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Abstract
We show that the relevant information of a supervised learning problem is contained up to negligi-
ble error in a finite number of leading kernel PCA components if the kernel matches the underlying
learning problem in the sense that it can asymptotically represent the function to be learned and is
sufficiently smooth. Thus, kernels do not only transform data sets such that good generalization can
be achieved using only linear discriminant functions, but this transformation is also performed in
a manner which makes economical use of feature space dimensions. In the best case, kernels pro-
vide efficient implicit representations of the data for supervised learning problems. Practically, we
propose an algorithm which enables us to recover the number of leading kernel PCA components
relevant for good classification. Our algorithm can therefore be applied (1) to analyze the interplay
of data set and kernel in a geometric fashion, (2) to aid in model selection, and (3) to denoise in
feature space in order to yield better classification results.

Keywords: kernel methods, feature space, dimension reduction, effective dimensionality

1. Introduction

Kernel machines implicitly map the data into a high-dimensional feature space in a non-linear fash-
ion using a kernel function. This mapping is often referred to as an empirical kernel map (Schölkopf
et al., 1999; Vapnik, 1998; Müller et al., 2001; Schölkopf and Smola, 2002). By virtue of the empir-
ical kernel map, the data is ideally transformed in a way such that a linear discriminative function
can separate the classes with low generalization error by a canonical hyperplane with large mar-
gin. Such large margin hyperplanes provide an appropriate mechanism of capacity control and thus
“protect” against the high dimensionality of the feature space.

However, this picture is incomplete as it does not explain why the typical variants of capacity
control cooperate well with the induced feature map. This paper adds a novel aspect as the key idea
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to this picture. We show theoretically that if the learning problem matches the kernel well, the rele-
vant information of a supervised learning data set is always contained in the subspace spanned by a
finite and typically small number of leading kernel PCA components (principal component analysis
in the feature space induced by the kernel, see below and Section 2), up to negligible error. This re-
sult is based on recent approximation bounds for the eigenvectors of the kernel matrix which show
that if a function can be reconstructed using only a few kernel PCA components asymptotically,
then the same already holds in a finite sample setting, even for small sample sizes.

Consequently, the use of a kernel function not only greatly increases the expressive power of
linear methods by non-linearly transforming the data, but it does so ensuring that the high dimen-
sionality of the feature space does not become overwhelming: the relevant information for learning
stays confined within a comparably low-dimensional subspace. This finding underlines the efficient
use of data that is made by kernel machines if the kernel works well for the learning problem. A
smart choice of kernel permits to make better use of the available data at a favorable “number of
data points per effective dimension”-ratio, even for infinite-dimensional feature spaces. The kernel
induces an efficient representation of the data in feature space such that even unregularized methods
like linear least squares regression are able to perform well on the reduced feature space.

Let us consider an example. Figure 1(a) shows a two-dimensional classification problem (the
banana data set from Rätsch et al., 2001). We can visualize the contributions of the individual
kernel PCA components1 to the class membership by plotting the absolute values of scalar products
between the labels and the kernel PCA components. Figure 1(b) shows the resulting contributions
sorted by decreasing principal value (variance along principal direction). We can observe that the
contributions are concentrated in the leading kernel PCA directions, but a large fraction of the
information is contained in the later components as well.

Note, however, that the class membership information in the data set also contains a certain
amount of noise. Therefore, Figure 1(b) actually shows a mixture of relevant information and noise.
We need to devise a different procedure for assessing the amount of task-relevant information in
certain kernel PCA components. This can be accomplished by incorporating a second data set from
the same source for testing. One first projects onto the subspace spanned by a number of leading
kernel PCA components, trains a linear classifier (for example, by least squares regression) and then
measures the prediction error on the test set. The test error is large either if the considered subspace
did not capture all of the relevant information, or if it already contained too much noise leading to
overfitting. If the minimal test error is on par with a state-of-the-art method independently trained
using the same kernel then the subspace has successfully captured all of the relevant information.

If we apply this procedure to our data set, we obtain training and test errors as shown in Fig-
ure 1(c). By definition, the training error decreases as more and more dimensions are used. How-
ever, after decreasing quickly initially, the test error eventually starts to increase again. The minimal
test error also coincides with the actually achievable test error using, for example, support vector
machines. Therefore, we see that the later components only contain noise, and the relevant infor-
mation is contained in the leading kernel PCA components. In this paper, our goal is to understand

1. Recall that kernel PCA (Schölkopf et al., 1998) amounts to implicitly performing PCA in the feature space. Roughly,
instead of the covariance matrix, one considers the eigenvalues and eigenvectors of the kernel matrix, which is built
from all pairwise evaluations of the kernel matrix on the inputs. Principal values (variances) are still given by the
eigenvalues of the kernel matrix, but principal directions (which would be potentially infinite-dimensional vectors)
are replaced by principal components, which are scalar products with the principal directions. Also see Section 2.
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(a) The training data set.
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(b) Contributions of kernel PCA components.
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(c) Training and test errors using only leading kernel PCA
components.
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(d) The solution on the test data set.

Figure 1: A more complex example (resample 1 of the “banana” data set, see Section A). This time,
the information is not contained in a single component. Nevertheless, the test error of a
hyperplane learned using only the first d components has a clear minimum at d = 34 at
optimal error rate (cf. Table 3), showing that the relevant information is contained in the
leading 34 directions.

more thoroughly why and when this effect occurs, and to estimate the dimensionality of a concrete
data set given a kernel.

Our claim—that the relevant information about a learning problem is contained in the space
spanned by the leading kernel PCA components—is similar to the idea that the information about
the learning problem is contained in the kernel PCA components with the largest contributions.
However, our results show that the magnitude of the contribution of a kernel PCA component to
the label information is only partially indicative of the relevance of that component. Instead, we
show that the leading kernel PCA components (sorted by corresponding principal value) contain
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the relevant information. Components which contain only little variance will therefore not contain
relevant information. If such a component manages to contribute much to the label information, it
will only reflect noise.

What practical implications follow from these results? We explore several possibilities of using
these ideas to assess the suitability of a kernel or a family of kernels to a specific data set. The
main idea is that the observed dimensionality of the data set in feature space is characteristic for
the relation between a data set and a kernel. Roughly speaking, the relevant dimensionality of the
data set corresponds to the complexity of the learning problem when viewed through the “lens”
of the kernel function. Using the estimated dimensionality, one can project the labels onto the
corresponding subspace and obtain a noise free version of the labels. By comparing the denoised
labels to the original labels, one can estimate of the amount of noise contained in the labels. One
therefore obtains a more detailed measure of the fit between the kernel and the data set as compared
to, for example, the cross-validation error alone. This allows us to take a closer look at data sets on
which the achieved error is quite large. In such cases, we are able to distinguish whether the data
set is highly complex and the amount of data is insufficient, or the amount of intrinsic noise is very
large. This is practically relevant as one has to deal with both these cases quite differently, either by
providing more data, or by thinking about means to obtain less noisy or ambiguous features.

We summarize the main contributions of this paper: (1) We provide theoretical bounds showing
that the relevant information (defined in Section 2) is actually contained in the leading projected
kernel principal components under appropriate conditions. (2) We propose an algorithm which es-
timates the relevant dimensionality and related estimates of the data set and permits to analyze the
appropriateness of a kernel for the data set, and thus to perform model selection among different ker-
nels. (3) We validate the accuracy of the estimates experimentally by showing that non-regularized
methods perform on the reduced feature space on par with state-of-the-art kernel methods. We ana-
lyze some well-known benchmark data sets in Section 5. Note that we do not claim to obtain better
performance within our framework when compared to, for example, cross-validation techniques.
Rather, we are on par. Our contribution is to foster an understanding about a data set and to gain
better insights of whether a mediocre classification result is due to intrinsic high dimensionality of
the data (and consequently insufficient number of examples), or an overwhelming noise level.

2. Preliminaries

Let us start to formalize the ideas introduced so far. As usual, we consider a data set (X1,Y1),
. . . ,(Xn,Yn) where the inputs X lie in some space X and the outputs Y to be predicted are in Y =
{±1} for classification or Y = R for regression. We often refer to the outputs Yi as the “labels”
irrespective of whether we are considering a classification or regression task. We assume that the
(Xi,Yi) are drawn i.i.d. from some probability measure PX×Y . In kernel methods, the data is non-
linearly mapped into some feature space F via the feature map Φ. Scalar products in F can be
computed by the kernel k in closed form: 〈Φ(x),Φ(x′)〉 = k(x,x′). Summarizing all the pairwise
scalar products results in the (normalized) kernel matrix K with entries k(Xi,X j)/n.

