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Abstract
This paper develops bounds on out-of-sample error rates for support vector machines (SVMs). The
bounds are based on the numbers of support vectors in the SVMs rather than on VC dimension.
The bounds developed here improve on support vector counting bounds derived using Littlestone
and Warmuth’s compression-based bounding technique.
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1. Introduction

The error bounds developed in this paper are based on the number of support vectors in an SVM.
Littlestone and Warmuth (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) pioneered
error bounds of this type. Their method derives error bounds based on how few training examples
are needed to represent a classifier that is consistent with all training examples. Hence, bounds
derived using their method are called compression-based bounds.

Compression-based bounds apply to SVMs because producing an SVM involves determining
which training examples are “border” examples of each class and then ignoring “interior” exam-
ples. The number of border examples can be a small fraction of the number of training examples.
Discarding the interior examples and training on the border examples alone produces the same
SVM. So SVM training itself is a method to reconstruct the classifier based on a subset of the train-
ing data. For more details on applying compression-based bounds to SVMs, refer to Cristianini
and Shawe-Taylor (2000) and von Luxburg et al. (2004). For information on applying compression-
based bounds to some other classifiers, refer to Littlestone and Warmuth (1986), Floyd and Warmuth
(1995), Marchand and Shawe-Taylor (2001) and Marchand and Sokolova (2005).

Compression-based bounds are effective when a small subset of the available examples can
represent a classifier that is consistent with all available examples. Proofs of effectiveness for
compression-based bounds use uniform validation over a set of classifiers that includes the consis-
tent classifier. The validation is uniform in the sense that no classifier in the set may be misvalidated.

The bounds introduced in this paper apply when multiple subsets of the available examples can
represent the same consistent classifier. (Support vector machines meet this condition.) Proofs of
effectiveness for the new bounds use validation over a set of classifiers that includes several copies
of the consistent classifier. So the validation need not be strictly uniform over the set of classifiers;
the proofs can tolerate any number of misvalidated classifiers less than the number of copies of the
classifier of interest and must still validate that classifier. Hence, the error bounds are said to be
nearly uniform. Nearly uniform error bounds are introduced in Bax (1997).
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This paper is organized as follows. Section 2 sets up definitions, notation, and goals. Section 3
gives an error bound for validation of a classifier. Section 4 presents a bound on the probability of
several simultaneous events, which is the basis for nearly uniform error bounds. Section 5 describes
nearly uniform error bounds. Section 6 applies nearly uniform error bounds to compression-based
bounding. Section 7 analyzes the error bounds. Section 8 applies the error bounds. Section 9
discusses possibilities for future research.

2. Definitions, Notation, and Goals

Let C = Z1, . . . ,Zm be a sequence of examples drawn i.i.d. from a joint input-label distribution D,
with labels in {0,1}. Let Z = (X, Y), where X is the input, and Y is the class label. Let g be a
classifier, that is, a function from the input space to class labels. Define the error of g:

ED(g) = PD(g(X) 6= Y ),

where the probability is over distribution D.
Let V be a sequence of examples. Define the empirical error of g on V:

EV (g) = PV (g(X) 6= Y ),

where the probability is uniform over the examples in V. If a classifier has empirical error zero, then
the classifier is said to be consistent with V.

The goal is to use the examples in C to develop a classifier g* that is consistent with C and
to produce a PAC (probably approximately correct) bound on the error. This paper focuses on
producing the error bound for training methods that can develop g* using subsets of the examples in
C, called compression training algorithms. These methods include training support vector machines
(SVMs) and perceptrons.

3. Validation of a Consistent Classifier

Theorem 1 Let V be a sequence of examples drawn i.i.d. from D, and let g be a classifier developed
independently of the examples in V. Then

P[EV (g) = 0∧ED(g) ≥ ε] ≤ (1− ε)|V |.

