suitable when accessing
a feature is more convenient than accessing an instance. Experiments show that our method is more
efficient and stable than state of the art methods such as Pegasos and TRON.
Keywords: linear support vector machines, document classification, coordinate descent

1. Introduction

Support vector machines (SVM) (Boser et al., 1992) are a popular data classification tool. Given a
set of instance-label pairs (x j,y j), j = 1, . . . , l, x j ∈ Rn, y j ∈ {−1,+1}, SVM solves the following
unconstrained optimization problem:

min
w

f (w) =
1
2

wT w+C
l

∑
j=1

ξ(w;x j,y j), (1)

where ξ(w;x j,y j) is a loss function, and C ∈ R is a penalty parameter. There are two common loss
functions. L1-SVM uses the sum of losses and minimizes the following optimization problem:

f (w) =
1
2

wT w+C
l

∑
j=1

max(1− y jwT x j,0), (2)

while L2-SVM uses the sum of squared losses, and minimizes

f (w) =
1
2

wT w+C
l

∑
j=1

max(1− y jwT x j,0)2. (3)

c©2008 Kai-Wei Chang, Cho-Jui Hsieh and Chih-Jen Lin.

CHANG, HSIEH AND LIN

SVM is related to regularized logistic regression (LR), which solves the following problem:

min
w

f (w) =
1
2

wT w+C
l

∑
j=1

log(1+ e−y jwT x j). (4)

In some applications, we include a bias term b in SVM problems. For convenience, one may extend
each instance with an additional dimension to eliminate this term:

xT
j ← [xT

j ,1] wT ← [wT ,b].

SVM usually maps training vectors into a high-dimensional (and possibly infinite dimensional)
space, and solves the dual problem of (1) with a nonlinear kernel. In some applications, data appear
in a rich dimensional feature space, so that with/without nonlinear mapping obtain similar perfor-
mances. If data are not mapped, we call such cases linear SVM, which are often encountered in
applications such as document classification. While one can still solve the dual problem for linear
SVM, directly solving (2) or (3) is possible. The objective function of L1-SVM (2) is nondiffer-
entiable, so typical optimization methods cannot be directly applied. In contrast, L2-SVM (3) is a
piecewise quadratic and strongly convex function, which is differentiable but not twice differentiable
(Mangasarian, 2002). We focus on studying L2-SVM in this paper because of its differentiability.

In recent years, several optimization methods are applied to solve linear SVM in large-scale
scenarios. For example, Keerthi and DeCoste (2005); Mangasarian (2002) propose modified New-
ton methods to train L2-SVM. As (3) is not twice differentiable, to obtain the Newton direction,
they use the generalized Hessian matrix (i.e., generalized second derivative). A trust region Newton
method (TRON) (Lin et al.) is proposed to solve logistic regression and L2-SVM. For large-scale
L1-SVM, SVMperf (Joachims, 2006) uses a cutting plane technique to obtain the solution of (2).
Smola et al. (2008) apply bundle methods, and view SVMperf as a special case. Zhang (2004) pro-
poses a stochastic gradient method; Pegasos (Shalev-Shwartz et al., 2007) extends Zhang’s work
and develops an algorithm which alternates between stochastic gradient descent steps and projection
steps. The performance is reported to be better than SVMperf . Another stochastic gradient imple-
mentation similar to Pegasos is by Bottou (2007). All the above algorithms are iterative procedures,
which update w at each iteration and generate a sequence {wk}∞

k=0. To distinguish these approaches,
we consider the two extremes of optimization methods mentioned in the paper (Lin et al.):

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

Among methods discussed above, Pegasos randomly subsamples a few instances at a time, so the
cost per iteration is low, but the number of iterations is high. In contrast, Newton methods such as
TRON take significant efforts at each iteration, but converge at fast rates. In large-scale scenarios,
usually an approximate solution of the optimization problem is enough to produce a good model.
Thus, methods with a low-cost iteration may be preferred as they can quickly generate a reasonable
model. However, if one specifies an unsuitable stopping condition, such methods may fall into the
situation of lengthy iterations. A recent overview on the tradeoff between learning accuracy and
optimization cost is by Bottou and Bousquet (2008).

Coordinate descent is a common unconstrained optimization technique, but its use for large
linear SVM has not been exploited much.1 In this paper, we aim at applying it to L2-SVM. A coor-

1. For SVM with kernels, decomposition methods are popular, and they are related to coordinate descent methods.
Since we focus on linear SVM, we do not discuss decomposition methods in this paper.

1370

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

dinate descent method updates one component of w at a time by solving a one-variable sub-problem.
It is competitive if one can exploit efficient ways to solve the sub-problem. For L2-SVM, the sub-
problem is to minimize a single-variable piecewise quadratic function, which is differentiable but
not twice differentiable. An earlier paper using coordinate descents for L2-SVM is by Zhang and
Oles (2001). The algorithm, called CMLS, applies a modified Newton method to approximately
solve the one-variable sub-problem. Here, we propose another modified Newton method, which
obtains an approximate solution by line searches. Two key properties differentiate our method and
CMLS:

1. Our proposed method attempts to use the full Newton step if possible, while CMLS takes a
more conservative step. Our setting thus leads to faster convergence.

2. CMLS maintains the strict decrease of the function value, but does not prove the convergence.
We prove that our method globally converges to the unique minimum.

We say ŵ is an ε-accurate solution if

f (ŵ)≤min
w

f (w)+ ε.

We prove that our process obtains an ε-accurate solution in O
(
nC3P6(#nz)3 log(1/ε)

)
iterations,

where the definitions of #nz and P can be found in the end of this section. Experiments show that
our proposed method is more efficient and stable than existing algorithms.

Subsequent to this work, we and some collaborators propose a dual coordinate descent method
for linear SVM (Hsieh et al., 2008). The method performs very well on document data (generally
better than the primal-based method here). However, the dual method is not be stable for some
non-document data with a small number of features. Clearly, if the number of features is much
smaller than the number of instances, one should solve the primal form, which has less variables.
In addition, the primal method uses the column format to store data (see Section 3.1). It is thus
suitable for data stored as some form of inverted index in a very large database.

The organization of this paper is as follows. In Section 2, we describe and analyze our algorithm.
Several implementation issues are discussed in Section 3. In Sections 4 and 5, we describe existing
methods such as Pegasos, TRON and CMLS, and compare them with our approach. Results show
that the proposed method is efficient and stable. Finally, we give discussions and conclusions in
Section 6.

All sources used in this paper are available at
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

Notation The following notations are used in this paper. The input vectors are {x j} j=1,...,l , and
x ji is the ith feature of x j. For the problem size, l is the number of instances, n is number of features,
and #nz is total number of nonzero values of training data.

m =
#nz
n

(5)

is the average number of nonzero values per feature, and

P = max
ji
|x ji| (6)

represents the upper bound of x ji. We use ‖ · ‖ to represent the 2-norm of a vector.

1371

CHANG, HSIEH AND LIN

Algorithm 1 Coordinate descent algorithm for L2-SVM

1. Start with any initial w0.

2. For k = 0,1, . . . (outer iterations)

(a) For i = 1,2, . . . ,n (inter iterations)

i. Fix wk+1
1 , . . . ,wk+1

i−1 ,wk
i+1, . . . ,w

k
n and approximately solve the sub-problem (7) to

obtain wk+1
i .

2. Solving Linear SVM via Coordinate Descent

In this section, we describe our coordinate descent method for solving L2-SVM given in (3). The
algorithm starts from an initial point w0, and produces a sequence {wk}∞

k=0. At each iteration,
wk+1 is constructed by sequentially updating each component of wk. This process generates vectors
wk,i ∈ Rn, i = 1, . . . ,n, such that wk,1 = wk, wk,n+1 = wk+1, and

wk,i = [wk+1
1 , . . . ,wk+1

i−1 ,wk
i , . . . ,w

k
n]

T for i = 2, . . . ,n.