In the discussion below, we study the relationship between the label vector Y = (Y1, . . . ,Yn) and
the kernel PCA components which are introduced next. Kernel PCA (Schölkopf et al., 1998) is a
kernelized version of PCA. Since the dimensionality of the feature space might be too large to deal
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Symbol Meaning
n number of training examples
Xi ∈ X input examples
Yi ∈ Y output labels
k : X ×X → R kernel function
K = (k(Xi,X j))/n (normalized) kernel matrix
Y = (Y1, . . . ,Yn) label vector
Φ : X → F feature map
lm ∈ R≥0 mth kernel PCA value (in descending order),

mth eigenvalue of kernel matrix K
vm ∈ F mth kernel PCA direction
fm(x) = 〈Φ(x),vm〉 mth kernel PCA component
um = ( fm(X1), . . . , fm(Xn)) mth kernel PCA component evaluated on X1, . . . ,Xn,

mth eigenvector of kernel matrix K
πd(Y ) = ∑d

i=1 uiuiY projection onto first d kernel PCA components
G = (E(Y1|X1), . . . ,E(Yn|Xn)) relevant information vector
zi = u>i G contribution of ith eigenvector to relevant information
g(x) = E(Y |X = x) relevant information function
L2(X ,PX ) set of all square integrable functions with respect to PX
Tk f (s) =

R

X k(s, t) f (t)PX (dt) integral operator associated with k
λi ∈ R≥0 ith eigenvalue of Tk

ψi ∈ L2(X ,PX ) ith eigenfunction of Tk

ζi = 〈ψi,g〉 contribution of ith eigenfunction to relevant information
d̂ estimated relevant dimension
cvloo leave-one-out cross-validation error
Ĝ estimated relevant information vector
S = ∑d

i=1 uiu>i “hat”-matrix
ˆerr estimated noise-level

Table 1: Overview of notation used in this paper.

with the vectors directly, the principal directions are represented using the points Xi of the data set:

vm =
n

∑
i=1

αiΦ(Xi),

where αi = [um]i/lm, [um]i is the ith component of the mth eigenvector of the kernel matrix K, and
lm the corresponding eigenvalue.2 Still, vm can usually not be computed explicitly such that one
instead works with kernel PCA components

fm(x) = 〈Φ(x),vm〉.

We are interested in the relation between fm and a label vector Y . As we have seen in the introduc-
tion, it seems that only a finite number of leading kernel PCA components are necessary to represent
the relevant information about the learning problem up to a small error.

2. As usual, we assume that lm and um have been sorted such that l1 ≥ . . .≥ ln.
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Therefore, we would like to compare fm with the values Y1, . . . ,Yn at the points X1, . . . ,Xn. The
following easy lemma summarizes the relationship between the sample vector of fm and Y .

Lemma 1 The mth kernel PCA component fm evaluated on the Xis is equal to the mth eigenvector of
the kernel matrix K: ( fm(X1), . . . , fm(Xn)) = um. Consequently, the sample vectors are orthogonal,
and the projection of a vector Y ∈R

n onto the leading d kernel PCA components is given by πd(Y ) =

∑d
m=1 umu>mY.

Proof The mth kernel PCA component for a point X j in the training set is

fm(X j) = 〈Φ(X j),vm〉=
1
lm

n

∑
i=1

〈Φ(X j),Φ(Xi)〉[um]i =
1
lm

n

∑
i=1

k(X j,Xi)[um]i.

The sum computes the jth component of Kum, and Kum = lmum, because um is an eigenvector of K.
Therefore

fm(X j) =
1
lm

[lmum] j = [um] j.

Since K is a symmetric matrix, its eigenvectors um are orthonormal, and the projection of Y onto
the space spanned by the first d kernel PCA components is given by ∑d

m=1 umu>mY . �

Since the kernel PCA components are orthogonal, the coefficients of a vector Y ∈ R
n with

respect to the basis u1, . . . ,un is easily computed by forming the scalar products. We call the coeffi-
cients

zm = u>mY (1)

of Y w.r.t. the basis formed from the kernel PCA components the kernel PCA coefficients. They are
the central object of our discussion.

The projection of Y to a kernel PCA component can be thought of as the least squares regression
of Y using only the direction along the kernel PCA component in feature space.

Using the kernel PCA coefficients, we can extend the projected labels to new points via

Ŷ (x) =
d

∑
m=1

zm fm(x),

which amounts to the prediction of least squares regression on the reduced feature space.

3. The Label Vector and Kernel PCA Components

In the introduction, we have discussed an example which suggests that a small number of leading
kernel PCA components might suffice to capture the relevant information about the output variable.
It is clear that we cannot expect this behavior for all possible data sets and kernels. It seems plausible
though, that under certain conditions, the distribution of the data and the kernel fit together well.
Then we can expect to observe this behavior with high probability for a random sample from this
distribution through some form of concentration or convergence property.
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Figure 2: Relevant information vectors visualized for the classification and the regression case.
In the (two-class) classification case (left) it encodes the posterior probability (scaled
between −1 and 1), in the regression case it is the sample vector of the function to be
learned.

3.1 Decomposing the Label Vector Information

We start the discussion by defining formally what the relevant information contained in the labels
is. Given a label vector Y , we define the relevant information vector as the vector of the expected
labels:

G = (E(Y1|X1), . . . ,E(Yn|Xn)).

Intuitively speaking, G is a noise-free version of Y . This vector contains all the relevant information
about the outputs Y of the learning problem: For regression, G amounts to the values of the true
function. For the case of two-class classification, the vector G contains all the information about the
optimal decision boundary. Since E(Y |X) = P(Y = 1|X)−P(Y =−1|X), the sign of G contains the
relevant information on the true class membership by telling us which class is more probable (see
Figure 2 for examples). Thus, using this denoised label information, the learning problem becomes
much easier as the denoised labels already contain the Bayes optimal prediction at that point.3

Using G we obtain a very useful additive decomposition of the labels into “signal” and “noise”:

Y = G+N.

In this setting, we are now interested in showing that G is contained in the leading kernel PCA com-
ponents, such that projecting G onto the leading kernel PCA components leads to only negligible
error. In the following, we treat the signal and noise part of Y separately. This is possible because
the projection πd is a linear operation such that πd(Y ) = πd(G+N) = πd(G)+πd(N).

3. Also note that the capacity control typically employed in kernel methods amounts to some form of regularization, or
“implicit denoising” (Smola et al., 1998). Therefore, we do not expect that the results using G are generally better
than with the original labels. However, as we will see below, unregularized methods perform on par with kernel
methods with capacity control using the estimated relevant information vector G.
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3.2 The Relevant Information Vector

We first treat the relevant information vector G. The location of G with respect to the kernel PCA
components is characterized by scalar products with the eigenvectors of the kernel matrix. We start
by discussing this relationship in an asymptotic setting and then transfer the results back to the finite
sample setting using convergence results for the spectral properties of the kernel matrix

Using the kernel function k, we define the integral operator

Tk f (s) =
Z

X
k(s, t) f (t)PX (dt),

where PX is the marginal distribution which generates the inputs Xi. It is well known that the linear
operator

T̃k f (s) =
1
n

n

∑
i=1

k(s,Xi) f (Xi)

represented by the kernel matrix approximates Tk as the number of points tend to infinity (see, for
example, von Luxburg, 2004). While this follows easily for a fixed f and s, making the argument
theoretically exact for operators (this means uniform over all functions) is not trivial.

As a consequence, the eigenvalues and eigenvectors of T̃k, which are equal to those of the kernel
matrix, converge to those of Tk (see Koltchinskii and Giné, 2000; Koltchinskii, 1998). In particular,
scalar products of sample functions and eigenvectors of K converge to scalar products with eigen-
functions of Tk. The asymptotic counterpart of the relevant information vector G is the function

g(x) = E(Y |X = x).

These correspondences are summarized in Figure 3. In summary, we can think of zi = u>i G (properly
scaled) as an approximation to ζi = 〈ψi,g〉.

finite sample setting

[Kx]i =
1
n

n

∑
j=1

k(Xi,X j)x j

li eigenvalue of K
ui eigenvector of K

G =
(

E(Y1|X1), . . .E(Yn|Xn)
)

zi = u>i G

 

asymptotic setting

Tk f (s) =
Z

X
k(s, t) f (t)PX (dt)

λi eigenvalue of Tk

ψi eigenfunction of Tk

g(x) = E(Y |X = x)
ζi = 〈ψi,g〉

Figure 3: Transition from the finite sample size and asymptotic setting.

In the asymptotic setting, it is now fairly easy to specify conditions such that g is contained in
the subspace spanned by a finite number of leading eigenfunctions ψi. Since it is unrealistic that
g is exactly contained in a finite dimensional subspace, we relax that requirement and instead only
require that ζi decays to zero at the same rate as the eigenvalues of Tk.

The decay rate of the eigenvalues depends on the interplay between the kernel and the distribu-
tion PX . However, expressing this connection in closed form is in general not possible. As a rule
of thumb, the eigenvalues decay quickly when the kernel is smooth at the scale of the data. Since
one usually uses smooth kernels to prevent from overfitting, the eigenvalues typically decay rather
quickly. As we will see, most of the information about g is then contained in a few kernel PCA
components.
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A natural assumption is that the learning problem can be asymptotically represented by the
given kernel function k. By this we mean that there exists some function h ∈ L 2(X ,PX ) such that
g = Tkh. Using the spectral decomposition of Tk, this implies

g = Tkh =
∞

∑
i=1

λi〈ψi,h〉ψi. (2)

Since the sequence of αi = 〈ψi,h〉 is square summable, it follows that

ζi = 〈ψi,g〉= λiαi = O(λi).

Intuitively speaking, (2) translates to asymptotic representability of the learning problem: As n→∞,
it becomes possible to represent the optimal labels using the kernel function k.

Furthermore, we assume that k is bounded. This technical requirement is mainly necessary to
ensure that g is also bounded. The requirement holds for common radial basis function kernels like
the Gaussian kernel, and also if the underlying space X is compact and the kernel is continuous.

Note that the requirement that g lies in the range of Tk is essential. If this is not the case, we
cannot expect that the scalar products decay at a given rate. Also note that it is in fact possible to
break this condition. For example, if k is continuous, every non-continuous function does not lie in
the range of Tk.

The question is now whether the same behavior can be expected for a finite data set. This
question is not trivial, because eigenvector stability is known to be linked to the gap between the
corresponding eigenvalues, which is fairly small for small eigenvalues (see, for example, Zwald and
Blanchard, 2006).

The main theoretical result of this paper (Theorem 1 in the Appendix) provides a bound of the
form

1
n
|u>i G| ≤ liC +E

which expresses an essential equivalence between the finite sample setting and the asymptotic set-
ting with two modifications: The decay rate O(λi) of the scalar products 〈ψi,g〉 holds for the finite
sample up to a (small) additive error E with λi replaced by its finite sample approximation li.