Proof The LHS is

= P[EV (g) = 0|ED(g) ≥ ε]P[ED(g) ≥ ε]. (1)

The second probability in (1) is at most one, so this is

≤ P[EV (g) = 0|ED(g) ≥ ε]. (2)

If the error is at least ε, then the probability of correctly classifying each example in V is at most
1-ε, so (2) is

≤ (1− ε)|V |.
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The set V is called the set of validation examples. Theorem 1 cannot be applied directly to g*
with V = C to compute an error bound, because g* is developed using the examples in C. To validate
g*, we can use Theorem 1 indirectly, performing uniform validation over a set of classifiers that
includes g*, with validation for each classifier based on examples not used to develop the classifier.
Since the set of classifiers includes g*, uniform validation over the set implies validation of g*.

In this paper, we use nearly uniform validation to validate g*. We use a multi-set of classifiers
that has several copies of g*, and we perform validation over the classifiers, allowing fewer failed
validations than the number of copies of g*. This nearly uniform validation implies validation of
g*.

4. Probability of Several Simultaneous Events

Nearly uniform validation is based on a bound on the probability of several simultaneous events.
Let A1, . . . ,An be subsets of a universal set U. Let P(Ai) be the probability that an element drawn at
random from U is a member of set Ai.

Theorem 2

P

[

∪
S⊆{1,...,n}∧|S|=k

(

∩
i∈S

Ai

)]

≤
1
k
[P(A1)+ ...+P(An)],

that is, the probability that a random u ∈U is in at least k sets from A1, . . . ,An is at most the sum of
probabilities for the sets, divided by k.

Proof The LHS of Theorem 2 is

P [I(A1)+ ...+ I(An) ≥ k] , (3)

where I is the indicator function:

I(Ai) =

{

1 if u ∈ Ai

0 otherwise
.

By Markov’s inequality, (3) is

≤
1
k

E [I(A1)+ ...+ I(An)] .

By linearity of expectation, the RHS is

=
1
k

[EI(A1)+ ...+EI(An)] ,

which is

=
1
k

[P(A1)+ ...+P(An)] .

Note that setting k = 1 gives the well-known sum bound on the probability of a union:

P [A1 ∪ ...∪An] ≤ P(A1)+ ...+P(An).
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5. Nearly Uniform Validation

Consider the probability that at least k classifiers from a set of n classifiers are consistent with their
validation examples and yet all have error at least ε.

Theorem 3 Let g1, . . . ,gn be a sequence of classifiers. Let V1, . . . ,Vn be validation sets, with each
classifier gi developed independently of validation set Vi. Let |V | = |V1| = · · · = |Vn|. Then

P[∃S ⊆ {1, ...,n}∧ |S| = k : ∀i ∈ S : (EVi(gi) = 0∧ED(gi) ≥ ε)] ≤
1
k

n(1− ε)|V |,

where the probability is over validation sets, with the examples within each validation set drawn
i.i.d. according to D, but without requiring any independence between validation sets. For instance,
with a set of examples, each classifier could be the result of training on a subset of the examples,
and each validation set could be the examples not used to train the corresponding classifier.

Proof We will apply Theorem 2. Define

∀i ∈ {1, ...,n} : Ai = {(V1, ...,Vn)|(EVi(gi) = 0∧ED(gi) ≥ ε)},
that is, Ai is the set of validation set sequences for which gi is consistent with Vi and yet the error of
gi is at least ε. Then the LHS of Theorem 3 is equal to the LHS of Theorem 2. So, by Theorem 2,
the LHS of Theorem 3 is

≤
1
k
[P(A1)+ ...+P(An)]. (4)

By Theorem 1

∀i ∈ {1, ...,n} : P(Ai) ≤ (1− ε)|V |. (5)

Substituting (5) into (4) completes the proof.

6. Sample Compression and Nearly Uniform Validation

This section begins with some definitions and notation. Next, Section 6.1 reviews sample com-
pression bounds based on uniform validation. These are the compression bounds found in previous
work. Then Section 6.2 develops new sample compression bounds. The new bounds are based on
nearly uniform validation.