For updating wk,i to wk,i+1, we solve the following one-variable sub-problem:

min
z

f (wk+1
1 , . . . ,wk+1

i−1 ,wk
i + z,wk

i+1, . . . ,w
k
n)

≡min
z

f (wk,i + zei),
(7)

where ei = [0, . . . ,0
︸ ︷︷ ︸

i−1

,1,0, . . . ,0]T . A description of the coordinate descent algorithm is in Algorithm

1. The function in (7) can be rewritten as

Di(z) = f (wk,i + zei)

=
1
2
(wk,i + zei)

T (wk,i + zei)+C ∑
j∈I(wk,i+zei)

(b j(wk,i + zei))
2, (8)

where
b j(w) = 1− y jwT x j and I(w) = { j | b j(w) > 0}.

In any interval of z where the set I(wk,i + zei) does not change, Di(z) is quadratic. Therefore,
Di(z),z ∈ R, is a piecewise quadratic function. As Newton method is suitable for quadratic opti-
mization, here we apply it for minimizing Di(z). If Di(z) is twice differentiable, then the Newton
direction at a given z̄ would be

−D′i(z̄)
D′′i (z̄)

.

The first derivative of Di(z) is:

D′i(z) = wk,i
i + z−2C ∑

j∈I(wk,i+zei)

y jx ji(b j(wk,i + zei)). (9)

1372

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Unfortunately, Di(z) is not twice differentiable as the last term of D′i(z) is not differentiable at
{z | b j(wk,i + zei) = 0 for some j}. We follow Mangasarian (2002) to define the generalized second
derivative:

D′′i (z) = 1+2C ∑
j∈I(wk,i+zei)

y2
jx

2
ji

= 1+2C ∑
j∈I(wk,i+zei)

x2
ji.

(10)

A simple Newton method to solve (7) begins with z0 = 0 and iteratively updates z by the following
way until D′i(z) = 0:

zt+1 = zt −D′i(z
t)/D′′i (z

t) for t = 0,1, (11)

Mangasarian (2002) proved that under an assumption, this procedure terminates in finite steps and
solves (7). Coordinate descent methods are known to converge if at each inner iteration we uniquely
attain the minimum of the sub-problem (Bertsekas, 1999, Proposition 2.7.1). Unfortunately, the
assumption by Mangasarian (2002) may not hold in real cases, so taking the full Newton step (11)
may not decrease the function Di(z). Furthermore, solving the sub-problem exactly is too expensive.

An earlier approach of using coordinate descents for L2-SVM without exactly solving the sub-
problem is by Zhang and Oles (2001). In their algorithm CMLS, the approximate solution is re-
stricted within a region. By evaluating the upper bound of generalized second-order derivatives in
this region, one replaces the denominator of the Newton step (11) with that upper bound. This set-
ting guarantees the decrease of Di(z). However, there are two problems. First, function decreasing
does not imply that {wk} converges to the global optimum. Secondly, the step size generated by
evaluating the upper bound of generalized second derivatives may be too conservative. We describe
details of CMLS in Section 4.3.

While coordinate descent methods have been well studied in optimization, most convergence
analyses assume that the one-variable sub-problem is exactly solved. We consider the result by
Grippo and Sciandrone (1999), which establishes the convergence by requiring only the following
sufficient decrease condition:

Di(z)−Di(0)≤−σz2, (12)

where z is the step taken and σ is any constant in (0, 1/2). Since we intend to take the Newton
direction

d =
−D′i(0)

D′′i (0)
, (13)

it is important to check if z = d satisfies (12). The discussion below shows that in general the
condition hold. If the function Di(z) is quadratic around 0, then

Di(z)−Di(0) = D′i(0)z+
1
2

D′′i (0)z2.

Using D′′i (0) > 1 in (10), z = d =−D′i(0)/D′′i (0) leads to

− D′i(0)2

2D′′i (0)
≤−σ

D′i(0)2

D′′i (0)2 ,

so (12) holds. As Di(z) is only piecewise quadratic, (12) may not hold using z = d. However, we
can conduct a simple line search. The following theorem shows that there is a λ ∈ (0,1) such that
z = λd satisfies the sufficient decrease condition:

1373

CHANG, HSIEH AND LIN

Algorithm 2 Solving the sub-problem using Newton direction with the line search.

1. Given wk,i. Choose β ∈ (0,1) (e.g., β = 0.5).

2. Calculate the Newton direction d =−D′i(0)/D′′i (0).

3. Compute λ = max{1,β,β2, . . .} such that z = λd satisfies (12).

Theorem 1 Given the Newton direction d as in (13). Then z = λd satisfies (12) for all 0 ≤ λ ≤ λ̄,
where

λ̄ =
D′′i (0)

Hi/2+σ
and Hi = 1+2C

l

∑
j=1

x2
ji. (14)

The proof is in Appendix A.1. Therefore, at each inner iteration of Algorithm 1, we take the
Newton direction d as in (13), and then sequentially check λ = 1,β,β2, . . . , where β ∈ (0,1), until
λd satisfies (12). Algorithm 2 lists the details of a line search procedure. We did not specify how to
approximately solve sub-problems in Algorithm 1. From now on, we assume that it uses Algorithm
2.

Calculating Di(λd) is the main cost of checking (12). We can use a trick to reduce the number
of Di(λd) calculations. Theorem 1 indicates that if

0≤ λ≤ λ̄ =
D′′i (0)

Hi/2+σ
, (15)

then z = λd satisfies the sufficient decrease condition (12). Hi is independent of w, so it can be
precomputed before training. Furthermore, we already evaluate D′′i (0) in computing the Newton
step, so it takes only constant time to check (15). At Step 3 of Algorithm 2, we sequentially use
λ = 1,β,β2, . . . , etc. Before calculating (12) using a smaller λ, we check if λ satisfies (15). If it
does, then there is no need to evaluate the new Di(λd). If λ = 1 already satisfies (15), the line search
procedure is essentially waived. Thus the computational time is effectively reduced.

We discuss parameters in our algorithm. First, as λ = 1 is often successful, our algorithm is
insensitive to β. We choose β as 0.5. Secondly, there is a parameter σ in (12). The smaller value
of σ leads to a looser sufficient decrease condition, which reduces the time of line search, but in-
creases the number of outer iterations. A common choice of σ is 0.01 in unconstrained optimization
algorithms.

It is important to study the convergence properties of Algorithm 1. An excellent study on the
convergence rate of coordinate descent methods is by Luo and Tseng (1992). They assume that each
sub-problem is exactly solved, so we cannot apply their results here. The following theorem proves
the convergence results of Algorithm 1.

Theorem 2 The sequence {wk} generated by Algorithm 1 linearly converges. That is, there is a
constant µ ∈ (0,1) such that

f (wk+1)− f (w∗)≤ (1−µ)(f (wk)− f (w∗)),∀k.
Moreover, the sequence {wk} globally converges to w∗. The algorithm obtains an ε-accurate solu-
tion in

O
(
nC3P6(#nz)3 log(1/ε)

)
(16)

1374

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

iterations.

The proof is in Appendix A.2. Note that as data are usually scaled before training, P ≤ 1 in most
practical cases.

Next, we investigate the computational complexity per outer iteration of Algorithm 1. The main
cost comes from solving the sub-problem by Algorithm 2. At Step 2 of Algorithm 2, to evaluate
D′i(0) and D′′i (0), we need b j(wk,i) for all j. Here we consider sparse data instances. Calculating
b j(w), j = 1, . . . , l takes O(#nz) operations, which are large. However, one can use the following
trick to save the time:

b j(w+ zei) = b j(w)− zy jx ji, (17)

If b j(w), j = 1, . . . , l are available, then obtaining b j(w + zei) involves only nonzero x ji’s of the ith
feature. Using (17), obtaining all b j(w+ zei) costs O(m), where m, the average number of nonzero
values per feature, is defined in (5). To have b j(w0), we can start with w0 = 0, so b j(w0) = 1,∀ j.
With b j(wk,i) available, the cost of evaluating D′i(0) and D′′i (0) is O(m). At Step 3 of Algorithm
2, we need several line search steps using λ = 1,β,β2, . . . , etc. For each λ, the main cost is on
calculating

Di(λd)−Di(0) =
1
2
(wk,i

i +λd)2− 1
2
(wk,i

i)2

+C
(

∑
j∈I(wk,i+λdei)

(b j(wk,i +λdei))
2− ∑

j∈I(wk,i)

(b j(wk,i))2
)

.
(18)

Note that from (17), if x ji = 0,
b j(wk,i +λdei) = b j(wk,i).