The technical details of this theorem and the proof are deferred to the appendix. Let us discuss
how the absolute term occurs in the bound and why it can be expected to be small. An exact
scaling bound (without additive term E) can only be derived (at least following the approach taken
in this paper) for the case where the kernel function is degenerate, that is, Tk has only finitely many
non-zero eigenvalues. The same finiteness restriction also holds for the expansion of g in terms of
the eigenfunctions of Tk. The proof thus contains a truncation step of general kernels and general
functions g, leading to a scaling bound on the scalar product and an additive term arising from the
truncation. However, as the name suggests, the truncation error E can be made arbitrarily small by
considering approximations with many non-zero eigenvalues. At the same time, considering such
kernels with more terms in the expansion leads to a larger constant C in the actual scaling part. Thus,
both terms have to be balanced by the order of truncation, which permits to control the additive term
well practically.

Note that the problem considered here is significantly different from the problem studying the
performance of kernel PCA itself (see, for example, Blanchard et al., 2007; Shawe-Taylor et al.,
2005; Mika, 2002). There, only the projection error using the Xs is studied. Here, we are specifically
interested in the relationship between the Y s and the Xs.

1883



BRAUN, BUHMANN AND MÜLLER

In view of our original concern, the bound shows that the relevant information vector G (as
introduced in Section 2) is contained in a number of leading kernel PCA components up to a neg-
ligible error. The number of dimensions depends on the asymptotic coefficients αi and the decay
rate of the asymptotic eigenvalues of k. Since this rate is related to the smoothness of the kernel
function, the dimension is small for smooth kernels whose leading eigenfunctions ψi permit good
approximation of g.

3.3 The Noise

To study the relationship between the noise and the eigenvectors of the kernel matrix, no asymptotic
arguments are necessary. The key insight is that the eigenvectors are independent of the noise in the
labels, such that the noise vector N is typically evenly distributed over all coefficients u>i N: Let U be
the matrix whose ith column is equal to ui. The coefficients of N with respect to the eigenbasis of K
are then given by U>N. Note that since U is orthogonal, multiplication by its transpose amounts to
a (random) rotation. In particular, this rotation is independent of the noise N as the ui depend on the
Xs only. Now if the noise has a spherical distribution, for example, N is normally distributed with
covariance matrix σ2

εI, it follows that U>N ∼ N (0,σ2
εI). For heteroscedastic noise in a regression

setting, or for classification, this simple analysis is not sufficient. In that case, the individual u>i N
are no longer uncorrelated. However, because of the independence of the Ni, the variance of u>i N is
upper bounded by

Var(u>i N) =
n

∑
j=1

u2
i, j Var(N j)≤ max

1≤ j≤n
Var(N j)

since ∑n
j=1 u2

i, j = ‖ui‖2 = 1. Therefore, the variance of the u>i N is not concentrated in any single
coefficient as the total variance does not increase by rotating the basis and the individual variances
are bounded by the maximum individual variance before the rotation.

The practical relevance of these observations is that the relevant information and noise part have
radically different properties with respect to the kernel PCA components, allowing us to practically
estimate the number of relevant dimension for a given kernel and data set. In the next section, we
will propose two different algorithms for this task.

4. Relevant Dimension Estimation and Related Estimates

We have seen that the number of leading kernel PCA components necessary to capture the relevant
information about the labels of a finite size data set is bounded under the mild assumptions that the
learning problem can be represented asymptotically and the kernel is smooth such that the eigenval-
ues of the kernel matrix decay quickly. The actual number of necessary dimensions depends on the
interplay between kernel and learning data set, giving insights into the suitability of the kernel. For
example, a kernel might fail to provide an efficient representation of the learning problem, leading
to an embedding requiring many kernel PCA components to capture the information on Y . Or, even
worse, a kernel might completely fail to model some part of the learning problem, such that a part of
the information appears to be just noise. Therefore, in order to make practical use of the presented
insights, we need to devise a method to estimate the number of relevant kernel PCA components for
a given concrete data set and choice of kernel.

In this section we propose methods for estimating the actual dimensionality of a data set, and two
related estimators. Based on the dimensionality estimate, one can denoise the labels by projecting
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onto the respective subspace and obtain an estimate for the relevant information vector G. By
comparing the denoised labels with the original labels, one can then estimate the overall noise level
of the data source. Based on these estimates, we discuss how to use the dimensionality estimate for
model-selection and to further analyze data sets which so far show inferior performance. Figure 4
summarizes the information flow for the different estimates.

Y

Kernel matrix

XKernel

Noise estimate (Eq. 6)

Dimension (Eq. 4)

Kernel PCA coefficients (Eq. 1)

Denoised Y (Eq. 5)

Figure 4: Information flow for the estimates.

4.1 Relevant Dimension Estimation (RDE)

The most basic estimate is the number of relevant kernel PCA components. We also call this number
simply the relevant dimension or the dimensionality (also see the discussion in Section 6.3). Recall
that we have decomposed the labels into Y = G + N , with Gi = E(Yi|Xi) (see Section 3.1). This
decomposition carries over to the kernel PCA coefficients zi = u>i Y = u>i G + u>i N. We want to
estimate d̂ such that |u>i G| is negligible for i > d̂.

We propose two algorithms for solving this relevant dimension estimation (RDE) task which
are based on different approaches to the problem but lead to comparable performance. The first
algorithm fits a parametric model to the kernel PCA coefficients, while the second one is based on
leave-one-out cross-validation.

4.1.1 RDE BY FITTING A TWO-COMPONENT MODEL (TCM)

The first algorithm works only on the coefficients zi = u>i Y . Recall that U is the matrix whose
columns are the eigenvectors of the kernel matrix ui such that z = U>Y = U>G + U>N = G̃ + Ñ.
In Section 3, we have seen that both parts have significantly different structure. From Theorem 1,
we know that |G̃i| ≈ O(li), and that the G̃i are close to zero for all but a leading number of coeffi-
cients. On the other hand, as discussed in Section 3.3, the transformed noise Ñ is typically evenly
distributed over all coefficients. Thus, the coefficients of the noise have the shape of an evenly
distributed “noise floor” Ñi from which the coefficients G̃i of the relevant information arise (see
Figure 1(b) for an example).

The idea is now to find a cut-off point such that the coefficients are divided into two parts
z1, . . . ,zd and zd+1, . . . ,zn such that the first part contains the relevant information and the latter part
consists of evenly distributed noise. We model the coefficients by two zero-mean Gaussians with
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individual variances

zi ∼
{

N (0,σ2
1) 1≤ i≤ d,

N (0,σ2
2) d < i≤ n.

Of course, in order to be able to extract meaningful information, it should hold that σ1 � σ2.
Alternatively, one could assume that zi ∼N (0,σ2

1 +σ2
2), for 1≤ i≤ d, which nevertheless leads to

the exact same choice of d.
For real data, both parts need not be actually Gaussian distributed. However, due to lack of

additional a priori knowledge on the signal or the noise, the Gaussian distribution represents the
optimal choice among all distributions with the same variance according to the maximum entropy
principle (Jaynes, 1957).

The negative log-likelihood is proportional to

− log`(d)∼ d
n

logσ2
1 +

n−d
n

logσ2
2, with σ2

1 =
1
d

d

∑
i=1

z2
i , σ2

2 =
1

n−d

n

∑
i=d+1

z2
i . (3)

The estimated dimension is then given as the maximum likelihood fit

d̂ = argmin
1≤d≤n′

(− log`(d)) = argmin
1≤d≤n′

(

d
n

logσ2
1 +

n−d
n

logσ2
2

)

. (4)

Due to numerical instabilities of kernel PCA components corresponding to small eigenvalues, the
choice of d should be restricted to 1≤ d ≤ n′ < n: The coefficients zi are computed by taking scalar
products with eigenvectors ui. For small eigenvalues (small meaning of the order of the available
numerical precision, for double precision floating point numbers, this is typically around 10−16),
individual eigenvectors cannot be computed accurately, although the space spanned by all these
eigenvectors is accurate. Therefore, coefficients zi for large i are not be reliable. To systematically
stabilize the algorithm, one should therefore limit the range of possible effective dimensions. We
have found the choice of 1 ≤ d ≤ n/2 to work well as this choice ensures that at least half of the
coefficients are interpreted as noise. For very small and very complex data sets, this choice might
prove suboptimal and better thresholds based, for example, on the actual decay of eigenvalues might
be advisable. However, on all data sets discussed in this paper, the above choice performed very
well.

4.1.2 RDE BY LEAVE-ONE-OUT CROSS-VALIDATION (LOO-CV)

We propose a second algorithm which is based on cross validation, a more general concept than
parametric noise modeling. This algorithm only depends on our theoretical results to the extent that
it searches for subspaces spanned by leading kernel PCA components. We later compare the two
methods to see whether our assumptions were justified.

As stated in Lemma 1, the projection of Y onto the space spanned by the d leading kernel PCA
components is given by ∑d

i=1 uiu>i Y , where ui are the eigenvectors of the kernel matrix. The matrix
S = ∑d

i=1 uiu>i can be interpreted as a “hat matrix” in the context of regression.4 The idea is now to
choose the dimension which minimizes the leave-one-out cross-validation error. This subspace then
captures all of the relevant information about Y without overfitting.

4. Recall that for regression methods where the fitted function depends linearly on the labels, the matrix S which
computes Ŷ = SY is called the “hat matrix” since it “puts the hat on Y .”
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Computationally, note that one can write the squared error leave-one-out cross-validation in
closed form, similar to kernel ridge regression (see Wahba, 1990):

cvloo(d) =
1
n

n

∑
i=1

(

[SY ]i−Yi

1−Sii

)2

.

