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Abstract
When facing the question of learning languages in realistic settings, one has to tackle several prob-
lems that do not admit simple solutions. On the one hand, languages are usually defined by complex
grammatical mechanisms for which the learning results are predominantly negative, as the few al-
gorithms are not really able to cope with noise. On the other hand, the learning settings themselves
rely either on too simple information (text) or on unattainable one (query systems that do not exist
in practice, nor can be simulated). We consider simple but sound classes of languages defined via
the widely used edit distance: the balls of strings. We propose to learn them with the help of a
new sort of queries, called the correction queries: when a string is submitted to the Oracle, either
she accepts it if it belongs to the target language, or she proposes a correction, that is, a string of
the language close to the query with respect to the edit distance. We show that even if the good
balls are not learnable in Angluin’s MAT model, they can be learned from a polynomial number
of correction queries. Moreover, experimental evidence simulating a human Expert shows that this
algorithm is resistant to approximate answers.
Keywords: grammatical inference, oracle learning, correction queries, edit distance, balls of
strings

1. Introduction

Do you know how many Nabcodonosaur were kings of Babylon? And do you know when Arnold
Shwartzeneger was born? Just two decades ago, you would have had to consult encyclopedias and
Who’s Who dictionaries in order to get answers to such questions. At that time, you may have
needed this information in order to participate to quizzes and competitions organized by famous
magazines during the summers, but because of these questions, you might possibly have missed the
very first prize. Why?. . . Nowadays, everything has changed: you naturally use the Web, launch
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your favorite search engine, type two keywords, follow three links and note down the answers. In
this particular case, you discover. . . that no king of Babylon was called Nabcodonosaur but two
Nabuchodonosor’s reigned there many centuries ago. Again, the day Arnold Shwartzeneger was
born is not clear, but it is easy to check that Arnold Schwarzenegger was born in 1947, July 30th.

So you would probably win today the great competitions of the past. Indeed, the actual search
engines are able to propose corrections when a keyword is not frequent. Those corrections are most
often reliable because the reference dictionary is built from the billions of web pages indexed all
over the world. Hence, a search engine is playing the role of an imperfect but powerful Oracle, able
to validate a relevant query by returning relevant documents, but also to correct any suspect query.
Such an Oracle is able to answer to what we shall call correction queries.

The first goal of this paper is to show, from a theoretical standpoint, that the concept of correction
query allows one to get new challenging results in the field of Active Learning. In this framework,
developed by Angluin in the 80’s (Angluin, 1987b), a Learner (He) has access to an Oracle (She)
that knows a concept he must discover. To this purpose, he submits different kinds of queries
(e.g., Correction Queries) and she has to answer without lying. The game ends when he guesses
the concept. Query-based Learners are often interesting from a practical viewpoint. For instance,
instead of requiring a human expert to label huge quantities of data, this expert could be asked by
the Learner, in an interactive situation, to provide a small amount of targeted information.

The second goal of this paper is to provide evidence that correction queries are suitable for
this kind of real-life applications. However, assuming that the Oracle is a human expert introduces
new constraints. On one hand, it is inconceivable to ask a polynomial number of queries: this may
still be too much for a human. So the learning algorithm should aim at minimizing the number of
queries even if we must pay for it with a worse time complexity. On the other hand, a human being
(or even the Web) is fallible. Therefore the learning algorithm should also aim at learning functions
or languages from approximate corrections.

In the above Web example, the search engine uses the frequency of words to propose corrections.
In consequence, correct words (e.g., malophile = someone who loves apples) are sometimes subject
to a correction (e.g., halophile = a cell which thrives in environments with high concentrations of
salt). Another key point is the distance used to find a closest correct string; it is a variant of the
edit distance, also called the Levenshtein distance, which measures the minimum number of dele-
tion, insertion or substitution operations needed to transform one string into another (Levenshtein,
1965; Wagner and Fisher, 1974). This distance have been used in many fields including Computa-
tional Biology (Gusfield, 1997; Durbin et al., 1998), Language Modelling (Amengual et al., 2001;
Amengual and Dupont, 2000) and Pattern Recognition (Navarro, 2001; Chávez et al., 2001).

Edit distance appears in specific Grammatical Inference problems, in particular when one wants
to learn languages from noisy data (Tantini et al., 2006). In this domain, the classes of languages
studied are not defined following the Chomsky Hierarchy. Indeed, even the easiest level of this
hierarchy, the class of regular languages, is not at all robust to noise, since it includes all the parity
functions, which can be defined as regular languages and are not learnable in the presence of noise
(Kearns and Li, 1993). In order to avoid this difficulty, we shall consider only special finite lan-
guages, that may seem elementary to formal language theoreticians, but are relevant for topologists
and complex for combinatorialists: the balls of strings.

Balls of strings are formed by choosing one specific string, called the centre, and all its neigh-
bours up to a given length for the edit distance, called the radius. From a practical standpoint, balls
of strings appear in a variety of settings: in approximate string matching tasks, the goal is to find all
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close matches to some target string (Navarro, 2001; Chávez et al., 2001); in noisy settings, garbled
versions of an unidentified string are given and the task is to recover the original string (Kohonen,
1985); when using dictionaries, the task can be described as that of finding the intersection between
two languages, the dictionary itself and a ball around the target string (Schulz and Mihov, 2002); in
the field of bioinformatics, extracting valid models from large data sets of DNA or proteins can in-
volve looking for substrings at distance less than some given bound, and the set of these approximate
substrings can also be represented by balls (Sagot and Wakabayashi, 2003).

Hence, in this paper, we study the problem of identifying balls of strings from correction queries.
In Section 2, we present the motivations of our work; we discuss why noise is a problem (2.1),
which queries should be used to learn languages (2.2), and the relevance of a fallible Oracle in
real applications (2.3). Definitions are given in Section 3, where we pay special attention to the
definitions of edit distance (3.1), balls of strings (3.2), and correction queries (3.3). On one hand,
we prove that the balls are not learnable with Angluin’s membership and equivalence queries, and
on the other hand, that the deterministic finite automata are not learnable with correction queries.

The main result of the paper is shown in Section 4. It consists of a polynomial time algorithm
that infers any ball from correction queries. We explain some technical results (4.1), and we present
the algorithm (4.2). An important question is raised concerning the fact that only good balls can be
learned with a polynomial number of correction queries (4.3). In Section 5, we study the effective-
ness of our algorithm in more practical situations. First, we are concerned with the case where the
Oracle is fallible (5.1). Next, we try to minimize the number of queries asked, considering the fact
that the expensive resource is the expert playing the part of the Oracle, not the machine making the
computations (5.2). We conclude in Section 6.

2. Motivations and Related Work

Several questions need to be addressed before tackling the core of the problem.

2.1 Why is it Hard to Learn Languages in Noisy Settings?

Languages can either be generated, recognized or defined by mechanisms like regular expressions,
finite state automata or formal grammars (Harrison, 1978; Sakarovich, 2004; Salomaa, 2006). Al-
ternatively equations can define properties that the strings in the language should verify (Clark et al.,
2006). The techniques enabling to learn such formalisms are known as grammatical inference, and
new algorithms are developed all the time. But there is one issue that is systematically problematic
for such algorithms: that of dealing with noise.

Results obtained in the field of grammatical inference show that learning in noisy situations is
hard (de la Higuera, 2006). Some attempts to deal with this problem can be found, for example, in
the GOWACHIN (Lang et al., 1998) and GECCO competitions (Lucas, 2004), where the problem of
learning DFA from noisy examples was the main challenge.

Noise over strings can, in the simplest case, just affect the labels: a string in the language will
be classified as not belonging, whereas a string can be labeled inside the language when it is not.
It is known since (Trakhtenbrot and Barzdin, 1973; Angluin, 1978) that with even small doses of
noise, learning automata is hard.

The second sort of noise that one may encounter with strings, which is possibly most character-
istic here, consists in having the strings slightly modified through some noisy channel. This type of
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noise is invariably described by the edit distance (Levenshtein, 1965): individual symbols appear or
disappear, or even are transformed into different ones.

Again, for the edit noise, the typical classes of languages belonging to the Chomsky hierarchy
(Chomsky, 1957; Sakarovich, 2004) are far from robust. Consider for instance the set of strings over
the alphabet {0,1} whose parity of 0’s is identical to the parity of 1’s (see Figure 1). This typical

1 2

34

0

0

1 11 1

0

0

Figure 1: An automaton recognizing {w ∈ (0+1)∗ : |w|0 mod 2 = |w|1 mod 2}.

regular language is clearly very sensitive to the noise: if any symbol is inserted or deleted in a string,
the string will cease to belong to the language; and conversely, any string out of the language will
be transformed into a string from the language, as the parity of either of the letters will change.

