Journal of Machine Learning Research 9 (2008) 859-891 Submitted 1/07; Revised 12/07; Published 5/08

An Error Bound Based on a Worst Likely Assignment

Eric Bax BAXHOME@ YAHOO.COM
PO Box 60543
Pasadena, CA 91116-6543

Augusto Callejas CALLEJAS@ALUMNI.CALTECH.EDU
195 S Wilson Avenue

Apartment 3

Pasadena, CA 91106

Editor: Gabor Lugosi

Abstract

This paper introduces a new PAC transductive error bound for classification. The method uses in-
formation from the training examples and inputs of working examples to develop a set of likely
assignments to outputs of the working examples. A likely assignment with maximum error deter-
mines the bound. The method is very effective for small data sets.

Keywords: error bound, transduction, nearest neighbor, dynamic programming

1. Introduction

An error bound based on VC dimension (Vapnik and Chervonenkis, 1971; Vapnik, 1998) uses uni-
form bounds over the largest number of assignments possible from a class of classifiers, based on
worst-case arrangements of training and working examples. However, as the number of training
examples grows, the probability that training error is a good approximation of working error is so
great that the VC error bound succeeds in spite of using uniform bounds based on worst-case as-
sumptions about examples. Also, it is easy to compute VC bounds for any number of examples,
assuming the VC dimension for the class is known. This makes VC bounds useful and convenient
for large data sets, that is, data sets having thousands of examples. However, VVC error bounds have
some drawbacks: they are ineffective for smaller data sets, and they do not apply to some classifiers,
such as nearest neighbor classifiers.

Transductive inference (Vapnik, 1998) is a training method that uses information provided by
inputs of working examples in addition to information provided by training examples. The idea is to
develop the best classifier for the inputs of the specific working examples at hand rather than develop
a classifier that is good for general inputs and then apply it to the working examples. Transductive
inference improves on general VVC bounds by using the actual working example inputs, instead of a
worst-case arrangement of inputs, to find the number of different assignments that classifiers in each
training class can produce. The bounds are then used to select among classes, mediating a tradeoff
between small classes that are more likely to have good generalization and large classes that are
more likely to capture the dynamics of the training data.

The error bound presented here is designed to provide error bounds for data sets so small that
other bounds are ineffective. Like transductive inference, the error bound presented here uses infor-
mation provided by the inputs of the working examples in addition to information provided by the

(©2008 Eric Bax and Augusto Callejas, patent pending.

BAX AND CALLEJAS

training examples. But it also uses information provided by the training procedure rather than just
the class of all classifiers that can be produced by the training procedure. However, it requires more
computation than VVC bounds. In fact, the required computation grows so quickly with data set size
that the bound is practical only for small data sets. (Nearest neighbor classifiers are an exception to
this limitation; this paper contains an efficient method to compute bounds for them.)

Normally, algorithm designers are concerned about how computation grows as problem size
increases, focusing on asymptotic behavior as problem size goes to infinity. This paper does not
focus on what happens as data set size goes to infinity—there are already many effective bounds for
large data sets. This paper focuses on how much information we can wring out of small data sets.
Small data sets do occur in practice, for example in early stage drug tests in medicine and in setting
prices and making markets for ad-matching systems that have to deal with tiny markets out in the
long tail of information domains. In short, there is “plenty of room at the bottom” for improved
error bounds.

The error bound in this paper is based on the fact that if the training and working examples are
generated independently and identically distributed (i.i.d.), then each partition of the complete set of
training and working examples into a training set and a working set is equally likely. Several error
bounds for machine learning are based on this principle. Examples include VVC error bounds (Vapnik
and Chervonenkis, 1971; Cristianini and Shawe-Taylor, 2000, Section 4.2, p. 55), error bounds
for support vector machines (Vapnik, 1998, Chapter 8, pp. 339-343), compression-based error
bounds (Littlestone and Warmuth, 1986), and uniform error bounds based on constraints imposed
by patterns of agreement and disagreement among classifiers over the working inputs (Bax, 1999).
For some other ways of developing and using this idea, refer to Audibert (2004), Blum and Langford
(2003), Catoni (2003), Catoni (2004), Derbeko et al. (2003), and El-Yaniv and Gerzon (2005).

This paper is organized as follows. Section 2 introduces concepts and notation for the error
bound. Section 3 presents the error bound. Section 4 introduces sampled filters, which reduce com-
putation required for the bound. Section 5 analyzes speed and storage requirements for filters based
on all partitions and for sampled filters. Section 6 introduces filters based on virtual partitioning,
which do not require explicit computation over multiple partitions of the data into different training
and working sets. Section 7 gives an efficient algorithm to compute an error bound for a 1-nearest
neighbor classifier. Section 8 presents test results comparing bounds produced by different filters
on a set of problems. Section 9 is a discussion of possible directions for future research.