Hence, (18) involves no more than O(m) operations. In summary, Algorithm 2 costs

O(m) for evaluating D′i(0) and D′′i (0)

+ O(m) × # line search steps.

From the explanation earlier and our experiments, in general the sufficient decrease condition holds
when λ = 1. Then the cost of Algorithm 2 is about O(m). Therefore, in general the complexity per
outer iteration is:

O(nm) = O(#nz). (19)

3. Implementation Issues

In this section, we discuss some techniques for a fast implementation of Algorithm 1. First, we aim
at suitable data representations. Secondly, we show that the order of sub-problems at each iteration
can be any permutation of {1, . . . ,n}. Experiments in Section 5 indicate that the performance of
using a random permutation is superior to that of using the fixed order 1, . . . ,n. Finally, we present
an online version of our algorithm.

3.1 Data Representation

For sparse data, we use a sparse matrix

X =






xT
1
...

xT
l




 (20)

1375

CHANG, HSIEH AND LIN

to store the training instances. There are several ways to implement a sparse matrix. Two common
ones are “row format” and “column format” (Duff et al., 1989). For data classification, using col-
umn (row) format allows us to easily access any particular feature (instance). In our case, as we
decompose the problem (3) into sub-problems over features, the column format is more suitable.

3.2 Random Permutation of Sub-problems

In Section 2, we propose a coordinate descent algorithm which solves the one-variable sub-problems
in the order of w1, . . . ,wn. As the features may be correlated, the order of features may affect the
training speed. One can even use an arbitrary order of sub-problems. To prove the convergence, we
require that each sub-problem is solved once at one outer iteration. Therefore, at the kth iteration,
we construct a random permutation πk of {1, . . . ,n}, and sequentially minimize with respect to
variables wπ(1),wπ(2), . . . ,wπ(n). Similar to Algorithm 1, the algorithm generates a sequence {wk,i}
such that wk,1 = wk, wk,n+1 = wk+1,1 and

wk,i
t =

{

wk+1
t if π−1

k (t) < i,

wk
t if π−1

k (t)≥ i.

The update from wk,i to wk,i+1 is by

wk,i+1
t = wk,i

t + argmin
z

f (wk,i + zeπk(i)) if π−1
k (t) = i.

We can prove the same convergence result:

Theorem 3 Results in Theorem 2 hold for Algorithm 1 with random permutations πk.

The proof is in Appendix A.3. Experiments in Section 5 show that a random permutation of sub-
problems leads to faster training.

3.3 An Online Algorithm

If the number of features is very large, we may not need to go through all {w1, . . . ,wn} at each
iteration. Instead, one can have an online setting by arbitrarily choosing a feature at a time. That is,
from wk to wk+1 we only modify one component. A description is in Algorithm 3. The following
theorem indicates the convergence rate in expectation:

Theorem 4 Let δ ∈ (0,1). Algorithm 3 requires O
(
nl2C3P6(#nz) log(1

δε)
)

iterations to obtain an
ε-accurate solution with confidence 1−δ.

The proof is in Appendix A.4.

4. Related Methods

In this section, we discuss three existing schemes for large-scale linear SVM. They will be com-
pared in Section 5. The first one is Pegasos (Shalev-Shwartz et al., 2007), which is notable for its
efficiency in training linear L1-SVM. The second one is a trust region Newton method (Lin et al.).
It is one of the fastest implementations for L2-SVM. The last one is CMLS, which is a coordinate
descent method proposed by Zhang and Oles (2001).

1376

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Algorithm 3 An online coordinate descent algorithm

1. Start with any initial w0.

2. For k = 0,1, . . .

(a) Randomly choose ik ∈ {1,2, . . . ,n}.
(b) Fix wk

1, . . . ,w
k
ik−1,w

k
ik+1, . . . ,w

k
n and approximately solve the sub-problem (7) to obtain

wk+1
ik

.

Coordinate descent methods have been used in other machine learning problems. For example,
Rätsch et al. (2002) discuss the connection between boosting/logistic regression and coordinate
descent methods. Their strategies for selecting coordinates at each outer iteration are different from
ours. We do not discuss details here.

4.1 Pegasos for L1-SVM

We briefly introduce the Pegasos algorithm (Shalev-Shwartz et al., 2007). It is an efficient method
to solve the following L1-SVM problem:

min
w

g(w) =
λ
2

wT w+
1
l

l

∑
j=1

max(1− y jwT x j,0). (21)

By setting λ = 1
Cl , we have

g(w) = f (w)/Cl, (22)

where f (w) is the objective function of (2). Thus (21) and (2) are equivalent. Pegasos has two
parameters. One is the subsample size K, and the other is the penalty parameter λ. It begins
with an initial w0 whose norm is at most 1/

√
λ. At each iteration k, it randomly selects a set

Ak ⊂ {x j,y j} j=1,...,l of size K as the subsamples of training instances and sets a learning rate

ηk =
1

λk
. (23)

Then it updates wk with the following rules:

wk+1 = min

(

1,
1/
√

λ
‖wk+ 1

2 ‖

)

wk+ 1
2 ,

wk+ 1
2 = wk−ηk∇k,

∇k = λwk− 1
K ∑

j∈A+
k (wk)

y jx j,

A+
k (w) = { j ∈ Ak | 1− y jwT x j > 0},

(24)

where ∇k is considered as a sub-gradient of the approximate objective function:

λ
2

wT w+
1
K ∑

j∈Ak

max(1− y jwT x j,0).

1377

CHANG, HSIEH AND LIN

Algorithm 4 Pegasos algorithm for solving L1-SVM.

1. Given λ,K, and w0 with ‖w0‖ ≤ 1/
√

λ.

2. For k = 0,1, . . .

(a) Select a set Ak ∈ {x j,y j | j = 1 . . . l}, and the learning rate η by (23).

(b) Obtain wk+1 by (24).

Here wk+1/2 is a vector obtained by the stochastic gradient descent step, and wk+1 is the projection
of wk+1/2 to the set {w | ‖w‖ ≤ 1/

√
λ}. Algorithm 4 lists the detail of Pegasos. The parameter K

decides the number of training instances involved at an iteration. If K = l, Pegasos considers all
examples at each iteration, and becomes a subgradient projection method. In this case the cost per
iteration is O(#nz). If K < l, Pegasos is a randomized algorithm. For the extreme case of K = 1,
Pegasos chooses only one training instance for updating. Thus the average cost per iteration is
O(#nz/l). In subsequent experiments, we set the subsample size K to one as Shalev-Shwartz et al.
(2007) suggested.

Regarding the complexity of Pegasos, we first compare Algorithm 1 with Pegasos (K = l).
Both algorithms are deterministic and cost O(#nz) per iteration. Shalev-Shwartz et al. (2007) prove
that Pegasos with K = l needs Õ(R2/(εgλ)) iterations to achieve an εg-accurate solution, where
R = max j ‖x j‖, and Õ(h(n)) is shorthand for O(h(n) logk h(n)), for some k ≥ 0. We use εg as
Pegasos considers g(w) in (22), a scaled form of f (w). From (1), an εg-accurate solution for g(w)
is equivalent to an (ε/Cl)-accurate solution for f (w). With λ = 1/Cl and R2 = O(P2(#nz)/l), where
P is defined in (6), Pegasos takes

Õ

(
C2P2l(#nz)

ε

)

iterations to achieve an ε-accurate solution. One can compare this value with (16), the number of
iterations by Algorithm 1.