Recall that C = Z1, . . . ,Zm is the sequence of examples available for training. For T ⊆ {1,
. . . , m}, define g(T) to be the classifier represented by the examples in C that are indexed by T,
under some scheme for representing classifiers. (An example scheme is to train a classifier on the
examples used for representation.) Define V(T) to be the subsequence of examples in C not indexed
by T. Let

ED(T ) = ED(g(T )),

and let

EV (T ) = EV (T )(g(T )).
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6.1 Review of Uniform Sample Compression Bounds

Define compression index set H to be a minimum-sized subset of {1, . . . , m} such that

EV (H) = 0,

that is, g(H) is consistent with the examples in C not indexed by H. Note that any method to represent
such a classifier by the examples indexed by H can be extended to represent a classifier that is
consistent with all examples in C by the examples indexed by H—simply augment the classifier with
the examples indexed by H, use a lookup to classify those examples correctly, and apply the original
classifier to any input not in those examples. Hence, the bounds developed here also apply under
the condition that H indexes a minimum-sized subset of examples in C that represent a classifier
that is consistent with C.

Theorem 4 Choose an integer h ∈ {1, . . . , m}, independently of the examples in C. Identify a
compression index set H. Let g*=g(H). Then

P [ED(g∗) ≥ ε∧ |H| = h] ≤

(

m
h

)

(1− ε)m−h ,

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof Assume |H|=h; otherwise the probability in Theorem 4 is zero, and the proof is done. By the
definition of H,

ED(g∗) ≥ ε ⇒ (EV (H) = 0∧ED(H) ≥ ε).

So
P [ED(g∗) ≥ ε] ≤ P [EV (H) = 0∧ED(H) ≥ ε] .

Since H depends on the examples in C, Theorem 3 does not apply directly. So use uniform validation
over the set of classifiers represented by size-h subsets of C to validate g(H) using Theorem 3. (This
set of classifiers is chosen independently of C, and it includes g(H).)

Let g1, . . . ,gn be the classifiers represented by size-h subsets of C. Since g(H) ∈ {g1, . . . ,gn},

P[EV (H) = 0∧ED(H) ≥ ε] ≤ P[∃gi ∈ {g1, ...,gn} : (EVi(gi) = 0∧ED(gi) ≥ ε)].

Apply Theorem 3 to the RHS. Set k=1 in Theorem 3 to bound the probability of at least one misval-
idation, and note that

n =

(

m
h

)

.

Then Theorem 3 implies

P[∃gi ∈ {g1, ...,gn} : (EVi(gi) = 0∧ED(gi) ≥ ε)] ≤
(

m
h

)

(1− ε)m−h.

In Theorem 4, we must choose h independently of C. The following theorem allows us to choose
h based on C.
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Theorem 5 Let

δ(m,h,ε) =

(

m
h

)

(1− ε)m−h .

Let ε(m, h, δ) be the value of ε such that δ=δ(m, h, ε):

ε(m,h,δ) = 1−









δ
(

m
h

)









1
m−h

.

Select δ. Identify a compression index set H. Let g*=g(H). Then, with probability at least 1-δ,

ED(g∗) ≤ ε(m, |H| ,
δ
m

),

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof By Theorem 4, for each h ∈ {1, . . . , m},

P[ED(g∗) ≥ ε(m,h,
δ
m

)∧h = |H|] ≤
δ
m

.

Using the sum bound on the probability of a union:

P[∃h ∈ {1, ...,m} : ED(g∗) ≥ ε(m,h,
δ
m

)∧h = |H|] ≤ δ.

So

P[∀h ∈ {1, ...,m} : ED(g∗) ≤ ε(m,h,
δ
m

)∨h 6= |H|] ≥ 1−δ.

6.2 Nearly Uniform Sample Compression Bounds for SVMs

Now consider a case where multiple subsets of the examples in C all represent the same consistent
classifier. Under this condition, we can use nearly uniform validation to derive new error bounds.
This section focuses on a special case of this condition, a case that applies to SVM training.

Define retained set R ⊆ {1, . . . , m} to be a minimum-sized set such that for some classifier g∗,

EV (R)(g
∗) = 0∧∀{1, ...,m} ⊇ Q ⊇ R : g(Q) = g∗.

In other words, every superset of R represents the same classifier, g*, which is consistent with the
examples in C not indexed by R. For example, in support vector machine training, R can be the
set of support vectors in a support vector machine produced by training on all examples in C. (To
ensure that the training algorithm produces the same SVM for different supersets of R, assume that
the training algorithm breaks ties to determine which SVM to return in a nonrandom way that does
not depend on which examples beyond R are in the training set. For example, the algorithm could
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form a candidate set consisting of all SVMs with a minimum number of support vectors among
those that minimize the algorithm’s training objective function. Then the algorithm could return the
candidate SVM with the lexicographically earliest bit-string representation.)