Unfortunately, the picture is even less clear with other regular languages such as 0∗1∗ and
(010)∗, or higher languages in the Chomsky hierarchy such as {ww : w ∈ (0 + 1)∗} or the set of
palindromes or {0n1n2n : n ≥ 0}. Indeed, these languages are sparse in the set of all strings, so
trying to learn them from noisy data is like looking for a needle in a haystack: no string seems to
belong to the target anymore.

The reader may think that probably, all these textbook languages are not relevant in practice. In
which case, studying their learnability in the presence of noise would not be significative. Neverthe-
less, concerning randomly drawn regular languages, the picture is not better: the website developed
by Coste et al. (1998) shows that despite a decade of efforts, no convincing solution has been yet
found to take into account the noise during the learning process.

Therefore, if we are to learn languages in a noisy setting where the noise is modelled through
the edit distance, we think that it is necessary to consider other classes of languages that could be
much better adapted to this type of noise. The balls of strings are an example of such languages.

2.2 What Queries Should we Use?

Learning with queries was introduced by Angluin in order to provide a firm mathematical back-
ground to machine learning in a non statistical setting (Angluin, 1987b). In this paradigm, both
positive and negative results are relevant. Indeed, if one cannot learn using a polynomial number of
questions, then one cannot do it from data that one gets without choice from the environment. In
this setting the questions are called queries and they are asked to a perfect abstract machine, called
Oracle.

Several types of queries have been studied, and some classes were proved to be learnable from
specific combination of queries (see Angluin, 2004, for a survey). The best known and most im-
portant of such positive results is that deterministic finite state automata are polynomially learnable

1844



LEARNING BALLS OF STRINGS FROM EDIT CORRECTIONS

from a combination of membership queries and strong equivalence queries (Angluin, 1987a). The
corresponding definitions will be given in Section 3.3.

We argue that equivalence queries are not realistic for the intended applications, and we choose
to use the recently introduced correction queries instead (Becerra-Bonache and Yokomori, 2004).
When making a correction query, we submit a string to the Oracle who answers YES if the string
is in the target language, and if it is not then the Oracle returns a string from the language that is
closest to the query. This string is called the correction.

In order to give an introductory intuition, let us consider the case where we want to learn disks
in the plane using the Euclidean distance. Instead of learning from examples (with the possibility
of them being labeled), let us suppose we have access to an Oracle that will answer the following
query: a point is proposed, and is returned either the answer YES or a correction of this point, that
is, the closest point in the disk.

Then we can proceed in three stages to learn a disk of centre O and radius R with correction
queries as shown in Figure 2:

A

B

D
O

C

Figure 2: Three stages are sufficient to learn the disks of IR2 with correction queries: (1) find two
points A and B outside of the disk haphazardly using correction queries; (2) ask the Oracle
for the corrections of A and B, which will result in C and D, respectively; (3) use a ruler
to deduce the centre O and a compass to draw the circle.

1. We start by finding two points A and B outside of the disk we want to identify. Looking for
them haphazardly by asking to the Oracle if such or such a point is in the disk is enough:
intuitively, we are going to find them with very few queries.

2. We ask the Oracle for the corrections of A and B. Concerning A, the Oracle is going to return
a point C inside the disk, as close as possible to A. Clearly, this point is at the intersection of
the segment [OA] and the boundary circle of the target disk. Likewise, let D be the correction
of B.

3. We draw the lines (AC) and (BD) with a ruler: they intersect in O. Then we can draw the
circle with a compass. We get the radius by measuring the distance between O and C.
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Hence, it is easy to learn the balls of IR2 with very few correction queries. Now, focusing on
balls of strings, we may hope that the previous approach is good and try to reproduce it.

However, building the centre of a ball from strings on its periphery is difficult for at least two
reasons. On one hand, (Σ∗,d) is a metric space with no vector space as underlying structure. This
is similar to the case where we were trying to learn the disks of the plane with just a compass but
no ruler.1 On the other hand, the problem is formally hard:

Theorem 1 (de la Higuera and Casacuberta 2000) Given a finite set of strings
W = {w1, . . . ,wn} and a constant K, deciding whether a string u∈Σ∗ exists such that maxw∈W d(u,w) <
K (respectively ∑w∈W d(u,w)
< K) is N P -complete.

Therefore, we will have to study the balls in more detail and make the best possible use of the
correction queries, so as not to build the centres from scratch.

2.3 Why might the Oracle be Fallible?

Above we argued that the active learning model was based on the strong assumption of a perfect
Oracle. This corresponded to a reasonable assumption when dealing with mathematics and with the
objective of being in a favorable setting in which negative results could be blamed on the complexity
of the task and not on the adversarial nature of the Oracle.

But in recent years, the active learning setting (corresponding to learning from an Oracle) has
been accepted as a plausible setting for real applications. Indeed we are faced with huge quantities
of unlabeled data. Choosing which data is to receive attention by an expert (human or machine)
is a difficult question. Interactive learning sessions, where the learning algorithm asks for specific
information during runtime, is an interesting alternative to deal with such problems.

A typical example is system SQUIRREL (Carme et al., 2007) which induces a web wrapper
through interaction with a human user. Another case is that of testing hardware (Hagerer et al.,
2002): the specifications of the software correspond to the Oracle which can then allow to check
if the constructed item obeys to the specifications. In both examples the Oracle is fallible: in the
second one because testing equivalence is done through sampling.

A third situation in which active learning can be useful corresponds to that of rendering intel-
ligible some black box learned through some statistical machine learning method. Indeed, even if
hyper-planes (Clark et al., 2006) or recurrent neural networks (Giles et al., 2001) are difficult to
interpret, one can try to use the learned numerical models as Oracles in an active learning algorithm
whose result might be some rule based classifier (de la Higuera, 2006).

3. Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. For the sake of clarity, we shall use
0,1,2, . . . as letters in our examples and write a,b,c, . . . to denote variables for letters in an alphabet.
A string w = a1 . . .an is any finite sequence of letters. We write Σ∗ for the set of all strings over Σ
and λ for the empty string. Let a ∈ Σ, |w| be the length of w and |w|a the number of occurrences of

1. Actually, this is still possible: a theorem due to Mohr (1672), rediscovered by Mascheroni (1797), states that every
construction with a ruler and a compass can also be done with a compass only. We know an algorithm that uses 14
circles to learn a disk of the plane. If the reader knows a better method, please contact us!
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a in w. We say that a string u is a subsequence of v, denoted u � v, if u = a1 . . .an and there exist
u0, . . . ,un ∈ Σ∗ such that v = u0a1u1 . . .anun. A language is any subset L ⊆ Σ∗. Let IN be the set of
non negative integers. For all k ∈ IN, let Σk = {w ∈ Σ∗ : |w|= k} and Σ≤k = {w ∈ Σ∗ : |w| ≤ k}. Let
IR denote the set of real numbers. We say that a real number ρ ∈ IR is irrational if |ρ| 6= p

q for all
p,q ∈ IN.

3.1 Edit Distance

The edit distance d(w,w′) between two strings w and w′ is the minimum number of edit operations
needed to transform w into w′ (Levenshtein, 1965).

More precisely, we say that w rewrites to w′ in one step, written w−→ w′, if either

1. w = uav and w′ = uv (deletion of a letter), or

2. w = uv and w′ = uav (insertion of a letter), or

3. w = uav and w′ = ubv (substitution of a letter by another letter),

where u,v ∈ Σ∗, a,b ∈ Σ and a 6= b.

Let
k−→ denote a rewriting derivation made of k rewriting steps. The edit distance d(w,w′) is the

minimum k ∈ IN such that w
k−→ w′. For instance, d(0100,001) = 2 since 0100 −→ 000 −→ 001 and

rewriting 0100 into 001 cannot be achieved with less than two steps. Notice that d(w,w′) can be
computed in time O (|w| · |w′|) by means of dynamic programming (Wagner and Fisher, 1974).

The following basic property states that d(w,w′) is at least the number of insertions needed to
equalize the lengths of w and w′:

Proposition 2 For all w,w′ ∈ Σ∗, d(w,w′)≥
∣

∣|w|− |w′|
∣

∣. Moreover, d(w,w′) =
∣

∣|w|− |w′|
∣

∣ iff (w�
w′ or w′ � w).

In all the parts of this paper but in Section 5.2.1, we shall use the standard edit distance defined
above. However, for practical reasons, people often use variants of this definition. Sometimes, new
edit operations are defined such as the exchange of two adjoining letters in a string. And often, the
edit operations are weighted. We shall give more details when needed.

3.2 Balls of Strings

It is well-known that the edit distance is a metric (Crochemore et al., 2007), so it conveys to Σ∗ the
structure of a metric space.

Definition 3 (Ball of Strings) The ball of centre o ∈ Σ∗ and radius r ∈ IN, denoted Br(o), is the set
of all the strings whose distance to o is at most r:

Br(o) = {w ∈ Σ∗ : d(o,w)≤ r}.

For instance, if Σ = {0,1}, then B1(10) = {0,1,00,10,11,010,100,101,110} and Br(λ) = Σ≤r for
all r ∈ IN.