Next, we compare two random algorithms: Pegasos with K = 1 and our Algorithm 3. Shalev-
Shwartz et al. (2007) prove that Pegasos takes Õ(R2

λδεg
) iterations to obtain an εg-accurate solution

with confidence 1− δ. Using a similar derivation in the last paragraph, we can show that this is
equivalent to Õ(C2P2l(#nz)/δε). As the cost per iteration is O(#nz/l), the overall complexity is

Õ

(
C2P2(#nz)2

δε

)

.

For our Algorithm 3, each iteration costs O(m), so following Theorem 4 the overall complexity is
O
(
l2C3P6(#nz)2 log(1

δε)
)
.

Based on the above analysis, the number of iterations required for our algorithm is proportional
to O(log(1/ε)), while that for Pegasos is O(1/ε). Therefore, our algorithm tends to have better final
convergence than Pegasos for both deterministic and random settings. However, for the dependence
on the size of data (number of instances and features), our algorithm is worse.

Regarding the stopping condition, as at each iteration Pegasos only takes one sample for updat-
ing w, neither function nor gradient information is available. This keeps Pegasos from designing
a suitable stopping condition. Shalev-Shwartz et al. (2007) suggest to set a maximal number of

1378

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

iterations. However, deciding a suitable value may be difficult. We will discuss stopping conditions
of Pegasos and other methods in Section 5.3.

4.2 Trust Region Newton Method (TRON) for L2-SVM

Recently, Lin et al. introduced a trust region Newton method for logistic regression. Their pro-
posed method can be extended to L2-SVM. In this section, we briefly discuss their approach. For
convenience, in subsequent sections, we use TRON to indicate the trust region Newton method for
L2-SVM, and TRON-LR for logistic regression

The optimization procedure of TRON has two layers of iterations. At each outer iteration k,
TRON sets a size ∆k of the trust region, and builds a quadratic model

qk(s) = ∇ f (wk)T s+
1
2

sT ∇2 f (wk)s

as the approximation of the value f (wk +s)− f (wk), where f (w) is the objective function in (3) and
∇2 f (w) is the generalized Hessian (Mangasarian, 2002) of f (w). Then an inner conjugate gradi-
ent procedure approximately finds the Newton direction by minimizing the following optimization
problem:

min
s

qk(s) (25)

subject to ‖s‖ ≤ ∆k.

TRON updates wk and ∆k by the following rules:

wk+1 =

{

wk + sk if ρk > η0,

wk if ρk ≤ η0,

∆k+1 ∈







[σ1 min{‖sk‖,∆k},σ2∆k] if ρk ≤ η1,

[σ1∆k,σ3∆k] if ρk ∈ (η1,η2),

[∆k,σ3∆k] if ρk ≥ η2,

ρk =
f (wk + sk)− f (wk)

qk(sk)
,

(26)

where ρk is the ratio of the actual reduction in the objective function to the approximation model
qk(s). Users pre-specify parameters η0 > 0, 1 > η2 > η1 > 0, and σ3 > 1 > σ2 > σ1 > 0. We use

η0 =10−4,η1 = 0.25,η2 = 0.75,

σ1 =0.25,σ2 = 0.5,σ3 = 4,

as suggested by Lin et al.. The procedure is listed in Algorithm 5.
For the computational complexity, the main cost per TRON iteration is

O(#nz)× (# conjugate gradient iterations). (27)

Compared to our approach or Pegasos, the cost per TRON iteration is high. It keeps TRON from
quickly obtaining a usable model. However, when w gets close to the minimum, TRON takes the
Newton step to achieve fast convergence. We give more observations in the experiment section.

1379

CHANG, HSIEH AND LIN

Algorithm 5 Trust region Newton method for L2-SVM.

1. Given w0.

2. For k = 0,1, . . .

(a) Find an approximate solution sk of the trust region sub-problem (25).

(b) Update wk and ∆k according to (26).

4.3 CMLS: A Coordinate Descent Method for L2-SVM

In Sections 2 and 3, we introduced our coordinate descent method for solving L2-SVM. Here,
we discuss the previous work (Zhang and Oles, 2001), which also applies the coordinate descent
technique. Zhang and Oles refer to their method as CMLS. At each outer iteration k, it sequentially
minimizes sub-problems (8) by updating one variable of (3) at a time. In solving the sub-problem,
Zhang and Oles (2001) mention that using line searches may result in small step sizes. Hence,
CMLS applies a technique similar to the trust region method. It sets a size ∆k,i of the trust region,
evaluates the first derivative (9) of (8), and calculates the upper bound of the generalized second
derivative subject to |z| ≤ ∆k,i:

Ui(z) = 1+
l

∑
j=1

β j(wk,i + zei),

β j(w) =

{

2C if y jwT x j ≤ 1+ |∆k,ixi j|,
0 otherwise.

Then we obtain the step z as:

z = min(max(−D′i(z)
Ui(z)

,−∆k,i),∆k,i). (28)

The updating rule of ∆ is:
∆k+1,i = 2|z|+ ε, (29)

where ε is a small constant.
In order to speed up the process, Zhang and Oles (2001) smooth the objective function of sub-

problems with a parameter ck ∈ [0,1]:

Di(z) =
1
2
(wk,i + zei)

T (wk,i + zei)+C
l

∑
j=1

(b j(wk,i + zei))
2,

where

b j(w) =

{

1− y jwT x j if 1− y jwT x j > 0,

ck(1− y jwT x j) otherwise.

Following the setting by (Zhang and Oles, 2001), we choose

ck = max(0,1− k/50), (30)

1380

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Algorithm 6 CMLS algorithm for solving L2-SVM.

1. Given w0 and set initial ∆0,i = 10,∀i.

2. For k = 0,1, . . .

(a) Set ck by (30). Let wk,1 = wk.

(b) For i = 1,2, . . . ,n

i. Evaluate z by (28).

ii. wk,i+1 = wk,i + zei.

iii. Update ∆ by (29).

(c) Let wk+1 = wk,n+1.

Problem l n #nz
astro-physic 62,369 99,757 4,834,550
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
yahoo-japan 176,203 832,026 23,506,415
rcv1 677,399 47,236 49,556,258
yahoo-korea 460,554 3,052,939 156,436,656

Table 1: Data set statistics: l is the number of instances and n is the number of features.

and set the initial w = 0 and ∆0,i = 10,∀i. We find that the result is insensitive to these parameters.
The detail of CMLS algorithm is listed in Algorithm 6.

Zhang and Oles (2001) prove that if ck = 0,∀k, then the objective function of (3) is decreasing
after each inner iteration. However, such a property may not imply that Algorithm 6 converges to
the minimum. In addition, CMLS updates w by (28), which is more conservative than Newton steps.
In Section 5, we show that CMLS takes more time and iterations than ours to obtain a solution.

5. Experiments and Analysis

In this section, we conduct two experiments to investigate the performance of our proposed coor-
dinate descent algorithm. The first experiment compares our method with other L2-SVM solvers
in terms of the speed to reduce function/gradient values. The second experiment evaluates various
state of the art linear classifiers for L1-SVM, L2-SVM, and logistic regression. We also discuss the
stopping condition of these methods.

5.1 Data Sets

Table 1 lists the number of instances (l), features (n), and non-zero elements (#nz) of six data
sets. All sets are from document classification. Past studies show that linear SVM performs as
good as kernelized ones for such data. Details of astro-physic are mentioned in Joachims (2006),
while others are in Lin et al.. Three data sets real-sim, news20 and rcv1 are publicly available

1381

CHANG, HSIEH AND LIN

Data set CDPER CD TRON CMLS
astro-physic 0.5 1.2 1.2 2.6
real-sim 0.2 0.3 0.9 2.0
news20 2.4 1.0 5.2 5.3
yahoo-japan 2.9 9.3 38.2 13.5
rcv1 5.1 10.8 18.6 54.8
yahoo-korea 18.4 58.1 286.1 146.3

Table 2: The training time for an L2-SVM solver to reduce the objective value to within 1% of the
optimal value. Time is in seconds. We use C = 1. The approach with the shortest running
time is boldfaced.

at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. A brief reminder for each
data set can be found below.