Theorem 6 Choose an integer q ∈ {1, . . . , m}, independently of the examples in C. Identify a
retained set R ⊆ C and an associated classifier g*. Let r=|R|. Then

P [ED(g∗) ≥ ε∧q ≥ r] ≤

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q ,

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof Assume q = r; otherwise the probability in Theorem 6 is zero, and the proof is done. By the
definition of R,

ED(g∗) ≥ ε ⇒∀{1, ...,m} ⊇ Q ⊇ R s.t. |Q| = q : (EV (Q) = 0∧ED(Q) ≥ ε).

So
P[ED(g∗) ≥ ε] ≤ P[∀{1, ...,m} ⊇ Q ⊇ R s.t. |Q| = q : (EV (Q) = 0∧ED(Q) ≥ ε)]. (6)

Since R depends on the examples in C, Theorem 3 does not apply directly. So use nearly uniform
validation over the set of classifiers represented by size-q subsets of C to validate g* using Theorem
3. This set of classifiers is chosen independently of C, and it includes at least k instances of g*,
where

k = |{Q|{1, ...m} ⊇ Q ⊇ R∧|Q| = q}| =

(

m− r
q− r

)

.

Let g1, . . . ,gn be the classifiers represented by size-q subsets of C. Since g1, . . . ,gn contains at least
k instances of g*, the RHS of (6) is

≤ P[∃S ⊆ {1, ...,n}∧ |S| = k : ∀i ∈ S : (EVi(gi) = 0∧ED(gi) ≥ ε)]. (7)

Apply Theorem 3, noting that

n =

(

m
q

)

.

Then Theorem 3 implies that (7) is

≤

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q .

In Theorem 6, we must choose q independently of C, and hence without reference to r. So, in
Theorem 6, the value of q cannot be optimized with respect to r. Also, if q < r, then the theorem
does not produce an error bound. The following theorem allows us to choose q based on r.
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Theorem 7 Let

δ(m,r,q,ε) =

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q .

Let ε(m, r, q, δ) be the value of ε such that δ=δ(m, r, q, ε):

ε(m,r,q,δ) = 1−











δ
(

m− r
q− r

)−1 (

m
q

)











1
m−q

.

Select δ and a set W = {q1, . . . ,qw} of candidates for q, independently of C. Use C to identify a
retained set R and an associated classifier g*. Let r=|R|. Then, with probability at least 1-δ,

ED(g∗) ≤ min
q∈W s.t. q≥r

ε(m,r,q,
δ
w

),

where the probability is over random draws of C = Z1, . . . ,Zm.

Proof By Theorem 6, for each q ∈ W,

P[ED(g∗) ≥ ε(m,r,q,
δ
w

)∧q ≥ r] ≤
δ
w

.

Using the sum bound on the probability of a union:

P[∃q ∈W : ED(g∗) ≥ ε(m,r,q,
δ
w

)∧q ≥ r] ≤ δ.

So

P[∀q ∈W : ED(g∗) ≤ ε(m,r,q,
δ
w

)∨q < r] ≥ 1−δ.

Note that setting q = r and W = {1, . . . , m} in Theorem 7 gives the compression error bound
from Theorem 5, which is the bound from the literature (Littlestone and Warmuth, 1986; Cristianini
and Shawe-Taylor, 2000; Langford, 2005). In the next two sections, we examine how different
choices of q and W affect the error bound.

7. Analysis

This section analyzes optimal choices of q and analyzes how strongly the error bound depends on
different factors. To determine optimal choices for q, we analyze how probability of bound failure δ
changes as q increases. To compare the influence of different factors, we use some approximations
for the bound ε. Also, we compare choosing q to maximize the number of examples used for
validation to choosing q to maximize the number of copies of g∗ in the nearly uniform validation.