It is possible to organize the computation in a way such that given the eigendecomposition of K,
each value cvloo(d) can be computed in O(n) (instead of O(n2) if one naively implements the above
formula): Note that Sii is equal to ∑d

j=1(u j)
2
i , therefore, one can compute Sii iteratively by

S0
ii← 0

Sd+1
ii ← Sd

ii +(ud+1)
2
i .

In the same way, since Ŷ = SY = ∑d
j=1 u ju>jY , we get that

Ŷ 0← 0

Ŷ d+1← Ŷ d +ud+1u>d+1Y.

The squared error is in principle not the most appropriate loss function for classification problems.
But as we will see below, it nevertheless works well also for classification problems.

4.2 Denoising the Labels and Estimating the Noise Level

One direct application of the dimensionality estimate is the projection of Y onto the first d̂ kernel
PCA components. By Lemma 1, this projection is

Ĝ′ =
d̂

∑
i=1

uiu
>
i Y.

Then, an estimate of the noiseless labels is given by

Ĝ =

{

sign Ĝ′ classification against ±1 labels

Ĝ′ regression
. (5)

Note that this amounts to computing the in-sample fit using kernel principal component regression
(kPCR).

The estimated dimension can also be used to estimate the noise level present in the data set by

ˆerr =
1
n

n

∑
i=1

L(Ŷi,Yi), (6)

where L is the loss function.
The accuracy of both these estimates depends on a number of factors. Basically, the estimation

error is small if the first d̂ kernel PCA components capture most of G and d̂ is small such that
most of the noise is removed. Note that our assumption that the kernel suits the data set is crucial
for both these requirements. If g does not lie in the span of the associated integral operator Tk,
the coefficients decay only slowly and a huge number of dimensions are necessary to capture most
information about G, leading to a huge amount of residual noise.
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(a) Classification (“banana” data set)
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(b) Regression (noisy sinc function)

Figure 5: Dimensions and estimated noise levels for varying kernel widths are not suited for model
selection as it is unclear how to combine both estimates and they become instable for very
small kernel widths. Shown are the 10%, 25%, 50%, 75%, and 90% percentiles over 100
resamples. Legend: “dimension (%)”—estimated dimensionality divided by number of
samples. “noise level”—estimated noise level using the `1-norm for classification, and
the (unnormalized) `2-norm for regression.

4.3 Applications to Model Selection

A highly relevant problem in the context of kernel methods is the selection of a kernel from a
number of possible candidates which fits the problem best. This problem is usually solved by
extensive cross-validation.

We would like to discuss possibilities to use the estimates introduced so far for model selection.
Choosing the model based on either dimensionality or noise level alone is not sufficient, since one
wants to optimize a combination of both. However, as the two terms live on quite different scales, it
is unclear how to combine them effectively. Furthermore, as we will see below, both estimates alone
become unstable for very small or very large kernel widths. The log-likelihood which achieves the
optimum in (4) overcomes both problems and can be used for effective model selection.

Let us first discuss how the relation between the scale of the kernel and the data set can affect
the dimensionality of the embedding in feature space. The standard example for a family of kernels
with a scale parameter is the rbf-kernel (also known as Gaussian kernel, see Appendix A). Figure 5
shows the dimension and noise level estimates for a classification data set (the “banana” data set),
and a regression data set (the “noisy sinc function” with 100 data points for training, and 1000 data
points for testing) over a range of kernel widths. Generally speaking, if the scale of the kernel is too
coarse for the problem, the problem tends to appear to be very low-dimensional with a large amount
of noise. On the other hand, if the scale of the kernel is too fine the learning problem appears to be
very complex with almost no noise.

Now, the log-likelihood `(d̂) solves both problems. It combines the dimension and the noise
level into a single meaningful number, and its value is stable across the whole scale range. In
Figure 6, we have plotted the log-likelihood (scaled to fit into the plot) against the test error, both
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(a) Classification (“banana” data set)

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

kernel width

te
st

 e
rr

or
 (

M
S

E
)

log−lik. (scaled)
test error

(b) Regression (noisy sinc function)

Figure 6: Comparison of test errors and the negative log-likelihood from Equation (3) shows that
the negative log-likelihood is highly correlated with the test error and can thus be used
for model selection. Shown are the 10%, 25%, 50%, 75%, and 90% percentiles over 100
resamples. Legend: “log-lik. (scaled)”—log-likelihood (scaled). “test error”—test error
using the `1-norm for classification, or the (unnormalized) `2-norm for regression.

with respect to the classification and least squares error. We see that the estimated log-likelihoods
can be estimated well over the whole range, and that the likelihoods are highly correlated with the
actual test error. Thus, the log-likelihood is a reliable indicator for the test errors based on the best
separation between signal and noise.

Another alternative, which is somewhat more straight-forward, but conceptually also less inter-
esting, is to use the leave-one-out cross-validation error. This quantity also measures how well the
kernel can separate the noise from the relevant information, and is directly linked to the test error on
an independent data set. We validate both model selection approaches experimentally in Section 5.

4.4 Applications to Data Set Assessment

When working on a concrete data set in a kernel setting, one is faced with the problem of finding a
suitable kernel. This problem is usually approached with a mix of hard-won experience and domain
knowledge. The main tool for guiding the search are prediction performance measures, the classical
one being prediction accuracy. Measurements like the ROC (receiver-operator-curve), or the AUC
(area-under-the-curve) give more fine-grained measurements of prediction quality, in particular in
areas where many false positives or false negatives are not acceptable.

If, after testing a number of sensible candidates, the achieved prediction quality is satisfying,
this approach is perfectly adequate, but more often than not, prediction quality is not as good as
desirable. In such a case, it is important to identify the cause for the inferior performance. In
principle, three alternatives are possible:

1. The kernels which have been used so far are not suited for the problem.

2. The learning problem is very complex and requires more data.
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data set RDE method dimension noise-level
complex data set TCM 50 16.07%

LOO-CV 25 40.59%
noisy data set TCM 9 40.71%

LOO-CV 9 40.71%

Table 2: Estimated dimensions for the two data sets from Figure 7. Methods are “TCM” for RDE
by fitting a two-component model, “LOO-CV” for RDE by leave-one-out cross-validation.
“noise-level” is measured as normalize mean square error (see Appendix A).

3. Better performance cannot be achieved since the learning problem is intrinsically noisy.

Each of these alternatives requires different approaches. In the first case, a better kernel has to be
devised, in the second case, more data has to be acquired, and in the last case, one can either stop
searching for a better kernel, or try to improve the quality of the data or the features used.

Ultimately, these questions cannot be answered without knowledge of the true distribution of
the data, but the important observation here is that performance measures do not provide enough
information to distinguish these cases.

The estimates introduced so far can now be used to obtain evidence for distinguishing between
the second and third case. On the one hand, the dimensionality of the problem is related to the
complexity of the problem, while the noise level measures the inherent noise. Note that both these
estimates depend on the chosen kernel.

Consider the following example: We study two data sets, a simple data set built from a noisy
sinc function, and a complex data set based on a high-frequency sine function (see Figure 7). For the
same number of data points n = 100, both data sets lead to comparable normalized test errors5 for
the best model selected (A normalized test error of 43.7% on the complex data set and 44.4% on the
noisy data set using kernel ridge regression with model selection by leave-one-out cross-validation.
Widths were selected from 20 logarithmically spaced points from 10−6 to 102, regularization con-
stant was selected from 10 logarithmically spaced points from 10−6 to 103). However, the reason
for the large error on the complex data set is clearly due to the small number of samples. If we
increase the data set size to 1000 points, the normalized test error becomes 2.4%.

The question is now whether we can distinguish these two cases based on the kernel PCA coeffi-
cients. In fact, even on visual inspection, the kernel PCA coefficients display significant differences
(see Figures 7(c) and 7(d)). We estimate the effective dimension and the resulting noise-level using
the two methods we have proposed, the results are shown in Table 2. While both methods lead to
different estimates, they both agree on the fact that the noisy data set has comparably low complex-
ity and high noise, while the complex data set is quite high-dimensional, in particular if one takes
into account that the data set contains only 100 data points. In fact, the RDE analysis on the larger
complex data set with 1000 data points gives a dimension of 142, and a noise-level of 1.96%. Thus,
the RDE measure correctly indicates that the large test error is due to the insufficient amount of data
in the one case, and due to the large noise level in the other case.

This simple example demonstrates how the RDE measure can provide further information be-
yond the error rates. Below, we discuss this approach for several benchmark data sets.

5. See Appendix A for a definition of the normalized error.
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(a) A complex data set.
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(b) A noisy data set.
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(c) Kernel PCA coefficients for the complex data set.
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(d) Kernel PCA coefficients for the noisy data set.

Figure 7: For both data sets, the X values were sampled uniformly between−π and π. For the com-
plex data set, Y = sin(35X)+ ε where ε has mean zero and variance 0.01. For the noisy
data set, Y = sinc(X)+ ε′ where ε′ has mean zero and variance 0.09. Errors are reported
as normalized mean squared error (see Appendix A). Below, the kernel PCA coefficients
(scalar products with eigenvectors of the kernel matrix) for the optimal kernel selected
based on the RDE (TCM) estimates are plotted. Coefficients are sorted by decreasing
corresponding eigenvalue.