• astro-physic: This set is a classification problem of scientific papers from Physics ArXiv.

• real-sim: This set includes some Usenet articles.

• news20: This is a collection of news documents, and was preprocessed by Keerthi and De-
Coste (2005).

• yahoo-japan: We use binary term frequencies and normalize each instance to unit length.

• rcv1: This set (Lewis et al., 2004) is an archive of manually categorized newswire stories
from Reuters Ltd. Each vector is a cosine normalization of a log transformed TF-IDF (term
frequency, inverse document frequency) feature vector.

• yahoo-korea: Similar to yahoo-japan, we use binary term frequencies and normalize each
instance to unit length.

To examine the testing accuracy, we use a stratified selection to split each set to 4/5 training and
1/5 testing.

5.2 Comparisons

We compare the following six implementations. TRON-LR is for logistic regression, Pegasos is for
L1-SVM, and all others are for L2-SVM.

1. CD: the coordinate descent method described in Section 2. We choose σ in (12) as 0.01.

2. CDPER: the method modified from CD by permuting sub-problems at each outer step. See
the discussion in Section 3.2.

3. CMLS: a coordinate descent method for L2-SVM (Zhang and Oles, 2001, Algorithm 3). It is
discussed in Section 4.3.

4. TRON: the trust region Newton method (Lin et al.) for L2-SVM. See the discussion in Section
4.2. We use the L2-loss linear SVM implementation in the software LIBLINEAR (version 1.21
with option -s 2; http://www.csie.ntu.edu.tw/˜cjlin/liblinear).

1382

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Data set
L2-SVM L1-SVM LR

C Accuracy C Accuracy C Accuracy
astro-physic 0.5 97.14 1.0 97.09 8.0 97.03
real-sim 1.0 97.59 1.0 97.52 8.0 97.57
news20 4.0 96.85 2.0 96.70 64.0 96.17
yahoo-japan 0.5 92.91 1.0 92.97 4.0 92.76
rcv1 0.5 97.77 1.0 97.77 8.0 97.76
yahoo-korea 2.0 87.51 4.0 87.42 64.0 87.31

Table 3: The best parameter C and the corresponding testing accuracy of L1-SVM, L2-SVM and
logistic regression (LR). We conduct five-fold cross validation to select C.

5. TRON-LR: the trust region Newton method for logistic regression introduced by Lin et al..
Similar to TRON, we use the implementation in the software LIBLINEAR with option -s 0.

6. Pegasos: the primal estimated sub-gradient solver for L1-SVM (Shalev-Shwartz et al., 2007).
See the discussion in Section 4.1. The source code is available online at http://ttic.
uchicago.edu/˜shai/code.

We do not include the bias term in all the solvers. All the above algorithms are implemented in
C++ with double-precision floating-point numbers. Using single precision (e.g., Bottou, 2007) may
reduce the computational time in some situations, but this setting may cause numerical inaccuracy.
We conduct experiments on an Intel 2.66GHz processor with 8GB of main memory under Linux.

In our first experiment, we compare L2-SVM solvers (with C = 1) in term of the speed to reduce
function/gradient values. In Table 2, we check their CPU time of reducing the relative difference of
the function value to the optimum,

f (wk)− f (w∗)
| f (w∗)| , (31)

to within 0.01. We run TRON with the stopping condition ‖∇ f (wk)‖ ≤ 0.01 to obtain the reference
solutions. Since objective values are stable under such strict stopping conditions, these solutions are
seen to be very close to the optima. Overall, our proposed algorithms CDPER and CD perform well
on all the data sets. For the large data sets (rcv1, yahoo-japan, yahoo-korea), CD is significantly
better than TRON and CMLS. With the permutation of sub-problems, CDPER is even better than
CD. To show more detailed comparisons, Figure 1 presents time versus relative difference (31). As
a reference, we draw a horizontal dotted line to indicate the relative difference 0.01. Consistent with
the observation in Table 2, CDPER is more efficient and stable than others.

In addition, we are interested in how fast these methods decrease the norm of gradients. Figure
2 shows the result. Overall, CDPER converges faster in the beginning, while TRON is the best for
final convergence.

The second experiment is to check the relationship between training time and testing accuracy
using our implementation and other solvers: CMLS, TRON (L2-SVM and logistic regression), and
Pegasos. That is, we investigate which method achieves reasonable testing accuracy more quickly.
To have a fair evaluation, we conduct five-fold cross validation to select the best parameter C for
each learning method. Using the selected C, we then train the whole training set and predict the

1383

CHANG, HSIEH AND LIN

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−6

10
−4

10
−2

10
0

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(a) astro-physic

0 0.5 1 1.5 2 2.5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(b) real-sim

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(c) news20

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(d) rcv1

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(e) yahoo-japan

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CDPER
CD
TRON
CMLS

(f) yahoo-korea

Figure 1: Time versus the relative difference of the objective value to the minimum. The dotted line
indicates the relative difference 0.01. We show the training time for each solver to reach
this ratio in Table 2. Time is in seconds. C = 1 is used.

1384

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

10
1

10
2

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(a) astro-physic

0 0.5 1 1.5 2 2.5
10

−2

10
−1

10
0

10
1

10
2

10
3

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(b) real-sim

0 1 2 3 4 5 6
10

0

10
1

10
2

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(c) news20

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(d) rcv1

0 5 10 15 20 25 30

10
1

10
2

10
3

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(e) yahoo-japan

0 50 100 150 200

10
1

10
2

10
3

10
4

Training Time (s)

||G
ra

di
en

t||

CDPER
CD
TRON
CMLS

(f) yahoo-korea

Figure 2: The two-norm of gradient versus the training time. Time is in seconds. C = 1 is used.

1385

CHANG, HSIEH AND LIN

0 0.5 1 1.5 2
0.965

0.966

0.967

0.968

0.969

0.97

0.971

0.972

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(a) astro-physic

0 0.5 1 1.5
0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(b) real-sim

0 2 4 6 8 10
0.955

0.96

0.965

0.97

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(c) news20

0 5 10 15 20 25 30
0.97

0.971

0.972

0.973

0.974

0.975

0.976

0.977

0.978

0.979

0.98

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(d) rcv1

0 5 10 15 20 25 30
0.91

0.915

0.92

0.925

0.93

0.935

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(e) yahoo-japan

0 50 100 150 200
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

Training Time (s)

T
es

tin
g

ac
cu

ra
cy

 (
%

)

CDPER
PEGASOS
TRON−LR
TRON
CMLS

(f) yahoo-korea

Figure 3: Testing accuracy versus the training time. Time is in seconds. We train each data set
using the best C from cross validation. (see Table 3 for details.)

1386

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

testing set. Table 3 presents the testing accuracy. Notice that some solvers scale the SVM formu-
lation, so we adjust their regularization parameter C accordingly.2 With the best parameter setting,
SVM (L1 and L2) and logistic regression give comparable generalization performances. In Figure
3, we present the testing accuracy along the training time. As an accurate solution of the SVM op-
timization problem does not imply the best testing accuracy, some implementations achieve higher
accuracy before reaching the minimal function value. Below we give some observations of the
experiments.

We do not include CD in Figure 3, because CDPER is better than it in almost all situations. One
may ask if simply shuffling features once in the beginning can give similar performances to CDPER.
Moreover, we can apply permutation schemes to CMLS as well. In Section 6.1, we give a detailed
discussion on the issue of feature permutations.

Regarding the online setting of randomly selecting only one feature at each step (Algorithm 3),
we find that results are similar to those of CDPER.

From the experimental results, CDPER converges faster than CMLS. Both are coordinate de-
scent methods, and the cost per iteration is similar. However, CMLS suffers from lengthy iterations
because its modified Newton method takes a conservative step size. In Figure 3(d), the testing accu-
racy even does not reach a reasonable value after 30 seconds. Conversely, CDPER usually uses full
Newton steps, so it converges faster. For example, CDPER takes the full Newton step in 99.997%
inner iterations for solving rcv1 (we check up to 5.96 seconds).