The previous example illustrates the fact that the number of strings in a ball grows exponentially
with the radius. Experimentally (see Table 1), we clearly notice that for center strings of fixed length,
the average number of strings is more than twice larger when the radius is incremented by 1. This
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Length of Radius
the centre 1 2 3 4 5 6

0 3.0 7.0 15.0 31.0 63.0 127.0
1 6.0 14.0 30.0 62.0 126.0 254.0
2 8.6 25.6 56.5 119.7 246.8 501.6
3 10.8 41.4 101.8 222.8 468.6 973.0
4 13.1 61.4 173.8 402.9 870.9 1850.8
5 16.3 91.0 285.1 698.5 1584.4 3440.9
6 17.9 125.8 441.2 1177.5 2771.3 6252.9
7 21.2 166.9 678.0 1908.8 4835.8 11233.5
8 24.3 200.2 1034.2 3209.9 8358.1 19653.6
9 26.0 265.4 1390.9 5039.6 13677.8 34013.1

Table 1: Average number of strings in a ball. The alphabet has 2 letters. Each value is computed
over 20 random centres (possibly the same).

combinatorial explosion occurs as soon as |Σ| ≥ 2, although we leave open the question of finding
a general formula that would assess the volume of any ball Br(o).

The combinatorial explosion noted before raises the problem of the representation scheme that
we should use to learn the balls, that is to say, the format of the output space of any learning
algorithm. Basically, we need representations whose size is “reasonable”, which is not the case of
an exhaustive enumeration. An alternative representation could be based on automata, since the
balls of strings are finite and thus regular languages.

It is not difficult to see that every ball Br(o) is recognized by a non deterministic finite automa-
ton with λ-transitions having O (|o| · r) states. However, the non deterministic automata are bad
candidates from the learning standpoint. Indeed, they are not learnable in most paradigms (Angluin
and Kharitonov, 1995; de la Higuera, 1997).

The corresponding deterministic finite automata (DFA) do not have this drawback. However,
experiments show that these DFA often have an exponential number of states. More precisely,
several efficient algorithms exist to build a DFA that recognizes Br(o) (Ukkonen, 1985; Melichar,
1995; Schulz and Mihov, 2002). For instance, Schulz and Mihov (2002) have recently introduced
the so-called Levenshtein automaton. Denoting by n(o,r) the number of states of this automaton,
they state: n(o,1) = O(5 · |o|), n(o,2) = O(30 · |o|), n(o,3) = O(180 · |o|), n(o,4) = O(1353 · |o|).
Basically, n(o,r) is linear in |o| but exponential in r (In their construction, the size of the alphabet
only plays a role in the number of transitions, not in the number of states).

Unfortunately, proving that the minimal DFA has the same property is a challenging combina-
torial problem. So we only claim here:

Conjecture 4 The minimal DFA recognizing the ball Br(o) has Ω(2r · |o|) states in the worst case.

On the other hand, why not represent the ball Br(o) by the pair (o,r) itself? Indeed, its size is
|o|+ logr, which is reasonable (Garey and Johnson, 1979). Besides, deciding whether w ∈ Br(o) or
not is immediate: one only has to (1) compute d(o,w) and (2) check whether this distance is ≤ r,
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which is achievable in time O (|o| · |w|+ logr). Finally, when the alphabet has at least two letters,
(o,r) is a unique thus canonical representation of Br(o):

Theorem 5 If |Σ| ≥ 2 and Br1(o1) = Br2(o2), then o1 = o2 and r1 = r2.

Proof

• Claim 1: if Br1(o1) = Br2(o2), then |o1|+r1 = |o2|+r2. Indeed, let w∈ Σr1 , then d(o1,o1w) =
|w|= r1 by Proposition 2. So o1w∈Br1(o1), thus o1w∈Br2(o2), that is to say, d(o1w,o2)≤ r2.
Now d(o1w,o2) ≥ |o1w| − |o2| from Proposition 2. So we deduce that r2 ≥ |o1w| − |o2| =
|o1|+ r1−|o2|. The same reasoning yields |o1|+ r1 ≥ |o2|+ r2.

• Claim 2: if |Σ| ≥ 2 and o2 6� o1, then there exists w ∈ Σ∗ such that (1) |w|= r1 + |o1| and (2)
o1 � w and (3) o2 6� w. Indeed, assume that Σ = {0,1, . . .} and o2 begins with an 0. Then we
define w = 1r1o1 and get the result.

Theorem itself: Assume that o1 6= o2. Then either o1 6� o2, or o2 6� o1. Suppose that o2 6� o1, without
loss of generality. By Claim 2, there exists a string w such that (1) |w|= r1 + |o1| and (2) o1 �w and
(3) o2 6�w. As o1 �w, Proposition 2 yields d(o1,w) = |w|−|o1|= r1. So w ∈ Br1(o1). On the other
hand, o2 6�w, so Proposition 2 yields d(o2,w) >

∣

∣|w|−|o2|
∣

∣ =
∣

∣r1 + |o1|−|o2|
∣

∣ = r2, so w 6∈ Br2(o2).
In consequence, Br1(o1) 6= Br2(o2), that is impossible. Therefore, o1 = o2, and by Claim 1, r1 = r2.

Notice however that if Σ = {0}, then B2(0) = B3(λ) = {λ,0,00,000}, for instance.

3.3 Queries

Query learning is a paradigm introduced by Angluin (1987b). Her model brings a Learner and an
Oracle into play. The goal of the Learner is to identify the representation of an unknown language,
by submitting queries to the Oracle. The latter knows the target language and answers properly
to the queries (she does not lie). The Learner is bounded by efficiency constraints at each step of
the learning process: the runtime of the Learner to make its next query must be polynomial in the
size of the target representation and in the length of the information returned by the Oracle up to
that point. Notice that certain types of queries require answers that may be of unbounded length
(examples or counter-examples). In that case, it is impossible not to take into account the length of
this information in the amount of time and queries the Learner is allowed.

Between the different combinations of queries, one, called MAT (Minimally Adequate Teacher),
is sufficient to learn the DFA (Angluin, 1987a). Two kinds of queries are used:

Definition 6 (Membership and Equivalence Queries) Let Λ be a class of languages on Σ∗ and
L ∈ Λ a target language known by the Oracle, that the Learner aims at guessing.

In the case of membership queries, the Learner submits a string w ∈ Σ∗ to the Oracle; her
answer, denoted by MQ(w), is either YES if w ∈ L, or NO if w /∈ L.

In the case of equivalence queries, the Learner submits (the representation of) a language K ∈Λ
to the Oracle; her answer, denoted by EQ(K), is either YES if K = L, or a string belonging to the
symmetric difference

(

(K \L)∪ (L\K)
)

if K 6= L.

Although membership queries and equivalence queries have established themselves as a stan-
dard combination, there are real grounds to believe that equivalence queries are too powerful to
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exist or even be simulated. From a cognitive point of view, we may imagine that a child could ask
to his mother whether some sentence is correct or not (that would be a membership query), but not
whether he knows English or not (that would be an equivalence query). As suggested by Angluin
(1987a), in practice, we may be able to substitute the equivalence queries with a random draw of
strings that are then submitted as membership queries (sampling). However, in many cases, sam-
pling is not possible because the relevant distribution is unknown and/or inaccessible (de la Higuera,
2006).

Besides, we will not consider membership queries and equivalence queries together because
they do not help to learn balls:

Theorem 7 Assume |Σ| ≥ 2. Let m,n ∈ IN and B≤m,n = {Br(o) : r ≤ m,o ∈ Σ∗, |o| ≤ n}. Any
algorithm that identifies every ball of B≤m,n with equivalence queries and membership queries nec-
essarily uses Ω(|Σ|n) queries in the worst case.

Proof Following Angluin (1987b), we describe a malevolent Oracle who forces any method of
exact identification using membership and equivalence queries to make Ω(|Σ|n) queries in the worst
case. The Oracle is an Adversary: she changes the target ball during the process of identification
in order to penalize the Learner. However, all her answers will have to be consistent with the final
ball. Technically, she maintains a set S of all the possible balls. At the beginning, S = B≤m,n. As
long as S contains at least two balls, she proceed as follows: her answer to the equivalence query
L = Br(o) is the counterexample o; her answer to the membership query o is NO; in other words,
she always declares that o is not in the target ball. After such an answer, every ball of S that contains
o cannot be a possible target anymore, so she eliminates them from S. At this point, many balls
might disappear, but only one of centre o and radius 0. As there are Ω(|Σ|n) such balls in B≤m,n, the
Learner will need Ω(|Σ|n) queries to identify one of them.

It should be noted that if the Learner is given one string from the ball, then he can learn using
a polynomial number of membership queries.2 We shall see that the correction queries, introduced
below, allow to get round these problems:

Definition 8 (Correction Queries) Let L be a target language known by the Oracle and w a string
submitted by the Learner to the Oracle. Her answer, denoted CQ(w), is either YES if w ∈ L, or a
correction of w with respect to L if w /∈ L, that is a string w′ ∈ L at minimum edit distance from w:

CQ(w) = one string of
{

w′ ∈ L : d(w,w′) is minimum
}

.