1748



NEARLY UNIFORM VALIDATION IMPROVES COMPRESSION-BASED ERROR BOUNDS

7.1 Optimal q Based on m, r and ε

In this section, we examine which values of q minimize δ(m,r,q,ε). For some background, note that
increasing q increases the fraction of classifiers in the nearly uniform validation that match g∗, but
it decreases the number of validation examples for each classifier. The minimum for q is r, which
produces only one classifier that matches g* and leaves m-r examples for validation. The maximum
for q is m, making g∗ the only classifier involved in uniform validation, but leaving no validation
examples.

For fixed m, r, and ε, we want to determine values of q that minimize δ(m,r,q,ε). Let

p(q) = δ(m,r,q,ε).

Compare values of p(q) for successive values of q ∈ [r,m], examining the ratio p(q+1)/p(q). If this
ratio is less than one, then increasing q improves the error bound. Writing the ratio in terms of
factorials and canceling terms yields

p(q+1)/p(q) = (1−
r

q+1
)(1− ε)−1. (8)

The RHS increases with q. So an optimal value of q is the integer that is the floor of the value that
makes the RHS of (8) one. Setting the RHS equal to one and solving for q produces

qopt =
⌊ r

ε
−1

⌋

,

making the optimal validation set size

m−qopt = m−
⌊ r

ε
−1

⌋

.

For example, with SVM training, if 5% of the training examples are support vectors, and the error
bound is ε = 10%, then the optimal choice for q is one less than half the number of training examples.

7.2 How Error Bound ε Depends on m, r, q, and δ

To explore how the error bound ε(m,r,q,δ/w) in Theorem 7 depends on m, r, q, ,δ, and w, we will
use the following pair of approximations:

(

n
k

)

≈
(en

k

)k
,

which follows from Stirling’s approximation (Feller, 1968, p. 52), and

(1−a)b ≈ e−ab.

Apply these approximations to

δ
w

=

(

m− r
q− r

)−1 (

m
q

)

(1− ε)m−q , (9)

producing
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δ
w
≈

(

e(m− r)
q− r

)−(q−r) (em
q

)q

e−ε(m−q).

Solve for ε:

ε(m,r,q,
δ
w

) ≈
1

m−q

[

−(q− r) ln
e(m− r)

q− r
+q ln

em
q

+ ln
w
δ

]

. (10)

The error bound is linear in the inverse of the number of validation examples m - q, approximately
linear in q - r and in q, logarithmic in the number w of candidates for q, and logarithmic in the
inverse of δ. (Setting q = r and w = m in (10) gives the bound from Cristianini and Shawe-Taylor
2000, p. 70.)

To compare error bounds based on uniform validation to bounds based on nearly uniform vali-
dation, compare ε(m,r,q,δ/w) with q = r, which produces a single copy of g* in the set of classifiers
being validated, to ε(m,r,q,δ/w) with q = (m+r)/2, which maximizes the number of copies of g* in
the set of classifiers being validated.

For q = r, use (10):

ε(m,r,r,
δ
w

) ≈
1

m− r

[

r ln
em
r

+ ln
w
δ

]

. (11)

For q = (m+r)/2, start from (9):

δ
w

=

(

m− r
1
2(m+ r)− r

)−1 (

m
1
2(m+ r)

)

(1− ε)m−(m+r)/2 .

Combining terms shows that this is

=

(

m− r
1
2(m− r)

)−1 (

m
1
2(m+ r)

)

(1− ε)(m−r)/2 .

The first combination counts the number of copies of g* in the set of classifiers to be validated. We
chose q to make this the coefficient of the central (i.e., largest) term of a binomial distribution. Using
the bounds for the central and near-central terms of the binomial distribution from Feller (1968, p.
180), shows this to be

≈

√

1−
r
m

2re−(m−r)ε/2..

For r<<m, the first term is close to one, so ignore it. Then

δ
w
≈ er ln2−(m−r)ε/2..

Solve for ε:

ε(m,r,
m+ r

2
,

δ
w

) ≈
2

m− r

(

r ln2+ ln
w
δ

)

. (12)

Compare (11) to (12):
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ε(m,r,r,
δ
w

) : ε(m,r,
m+ r

2
,

δ
w

) ≈
1

m− r

[

r ln
em
r

+ ln
w
δ

]

:
2

m− r

(

r ln2+ ln
w
δ

)

.