5. Experiments

We test our methods on several benchmark data sets. As discussed in the introduction, in order to
validate whether our dimension estimates are accurate, we compare the achieved test error rates on
the reduced feature space to other state-of-the-art algorithms. If the estimate is accurate, the test
errors should be on par with these algorithms. Furthermore, we apply our method to estimate the
complexity and noise level of the various data sets.
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5.1 Benchmark Data Sets

We performed experiments on the classification data sets from Rätsch et al. (2001). For each of the
data sets, we analyze it using a family of rbf kernels (see Appendix A). The kernel width is selected
automatically using the achieved log-likelihood as described above. The width of the rbf kernel is
selected from 20 logarithmically spaced points between 10−2 and 104 for each data set.

Table 3 shows the resulting dimension estimates using both RDE methods, with the cross-
validation based RDE method being slightly biased towards higher dimensions. We see that both
methods perform on par, which shows that the strong structural prior assumption underlying RDE
is justified.

To assess the accuracy of the dimensionality estimate, we compare an unregularized least-
squares fit in the reduced feature space (RDE+kPCR) with kernel ridge regression (KRR) and sup-
port vector machines (SVM) on the original data set. The resulting test errors are also shown in
Table 3. Note that the combination of RDE and kPCR is conceptually very similar to the kernel
projection machine (Vert et al., 2005) which also produces comparable results. However, in that pa-
per, no practical method for estimating the dimension (beyond cross-validation) has been proposed.
From the resulting test errors, we see that a relatively simple method on the reduced features per-
forms on par with the state-of-the-art competitors. We conclude that the identified reduced feature
space really contains all of the relevant information. Also note that the estimated noise levels match
the actually observed error rates quite well, although there is a slight tendency to under-estimate the
true error.

As discussed in Section 4.4, while the test errors only suggest a linear ordering of the data sets
by increasing difficulty, using the dimension and noise level estimates, a more fine-grained analysis
is possible. We can roughly divide the data sets into four classes (see Table 4), depending on whether
the dimensionality is small or large, and the noise level is low or high. Data sets with small noise
level show good results, almost irrespective of the dimensionality. The data set image seems to be
particularly noise free, given that one can achieve a small error in spite of the large dimensionality.

The data sets breast-cancer, diabetes, flare-solar, german, and titanic, which all have test errors
of 20% or more, have only moderately large dimensionalities. This means that the complexity of
the underlying optimal decision boundary is not overly large (at least when viewed through the lens
of the rbf-kernel), but a large inherent noise level prevents better results. Since this holds for rbf-
kernels over a wide range of kernel widths, these results can be taken as a strong indicator that the
Bayes error is in fact large.

The splice data set seems to be a good candidate for improvement. The noise level is moderately
high, while the dimensionality with respect to the rbf-kernel seems quite high. We would like to
use our dimensionality and noise level estimate as a tool to examine different kernel choices. (See
Section C for further details).

Closer inspection of the data set reveals that a plain rbf-kernel is a suboptimal choice. The task
of the splice data set consists in predicting whether there is a splice-site in the middle of a string of
DNA (such sites encode the beginning and endings of coding regions on the DNA). In the data set,
the four amino-acids A, C, G, T are encoded as numbers 1, 2, 3, and 4. Therefore, an rbf-kernel
incorrectly assumes that C and G are more similar than A and T. One alternative which is more
suited to this data set consists in encoding A, C, G, and T as binary four-vectors. The resulting
kernel matrix has much smaller dimension, and also a smaller error rate (see Table 5).
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data set TCM LOO-CV TCM-noise level RDE+kPCR KRR SVM
banana 24 26 8.8 ± 1.5 11.3 ± 0.7 10.6 ± 0.5 11.5 ± 0.7
breast-cancer 2 2 25.6 ± 2.1 27.0 ± 4.6 26.5 ± 4.7 26.0 ± 4.7
diabetes 9 9 21.5 ± 1.3 23.6 ± 1.8 23.2 ± 1.7 23.5 ± 1.7
flare-solar 10 10 32.9 ± 1.2 33.3 ± 1.8 34.1 ± 1.8 32.4 ± 1.8
german 12 12 22.9 ± 1.1 24.1 ± 2.1 23.5 ± 2.2 23.6 ± 2.1
heart 4 5 15.8 ± 2.5 16.7 ± 3.8 16.6 ± 3.5 16.0 ± 3.3
image 272 368 1.7 ± 1.0 4.2 ± 0.9 2.8 ± 0.5 3.0 ± 0.6
ringnorm 36 37 1.9 ± 0.7 4.4 ± 1.2 4.7 ± 0.8 1.7 ± 0.1
splice 92 89 9.2 ± 1.3 13.8 ± 0.9 11.0 ± 0.6 10.9 ± 0.6
thyroid 17 18 2.0 ± 1.0 5.1 ± 2.1 4.3 ± 2.3 4.8 ± 2.2
titanic 4 6 20.8 ± 3.8 22.9 ± 1.6 22.5 ± 1.0 22.4 ± 1.0
twonorm 2 2 2.3 ± 0.7 2.4 ± 0.1 2.8 ± 0.2 3.0 ± 0.2
waveform 14 23 8.4 ± 1.5 10.8 ± 0.9 9.7 ± 0.4 9.9 ± 0.4

Table 3: Estimated dimensions and error rates for the benchmark data sets from Rätsch et al.
(2001). Legend: “TCM”—medians of estimated dimensionalities over resamples us-
ing the RDE by TCM methods. “LOO-CV”—dimensionality estimated by leave-one-out
cross-validation. “TCM-noise level”—estimated error rate using the estimated dimension.
“RDE+kPCR”—test error using a least-squares hyperplane on the estimated subspace in
feature space. “KRR”—kernel ridge regression with parameters determined by leave-one-
out cross-validation. “SVM”—the original error rates from Rätsch et al. (2001). Best and
second best results are highlighted.

low noise high noise
low dimensional banana, breast-cancer, diabetes

thyroid, flare-solar, german
waveform heart, titanic

high dimensional image, ringnorm splice

Table 4: The data sets by noise level and complexity.

Still, there is further room for improvement. Using a weighted-degree kernel, which has been
specifically designed for this problem (Sonnenburg et al., 2005), we obtain even better results:
While the dimension is again slightly larger (but still moderate compared to the number of 1000
training examples), the noise level is even smaller. The reason is that the weighted degree kernel
weights longer consecutive matches on the DNA differently while the rbf kernel just compares
individual matches. Again, learning hyperplanes on the subspace of the estimated dimension leads
to classification results on the test sets which are close to those predicted by the error level estimate.

6. Discussion

We discuss some implications of our results to learning theory. In particular we show how the
“standard picture” on kernels and feature spaces is extended by our results. With respect to practical
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kernel RDE est. error rate RDE+kPCR
rbf 87 9.4 ± 1.0 12.9 ± 0.9
rbf (binary) 11 7.1 ± 1.0 7.6 ± 0.7
wdk 29 4.5 ± 0.7 5.5 ± 0.7

Table 5: Different kernels for the splice data set (for fixed kernel width w = 50). Legend: “rbf”—
plain rbf-kernel, “rbf (binary)”—rbf-kernel on A, C, G, T encoded in binary four-vectors,
“wdk”—weighted degree kernel (Sonnenburg et al., 2005).

applications we explain the role of RDE as a diagnosis tool for kernels. We close by contrasting our
notion of dimension with two closely related dimensions, the dimension of the minimal subspace
necessary to capture the relevant information about a learning problem, and the dimension of the
data sub-manifold.

6.1 Connections to Learning Theory

We start with some informal reasoning about our findings much like in the spirit of Vapnik (1995).
Although our ideas are not developed to all formal details, they are intended to provide some in-
teresting insights on extensions to the general statistical learning theory picture (see Figure 8). The
standard picture (see, for example, Burges, 1998; Müller et al., 2001) can be summarized as fol-
lows: The learning problem is given in terms of a finite data set in X ×Y . The kernel k implicitly
embeds X in some (potentially) high-dimensional feature space F via the feature map Φ. Now
since the feature space can be high-dimensional, it is argued that one needs to employ some form of
appropriate complexity control in order to be able to learn. A prominent example are large margin
classifiers, leading to support vector machines. Other examples include penalization of the norm of
the weight vectors, which relates to a penalization of the norm in the resulting reproducing kernel
Hilbert space (RKHS).

F (high−dimensional)

c omp lex ity
has low

c omp lex ity
c ontrol

inc rease linear
sep arab ility

Y
?

need for

X

ex tension of standard p ic tu re
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Figure 8: Learning in kernel feature spaces.

This picture is not entirely conclusive since it is not a priori clear that the feature map and
the complexity control interact in a benign fashion. For example, it might be possible that the
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feature map transforms the data such that a good representation can be learned, but the solution is
incompatible with the kind of complexity one is penalizing. On the other hand, the large body of
successful applications of kernel methods to real world problems is ample experimental verification
of the fact that this seems to be the case and choosing a good kernel leads to an embedding which
has low complexity, permitting, for example, large margin classifiers.

The question of the complexity of the image of X under the feature map actually has two parts.
Part 1 concerns the complexity of the embedded object features Φ(X), while part 2 concerns the
relation between the labels Y and the embedded object features Φ(X).

The first part has already been studied in several works. For example, Blanchard et al. (2007)
and Braun (2006) have derived approximation bounds which show that the principal component
values approximate the true principal values quickly (see also Mika, 2002; Shawe-Taylor et al.,
2005). And since the asymptotic principal values decay rapidly, these results show that most of the
variance of the X in feature space is contained in a finite dimensional subspace in feature space.
Considering the function class generated by the feature map, Shawe-Taylor et al. (1998) first dealt
with the complexity of kernel classes showing that the complexity can be bounded in the spirit of
the structural risk minimization framework if a properly regularized class is picked depending on
the data, for example by using large margin hyperplanes. Williamson et al. (2001) have further
refined these results by using the concept of entropy numbers for compact operators that the com-
plexity of the resulting hypothesis class is actually finite at any given positive scale. Evgeniou and
Pontil (1999) show, using the concept of Vγ-dimension, which directly translates to a constraint on
the RKHS-norm of the functions, that the resulting hypothesis classes have finite complexity. In
summary, the embedding of X is known to have finite complexity (up to a small residual error).