Notice that other milder definitions of correction queries have been proposed in the literature
such as Becerra-Bonache et al. (2006) and Kinber (2008). However, the correction queries defined
above can easily be simulated knowing the target language. Moreover, we have seen in the intro-
duction that they naturally exist in real-world applications such as the search engines of the Web.
Also, we can note that the correction queries are relevant from a cognitive point of view: there
is growing evidence that corrective input for grammatical errors is widely available to children
(Becerra-Bonache, 2006).

And last but not least, the correction queries as well as the balls rely on a distance, that fore-
shadows nice learning results. This is not the case for every class of languages:

2. More precisely, the best algorithm we know uses O
(

|Σ|(|o|+ r)
)

membership queries.
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Theorem 9 Assume |Σ| ≥ 2. Let n ≥ 2 and D≤n the set of all DFA with fewer than n states. Any
algorithm that identifies every DFA of D≤n with correction queries necessarily uses Ω(|Σ|n) queries
in the worst case.

Proof Remember that the number of states of a DFA is a reasonable measure of its size. Let Aw

denote the minimal DFA that recognizes Σ∗ \{w}. The reader may check that Aw has |w|+2 states
(see Figure 3 for an example). So basically, {Aw : w ∈ Σn−2} ⊆ D≤n. Following Angluin (1987b)
again, we describe an Adversary that maintains a set S of all the possible DFA. At the beginning,
S = D≤n. Each time the correction of any string w is demanded, the Adversary answers YES and
eliminates Aw from S (and a lot of other DFA) in order to be consistent. As there are Ω(|Σ|n) such
DFA in D≤n, identifying one of them requires Ω(|Σ|n) queries.

1 0 1

0 0,1
1 0

Figure 3: The minimal DFA A101 that recognizes Σ∗ \{101} has 5(= |101|+2) states.

4. Identifying Balls of Strings using Corrections

In this section, we propose an algorithm that learns the balls of strings using correction queries. We
follow the method described for the disks of the plane. However, several details distinguish the balls
of strings and the balls in IR2.

4.1 Technicalities

In this section we introduce four related mathematical results. The first is an analysis of the correc-
tions the Oracle can make. The second corresponds to the definition of the set of the longest strings
in a ball (what we call the upper border of the ball). The third result is an algorithm allowing to
extract the centre of the ball if we are given some elements from this upper border. And finally we
explain how to find a string from the upper border using corrections.

4.1.1 A CHARACTERIZATION OF THE CORRECTIONS

When the Learner submits a string outside of a ball to the Oracle, she answers with a string that
belongs to the ‘circle’ delimiting the ball. However, a string often has a lot of different possible cor-
rections, contrarily to what happens in the plane. For instance, the possible corrections for the string
0000 with respect to the ball B2(11) are {00,001,010,100,0011,0101,0110,1001,1010,1100}.

By the definition of a correction query, the Oracle will choose one of them arbitrarily, possibly
the worst one from the Learner’s point of view. Nevertheless, the Oracle’s potential malevolence is
limited by the following result, that characterizes the set of all the possible corrections for a string:

1851



BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

Lemma 10 Let Br(o) be a ball and v 6∈ Br(o). Then the set of possible corrections of v is exactly
{u ∈ Σ∗ : d(o,u) = r and d(u,v) = d(o,v)− r}.

Proof Let k = d(o,v) and consider a derivation from o to v of minimum length: o
k−→ v. As

v 6∈ Br(o), we get k > r, so this derivation passes through a string w0 such that o
r−→ w0

k−r−−→ v.
Let us define the set W = {w ∈ Σ∗ : d(o,w) = r and d(w,v) = k− r}. Basically, w0 ∈W , so W 6= /0.
Moreover, W ⊆ Br(o). Now let U denote the set of all the possible corrections of v. We claim
that U = W . Indeed, let u ∈ U and w ∈W . If d(u,v) > d(w,v), then w is a string of Br(o) that
is closer to v than u, so u cannot be a correction of v. On the other hand, if d(u,v) < d(w,v),
then as d(o,v) ≤ d(o,u) + d(u,v), we deduce that d(o,u) ≥ d(o,v)− d(u,v) > d(o,v)− d(w,v).
As d(o,v) = k and d(w,v) = k− r, we get d(o,u) > r, which is impossible since u ∈U ⊆ Br(o).
Hence, d(u,v) = d(w,v) = k− r. In consequence, all the strings w ∈W and corrections u ∈ U
are at the same distance from v, thus W ⊆ U . Moreover, we have d(o,v) ≤ d(o,u) + d(u,v), so
k ≤ d(o,u)+ k− r, thus d(o,u)≥ r. As u ∈ Br(o), we deduce that d(o,u) = r. Finally, as we have
stated that d(u,v) = k− r, we can conclude that U ⊆W .

Here is a geometric interpretation of the result above. Let us define the segment [o,v] = {w ∈
Σ∗ : d(o,w)+ d(w,v) = d(o,v)} and the circle Cr(o) = {w ∈ Σ∗ : d(o,w) = r}. Lemma 10 states
that a string u is a possible correction of v iff u ∈ [o,v]∩Cr(o). The fact that v has several possible
corrections shows that the geometry of Σ∗ is very different from that of IR2.

4.1.2 THE BORDERLINE STRINGS OF MAXIMUM LENGTH

We begin by distinguishing the longest strings of any ball:

Definition 11 (Upper Border) The upper border of a ball Br(o), denoted Bmax
r (o), is the set of all

the strings that belong to Br(o) and are of maximum length:

Bmax
r (o) = {u ∈ Br(o) : ∀w ∈ Br(o), |w| ≤ |u|}.

For instance, given Σ = {0,1}, we get Bmax
1 (10) = {010, 100, 101, 110}.

The strings of Bmax
r (o) are remarkable because they are all built from the centre o by doing r

insertions. So from a string w ∈ Bmax
r (o), one ‘simply’ has to guess the inserted letters and delete

them to find o again. We get:

Proposition 12 w ∈ Bmax
r (o) iff (o� w and d(o,w) = |w|− |o|= r).

Proof Let us assume that o�w and d(o,w) = |w|−|o|= r. Then w∈ Br(o). Let w′ be a string such
that |w′| > |w|. Then, by Proposition 2, d(o,w′) ≥ |w′|− |o|> |w|− |o|= r, so w′ 6∈ Br(o). There-
fore, w ∈ Bmax

r (o). Conversely, let w ∈ Bmax
r (o). Consider an arbitrary letter a ∈ Σ and the string

aro. Basically, d(o,aro) = r, so aro ∈ Br(o). As w ∈ Bmax
r (o), we deduce that |w| ≥ |aro|= |o|+ r.

Therefore, by Proposition 2, d(o,w) ≥ |w| − |o| ≥ r. On the other hand, r ≥ d(o,w) holds since
w ∈ Bmax

r (o). So we deduce that d(o,w) = |w|− |o|= r, that also brings o� w, by Proposition 2.
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4.1.3 FINDING THE CENTRE GIVEN STRINGS FROM THE UPPER BORDER

Some strings of Bmax
r (o) are even more informative. Indeed, let a ∈ Σ be an arbitrary letter. Then

aro ∈ Bmax
r (o). So, if we know r, we can easily deduce o. We claim that the correction queries

allow us to get hold of aro from any string w ∈ Bmax
r (o) by swapping the letters. This is the goal of

EXTRACT_CENTRE (see Algorithm 1).
Let us run this procedure on an example. Consider the ball B2(11). Then it is easy to check

that Bmax
2 (11) = {0011,0101,0110,0111,1001,1010,1011,1100,1101,1110,1111}. Running EX-

TRACT_CENTRE on the string w = 0110 and radius r = 2 transforms, at each loop, the ith letter of
w to a 0 that is put at the beginning and then submits it to the Oracle. We get:

i w w′ CQ(w′) w changes
1 0110 0110 YES yes
2 0110 0010 0110 no
3 0110 0010 0110 no
4 0110 0011 YES yes

Therefore, EXTRACT_CENTRE stops with w = 0011 and returns o = 11 (since r = 2).

Algorithm 1 EXTRACT_CENTRE

Require: A string w = a1 . . .an ∈ Bmax
r (o), the radius r

Ensure: The centre o of the ball Br(o)
1: x← an (* x is an arbitrary letter *)
2: for i = 1 to n do
3: Assume w = a1 . . .an and let w′ = xa1 . . .ai−1ai+1 . . .an

4: if CQ(w′) = YES then w← w′ end if
5: end for
6: Assume w = a1 . . .an and return ar+1 . . .an

Proposition 13 Given w∈Bmax
r (o) and the radius r, Algorithm EXTRACT_CENTRE returns o using

O (|o|+ r) correction queries.