Though Pegasos is efficient for several data sets, the testing accuracy is sometimes unstable
(see Figure 3(c)). As Pegasos only subsamples one training data to update wk, it is influenced more
by noisy data. We also observe slow final convergence on the function value. This slow convergence
may make the selection of stopping conditions (maximal number of iterations for Pegasos) more
difficult.

Finally, compared to TRON and TRON-LR, CDPER is more efficient to yield good testing ac-
curacy (See Table 2 and Figure 3); however, if we check the value ||∇ f (wk)||, Figure 2 shows that
TRON converges faster in the end. This result is consistent with what we discussed in Section 1
on distinguishing various optimization methods. We indicated that a Newton method (where TRON
is) has fast final convergence. Unfortunately, since the cost per TRON iteration is high, and the
Newton direction is not effective in the beginning, TRON is less efficient in the early stage of the
optimization procedure.

5.3 Stopping Conditions

In this section, we discuss stopping conditions of our algorithm and other existing methods. In
solving a strictly convex optimization problem, the norm of gradients is often considered in the
stopping condition. The reason is that

‖∇ f (w)‖= 0 ⇐⇒ w is the global minimum.

For example, TRON checks whether the norm of gradient is small enough for stopping. However,
as our coordinate descent method updates one component of w at each inner iteration, we have only
D′i(0) = ∇ f (wk,i)i, i = 1, . . . ,n. Theorem 2 shows that wk,i→ w∗, so we have

D′i(0) = ∇ f (wk,i)i→ 0,∀i.
2. The objective function of Pegasos and (2) are equivalent by setting λ = 1/(C×number of instances), where λ is the

penalty parameter used by Shalev-Shwartz et al. (2007).

1387

CHANG, HSIEH AND LIN

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CD
CDPERONE
CDPER
CMLS
CMLSPER

(a) news20

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CD
CDPERONE
CDPER
CMLS
CMLSPER

(b) yahoo-japan

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CD
CDPERONE
CDPER
CMLS
CMLSPER

(c) rcv1

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Training Time (s)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e

CD
CDPERONE
CDPER
CMLS
CMLSPER

(d) yahoo-korea

Figure 4: Results of different orders of sub-problems at each outer iteration. We present time versus
the relative difference of the objective value to the minimum. Time is in second.

Therefore, by storing Di(0),∀i, at the end of the kth iteration, one can check if ∑n
i=1 D′i(0)2 or

maxi |D′i(0)| is small enough. For Pegasos, we mentioned in Section 4.1 that one may need a maxi-
mal number of iterations as the stopping condition due to the lack of function/gradient information.
Another possible condition is to check the validation accuracy. That is, the training procedure ter-
minates after reaching a stable validation accuracy value.

6. Discussion and Conclusions

In this section, we discuss some related issues and give conclusions.

6.1 Order of Sub-problems at Each Outer Iteration

In Section 5.2, we show that a random order of the sub-problems helps our coordinate descent
method to converge faster in most cases. In this section, we give detailed experiments. Following
the same setting in Figure 1, we compare our coordinate descent method with/without permutation

1388

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

of sub-problems (CDPER and CD), with permutation only once before training (CDPERONE), and
CMLS with/without permuting sub-problems (CMLS and CMLSPER). Figure 4 shows the relative
difference of the objective value to the minimum along time. Overall, CDPER converges faster than
CDPERONE and CD, but CMLSPER does not improve over CMLS much.

With the permutation of features at each iteration, the cost per CDPER iteration is slightly higher
than CD, but CDPER requires much fewer iterations to achieve a similar accuracy value. This result
seems to indicate that if the sub-problem order is fixed, the update of variables becomes slower.
However, as CD sequentially accesses features, it has better data locality in the computer memory
hierarchy. An example is news20 in Figure 4(a). As the number of features is much larger than the
number of instances, two adjacent sub-problems of CDPER may access two very far away features.
Then the cost per CD iteration is only 1/5 of CDPER, so CD is better in the beginning. CDPER
catches up in the end due to its faster convergence.

For CMLS and CMLSPER, the latter is only faster in the final stage (see the right end of Figures
4(b) and 4(d)). Since the function reduction of CMLS (or CMLSPER) is slow, the advantage of doing
permutations appears after long training time.

The main difference between CDPERONE and CDPER is that the former only permutes features
once in the beginning. Figure 4 clearly shows that CDPER is better than CDPERONE, so permuting
features only once is not enough. If we compare CD and CDPERONE, there is no definitive winner.
This result seems to indicate that feature ordering affects the performance of the coordinate descent
method. By using various feature orders, CDPER avoids taking a bad one throughout all iterations.

6.2 Coordinate Descents for Logistic Regression

We can apply the proposed coordinate descent method to solve logistic regression, which is twice
differentiable. An earlier study of using coordinate decent methods for logistic regression/maximum
entropy is by Miroslav et al. (2004). We compare an implementation with TRON-LR. Surprisingly,
our method is not better in most cases. Experiments show that for training rcv1, our coordinate
descent method takes 93.1 seconds to reduce the objective value to within 1% of the optimal value,
while TRON-LR takes 27.9 seconds. Only for yahoo-japan and yahoo-korea, where TRON-LR is
slow (see Figure 3), the coordinate descent method is competitive. This result is contrast to earlier
experiments for L2-SVM, where the coordinate descent method more quickly obtains a useful model
than TRON. We give some explanations below.

With the logistic loss, the objective function is (4). The single-variable function Di(z) is non-
linear, so we use Algorithm 2 to obtain an approximate minimum. To use the Newton direction,
similar to D′i(z) and D′′i (z) in (9) and (10), we need

D′i(0) = ∇i f (w) = wi +C ∑
j:x ji 6=0

−y jx jie−y jwT x j

1+ e−y jwT x j
,

D′′i (0) = ∇2
ii f (w) = 1+C ∑

j:x ji 6=0

x2
jie
−y jwT x j

(1+ e−y jwT x j)2
,

where we abbreviate wk,i to w, and use y j = ±1. Then |{ j | x ji 6= 0}| exponential operations are
conducted. If we assume that λ = 1 satisfies the sufficient decrease condition (12), then the cost per
outer iteration is

O(#nz)+(#nz exponential operations). (32)

1389

CHANG, HSIEH AND LIN

This complexity is the same as (19) for L2-SVM. However, since each exponential operation is ex-
pensive (equivalent to tens of multiplications/divisions), in practice (32) is much more time consum-
ing. For TRON-LR, a trust region Newton method, it calculates ∇ f (w) and ∇2 f (w) at the beginning
of each iteration. Hence l exponential operations are needed for exp(−y jwT x j), j = 1, . . . , l. From
(27), the cost per iteration is

O(#nz)× (# conjugate gradient iterations)+(l exponential operations). (33)

Since l� #nz, exponential operations are not significant in (33). Therefore, the cost per iteration of
applying trust region Newton methods to L2-SVM and logistic regression does not differ much. In
contrast, (32) shows that coordinate descent methods are less suitable for logistic regression than L2-
SVM. However, we may avoid expensive exponential operations if all the elements of x j are either
0 or the same constant. By storing exp(−y jwT x j), j = 1, . . . , l, one updates exp(−y j(wk,i)T x j) by
multiplying it by exp(−zy jx ji). Using y j = ±1, exp(−zy jx ji) = (exp(−zx ji))

y j . As x ji is zero or
a constant for all j, the number of exponential operations per inner iteration is reduced to one. In
addition, applying fast approximations of exponential operations such as Schraudolph (1999) may
speed up the coordinate descent method for logistic regression.

6.3 Conclusions

In summary, we propose and analyze a coordinate descent method for large-scale linear L2-SVM.
The new method possesses sound optimization properties. The method is suitable for data with
an easy access of any feature. Experiments indicate that our method is more stable and efficient
than most existing algorithms. We plan to extend our work to other challenging problems such as
training large data which can not fit into memory.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan grant 95-2221-E-002-
205-MY3. The authors thank Associate Editor and reviewers for helpful comments.