Terms ln(w/δ) tend to be small compared to the rest of the sums in parentheses, so ignore them.
Then divide both sides of the ratio by r/(m-r) to get:

≈ ln
em
r

: ln4,

which is

= lnm− lnr +1 : ln4.

For example, if there are m = 1024 training examples and r = 64 support vectors, then the ratio is
3:1, indicating that using nearly uniform validation improves the bound by a factor of about three.

8. Tests

This section presents results of tests applying Theorem 7 to compare uniform error bounds to some
nearly uniform bounds. We compare the bound methods:

1. Uniform – Use q = r and W = {1, . . . , m}. This is the compression-based bound from the
literature.

2. Full – Use the optimal q in W = {1, . . . , m}. This is the straightforward nearly uniform bound.

3. Sample – Use the optimal q in W = {m/11, 2m/11, . . . , 10m/11}, that is, use 10 equally-
spaced candidates for q. This limits the candidates for q, making w = 10 in the error bound
instead of w = m, but optimizing over fewer choices for q.

4. Center – Use q = m/2. So W = {m/2}, and w = 1.

For all tests, δ = 0.01, and bounds are produced by applying Theorem 7. Each table in this
section shows error bounds produced by various methods for a set of problems. For each problem,
the best error bound is shown in bold. In parentheses after the bounds are values of q that produced
the bounds. For methods Full and Sample, qmin is the value of q ∈ W that minimizes ε(m, r, q, δ/w)
in Theorem 7. For the other methods, the value of q shown is the only choice.

8.1 Error Bounds for SVMs Trained on Real-World Data Sets

This subsection applies the bound methods to actual data sets for which SVMs have been developed:

1. Netclass – SVMs were trained to recognize which of several generative graph models best
describe a graph of the neural network of c. elegans (Middendorf et al., 2004). There are m =
800 training examples and r = 51 support vectors.

2. Genex – SVMs were trained to classify microarray gene expression data (Brown et al., 1999).
There are m = 1097 training examples and r = 216 support vectors.
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Bound Method
Data m r Uniform (q) Full (qmin) Sample (qmin) Center (q)

Netclass 800 51 23.2% (51) 11.2% (440) 10.0% (509) 9.8% (400)
Genex 1097 216 46.5% (216) 25.8% (810) 24.3% (897) 28.1% (548)
Dig1 787 355 71.9% (355) 53.5% (648) 52.1% (715) 65.6% (393)

Table 1: Error Bounds for Real-World Data Sets

Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)
5 25.0% (5) 19.7% (21) 17.1% (27) 15.0% (50)
10 35.6% (10) 27.2% (33) 24.5% (36) 21.3% (50)
20 50.9% (20) 39.8% (50) 36.9% (54) 34.1% (50)

Table 2: Error Bounds for m = 100 Examples

3. Dig1 – An SVM was trained for digit recognition (Langford 2005). There are m = 787 training
examples and r = 355 support vectors.

Method Center produces the best bound for problem Netclass, and method Sample produces the
best bound for the other problems. For the first two problems (Netclass and Genex), all methods
based on nearly uniform bounds produce about the same bounds, and they are about half the error
bound produced by uniform validation. For Dig1, the bounds produced by methods Full and Sample
are much better than those produced by uniform validation, but still not good enough to be of any
use in practice.

Why are compression bounds for Dig1 so ineffective? Compression bounds are based on the
idea that if a classifier is based on only a few training examples and still performs well on the rest,
then that is evidence that the classifier performs well in general. For Dig1, the size of the retained
set, r, is about half of the number of training examples m. The retained set is composed of training
examples used in the classifier and of training examples for which the classifier errs. Consider the
following scenario: each class label is equally likely, and we simply choose g* to be the function
that returns the most common label in the training set regardless of the input. Then the retained set
consists of all training examples with the least common label, which is most likely a little less than
half the training examples. In this case, the true error rate is 50%, and r is about half of m. Since
our compression bounds are based on r and m, the bounds cannot distinguish this scenario from the
case of Dig1. Hence, compression bounds rely heavily on having few retained examples relative to
the number of training examples.