Proof (Sketch) Let us show that the swapping operation is correct. Consider the string w =
a1 . . .an ∈ Bmax

r (o) and let w′ = xa1 . . .ai−1ai+1 . . .an for some 0≤ i≤ n. If there exists at least one
derivation o

r−→w where the letter ai of w comes from an insertion in o, then deleting ai and doing the
insertion of a x in front of o yields a string w′ that satisfies o� w′ and |w′|= |w|. By Proposition 2,
we get d(o,w′) = |w′|− |o|= |w|− |o|= r, so by Proposition 12, w′ ∈ Bmax

r (o) and CQ(w′) = YES.
On the other hand, if there is no derivation where ai is introduced by an insertion, then deleting ai

and inserting a x yields a string w′ such that o 6� w′. By Proposition 2, we get d(o,w′) > |w′|− |o|.
As |w′|= |w|, we deduce that d(o,w′) > r. So w′ 6∈ Bmax

r (o) and CQ(w′) 6= YES.

4.1.4 FINDING ONE BORDERLINE STRING OF MAXIMUM LENGTH

Hence, we are now able to deduce the centre of a ball as soon as we know its radius and a string
from its upper border. The following technical result is a step towards finding this string (although
we have no information about r and |o| yet):
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Proposition 14 Suppose that Σ = {a1, . . . ,an} and consider the string v = (a1 . . . an)
k with k ≥

|o|+ r. Then every correction of v belongs to Bmax
r (o).

Proof Let U be the set of all the possible corrections of v. Let us show that U = Bmax
r (o). As

v =(a1 . . .an)
k with k≥ |o|+r, we get o� v, so d(o,v)= |v|−|o|, by Proposition 2. Let w∈Bmax

r (o).
By Proposition 12, we get o � w and d(o,w) = |w| − |o| = r. Moreover, as v = (a1 . . .an)

k with
k ≥ |o|+ r, we get w � v. So d(w,v) = |v|− |w| = |v|− |o|− r = d(o,v)− r by Proposition 2. As
d(o,w) = r and d(w,v) = d(o,v)− r, Lemma 10 yields Bmax

r (o) ⊆U . Conversely, let u ∈U . We
get d(o,u) = r, again by Lemma 10. If o � u, then u ∈ Bmax

r (o) by Proposition 12. If o 6� u, then
Proposition 2 yields d(o,u) > |u| − |o|, that is to say, |u| < |o|+ r. But then, d(u,v) ≥ |v| − |u| >
|v|− |o|− r = d(w,v) for all w ∈ Bmax

r (o), so u 6∈U , that is impossible. Therefore, U ⊆ Bmax
r (o).

If one submits (a1 . . .an)
k with a sufficiently large k, then one is sure to get a string of Bmax

r (o).
So the last problem is to find such an interesting k. The following lemma states that if one asks
to the Oracle the correction of a string made of a lot of 0’s, then this correction contains precious
informations about the radius and the number of occurrences of 0’s in the centre:

Lemma 15 Consider the ball Br(o). Let a ∈ Σ be any letter and j ∈ IN an integer such that a j 6∈
Br(o). Let w denote a correction of a j. If |w|< j, then |w|a = |o|a + r.

Proof Let a j 6∈Br(o) and w = CQ(a j). By Lemma 10, we get d(o,w)= r and d(w,a j) = d(o,a j)−r.
As |w|< |a j|, the computation of d(w,a j) consists in (1) substituting all the letters of w that are not
a’s, thus doing |w| − |w|a substitutions, and (2) completing this string with further a’s in order to
reach a j, thus doing j−|w| insertions of a’s. So we deduce that d(w,a j) = |w|− |w|a + j−|w| =
j−|w|a. Let us compute d(o,a j). Clearly, if |o| ≤ |w|< j, then we can use the same arguments as
before and get d(o,a j) = j−|o|a. Finally, since d(w,a j) = d(o,a j)− r, we deduce that j−|w|a =
j−|o|a− r, that is, |w|a = |o|a + r.

Now suppose that |o| > |w|. Then we cannot use the same arguments as before, because it
is possible that |o| ≥ |a j|, thus that deletions are needed to compute d(o,a j). However, this case
is impossible. Indeed, consider a derivation o

r−→ w. Since |o| > |w|, there is at least one dele-
tion along this derivation. Now, instead of deleting a letter, suppose that we substitute it by an

a and do not change anything else. This leads us to a new derivation o
r−→ w′ (or o

r−1−−→ w′ if
the deleted letter was an a) with |w′| = |w|+ 1 and |w′|a = |w|a + 1. Moreover, d(o,w′) ≤ r,
thus w′ ∈ Br(o). Finally, as |w| < j, we get |w′| ≤ j, so with the same arguments as before,
only substitutions and insertions are necessary to compute d(w′,a j). More precisely, we have
d(w′,a j) = (|w′| − |w′|a) + ( j− |w′|) = −|w|a − 1 + j = d(w,a j)− 1, thus d(w′,a j) < d(w,a j).
Since w′ ∈ Br(o), w cannot be a correction of a j.

Finally, let us assume that the alphabet is Σ = {a1, . . . ,an} and let j1, . . . , jn ∈ IN be large inte-
gers. If we define k = ∑n

i=1 |CQ(a ji
i )|ai , then Lemma 15 brings k = ∑n

i=1(|o|ai + r) = |o|+ |Σ| · r ≥
|o|+r. So we can plug k into Proposition 14 and get a string w = CQ

(

(a1 . . .an)
k
)

∈ Bmax
r (o). More-

over, we have |w|= |o|+ r and k = |o|+ |Σ| · r. So, we deduce that the radius is r = (k−|w|)/(|Σ|−
1).
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4.2 An Algorithm to Learn Balls from Correction Queries

Let us summarize, by assuming that Σ = {a1, . . . ,an} and that the target is the ball Br(o). (1) For
each letter ai, the Learner asks for the correction of a j

i where j is sufficiently large to get a correction
whose length is smaller than j; (2) the Learner sets k = ∑n

i=1 |CQ(a ji
i )|ai and gets the correction w

of the string v = (a1 . . .an)
k; (3) from k and |w|, he deduces r; (4) he uses EXTRACT_CENTRE on

w and r, and he gets o. In other words, he is able to guess the balls with correction queries (see
Algorithm IDF_BALL and Proposition 16).

Algorithm 2 IDF_BALL

Require: The alphabet Σ = {a1, . . . ,an}
Ensure: The representation (o,r) of the target ball Br(o)

1: j← 1;k← 0
2: for i = 1 to n do
3: while CQ(a j

i ) = YES or else |CQ(a j
i )| ≥ j do

4: j← 2 · j
5: end while
6: k← k + |CQ(a j

i )|ai

7: end for
8: w← CQ((a1a2 . . .an)

k)
9: r← (k−|w|)/(|Σ|−1)

10: o← EXTRACT_CENTRE(w,r)
11: return (o,r)

For instance, consider the ball B2(11) defined over Σ = {0,1}. IDF_BALL begins by looking
for the corrections of 0 j and 1 j with a sufficiently large j. We might observe: CQ(0) = YES,
CQ(02) = YES, CQ(04) = 0011, CQ(08) = 0110, CQ(18) = 1111. So k = |0110|0 + |1111|1 =
2+4 = 6. Then CQ

(

(01)6
)

= CQ(010101010101) = 0110, for instance, so r = (6−4)/(2−1) = 2.
Finally, EXTRACT_CENTRE(0110,2) returns 11. So the algorithm returns (11,2), which is the
representation of the target ball.

Proposition 16 Given any fixed ball Br(o), the Algorithm IDF_BALL returns the representation
(o,r) using O (|Σ|+ |o|+ r) correction queries.

Proof The correction of IDF_BALL is clear. Concerning the number of queries, the corrections of
all the strings a j

i require O (|Σ|+ log(|o|+ r)) correction queries (lines 2-5). Indeed, O(log(|o|+r))
queries are necessary to get long enough corrections, plus one query per letter, thus |Σ| queries.
Then EXTRACT_CENTRE needs O (|o|+ r) correction queries (line 8) to find the centre, by Propo-
sition 13. So the total amount of queries is O (|Σ|+ |o|+ r).

4.3 Only the Good Balls are Learnable with IDF_BALL

We now have an algorithm that guesses all the balls Br(o) with O (|Σ|+ |o|+ r) correction queries.
Is this result relevant?
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In Section 3, we have decided to represent every ball Br(o) by the pair (o,r). The size of this
representation, |o|+ logr, is basically related to the number of bits needed to encode this represen-
tation. Notice that |o|+ r is not a correct measure of the size: this would correspond to an encoding
in base 1 of the radius r, which is not considered reasonable (Garey and Johnson, 1979). Therefore,
the number of correction queries used by IDF_BALL is exponential in logr. In consequence, if r is
too large with respect to |o|, (e.g., r > 2|o|), then our algorithm is not able to identify efficiently the
target ball.