2. Concepts and Notation

This paper concerns validation of classifiers learned from examples. Each example Z = (X, Y)
includes an input X and a class label Y € {0,1}. We observe

(XJ_,Y]_), ceey (Xt,Yt),Xt+1, "'7Xt+W

that is, inputs and outputs of t training examples and just the inputs of w working examples. (We
will use T to denote the set of training examples and W to denote the set of working examples.) A
classifier g, which is a mapping from the input space for X to {0,1}, is developed using the observed
data. Then classifier g is used to predict the working example outputs Y¢.1, ..., Yiiw associated
with Xt+1, . X1+W.

For any sequence of examples

860

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

C= (leyl)a "'(Xt+W7yI+W> (1)

from the joint space of inputs and labels, define the error to be

1 t+w

Eo=2 > 1(g06) #%),

Wi

where | is the indicator function—one if the argument is true and zero otherwise. Let

C — Zl, 3Zt+W

Examples in this complete sequence Z; = (X1,Y1), ..., Ztyw = (Xt+w, Yi+w) are assumed to be
drawn i.i.d. from an unknown joint distribution of inputs and labels.

The goal is to produce a PAC (probably approximately correct) bound on Ec, the error on
complete sequence C.

The bounds in this paper consider different possible assignments to the unknown labels of the
working set examples and use permutations of the complete sequence. So we introduce some no-
tation around assignments and permutations. For any assignment a € {0,1}" and any permutation
o of {1, ..., t+w}, let C(a, o) be the sequence that results from assigning labels to the working
examples in C:

Vie{l,..,w}: Y =aj,

then permuting the sequence according to 0. Let T(a, o) be the set consisting of the first t examples
in C(a, 0). Let W(a, o) be the set consisting of the last w examples in C(a, o). Let g(a, o) be the
classifier produced by applying the training procedure with T(a, o) as the training set and W(a, o)
as the working set. Let E(a, o) be the error of g(a, o) over W(a, 0); in other words, let E(a, o) be the
error E as defined in Equation (1) that would result from using C(a, o) as the complete sequence.

Let a* be the actual (unknown) labels of the working examples. Let Id be the identity permuta-
tion. Then

Ec = E(a*,1d).

3. First Error Bound and Algorithm

Section 3.1 presents the error bound. Section 3.2 shows how to compute the bound over partitions
instead of permutations. Section 3.3 presents the algorithm for computing the bound.

3.1 Bound
Let Id be the identity permutation. Define a likely set

L={ac{0,1}"|P[E(a,0) > E(a,1d)] > &},

where the probability is over the uniform distribution of permutations o of {1, ..., t+w}. The bound
is

861

BAX AND CALLEJAS

max

acl E(a,1d). 2)
Theorem 3.1
With probability at least 1 — 9,
. max
E(@.ld)< 7 E(ald), (3)

where the probability is over random complete sequences drawn i.i.d. from a joint input-label dis-
tribution.

Proof of Theorem 3.1
If a* € L, then Equation (3) holds. So it suffices to show that

Pc(@a” ¢L) <39,

where subscript C denotes probability over the distribution of complete sequences C. By the defini-
tion of L, the LHS is

= Pc[Ps[E(a*,0) > E(a*,1d)] < 3|C],

where subscript o denotes probability over the uniform distribution of permutations o of {1, ...,
t+w}. Convert the probability over the distribution of complete sequences to an integral over com-
plete sequences:

L 1(Pe[E("0) = E(a",10)) < 5iC)p(C)aC.

where p(C) is the pdf of C. Since each permutation of a complete sequence is equally likely, we
can replace the integral over complete sequences by an integral over sequences Q of t+w examples
followed by an average over permutations o’ of Q to form complete sets:

1

= |y 2 (PolE(a.0) = E(@.0')] <5C = 0'Q)p(Q)aQ 4)

For each set Q, only o (t+w)! or fewer permutations ¢’ can rank in the top & (t+w)! of all (t+w)!
permutations for any statistic, including the statistic E(a*, 0). So,

vQ: Y I(Ps[E(a",0) = E(a",0')] < 8|Q) < (t +w)!.
0—/
Substitute this inequality into Equation (4), to show it is
< [t atrw)p(Q)dQ
= Jo t+w)! PRRIAR
Cancel terms (t+w)! and integrate to get &, completing the proof.

862

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

3.2 From Permutations to Partitions

For each assignment a € {0,1}" and each size-t subset S of {1, ..., t+w}, let T(a, S) be the set (or
multi-set) of examples in C(a, Id) indexed by entries of S, and let W(a, S) be the remaining examples
in C(a, Id). Refer to the pair T(a, S) and W(a, S) as the partition induced by S. Let g(a, S) be the
classifier that results from training with T(a, S) as the training set and W(a, S) as the working set.
Let E(a, S) be the error of g(a, S) over W(a, S).