Appendix A. Proofs

In this section, we prove theorems appeared in the paper. First, we discuss some properties of our
objective function f (w). Consider the following piecewise quadratic strongly convex function:

g(s) =
1
2

sT s+C‖(As−h)+‖2, (34)

where (·)+ is the operator that replaces negative components of a vector with zeros. Mangasarian
(2002) proves the following inequalities for all s,v ∈ Rn:

(∇g(s)−∇g(v))T (s−v) ≥ ‖s−v‖2, (35)

|g(v)−g(s)−∇g(s)T (v− s)| ≤ K
2
‖v− s‖2, (36)

where
K = 1+2C‖A‖2

2.

1390

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Our objective function f (w) is a special case of (34) with A = Y X (X is defined in Eq. 20) and
h =−1, where Y is a diagonal matrix with Y j j = y j, j = 1, . . . , l and 1 is the vector of all ones. With
yi =±1, f (w) satisfies (35) and (36) with

K = 1+2C‖X‖2
2. (37)

To derive properties of the subproblem Di(z) (defined in Eq. 8), we set

A =−






y1x1i
...

ylxli




 and h =






y1wT x1− y1wix1i−1
...

ylwT xl− ylwixli−1




 ,

where we abbreviate wk,i to w. Since

Di(z) =
1
2

wT w− 1
2

w2
i +

(
1
2
(z+wi)

2 +‖(A(z+wi)−h)+‖2
)

,

the first and second terms of the above form are constants. Hence, Di(z) satisfies (35) and (36) with

K = 1+2C
l

∑
j=1

x2
ji.

We use Hi to denote Di(z)’s corresponding K. This definition of Hi is the same as the one in (14).
We then derive several lemmas.

Lemma 5 For any i ∈ {1, . . . ,n}, and any z ∈ R,

D′i(0)z+
1
2

Hiz
2 ≥ Di(z)−Di(0)≥ D′i(0)z+

1
2

z2. (38)

Proof There are two inequalities in (38). The first inequality directly comes from (36) using Di(z)
as g(s) and Hi as K. To derive the second inequality, if z < 0, using Di(z) as g(s) in (35) yields

D′i(z)≤ D′i(0)+ z.

Then,

Di(z)−Di(0) =−
Z 0

t=z
D′i(t)dt ≥ D′i(0)z+

1
2

z2.

The situation for z≥ 0 is similar.

Lemma 6 There exists a unique optimum solution for (3).

Proof From Weierstrass’ Theorem, any continuous function on a compact set attains its minimum.
We consider the level set A = {w | f (w) ≤ f (0)}. If A is not bounded, there is a sub-sequence
{wk} ⊂ A such that ‖wk‖→ ∞. Then

f (wk)≥ 1
2
‖wk‖2→ ∞.

This contradicts f (wk)≤ f (0), so A is bounded. Thus there is at least one optimal solution for (3).
Combining with the strict convexity of (3), a unique global optimum exists.

1391

CHANG, HSIEH AND LIN

A.1 Proof of Theorem 1

Proof By Lemma 5, we let z = λd and have

Di(λd)−Di(0)+σλ2d2

≤ D′i(0)λd +
1
2

Hiλ2d2 +σλ2d2

= −λ
D′i(0)2

D′′i (0)
+

1
2

Hiλ2 D′i(0)2

D′′i (0)2 +σλ2 D′i(0)2

D′′i (0)2

= λ
D′i(0)2

D′′i (0)

(

λ(
Hi/2+σ

D′′i (0)
)−1

)

. (39)

If we choose λ̄ =
D′′i (0)

Hi/2+σ , then for λ ≤ λ̄, (39) is non-positive. Therefore, (12) is satisfied for all

0≤ λ≤ λ̄.

A.2 Proof of Theorem 2 (convergence of Algorithm 1)

Proof By setting πk(i) = i, this theorem is a special case of Theorem 3.

A.3 Proof of Theorem 3 (Convergence of Generalized Algorithm 1)

Proof To begin, we define 1-norm and 2-norm of a vector w ∈ Rn:

‖w‖1 =
n

∑
i=1

|wi|, ‖w‖2 =

√
n

∑
i=1

w2
i .

The following inequality is useful:

‖w‖2 ≤ ‖w‖1 ≤
√

n‖w‖2, ∀w ∈ Rn. (40)

By Theorem 1, any λ ∈ [βλ̄, λ̄] satisfies the sufficient decrease condition (12), where β ∈ (0,1)
and λ̄ is defined in (14). Since Algorithm 2 selects λ by trying {1,β,β2, . . .}, the value λ selected
by Algorithm 2 satisfies

λ≥ βλ̄ =
β

Hi/2+σ
D′′πk(i)

(0).

This and (13) suggest that the step size z = λd in Algorithm 2 satisfies

|z|= λ

∣
∣
∣
∣
∣

−D′πk(i)
(0)

D′′πk(i)
(0)

∣
∣
∣
∣
∣
≥ β

Hi/2+σ
|D′πk(i)

(0)|. (41)

Assume

H = max(H1, . . . ,Hn) and γ =
β

H/2+σ
. (42)

1392

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

We use w and f (w) to rewrite (41):

|wk,i+1
πk(i)
−wk,i

πk(i)
| ≥ γ|∇ f (wk,i)πk(i)|, (43)

where we use the fact
D′πk(i)

(0) = ∇ f (wk,i)πk(i).

Taking the summation of (43) from i = 1 to n, we have

‖wk+1−wk‖1 ≥ γ
n

∑
i=1

|∇ f (wk,i)πk(i)|

≥ γ
n

∑
i=1

(|∇ f (wk,1)πk(i)|− |∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|)

= γ

(

‖∇ f (wk,1)‖1−
n

∑
i=1

|∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|
)

.

(44)

By the definition of f (w) in (3),

∇ f (w) = w−2C
l

∑
j=1

y jx j max(1− y jwT x j,0).

With y j =±1,

n

∑
i=1

|∇ f (wk,i)πk(i)−∇ f (wk,1)πk(i)|

≤
n

∑
i=1

(

|wk,i
πk(i)
−wk,1

πk(i)
|+2C

l

∑
j=1

|x jπk(i)| |(wk,i)T x j− (wk,1)T x j|
)

≤
n

∑
i=1

(

|wk+1
πk(i)
−wk

πk(i)
|+2C

l

∑
j=1

|x jπk(i)|
n

∑
q=1

|x jq| |wk,i
q −wk,1

q |
)

=‖wk+1−wk‖1 +2C
n

∑
i=1

l

∑
j=1

n

∑
q=1

|x jπk(i)| |x jq| |wk,i
q −wk,1

q |

≤‖wk+1−wk‖1 +2C
n

∑
q=1

|wk+1
q −wk

q| ∑
i, j:x jπk(i) 6=0

P2

=(1+2CP2(#nz))‖wk+1−wk‖1,

(45)

where P is defined in (6). From (44) and (45), we have

‖wk+1−wk‖1 ≥
γ

1+ γ+2γCP2(#nz)
‖∇ f (wk,1)‖1.

With (40),

‖wk+1−wk‖2 ≥
1√
n
‖wk+1−wk‖1

≥ γ√
n(1+ γ+2γCP2(#nz))

‖∇ f (wk)‖1 ≥
γ√

n(1+ γ+2γCP2(#nz))
‖∇ f (wk)‖2.

(46)

1393

CHANG, HSIEH AND LIN

From Lemma 6, there is a unique global optimum w∗ for (3). The optimality condition shows that

∇ f (w∗) = 0. (47)

From (35) and (47),

‖wk−w∗‖2 ≤ ‖∇ f (wk)−∇ f (w∗)‖2 = ‖∇ f (wk)‖2. (48)

With (46),

‖wk+1−wk‖2 ≥ τ‖wk−w∗‖2, where τ =
γ√

n(1+ γ+2γCP2(#nz))
. (49)

From (12) and (49),

f (wk)− f (wk+1) =
n

∑
i=1

(f (wk,i)− f (wk,i+1))

≥
n

∑
i=1

σ(wk,i+1
πk(i)
−wk,i

πk(i)
)2 = σ‖wk+1−wk‖2

2 ≥ στ2‖wk−w∗‖2
2.