In order to avoid this problem, we introduce the following definition that allows us to rewrite
Proposition 16 in a more relevant way:

Definition 17 (Good Balls)

• Let q() be any fixed polynomial. We say that a ball Br(o) is q()-good if r ≤ q(|o|).

• We say that Br(o) is very good if r ≤ |o|.

A very good ball is thus a q()-good ball for the polynomial q(x) = x.
Then, Proposition 16 yields:

Theorem 18

• Let q() be any fixed polynomial. The set of all q()-good balls Br(o) is identifiable with an
algorithm that uses O (|Σ|+ |o|+q(|o|)) correction queries and a polynomial amount of time.

• The set of all very good balls is identifiable with a linear number O (|Σ|+ |o|) of correction
queries and a polynomial amount of time.

Finally, the reader may wonder if a better learnability result could be established, which would
include the huge balls. Unfortunately, there is not a unique answer to this question. On one hand,
if the number of correction queries authorized to learn can also depend on the length of the longest
correction provided by the Oracle during a run of IDF_BALL, then the answer is positive: all the
balls are learnable. On the other hand, in de la Higuera et al. (2008), it has been proved that the set
of all the balls was not polynomially identifiable in the limit, nor in most relevant online learning
paradigms, whereas positive results were established for the good balls in most paradigms. From
this point of view, Theorem 18 is satisfying.

5. Learning in a Realistic Environment

The setting of learning with queries itself occurs in many circumstances: when a human being is
asked to provide data for a learning program, an alternative to have the human expert labeling huge
quantities of data can be to have the learning system interact with the human expert, who then only
labels those items required. Nevertheless, assuming that the Oracle is a human expert introduces
new constraints. On one hand, asking billions of queries is unacceptable: there is no chance to get
enough answers in reasonable time. So the learning algorithm should aim at minimizing the number
of queries even if we must pay for it with a worse time complexity. On the other hand, a human
(or even the Web) is fallible. Therefore, the learning algorithm should aim at learning functions or
languages that are robust from corrections that may not be ideal, thus approximative.

These issues are discussed in de la Higuera (2006). Some examples of this alternative approach
(imperfect Oracle) are: system SQUIRREL, which makes use of queries to a human expert to allow
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wrapper induction (Carme et al., 2007); learning test sets (Bréhélin et al., 2001) and testing hardware
(Hagerer et al., 2002), where the actual electronic device can be physically tested by entering a
sequence, and the device will then be able to answer a membership query (note that in that setting
equivalence queries will be usually simulated by sampling). Another typical question occurs when
learning some non intelligible function, defined perhaps by a complex kernel (Clark et al., 2006) or
neural networks (Giles et al., 2001): a representation of these complex functions in another setting
can be obtained if we use the complex function as an Oracle to learn from.

5.1 Faced with a Fallible Oracle

The algorithm IDF_BALL has been designed in an ideal setting, where we have assumed that the
Oracle was a perfect machine: her answers were so precise that we could scrupulously characterize
them (see Lemma 10). However, as described in the introduction, in practice, an Oracle is often
an expert, thus a human being, or is simulated through sampling. In such settings, our assumption
is no longer correct. Indeed, computing the correction of (101)127 w.r.t. the ball B217((1011)32) is
probably out of the cognitive capacities of any human being. So our algorithm should not believe
unwisely the answers he gets since they can be approximate. In this section, we would like to
show, with a series of experiments, that our algorithm withstands such approximate (that is to say,
inaccurate, noisy) answers.

5.1.1 DESIGNING THE APPROXIMATE ORACLE

We want here to design an approximate Oracle that might look like a human being. So let us
consider a string w and a ball Br(o). Let CQh(w) denote the answer of the approximate Oracle, and
CQ(w) the answer that would be returned by a perfect Oracle (as before).

Firstly, we assume that an expert can easily determine whether an example fulfills a concept
or not, thus here, whether w belongs to Br(o) or not. So we assume that if CQ(w) = YES, then
CQh(w) = YES. Secondly, what is really hard for the expert is to compute the best correction of w
when w 6∈ Br(o), and more precisely, a string of the ball that is as close to w as possible. Again,
CQh(w) will probably be inside the ball rather than on its frontier.

Staying a step ahead, let X = d(w,CQh(w))− d(w,CQ(w)) measure the distance between an
approximate correction and a perfect one. Intuitively, an approximate but strong Oracle will often
provide corrections such that X = 0, sometimes X = 1 and rarely X ≥ 2. . . To formalize this idea, we
introduce a confidence parameter 0 < p≤ 1, called the accuracy level of the Oracle, that translates
the quality of her answers, and use a geometric distribution: Pr(X = k) = (1− p)k p, for all k ∈ IN.

Therefore, with probability (1− p)k p, the correction CQh(w) of a string w will be in the target
ball, at distance k of CQ(w). Basically, we get E(X) = (1/p)− 1. So when the Oracle is very
accurate, say p = 0.8, then the average distance between an approximate and a perfect correction
is low (0.25). Conversely, an expert with limited computation capacities, say p = 0.4, will often
provide inaccurate corrections, at distance 1.5 on average.

Our model of approximate Oracle is simple. For instance, we do not suppose that she has any
memory, thus by submitting twice every string w, we would probably get 2 different corrections
that could be used to correct the corrections! We want here to study the resistance of IDF_BALL to
approximate answers, not to design the best possible algorithm, able to beat the approximate Oracle.
So from this standpoint, our basic model is sufficient.
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5.1.2 BEHAVIOR OF THE ALGORITHM FACED WITH AN APPROXIMATE ORACLE

Following Theorem 18, IDF_BALL systematically guesses the target ball with the help of a perfect
Oracle. But of course, he is sometimes going to fail in front of an approximate Oracle. So, in
order to assess the resistance of IDF_BALL to approximate corrections, we conduct the following
experiment. We randomly choose a set of 100 balls Br(o) such that |o|+ r = 200. More precisely,
we make the radius r vary between 10 and 190 by step of 20, and randomly choose 10 centres o
of length 200− r for each radius. Then, for every accuracy level 0.5 ≤ p ≤ 1, we ask IDF_BALL

to learn all of them and we compute the percentage of balls he is able to retrieve, that we call the
precision of the algorithm. We show the result in Figure 4. We notice that IDF_BALL is able to
identify about 75% of the balls faced with an accuracy level of p = 0.9. Of course, as one can
expect, with lower levels of accuracy, his performances quickly drop (15% for p = 0.5).
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Figure 4: Precision of IDF_BALL faced with an approximate Oracle in function of the accuracy
level p. Each point is assessed on 100 balls.

We also show, in Figure 5, the average distances between the centres of the target balls and the
centres of the the learnt balls when he fails to retrieve them. We observe that these distances are not
that important: even with an accuracy level of p = 0.5, the difference is less than 3. The last curve
in Figure 6 is the difference between the radii, that basically follow the same trend.

5.1.3 IMPROVING THE PRECISION WITH a posteriori HEURISTICS

We have seen that IDF_BALL was able to assimilate the approximations of the Oracle up to a certain
level of accuracy. Moreover, the centres and the radii returned by the algorithm are generally not far
from the target. Therefore, it is reasonable to think that we could improve the precision by exploring
the neighborhood of the learnt centre, using local edit modifications. This kind of approaches has
been pioneered by Kohonen (1985) and is surveyed in Martínez-Hinarejos et al. (2000).

Suppose that the learnt ball is Bk(u) and let Q be the set of all the corrections returned by the
Oracle during the process of IDF_BALL. The heuristics is composed of two steps:
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Figure 5: Average distances (and standard deviation) between the centres of the target balls and the
centres of the learnt balls, when IDF_BALL fails in retrieving them.
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Figure 6: Average difference (and standard deviation) between the radii of the target balls and the
radii of the learnt balls, when IDF_BALL fails in retrieving them.
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1. We test each neighbor u′ (at distance 1) of the learnt centre u and examine if it is a better
centre with respect to Q , that is to say, if there exists k′ ∈ IN such that k′ < k and Q ⊆ Bk′(u′).
Then we keep the representations (u′,k′) of the smallest balls that contain all the corrections
seen so far.

2. From this set, we select all the pairs (u′,k′) that maximize the number of corrections (of Q )
at distance k′, in such a way as to get the maximum number of corrections on the border of
the new ball. Then we randomly choose and return one of them.

This heuristics will be very good each time u is at distance 1 from the target centre. But as soon
as this distance grows, IDF_BALL will fail again. In order to enhance the one-step heuristics, we
iterate the process and design a second until-convergence heuristics by repeating the local search
described above, until the size of the ball cannot decrease anymore.