For each permutation o of {1, ..., t+w}, let o; be the position in C(a, 1d) of the example in
position i in C(a, o). Note that

{01,..,06(} =S = (T (a,0),W(a,0)) = (T(a,S),W(a,S)).

For each S, there is the same number, t'w!, of permutations o with {04, ..., ot} = S, because there
are t! ways to order the elements of S in 0y, ..., oy and w! ways to order the remaining elements
of {1, ..., t+w} in Ot;1, ..., Orrw. Since there is this t'w!-to-one mapping from permutations o
to subsets S with E(a, o) = E(a, S), the probability over permutations in the definition of L can be
replaced by the following probability over partitions induced by subsets S :

L={aec {0,1}"|PgE(a,S) > E(a,S")] > 3},

where the probability is uniform over size-t subsets S of {1, ..., t+w}, and S* = {1, ..., t}. Hence,
we can compute errors E(a, S) over size-t subsets S rather than over all permutations in order to
compute bound in Equation (2).

3.3 Algorithm

Given an array C of t training examples followed by w working examples and a bound failure prob-
ability ceiling o, Algorithm 3.3.1 returns a valid error bound with probability at least 1 —&. The
procedure E(a, S, C), which is not shown, computes E(a, S) by assigning a to the labels of the last
w entries in C, training a classifier using the entries of C indicated by S as the training set and the
remaining entries as the working set, and returning the error of that classifier over that working set.

Algorithm 3.3.1

procedure bound(C, delta)
// Variable bound stores the running max of errors for likely assignments.
bound := 0;

// Try all assignments.
for (a in {0,1}"w)
// Check if error is high enough to be a new max.
if (E(a, {1, ..., t}, C) > bound)
// Variable f[i] stores the frequency of E(a, S) = i/w.
f[O ... w] =0;
// Find error frequencies.
for (S subset of {1, ..., t+w} with |S]=t) f[E(a, S, C)]++;
// Variable tail stores the frequency of error

863

BAX AND CALLEJAS

// greater than for S={1, ..., t}.
tail = 0;
// Sum the tail.
for (i=E(a, {1, ..., t}, C) to w) tail += f[i];
// 1T assignment is likely, increase bound.
if (tail > delta) bound := E(a, {1, ..., t}, O);
end if
end for

return bound;
end procedure

4. Sampled Filters and Ranking with Random Tie Breaking

The goal is to reject from L as many false assignments a as possible among those that have E(a,
Id) > E(a*, Id), while only rejecting a* in a fraction d or fewer of cases. The bound process in the
previous section rejects assignments a for which E(a, S*) is abnormally high among errors E(a, S)
over subsets S of {1, ..., t+w}, that is, among partitions of the complete sequence into training and
working sets. For each assignment a, the process is equivalent to ranking all subsets S in order of
E(a, S), finding the fraction of subsets that outrank S*, even with S* losing all ties, and rejecting a
if the fraction is o or less. Call this filter the complete filter, because it compares S* to all subsets
S. This section introduces alternative filters that do not require computation over all subsets and a
random tie breaking process that ranks S* fairly among subsets S having the same error instead of
having S* lose all ties.

4.1 Sampled Filters

The complete filter is expensive to compute. To motivate thinking about alternative filters, note that
any filter that accepts a* into L with probability at least 1-0 produces a valid bound. For example,
a filter that simply makes a random determination for each assignment, accepting it into L with
probability 1-9, independent of any data about the problem at hand, still produces a valid error
bound. Of course, this random filter is unlikely to produce a strong bound, because it does not
preferentially reject assignments a that have high error E(a, S*).

The following sampled filter, based on errors E(a, S) over a random sample of subsets S, re-
jects assignments with high error E(a, S*), and it is less expensive to compute than the complete
filter. For each assignment a, generate a sample of n size-t subsets S of {1, ..., t+w}. Generate
the sample by drawing subsets i.i.d. with replacement based on a uniform distribution over subsets,
or generate the sample by drawing subsets i.i.d. without replacement based on a distribution that is
uniform over subsets other than S* and has zero probability for S*. After drawing the sample by
either method, add S* to the sample. Then use the sample in place of the set of all subsets S in the
algorithm, that is, accept assignment a if the fraction of subsets S in the sample with E(a, S) at least
E(a, S*) is greater than & . Like the complete filter, this sampled filter has probability at most d of
rejecting the true assignment. Here is the proof for sampling with replacement. The proof for sam-
pling without replacement is similar, and it is outlined after the proof for sampling with replacement.