The second part addresses the question if the embedding also relates favorably to the labels. In
this work we have studied this question and answered it positively. One can prove that under mild
assumptions on the general fit between the kernel and the learning problem, the information about
the labels is always contained in the (typically small) subspace also containing most of the variance
about the object features. While this borders on the trivial for the asymptotic setting, we could show
that the same also holds true for a concrete finite data set, even at small sample sizes.

Our findings clarify the role of complexity control in feature space. The complexity control
is not sufficient for effective learning in the feature space, but necessary. In conjunction with a
sensible embedding provided by a suitable choice of the kernel function, it ensures that learning
focuses on the relevant information and prevents overfitting. Interestingly, RKHS type penalty
terms automatically ensure that the learned function focuses on directions in which the data has
large variance, automatically leading to a concentration on the leading kernel PCA components.

6.2 RDE as a Diagnosis Tool

As discussed in Section 4.4, performance measures like the test error are very useful to compare
different kernels, but fail to provide evidence if the performance is not as good as desired on whether
the right kernel has not been found yet or the problem is intrinsically noisy.

Now, the RDE based estimates proposed in this paper offer a possible new approach to solve
this problem. The relevant dimensionality estimate and the noise level estimate allow us to directly
address the complexity vs. randomness issue, at least for a given kernel. Of course, our approach
only provides a partial answer. However, using a generic kernel like an rbf-kernel for different
widths results in an analysis of the data set on a whole range of scale resolutions. If the data set
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appears to be low-dimensional and noisy at every scale, there is a strong indication that the noise
level is actually quite high.

In the data sets discussed in Section 5, we have considered kernel widths in the range 10−2 to
104. The data sets breast-cancer, diabetes, flare-solar, german, heart, and titanic, which all have
prediction errors larger than 15%, turn out to be fairly low-dimensional over the whole range.

On the other hand, the splice data set seemed to be quite complex, but not very noisy. Using
domain knowledge, we improved the encoding, and finally chose a different kernel, which further
reduced the complexity and noise (see Section C for further details).

In summary, using the RDE based estimates as a diagnosis tool, it is possible to obtain more
detailed insights into how well a kernel is adapted to the characteristic properties of a data set and
its underlying distribution than by using integrative performance measures like test errors only.

6.3 The “True” Dimensionality of the Data

We estimate the number of leading kernel PCA components necessary to capture the relevant infor-
mation contained in the learning problem. This “relevant dimensionality estimate” captures only a
very special kind of dimensionality notion, and we would like to compare it with two other aspects
of dimensionality.

In our dimensionality estimate, the basis was fixed and given by leading kernel PCA compo-
nents. One might wonder how many dimensions are necessary to capture the relevant information
about the learning problem if one were also allowed to choose the basis. The answer is easy: In
order to capture G, it suffices to consider the one-dimensional space spanned by G itself, which
means that the minimal dimensionality of the learning problem is 1. However, note that G is not
known, and estimating G amounts to solving the learning problem itself. In other words, the choice
of a kernel can be interpreted as implicitly specifying an appropriate basis in feature space which is
able to capture G using as few basis vector as possible, and also using a subspace which contains as
much of the variance of the data as possible.

For most data sets, the different input variables are highly dependent, such that the data does
not occupy all of the space but only a sub-manifold in the space. The dimension of this sub-
manifold is a further notion of dimensionality of a data set. However, note that we consider the
dimensionality of the data with respect to the information in the labels, while the sub-manifold view
usually concentrates on the inputs only. Also, we are considering linear subspaces (in an RKHS),
which typically require more dimensions to capture the data than a non-linear manifold would. On
the other hand, since we are only looking at the subspace which is relevant for predicting the labels,
the estimated dimension may also be smaller than the dimension of the data manifold in feature
space.

7. Conclusion

Both in theory and on practical data sets, we have demonstrated that the relevant information in a
supervised learning scenario is contained in the leading projected kernel PCA components if the
kernel matches the learning problem and is sufficiently smooth. This behavior complements the
common statistical learning theoretical view on kernel based learning adding insight on the intricate
interplay of data and kernel: An appropriately selected kernel (a) leads to an efficient model which
generalizes well, since only a comparatively low dimensional representation has to be learned for a
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fixed given data size. An appropriately selected kernel (b) permits a dimension reduction step that
discards some irrelevant projected kernel PCA directions and thus yields a regularized model.

We propose two algorithms for the relevant dimensionality estimate (RDE) task. These can
also be used to automatically select a suitable kernel model for the data and to extract as addi-
tional side information an estimate of the effective dimension and estimated expected error for the
learning problem. Compared to common cross-validation techniques one could argue that all we
have achieved is to find a similar model as usual at a comparable computing time. However, we
would like to emphasize that the side information extracted by our procedure contributes to a better
understanding of the learning problem at hand: Is the classification result limited due to intrinsic
high dimensional structure or are we facing noise and nuisance dimensions? Simulations show the
usefulness of our RDE algorithms.

An interesting future direction lies in combining these results with generalization bounds which
are also based on the notion of an effective dimension, this time, however, with respect to some
regularized hypothesis class (see, for example, Zhang, 2005). Linking the effective dimension of a
data set with the “dimension” of a learning algorithm, one could obtain data dependent bounds in a
natural way with the potential to be tighter than bounds which are based on the abstract capacity of
a hypothesis class.
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Appendix A. Data Sets and Kernel Functions

In this section, we introduce some data sets and define the Gaussian kernel, since there exists some
variability with respect to its parameterization.

A.1 Gaussian kernel

The Gaussian kernel, or rbf-kernel, used in this paper are parameterized as follows: The Gaussian
with width w is

k(x,y) = exp

(

−‖x− y‖2

2w

)

.

A.2 Classification Data Sets

For classification, we use the data sets from Rätsch et al. (2001). This benchmark data set consists
of 13 classification data sets, which are partly synthetic, and partly derived from real-world data.
The data sets are pre-arranged into different resamples of training and test data sets. The number
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of resamples is 100 with the exception of the “image” and “splice” data sets which have only 20
resamples (because these data sets are fairly large). For visualization purposes, we often take the
first resample of the “banana” data set, which is a two-dimensional classification problem (see
Figure 1(a)).

A.3 Regression Data Sets

The “noisy sinc function” data set is defined as follows:

Xi ∼ uniformly from [−π,π],

Yi = sinc(Xi)+ εi,

εi ∼N (0,σ2
ε).

There are different alternatives for defining the sinc function, we choose sinc(x) = sin(πx)/πx,
sinc(0) = 1.

For regression, we sometimes measure the error using the “normalized mean squared error.” If
the original labels are given by Yi, 1≤ i≤ n, and the predicted ones are Ŷi, then this error is defined
as

nmse =
∑n

i=1(Yi− Ŷi)
2

∑n
i=1(Yi− 1

n ∑n
j=1Yj)2

.

Appendix B. Proof of the Main Theorem

In this section, the main theorem of the paper is stated and proven. We start with some definitions,
then introduce and discuss the assumptions of the main result. Next we define a few quantities on
which the bound depends. The bound itself is split into two theorems. First the general bound is
derived and then the asymptotic rates of these quantities are studied.

B.1 Preliminaries

Using the probability measure PX which generates the Xs, we can define a scalar product via 〈 f ,g〉=
R

X f (x)g(x)PX (dx) which induces the Hilbert space L2(X ,PX ). Unless indicated otherwise, ‖ f‖
will denote the norm with respect to this scalar product. Let k(x,y) = ∑∞

`=1 λ`ψ`(x)ψ`(y) be a kernel
function (such that λ` ≥ 0). The ψ` form an orthogonal family of functions on the Hilbert space
L2(X ,PX ). Given an n-sample X1, . . . ,Xn from PX , the sample vector of a function g is the vector
g(X) = (g(X1), . . . ,g(Xn)). The kernel matrix given a kernel function k and an n-sample X1, . . . ,Xn

is the n×n matrix K with entries k(Xi,X j)/n.
Let g(x) = ∑∞

`=1 α`λ`ψ`(x) with (α`) ∈ `2, the set of all square-summable sequences. The
expansion of g in terms of λ`ψ` amounts to assuming that g lies in the range of the integral operator
Tk defined by Tk f =

R

X k( · ,x) f (x)PX (dx). Then, g = Tkh with h = ∑∞
`=1 α`ψ`.

The act of truncating an object with an infinite expansion to its first r coefficients is so ubiquitous
in the following that we introduce a generic notation. If k is a kernel function, k̃ is the kernel
function whose expansion has been reduced to the first r terms. Likewise, K̃ is the kernel matrix
induced by k̃. For a sequence (α`) ∈ `2, α̃ is the tuple consisting of the first r elements of the
sequence. The sample vector matrices Ψ̃ is formed by the sample vector of the first r eigenvectors,
that is, Ψ̃i j = ψ j(Xi)/

√
n, and Λ̃ is the diagonal matrix formed from the first r eigenvalues, such that

K̃ = Ψ̃Λ̃Ψ̃>. Finally, g̃ is obtained from g by truncating the expansion to the first r eigenfunctions.
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The eigen-decompositions of the kernel matrix and the truncated kernel matrix (kernel matrix
for the truncated kernel function) are

K = ULU>, K̃ = ŨL̃Ũ>,

where U, Ũ are orthogonal matrices with columns ui, ũ j, and L, L̃ are diagonal matrices with entries
li, l̃ j, such that the eigenpairs of K are (li,ui), and those of K̃ are (l̃ j, ũ j). We stick to the general
convention that eigenvalues are always sorted in decreasing order.