In order to show that the balls learnt by IDF_BALL can be corrected a posteriori, we compare,
in a series of experiments, the precision of the algorithm without any post-treatment, with the one-
step heuristics and with the until-convergence heuristics. We fix |o|+ r = 200 and make the radius
vary from 10 to 190. For each radius, we randomly draw 50 centres of length 200− r. Then, we
make the accuracy level vary from 0.5 to 1. For each pair (accuracy, radius), we ask IDF_BALL to
retrieve the 50 balls and note the precision. In order to be able to reduce the variance due to the
approximations of the Oracle, we repeat the experiment 10 times using the same set of balls and
finally plot the average precisions in Figure 7.

We can remark that whatever the accuracy level, using the until-convergence heuristics is never
worse than the one-step heuristics, which is never worse than no post-treatment at all. However, our
heuristics do not always improve the precision of the algorithm: this depends on the ratio between
the radius of the target ball and the length of its centre. In order to detail this, we have extracted two
transverse sections, shown in Figures 8 and 9, where we fix the radii.

Figure 8 describes the precision of IDF_BALL for target balls such that r = 170 and |o|= 30. In
this case, we gain little using the heuristics. This is probably due to the fact that the size of the set
Q , which is used to control the heuristics, is incomparably smaller than the volume of such balls.
In other words, the heuristics are not sufficiently guided by Q towards the targets, because Q is not
informative enough.

On the other hand, Figure 9 describes the precision for target balls such that r = 10 and |o|= 190.
Basically, our heuristics outperform the precision with respect to the algorithm without any post-
treatment, whatever the accuracy level of the Oracle. Moreover, the benefit is all the more important
as the accuracy level is bad. For instance, when p = 0.6, the until-convergence heuristics is able to
dramatically boost the precision from 12% to 86%.

So in this setting, with no further enhancement, IDF_BALL produces balls that are so close to
the targets that they can easily be improved using only basic local modifications.

5.2 Using Less Correction Queries

We have seen that the good balls were identifiable with O (|Σ|+ |o|+ r) correction queries. How-
ever, as discussed in the introduction, such a number of queries is excessive if the Oracle is a human
being. Moreover, if the reader thinks of what happens in the plane (see Figure 2), then very few
queries are needed to identify the disks. Hence, our result might seem to be a bit disappointing.

If one takes a closer look at IDF_BALL, one can notice that the first part of the identification,
that is to say, the search for a string of Bmax

r (o), is done with O (|Σ|+ log(|o|+ r)) correction queries
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Figure 7: Precision of IDF_BALL with and without heuristics in function of accuracy and radius
when |o|+ r = 200. For each pair (accuracy, radius), we compute the average over 50
balls.
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Figure 8: Precision of IDF_BALL when |o|+ r = 200 for r = 170. For each accuracy, we compute
the average over 50 balls. We run the experiment 10 times in order to reduce the variance.

1861



BECERRA-BONACHE, DE LA HIGUERA, JANODET AND TANTINI

 0

 20

 40

 60

 80

 100

 0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

accuracy

until-convergence
one-step

without

Figure 9: Precision of IDF_BALL when |o|+ r = 200 for r = 10. For each accuracy, we compute
the average over 50 balls. We run the experiment 10 times in order to reduce the variance.

(thus, a logarithmic number). What is really expensive is to find the centre of the ball using the
function EXTRACT_CENTRE. We are going to show below that this function can be eliminated
from the learning stage, and thus, that the complexity can be dramatically reduced, but in a slightly
different setting.

For reasons that we shall develop later, we now suppose that the alphabet has at least three
letters: Σ = {a1, . . . ,an} with n≥ 3.

5.2.1 THE USE OF A WEIGHTED EDIT DISTANCE

Up to now, we have considered the standard edit distance defined by Levenshtein (1965). How-
ever, for practical reasons, people often use variants of this definition where the edit operations are

weighted. In this case, every derivation w
k−→ w′ has a weight which is the sum of the weights of

the edit operations along the derivation. Then the weighted edit distance d(w,w′) is the minimum
weight of every derivation transforming w into w′. Clearly, if the weight of all the edit operations is
1, then we get the standard edit distance.

The different combinations of weights will impose alternative algorithms when using correction
queries. As we aim at showing that the number of correction queries can be dramatically reduced,
we assume that:

1. the weight of every insertion and every deletion is 1 (as before),

2. the weight of every substitution is an irrational number ρ such that 0 < ρ < 1.

For instance, the weight of the substitution could be ρ = π
4 ' 0.7854.
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It is worth noting that the low cost of a substitution operation is usual from a linguistic point of
view. For instance, works on Phonology make this assumption in order to enforce the alignment of
phonetically similar segments (Albright and Hayes, 2003).

Nevertheless, the fact that ρ is not rational may be confusing for the reader. Actually, from the
Learner standpoint, we will see that he never needs to compute the weighted edit distance (that is
probably not the case of the Oracle). So the fact that ρ is not a fraction will not be a problem.

We can show that this set of weights induces an edit distance that can be computed using
dynamic programming.3 Moreover, Proposition 2, stating that (1) d(w,w′) ≥

∣

∣|w| − |w′|
∣

∣ and (2)
d(w,w′) =

∣

∣|w|− |w′|
∣

∣ iff (w � w′ or w′ � w), still holds, because the weight of the insertions and
deletions is 1. Finally, the fact that ρ is irrational allows us to establish strong properties:

Proposition 19 Let o,w,w′ ∈ Σ∗ be three strings. The following statements are equivalent:

1. There exists a derivation of minimum weight from w to w′ that uses x ∈ IN insertions and
deletions, and y ∈ IN substitutions;

2. d(w,w′) = x+ρy;

3. All the derivations of minimum weight from w to w′ use x ∈ IN insertions and deletions, and
y ∈ IN substitutions.

In consequence, if d(o,w) = d(o,w′), then all the derivations from o to w and from o to w′ use the
same number of insertions and deletions, and the same number of substitutions.

Proof

• 3. =⇒ 1.: straightforward.

• 1. =⇒ 2.: since the weight of the insertions and deletions is 1, and the weight of the substitu-
tions is ρ, and the derivation has a minimum weight, we get d(w,w′) = x+ρy.

• 2. =⇒ 3.: consider another derivation from w to w′ of minimum weight that uses x′ ∈ IN
insertions and deletions, and y′ ∈ IN substitutions. Then we get d(w,w′) = x′+ρy′ = x +ρy,
so x− x′ = ρ(y′− y). As ρ is irrational and x,x′,y,y′ are integers, we deduce that y′− y = 0
and x− x′ = 0, thus x′ = x and y′ = y.

Of course, this result would not hold if ρ was a rational number, for instance ρ = 1
2 , because two

substitutions would have the same weight as one insertion, which might induce two very different
derivations of minimum weight between two strings.

5.2.2 THE NEW GOOD BALLS AND CORRECTIONS

Basically, changing the edit distance also changes the balls. For instance, using the standard edit
distance, we get B1(011) = {01,11,001,010,011,111,0011,0101,0110,1011,0111}. But the use

of the weighted edit distance with ρ =
√

2
4 ' 0.3536 adds {000,101,110} as new strings.

3. Indeed, its restriction to Σ∪{λ} is a distance, so following Crochemore et al. (2007), the standard dynamic program-
ming algorithm of Wagner and Fisher (1974) can be used to compute the weighted edit distance over Σ∗.
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The reader may also wonder whether the radius of the balls should still be an integer or not. Ac-
tually, we shall not consider balls whose radius is not an integer, because otherwise, the balls Br(o)
and Br+ ρ

2
(o) might represent the same set. In other words, Theorem 5, that states the uniqueness of

the representation, would not hold anymore. Conversely, if we only consider balls with an integer
radius, then the reader can check that Theorem 5 still holds (because Proposition 2 still holds).

Concerning the corrections, their properties become more intricate due to the weights. In partic-
ular, Lemma 10 was stating that the set of possible corrections of any string v 6∈ Br(o) was exactly
{u ∈ Σ∗ : d(o,u) = r and d(u,v) = d(o,v)− r}. This result does not hold anymore. Indeed, con-

sider the ball B1(011) when ρ =
√

2
4 . Then any correction u of the string 100 is in {000,101,110}.

Basically, d(011,u) = 2ρ < 1 and d(u,100) = ρ > d(011,100)− 1 = 3ρ− 1. In other words, a
correction is not necessarily on the circle that delimits the ball.

Nevertheless, we get a more sophisticated result that characterizes the set of all the possible
corrections:

Lemma 20 Let Br(o) be a ball and v 6∈ Br(o). Given any α ∈ IR, we define

Cα = {u ∈ Σ∗ : d(o,u) = α and d(u,v) = d(o,v)−α}.

All the nonempty Cα define concentric arcs of circles of strings around the centre o. Let α0 be the
radius of biggest one inside the ball of strings:

α0 = max
0≤α≤r

{α : Cα 6= /0}.

Then the set of possible corrections of v is exactly Cα0 .

Proof The proof is the same as that of Lemma 10, except that W is replaced by Cα0 and r is replaced
by α0. The key point is that W could be empty with the weighted edit distance whereas Cα0 cannot,
by definition.