By (36) and (47),

f (wk)− f (w∗)≤ K
2
‖wk−w∗‖2

2, (50)

where K is defined in (37). Therefore, we have

f (wk)− f (wk+1)≥ 2στ2

K
(f (wk)− f (w∗)).

This is equivalent to

(f (wk)− f (w∗))+(f (w∗)− f (wk+1))≥ 2στ2

K
(f (wk)− f (w∗)).

Finally, we have

f (wk+1)− f (w∗)≤ (1− 2στ2

K
)(f (wk)− f (w∗)). (51)

With τ≤ 1 from (49), K ≥ 1 from (37) and σ < 1/2, we have 2στ2/K < 1. Hence, (51) ensures that
f (wk) approaches f (w∗).

From (51), { f (wk)} converges to f (w∗). We can then prove that {wk} globally converges to w∗.
If this result does not hold, there is a sub-sequence {wk}M converging to a point w̄ 6= w∗. However,
Lemma 6 shows that f (w̄) > f (w∗), so limk∈M f (wk) > f (w∗), a contradiction.

Let µ = 2στ2/K, (51) implies

f (wk)− f (w∗)≤ (1−µ)k(f (w0)− f (w∗)), ∀k.

To achieve an ε-accurate solution, we need the right-hand side to be smaller than ε. Thus,

k ≥ log(f (w0)− f (w∗))+ log(1/ε)
− log(1−µ)

.

1394

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

From the inequality
log(1− x)≤−x if x < 1,

we have

k ≥ log(f (w0)− f (w∗))+ log(1/ε)
µ

. (52)

In following we discuss the order of µ−1 = K
2στ2 . From (37),

K = 2C‖X‖2
2 +1≤ 2C‖X‖2

F +1≤ 2CP2(#nz)+1, (53)

where ‖ · ‖F is the Frobenious norm. From (49),

τ−1 =
√

n

(
1
γ

+2CP2(#nz)+1

)

.

Since γ = β
σ+H/2 , from (14) and (42) we have

γ−1 = O(lCP2 +1)≤ O(CP2(#nz)+1). (54)

As #nz is usually large, we omit the constant term O(1) in the following discussion. Then τ−1 =
O(
√

nCP2(#nz)). Thus,

µ−1 =
K

2στ2 = O(nC3P6(#nz)3). (55)

From (52) and (55), Algorithm 1 obtains an ε-accurate solution in

O
(
nC3P6(#nz)3 log(1/ε)

)

iterations.

A.4 Proof of Theorem 4 (Linear Convergence of the Online Setting)

Proof To begin, we denote the expectation value of a function g of a random variable y to be

Ey(g(y)) = ∑
y

P(y)g(y).

Then for any vector s ∈ Rn and a random variable I where

P(I = i) =
1
n
, ∀i ∈ {1, . . . ,n},

we have

EI(s
2
I) =

n

∑
i=1

s2
i

n
=

1
n
‖s‖2

2. (56)

At each iteration k (k = 0,1, . . .) of Algorithm 3, we randomly choose one index ik and update wk

to wk+1. The expected function value after iteration k can be represented as

Ei0,...,ik−1,ik(f (wk+1)).

1395

CHANG, HSIEH AND LIN

From (12), (43), (56), (48), and (50), we have

Ei0,...,ik−1Eik(f (wk)− f (wk+1))

≥ σEi0,...,ik−1Eik(|wk+1
ik −wk

ik |
2)

≥ σγ2Ei0,...,ik−1Eik(|∇ f (wk)ik |2)

=
σγ2

n
Ei0,...,ik−1(‖∇ f (wk)‖2

2)

≥ σγ2

n
Ei0,...,ik−1(‖wk−w∗‖2

2)

≥ 2σγ2

nK
Ei0,...,ik−1(f (wk)− f (w∗)).

This is equivalent to

Ei0,...,ik(f (wk+1))− f (w∗)≤
(

1− 2σγ2

nK

)(

Ei0,...,ik−1(f (wk))− f (w∗)
)

.

From Markov inequality P(|Z| ≥ a)≤ E(|Z|)/a for any random variable Z and the fact f (wk+1)≥
f (w∗), we have

P
(

f (wk)− f (w∗)≥ ε
)

≤ E
(

f (wk)− f (w∗)
)

/ε. (57)

To achieve an ε-accurate solution with confidence 1− δ, we need the right-hand side of (57) to be
less than δ. This indicates the iteration number k must satisfy

Ei0,...,ik−1(f (wk))− f (w∗)≤ (f (w0)− f (w∗))
(

1− 2σγ2

nK

)k

≤ εδ.

By a derivation similar to Theorem 3, we can show that after O(nK
σγ2 log(1

δε)) iterations, with confi-
dence 1−δ, we obtain an ε-accurate solution. From (53) and (54), we have

K ≤ 2CP2(#nz)+1 and γ−1 = O(lCP2 +1).

Therefore,

O

(
nK
σγ2 log(

1
δε

)

)

= O

(

nl2C3P6(#nz) log(
1
δε

)

)

.

References

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-9998, sec-
ond edition, 1999.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
pages 144–152. ACM Press, 1992.

1396

COORDINATE DESCENT METHOD FOR LARGE-SCALE L2-LOSS LINEAR SVM

Leon Bottou. Stochastic gradient descent examples, 2007. http://leon.bottou.org/projects/
sgd.

Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT
Press, Cambridge, MA, 2008.

Iain S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM Transactions
on Mathematical Software, 15:1–14, 1989.

Luigi Grippo and Marco Sciandrone. Globally convergent block-coordinate techniques for uncon-
strained optimization. Optimization Methods and Software, 10:587–637, 1999.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sundararajan.
A dual coordinate descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth
International Conference on Machine Learning (ICML), 2008. URL http://www.csie.ntu.
edu.tw/˜cjlin/papers/cddual.pdf. Software available at http://www.csie.ntu.edu.tw/

˜cjlin/liblinear.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining (KDD). ACM, 2006.

S. Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution of large
scale linear SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region Newton method for large-
scale logistic regression. Journal of Machine Learning Research, 9:627–650. URL http://
www.csie.ntu.edu.tw/˜cjlin/papers/logistic.pdf. Software available at http://www.
csie.ntu.edu.tw/˜cjlin/liblinear.

Zhi-Quan Luo and Paul Tseng. On the convergence of coordinate descent method for convex dif-
ferentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.

Olvi L. Mangasarian. A finite Newton method for classification. Optimization Methods and Soft-
ware, 17(5):913–929, 2002.

Dukı́k Miroslav, Steven J. Phillips, and Robert E. Schapire. Performance guarantees for regular-
ized maximum entropy density estimation. In Proceedings of the 17th Annual Conference on
Computational Learning Theory, pages 655–662, New York, 2004. ACM press.

Gunnar Rätsch, Sebastian Mika, and Manfred K. Warmuth. On the convergence of leveraging.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 487–494. MIT Press, Cambridge, MA, 2002.

Nicol N. Schraudolph. A fast, compact approximation of the exponential function. Neural Compu-
tation, 11:853–862, 1999.

1397

CHANG, HSIEH AND LIN

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: primal estimated sub-gradient
solver for SVM. In Proceedings of the 24th International Conference on Machine Learning
(ICML), 2007.

Alex J. Smola, S V N Vishwanathan, and Quoc Le. Bundle methods for machine learning. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20. MIT Press, Cambridge, MA, 2008.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent al-
gorithms. In Proceedings of the 21th International Conference on Machine Learning (ICML),
2004.

Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classification meth-
ods. Information Retrieval, 4(1):5–31, 2001.

1398