Tail-sums of eigenvalues are denoted by

Λ>r =
∞

∑
i=r+1

λi, Λ≥r =
∞

∑
i=r

λi.

We will refer to the following result relating decay rates of the eigenvalues to the tail-sums. For
proofs, see, for example, Braun (2006). It holds that if λr = r−d with d ≥ 1, then Λ>r = O(r1−d). If
λr = exp(−cr) with c > 0, then Λ>r = O(exp(−cr)). The same rates hold for Λ≥r.

Furthermore, we will often make use of the fact that
√

a+b≤√a+
√

b if a,b≥ 0.

B.2 Assumptions

The overall goal is to derive a meaningful upper bound on 1√
n |u
>
i g(X)|. In particular, the bound

should scale with the corresponding eigenvalue li. We proceed as follows: First, we derive the
actual bound which depends on a number of quantities. In the next step, we estimate the worst case
asymptotic rates of these quantities. The actual bound depends on assumptions which are discussed
in the following.

(A1) We assume that the kernel is uniformly bounded, that is,

sup
x,y∈X×X

|k(x,y)|= K < ∞.

(A2) We assume that n≥ r large enough such that Ψ̃>Ψ̃ is invertible.

(A3) We assume that λi = O(i−5/2−ε) for some ε > 0.

Assumption (A1) is true for radial basis functions like the Gaussian kernel, but also if the un-
derlying space X is compact and the kernel is continuous. From (A1), it follows easily that g is
bounded as well since

|g(x)| ≤ K‖h‖.

Furthermore, since the ψi are orthogonal, it follows that ‖h− h̃‖ ≤ ‖h‖, and therefore

|g(x)− g̃(x)| ≤ K‖h‖

since g− g̃ = Tk(h− h̃), and therefore |g(x)− g̃(x)| ≤ K‖h− h̃‖ ≤ K‖h‖. These inequalities play an
important role for bounding the truncation error g− g̃ in a finite sample setting.

Since the sample vectors ψ`(X) are asymptotically pairwise orthogonal, Ψ̃>Ψ̃ converges to I,
and for large enough n, assumption (A2) is met. See also Lemma 2 below.
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Assumption (A3) ensures that the term r(∑r
i=1 |αi|)Λ≥r occurring in the bound vanishes as r→

∞. Note that since the sequence of αi is square-summable,

r

∑
i=1

|αi| ≤
√

r
r

∑
i=1

α2
i ≤
√

r‖α‖`2 = O(
√

r).

Therefore, r ∑r
i=1 |αi|= O(r3/2). Also, Λ≥r = O(r−3/2−ε), such that r(∑r

i=1 |αi|)Λ≥r = O(r−ε). Note
that (A3) is quite modest and eigenvalues often decay much faster, even at exponential rates.

B.3 The Main Result

The following five quantities occur in the bound:

• ci = |{1≤ j≤ r | li/2≤ l̃ j ≤ 2li}| is the number of eigenvalues of the truncated kernel matrix
which are close to the eigenvalues of the normal kernel matrix. This is a measure for the
approximate degeneracy of eigenvalues.

• ã = ‖α̃‖1, is a measure for the size of the first r coefficients which define g.

• Ẽ = K− K̃ is the truncation error for the kernel matrix.

• T̃ = ‖g− g̃‖=
√

∑∞
j=r+1 α2

jλ2
j is the asymptotic truncation error for the function g.

• F = ‖g‖∞ < ∞, an upper bound on g.

We study these quantities in more detail after proving the actual bound, which follows next.

Theorem 1 With the definitions introduced so far, it holds that with probability larger that 1− δ,
for all 1≤ i≤ n,

1√
n
|u>i g(X)|< min

1≤r≤n

[

liciD(r,n)+E(r,n)+T (r,n)
]

where the three terms are given by

D(r,n) = 2ã‖Ψ̃+‖, E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖, T (r,n) = T̃ +
√

FT̃ 4

√

1
nδ

.

Proof First, we replace g = g̃+(g− g̃) and obtain

1√
n
|u>i g(X)| ≤ 1√

n
|u>i g̃(X)|+ 1√

n
‖g(X)− g̃(X)‖=: (I),

using the Cauchy-Schwarz-inequality and the fact that ‖ui‖= 1 for the second term.
Next, we re-express g̃(X) = ∑r

`=1 λ`α`ψ`(X) as follows. By definition, g̃(X) lies in the image
of K̃, therefore, g̃(X) = ∑r

j=1 ũ jũ>j g̃(X). Using both these equations, we obtain

1√
n
|u>i g̃(X)| ≤

r

∑̀
=1

|α`|
r

∑
j=1

(u>i ũ j)

[

1√
n

λ`ψ`(X)>ũ j

]

=: (II)
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The term u>i ũ j measures the angle between the eigenvectors of K and K̃. Note that K can be
considered an additive perturbation of K̃ by Ẽ = K− K̃. Such perturbations are studied by the so-
called sin-theta-theorems. Specializing Theorem 6.2 of Davis and Kahan (1970) (see Section D) to
two single eigenvectors, we obtain that

|u>i ũ j| ≤min

( ‖Ẽ‖
|li− l̃ j|

,1

)

.

The term λ`ψ`(X)>ũ j/
√

n is bounded by l̃ j‖Ψ̃+‖ (where Ψ+ denotes the pseudo-inverse of Ψ),
since

l̃ jũ j = K̃ũ j = Ψ̃Λ̃Ψ̃>ũ j ⇒ l̃ jΨ̃+ũ j = Λ̃Ψ̃>ũ j.

Taking norms, we obtain ‖Λ̃Ψ̃>ũ j‖ ≤ l̃ j‖Ψ̃+‖, from which the claimed inequality follows for each
individual coordinate of the vector on the left-hand side.

Combining the bounds for the two terms u>i ũ j and λ`ψ`(X)>ũ j/
√

n, we obtain

(u>i ũ j)

[

1√
n

λ`ψ`(X)>ũ j

]

≤ ‖Ψ̃+‖min

( ‖Ẽ‖
|li− l̃ j|

,1

)

l̃ j =: ‖Ψ̃+‖ci j.

For j /∈ J(li) = {1≤ j ≤ r | 1
2 li ≤ l̃ j ≤ 2li}, it holds that ‖Ẽ‖l̃ j/|li− l̃ j| ≤ 2‖Ẽ‖, therefore,

r

∑
j=1

ci j = ∑
j∈J(li)

ci j + ∑
j/∈J(li)

ci j ≤ 2|J(li)|li +2r‖Ẽ‖.

We have just shown that

(II)≤ ‖Ψ̃+‖
r

∑̀
=1

|α`|
(

2|J(li)|li +2r‖Ẽ‖
)

. (7)

Now concerning the other term in (I), note that by the strong law of large numbers,

1
n
‖g(X)− g̃(X)‖2

Rn →‖g− g̃‖2
L2(X ,PX ) =

∞

∑
j=r+1

α2
jλ

2
j =: T̃ 2.

Since g is bounded, ‖g‖∞ = F < ∞, we can bound the variance of g− g̃:

VarPX ((g− g̃)2)≤ ‖g− g̃‖2
∞‖g− g̃‖2 = F2T̃ 2.

We can thus bound the probability of a large deviation using the Chebychev-inequality. Taking the
square roots, we obtain that with probability larger than 1−δ,

1√
n
‖g(X)− g̃(X)‖ ≤ T̃ +

√

FT̃ (nδ)−
1
4 . (8)

Combining bound (7) and (8), we obtain that

1√
n
|u>i g(X)| ≤ 2li|J(li)|‖α̃‖1‖Ψ̃+‖+2r‖Ẽ‖‖α̃‖1‖Ψ̃+‖+ T̃ +

√

FT̃ (nδ)−
1
4 .

This proves the upper bound on the coefficients.
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B.4 Worst Case Asymptotic Rates of the Error Matrices

The bound depends on a number of error terms, whose worst case asymptotic rates and their depen-
dency on r are studied next.

The norm of the pseudo-inverse of Ψ̃ can be related to the matrix C̃ = Ψ̃>Ψ̃−I, which measures
the deviation from orthonormality of the sample vectors of the first r eigenfunctions of Tk. Since the
eigenfunctions are asymptotically orthonormal, it is guaranteed that ‖C̃‖→ 0 as n→ ∞.

Lemma 2 Let C̃ = Ψ̃>Ψ̃− I. If ‖C̃‖< 1, then

‖Ψ̃+‖ ≤ (1−‖C̃‖)−1/2 = 1+O(

√

‖C̃‖).

Proof Recall that ‖Ψ̃+‖ = 1/σr(Ψ̃), where σr(Ψ̃) is the rth singular value of Ψ̃ in descending
order. The singular values are the square roots of the eigenvalues of Ψ̃>Ψ̃, and

1−λr(Ψ̃>Ψ̃)≤ max
1≤i≤r

|λi(Ψ̃>Ψ̃)−1| ≤ ‖Ψ̃>Ψ̃− I‖,

and therefore σr(Ψ̃) = (λr(Ψ̃>Ψ̃))1/2 ≥ (1−‖Ψ̃>Ψ̃− I‖)1/2, which proves the inequality.
For the asymptotic rate, observe that

‖Ψ̃+‖ ≤
√

1

1−‖C̃‖
=

√

‖C̃‖−1

‖C̃‖−1−1
=

√

1+
1

‖C̃‖−1−1
≤ 1+

√

1

‖C̃‖−1−1
.

Now, 1/(x−1) = O(1/x) for x→ ∞, which proves the asymptotic rate.