8.2 Error Bounds for m = 1000 Examples

This section explores error bounds produced by the different methods over a range of training set
sizes m and retained set sizes r. These tests give a sense of how data set sizes and ratios of r to m
affect bounds.

As in Section 8.1, the most effective bound methods in Tables 2 to 4 are Sample and Center.
Comparing methods within rows shows that the nearly uniform methods produce better bounds
than the uniform methods, with the nearly uniform methods producing bounds that are about half
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Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)

50 19.5% (50) 9.0% (480) 7.9% (636) 7.7% (500)
100 30.9% (100) 15.1% (620) 13.8% (727) 14.6% (500)
200 47.0% (200) 26.4% (742) 24.9% (818) 28.5% (500)

Table 3: Error Bounds for m = 1000 Examples

Bound Method
r Uniform (q) Full (qmin) Sample (qmin) Center (q)

50 11.7% (50) 4.6% (895) 4.0% (1090) 3.9% (1000)
100 19.2% (100) 7.7% (1209) 7.0% (1454) 7.3% (1000)
200 30.6% (200) 13.6% (1374) 12.7% (1454) 14.2% (1000)

Table 4: Error Bounds for m = 2000 Examples

the bounds for the uniform method when the ratio r:m is about 1:10. The advantage of using nearly
uniform methods is more pronounced for smaller ratios of r:m.

Comparing Table 2 to Table 3 cell-by-cell shows the effect of increasing problem size by a factor
of 10 while keeping ratios r:m the same. In general, the bounds improve as problem size increases,
and the improvement is greater for smaller r:m ratios. The same kind of comparison is possible
between Table 3 and Table 4 by comparing the first two rows of Table 3 to the last two rows of
Table 4. This comparison shows the same general trends.

9. Discussion

This section outlines several possible directions for future work. One possibility is to improve
the bounds by treating training examples for which g* errs differently from training examples that
comprise g*. Right now, these examples are combined in the retained set R. Let RE be the set of
training errors for g*, and let R* be the set of examples used to form g*. Suppose training on any
superset of R* yields g*, that is, including some training errors from RE does not disrupt training.
Then R* can be used in place of R to form a new error bound on g*. Of course, we need to use
validation of non-consistent classifiers in the proposed bound, since validation sets would contain
examples that cause empirical error. For example, we could use the bounds based on Binomial Tail
Inversion (Langford, 2005).

The error bounds in this paper are based on uniform validation over different validation sets
resulting from partitions of all available data into training and validation sets. Lack of knowledge of
the joint distribution of misvalidations forces us to take the worst-case joint distributions as bases for
the bounds. The worst-case bound is often applied when many validations all use the same exam-
ples; better bounds apply when the validations are all based on example sets drawn independently
of each other. For each pair of partitions into training and validation sets, the validation sets have an
intersection of shared examples, and the non-intersection examples are drawn independently of each
other. Perhaps it is possible to use some information about the patterns of shared and independent
examples among the different validation sets to constrain the joint distribution of misvalidations in
a way that improves the uniform error bounds.
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It would be useful to extend the results of this paper to other classifiers that have compression-
based bounds, including set covering machines (SCMs) (Marchand and Shawe-Taylor 2001) and
decision list machines (DLMs) (Marchand and Sokolova 2005). The challenge is to efficiently
identify a retained set under the present training methods for SCMs and DLMs, that is, identify a
small subset of training examples such that training on any superset that is a subset of the training
examples produces the same classifier. A solution may be to modify the training algorithms in some
way to make it easy to identify a small retained set after training.

An alternative approach is to empirically estimate the fraction of trainings on subsets of training
data (and perhaps on strings of side information) that produce the same classifier as the classifier
g* trained on all available data. Use sampling over subsets of training data (and strings of side
information) to estimate the fraction. Then form an error bound that uses the estimated fraction
as the basis for nearly uniform validation. Include a term in the error bound to account for the
possibility of over-estimating the fraction of trainings that produce g*.

Finally, it should be possible to apply this empirical approach to nearly uniform validation in a
transductive setting, where the inputs of examples to be classified are known. Each classifier g that
agrees with g* on all examples to be classified could be considered equivalent to g*. This procedure
is similar to empirically determining VC dimension for specific data sets, as described by Vapnik
(1998).
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