5.2.3 THE BORDERLINE STRINGS OF MAXIMUM LENGTH

Let us tackle the problem of learning the balls. As in Section 4, we study the longest strings of Br(o)
since they are very informative. Indeed, we are going to show as in Lemma 15, that if one asks for
the correction w of a string made of a lot of 0’s, then |w|0 = |o|0 + r. In addition, in our setting,
we also get w ∈ Bmax

r (o) directly. Nevertheless, we must pay for it by assuming that we know the
polynomial q() for which Br(o) is a good ball.

Lemma 21 Let q() be a fixed polynomial with coefficients in IN. Consider the q()-good ball Br(o),
a letter a ∈ Σ and an integer j ∈ IN such that a j 6∈ Br(o). Let u = CQ(a j) and v = CQ(a j+q( j)). If
|u|< j, then v ∈ Bmax

r (o) and |v|a = |o|a + r.

This subsection aims at proving this lemma, using two intermediate results:

Proposition 22 Consider the ball Br(o), a letter a ∈ Σ and an integer j ∈ IN such that a j 6∈ Br(o).
Let u = CQ(a j). If |u|< j, then |o|< j.
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Proof Let us show that |o| ≤ |u|; as |u| < j, we shall get the result. Hence, suppose that |u| < |o|
and consider a rewriting derivation o

k−→ u of minimum weight d(o,u) = x + ρy. Since |o| > |u|,
there is at least one deletion along this derivation. Suppose that, instead of deleting a letter, we

substitute it by an a and do not change anything else. This leads us to a new derivation o
k−→ u′

(or o
k−1−−→ u′ if the deleted letter was an a) with |u′| = |u|+ 1 and |u′|a = |u|a + 1. Moreover,

d(o,u′)≤ (x−1)+ρ(y+1) = d(o,u)−1+ρ. Since d(o,u)≤ r, we deduce that d(o,u′) < r, thus
u′ ∈ Br(o). Finally, as |u|< j, we get |u′| ≤ j, so only substitutions and insertions are necessary to
compute both d(u,a j) and d(u′,a j). More precisely, we have d(u′,a j) = ( j−|u′|)+ρ(|u′|−|u′|a) =
( j− |u| − 1)+ ρ(|u| − |u|a) = d(u,a j)− 1, thus d(u′,a j) < d(u,a j). As u′ ∈ Br(o), u cannot be a
correction of a j, which is a contradiction. So |u| ≥ |o|, thus |o|< j.

Proposition 23 Consider the ball Br(o), a letter a ∈ Σ and an integer ` ∈ IN such that a` 6∈ Br(o).
Let v = CQ(a`). If |o|+ r < `, then v ∈ Bmax

r (o) and |v|a = |o|a + r.

Proof As |o|+ r < `, we have |o| < `, so the computation of d(o,a`) necessarily uses `− |o| in-
sertions of a’s and |o|− |o|a substitutions by a’s. Let us define a reference derivation from o to a`,
where the `−|o| insertions are performed first at the beginning of o, and then the |o|− |o|a substi-

tutions by a’s in o: o
`−|o|−−−→ a`−|o|o

|o|−|o|a−−−−→ a`−|o|a|o| = a`. As `−|o|> r, the string a`−|o|o is not in
the ball, so this derivation passes through the string aro before reaching a`−|o|o. In other words, the

reference derivation looks as follows: o
r−→ aro

`−|o|−r−−−−→ a`−|o|o
|o|−|o|a−−−−→ a`. Now consider Lemma

20. Basically, d(o,aro) = r and d(aro,a`) = `− |o| − r + ρ(|o| − |o|a) = d(o,a`)− r, so Cr 6= /0.
Therefore, as v = CQ(a`), we deduce that d(o,v) = r and d(v,a`) = d(o,a`)− r. We claim that
only insertions of a’s can occur along the derivation o

r−→ v. Indeed, we have d(o,v) = r ∈ IN, so by
Proposition 19, no substitution occurs. Moreover, no deletion occurs since any minimal derivation
from o to a` only uses insertions of a’s and substitutions by a’s. In consequence, v ∈ Bmax

r (o) and
|v|a = |o|a + r.

Proof [of Lemma 21] By Proposition 22, we get |o| < j. Then we have |o|+ r ≤ |o|+ q(|o|).
Moreover, as |o| < j and all the coefficients of q() are in IN, we deduce that |o|+ r < j + q( j). So
plugging ` = j +q( j) in Proposition 23 yields the result.

5.2.4 LEARNING THE BALLS LOGARITHMICALLY

As a consequence of Lemma 21, the correction of a long string of 0’s leads to a string of Bmax
r (o). But

we get more properties, if the alphabet has at least three letters, say 0,1,2. . . Indeed, let u0 = CQ(0 j)
with |u0| < j, and v0 = CQ(0 j+q( j)). Thanks to Lemma 21, v0 is obtained from o with r insertions
of 0’s. So all the letters in v0, but the occurrences of 0, are those of o and appear in the correct order.

More formally, let Ea be the function that erases every occurrence of any letter a ∈ Σ in a string:

1. Ea(λ) = λ,

2. Ea(a.z) = Ea(z), and
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3. Ea(b.z) = b.Ea(z), for all b 6= a.

Then, for every a ∈ Σ, Ea(va) = Ea(o).
For instance, consider the ball B1(o) with o = 10302. If the corrections of the strings 0`, 1`

and 2` (with ` big enough) are v0 = 103020, v1 = 101302 and v2 = 103202 respectively, then
E0(v0) = E0(o) = 132, E1(v1) = E1(o) = 0302 and E2(v2) = E2(o) = 1030.

Furthermore, we can easily deduce o by aligning the strings E0(o) and E1(o) and E2(o):

E0(o) 1 · 3 · 2
E1(o) · 0 3 0 2
E2(o) 1 0 3 0 ·

o 1 0 3 0 2

This procedure does not use any new correction query and runs in time O (|o|) which is clearly more
efficient than EXTRACT_CENTRE. Notice that if |Σ| > 3, we only need three corrections to align
and deduce the center. So we finally obtain Algorithm 3 and Theorem 24.

Algorithm 3 IDF_WEIGHTED_BALLS

Require: The alphabet Σ = {a1, . . . ,an} with n≥ 3, and the polynomial q()
Ensure: The representation (o,r) of the target q()-good ball Br(o)

1: j← 1
2: for i = 1 to 3 do
3: while CQ(a j

i ) = YES or else |CQ(a j
i )| ≥ j do

4: j← 2 · j
5: end while
6: vi← CQ

(

a j+q( j)
i

)

7: ei← Eai(vi)
8: end for
9: o← ALIGN(e1,e2,e3)

10: r← |v1|− |o|
11: return (o,r)

Theorem 24 Assume |Σ| ≥ 3.

• Let q() be any fixed polynomial with coefficients in IN. The set of all q()-good balls Br(o) is
identifiable with an algorithm that uses O (log(|o|+q(|o|))) correction queries and a poly-
nomial amount of time.

• The set of all very good balls is identifiable with a logarithmic number O (log |o|) of correction
queries and a polynomial amount of time.

Therefore, assuming that the weight of the substitutions is an irrational < 1 allows us to reduce
dramatically the complexity of the learning stage. Of course, this gain is not possible with all
weighted distances, which leaves room for further research. Moreover, if the Learner does not
know the polynomial q(), we believe that learning is still possible.
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6. Discussion and Conclusion

In this work, we have used correction queries to learn a particular class of languages from an Oracle.
The intended setting is that of an inexact Oracle, and experiments show that the proposed algorithm
can learn a language sufficiently close to the target for simple local modifications (with no extra
queries). In order to do this, the languages we consider are good balls of strings defined with the
edit distance. Studying them allowed us to catch a glimpse of the geometry of sets of strings, which
is very different from the Euclidean geometry. A number of questions and research directions are
left open by this work.

A first question concerns the distance we use. We have chosen to work with the unitary edit
distance, but in many applications, the edit operations can have different weights. Preliminary work
has allowed us to notice that the geometry of sets of strings, thus the algorithmics, could change
considerably depending on the sorts of weights we used: with the substitutions costing less than
the other two operations, a much faster algorithm exists, requiring only O (log(|o|+ r)) correction
queries. Alternative conditions over the weights require new interesting learning algorithms.

A second question concerns the inaccuracy model we are using: as noticed in Section 5.1, with
the current model it would be possible to repeat the same query various times, getting different cor-
rections, but possibly being able, through some majority vote scheme, to get the adequate correction
with very little extra cost. Just asking for persistent corrections is not enough to solve this problem:
a good model should require that if one queries from a close enough string (a999 instead of a1000)
then the corrections should also remain close. Topologically, we would expect the Oracle to be
k-Lipschitz continuous (with 0 < k < 1).

A third more challenging problem then arises: our choice here was to learn supposing the Oracle
was exact, and correcting later. But a more direct approach might be better, by taking into account
the inexactitude of the Oracle when interpreting the correction.
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