The two error matrices C̃ and Ẽ were discussed in depth by Braun (2006). However, note that
these asymptotic rates are worst case rates over certain families of kernel functions. This means that
the results on the asymptotic rates do not describe typical behavior but rather worst case behavior,
and their main purpose of these rates is to ensure that the error terms cannot diverge rather than
giving realistic estimates.

The following result is Theorem 4 from Braun (2006).

Lemma 3 For 1≤ r ≤ n, with probability larger than 1−δ,

‖C̃‖< r

√

r(r +1)K
λrnδ

, ‖Ẽ‖< λr +Λ>r +

√

2KΛ>r

nδ
.

¿From Lemma 3, it follows that

‖Ψ̃+‖= 1+O(rλ−1/4
r n−1/4),

‖Ẽ‖= Λ≥r +O(
√

Λ>rn
−1/2).

If we plug these rates into the bound from Theorem 1 and suppress all parts which converge to
zero, the bound becomes

1√
n
|u>i g(X)| ≤ 2ciãli +2rãΛ≥r + T̃ + terms which vanish as n→ ∞.
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We see that the general structure of the bound consists a part which scales with the eigenvalue under
consideration and an additive part which is independent of i. The factor of the scaling part increases
with r since ã = O(

√
r) in the worst case. At the same time, the truncation error T̃ arising from

the truncation of g becomes smaller as r is increased, and by assumption (A3), it is ensured that the
second term actually converges to zero as r→ ∞. The two parts therefore form a trade-off and by
choosing r, one can balance these two terms.

Now, in particular the convergence of ‖Ψ̃+‖ → 1 can be quite slow in the worst case, if the
eigenvalues of the kernel matrix decay quickly (see the paper by Braun, 2006, for a more thorough
discussion including an artificial example of a kernel function which achieves the described rate).
However, note that ‖Ψ̃+‖ only occurs in conjunction with terms involving eigenvalues, such that
the overall bound still converges. For example, one can prove that a decay rate of λr faster than
O(r−12) ensures that E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖→ 0 for r→ ∞ independently of n: It holds that

E(r,n) = 2rã‖Ψ̃+‖‖Ẽ‖= 2rã
(

1+O(rλ−1/4
r n−1/4)

)(

Λ≥r +O(
√

Λ>rn
−1/2)

)

.

If one expands the product, the term which decays slowest with respect to r is (recall that ã = O(
√

r))

2rãO(rλ−1/4
r )O(

√

Λ>r) = O(r5/2λ−1/4
r Λ1/2

>r ).

Now if λr = r−d , then Λ>r = O(r1−d), and

O(r5/2λ−1/4
r Λ1/2

>r ) = O(r5/2rd/4r(1−d)/2) = O(r3−d/4).

We require that the exponent is smaller than 0 which is true if d > 12. Again, since these are worst
case considerations, and usually r and n will be coupled in some way, the additive terms will be
controlled even for slower decay rates.

An interesting feature of the bound is that it is uniform in i, which means that the bound holds
simultaneously for all eigenvectors. Therefore, the individual bounds can be combined, for example,
to sums of scalar products without a decrease in the probability with which the bound holds.

In principle, it is possible to further relate the decay rate of the eigenvalues of the kernel matrix
li to the asymptotic eigenvalue λi, for example using bounds for individual eigenvalues (Braun,
2006), or tail-sums of eigenvalues (Blanchard et al., 2007; Shawe-Taylor et al., 2005) if we wish
to explicitly control the component of the relevant information vector which is not contained in the
leading kernel PCA directions.

Appendix C. A Worked Through Example

In this section, we work through the “splice” data set to show how one would perform a kernel
fitness analysis using the methods presented here. The computations of the estimates proposed in
Section 4 are summarized in Algorithm 1.

We start out with the splice data set. As explained in the main section, each data points encodes
sequence of aminoacids. In the positive examples, there exists a so-called splice site in the center of
the encoded DNA signal. The task requires to predict splice sites in these short DNA sequences.

Usually, one would start with some specific kernel, for example an rbf-kernel, train some kernel
learning algorithm using this kernel, evaluate the kernel on some test data set, and start to select
different parameters. There are two potential drawbacks following this approach: (1) there exists
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Algorithm 1 Computing the estimates from Section 4
Input: Kernel matrix K, label vector Y , loss function L
Output: kernel PCA coefficients z, dimensionality d̂,

negative log-likelihood ˆ̀, denoised labels Ŷ ,
noise-level ˆerr

1: {Compute kernel PCA coefficients}
2: Compute eigendecomposition KU = UD
3: z← U>Y
4: {Estimate dimensionality d̂ (Eq. 4)}
5: c← 0; C←‖z‖2 {here, it is shown in detail how to achieve linear run-time}
6: for d = 1 to n/2 do
7: c← c+ z2

i
8: s1← c/d
9: s2← (C− c)/(n−d)

10: ld ← d logs1 +(n−d) logs2

11: end for
12: d̂← argmin1≤d≤n/2 ld
13: ˆ̀← ld̂ .
14: {Compute denoised labels (Eq. 5)}
15: Extract first d̂ eigenvectors T← U:,1:d̂

16: Ŷ ← TT>Y
17: {Estimate noise-level (Eq. 6)}
18: êrr = 1

n ∑n
i=1 L(Y,Ŷ )

no absolute measure of the goodness of a certain kernel choice, only comparisons to other kernels,
(2) there exists some dependency on the kernel learning method employed. Using the methods
developed in this paper, it is possible to explore the relationship between the kernel and the data set
in an algorithm independent way. Furthermore, in the case of poor performance, it is possible to
distinguish between very complex cases (which require more input data), and cases where the data
set appears to be very noisy (either requiring better data quality, or a kernel which can capture more
information about the learning problem).

The splice data set consists of 20 resamples. We first try an rbf-kernel with width w = 50
(see Section A). We start by computing and plotting the kernel PCA coefficients. The resulting
coefficients are plotted in Figure 9(a). We see that the data set appears to be rather high-dimensional,
and the noise level is also quite high. The estimated median estimated dimension is 87.5, but it
seems that roughly up to dimension 200, relevant information might be contained.

As explained in the main text, the encoding used by the rbf-kernel is not fit for this example.
The four aminoacids A, C, G, and T have just been mapped to the numbers 1–4. We re-encode the
object features by mapping A, C, G, and T to the four vectors (1,0,0,0), (0,1,0,0), and so on. The
resulting kernel PCA coefficients are plotted in Figure 9(b). The encoding has obviously resulted
in a large improvement, as the dimension is much smaller now, while the amount of noise has also
been reduced.

Finally, we consider using a weighted-degree-kernel (Sonnenburg et al., 2005). The resulting
kernel PCA coefficients are plotted in Figure 9(c). While the estimated dimension is larger than
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(a) Rbf-kernel on the original data.
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(b) Encoding the aminoacids using four bits.
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(c) Using a weighted-degree kernel.
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(d) The mean kernel PCA coefficients of all three kernels
compared (coefficients clipped to the interval from 0 to 2).

Figure 9: Figures (a)-(c) show 0.05, 0.5, and 0.95 percentiles of the kernel PCA coefficients over
the 20 resamples of the splice data set using the indicated kernels. Coefficients have been
truncated to the range [0,10] for better visibility. Figure (d) plots all three medians for
comparison (subsampled by combining ten consecutive points into their mean for better
visibility). Coefficients are sorted by decreasing corresponding eigenvalue.

in the previous case, the amount of noise was dramatically reduced, which is also reflected in the
classification results shown in Table 5.

In summary, using the estimates here, one can get a much more fine-grained assessment of how
well a kernel is adapted to the data. Figure 9(d) compares the mean kernel PCA coefficients over the
resamples for the three kernels. Initially, the splice data set appears to be rather high-dimensional,
indicating that more data would be needed. Incorporating domain knowledge in the encoding and
finally switching to a special-purpose kernel shows that the true dimensionality of the data is in fact
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smaller, and that the noise level, which was initially quite high, could also be lowered significantly.
Using the weighted-degree-kernel the data quality and the amount of data seem to be suited for
predicting with high accuracy.

Appendix D. A Sin-Theta-Theorem

The following theorem is a special case of Theorem 6.2 in the book by Davis and Kahan (1970).

Theorem 2 Let A be a symmetric n×n-matrix with eigendecomposition A = ULU>. Let U and L
be partitioned as follows:

U = [U1 U2], L =

[

L1 0
0 L2

]

,

where U1 is an n× k-matrix, L1 is a k× k-matrix, U2 is an n× n− k-matrix, and L2 is an n− k×
n− k-matrix. Furthermore, let E be another symmetric n× n-matrix, and Ã = A + E. Let l̃ be an
eigenvalue of Ã and x̃ an associated unit-length eigenvector. Then,

‖U>2 x̃‖ ≤ ‖E‖
min

n−k≤i≤n
|l̃− li|

.

The proof of this theorem can also be found in the thesis of Braun (2005), Lemma 4.50, p. 70.
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Gunnar Rätsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, March 2001.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, 2002.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

Bernhard Schölkopf, Sebastian Mika, Christopher J. C. Burges, Philipp Knirsch, Klaus-Robert
Müller, Gunnar Rätsch, and Alex J. Smola. Input space vs. feature space in kernel-based methods.
IEEE Transactions on Neural Networks, 10(5):1000–1017, 1999.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Structural risk
minimization over date-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):
1926–1940, 1998.

John Shawe-Taylor, Christopher K. I. Williams, Nello Christianini, and Jaz Kandola. On the eigen-
spectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Transactions on
Information Theory, 51(7):2510–2522, July 2005.

Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller. The connection between regulariza-
tion operators and support vector kernels. Neural Networks, 11(4):637–649, 1998.
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