864

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

Theorem 4.1.1
Let R be the set of all size-t subsets of {1, ..., t+w}. Let M be a set (or multi-set) of entries
from R, drawn i.i.d. with replacement based on a uniform distribution over R. Let
I—M = {a € {071}W‘PSEMU{S*}[E (a7 S) > E(a7 S*)} > 6}

where the probability is uniform over all sets S in M. Then, with probability at least 1 — o,

max

* *<
E(@",5%) < aclby

E(a,S%), ()

where the probability is over random complete sequences C drawn i.i.d. from a joint input-label
distribution and over random subset samples M.

Proof of Theorem 4.1.1
If a* € Ly, then Equation (5) holds. So we will show
Pcm(@ ¢ Lm) <9, (6)

where the probability is over the joint distribution of complete sequences C and subset samples M.
By the definition of Ly, the LHS is

= Pcm[Psemugsy[E(@",S) > E(a%,S%)] < 3[C].

Convert the probability over C into an integral over sequences Q of t+w examples, followed by a
probability over permutations o’ of Q to form complete sets:

ARNM%meEmﬁazewﬂvns&C—dmmqwq (7)

where the first probability is over a joint distribution of o’ and M, with ¢’ drawn uniformly at random
from permutations of t+w elements and independently of M. For any fixed sequence Q, consider the
expression from within Equation (7):

Po' m[Psemuis1[E(@,S) > E(a%,5%)] < 8|C =d'Q]. (8)
Define multi-set

H(Q)={E(a",S)|Se MU{S"}}.

Random draws of o’ and M make H(Q) a multi-set of random values drawn i.i.d. from a uniform
distribution over the set

U(Q) ={E@"9)|SC {L,..t+W}AS| =t}
Since the elements of H(Q) are drawn i.i.d., the probability that E(a*, S*) ranks in the top & |H(Q)|of
the positions in a ranking of entries in H(Q) is at most d. Note that Equation (8) is this probability.
So
VQ : Py m[Psemuisy[E(@",S) > E(a",S")] < 8IC=0'Q] < &.

865

BAX AND CALLEJAS

Substitute this inequality into Equation (7), showing that the LHS of Equation (6) is

< /Q 5p(Q)dQ.

Integrate to get 8, completing the proof.
Now consider the case of sampling subsets without replacement:

Theorem 4.1.2
Let R” be the set of all size-t subsets of {1, ..., t+w}, except for S*. Let M’ be a set of entries
from R’, drawn i.i.d. without replacement based on a uniform distribution over R’. Let

LM/ = {a € {O,l}W’PSEM/U{g}[E(a,S) > E(a,S*)] > 6},

where the probability is uniform over all sets S in M’. Then, with probability at least 1 — 9,

maXx

* * <
E(a",s") < ac Ly

E(a,S"),
where the probability is over random complete sequences C drawn i.i.d. from a joint input-label
distribution and over random subset samples M.

Proof of Theorem 4.1.2

The proof is almost the same as the proof of Theorem 4.1.1, substituting M’ for M. The set
H(Q) becomes a set of random variables drawn i.i.d. from U(Q) without replacement, rather than
with replacement. But with or without replacement, the probability that E(a*, S*) ranks in the top
|H(Q)|of the positions in a ranking of entries in H(Q) is at most &. Otherwise, the proof is the same.

4.2 Random Tie Breaking

Both the complete filter and the sampled filter accept an assignment if the fraction of a set of subsets
S with E(a, S) at least E(a, S*) is greater than 8. In essence, if other subsets S have the same error
as S*, then this rule errs on the side of safety by treating those subsets S as having greater error than
S*. This ensures that the bound is valid, but it makes the bound weaker than necessary. To close the
gap, use random tie breaking to rank S* at random among the subsets S that have E(a, S) = E(a, S*).
Let k be the number of subsets S with the same error as S*, including S* itself. Generate an integer
uniformly at random in [1,k] to be the number of subsets S with the same error that rank at or above
S* after random tie breaking. If that number plus the number of subsets S with error greater than for
S* is a larger fraction of the partitions than &, then accept the assignment.

5. Speed and Storage Requirements for Complete and Sampled Filters

Consider the storage requirements for the bound process. Since the maximum error E(a, S) over
assignments in L is obtained by maintaining a running maximum as assignments are added to L,
there is no need to store L explicitly. So the storage requirements are mild, including space for a
data set, for two classifiers, and for training a classifier.

Using the complete filter to produce a bound requires time to train

866

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

o(2" (t o))
classifiers. Using the sampled filter instead requires time to train

0(2"n)

classifiers, where n is the number of sample partitions per assignment. Both types of filters can be
computed in parallel, using different machines to filter different sets of assignments, each keeping
a running maximum of E(a, S*) over accepted assignments, and then finishing by fanning in the
maximum over the machines.

To reduce computation, evaluate assignments a for membership in L in decreasing order of E(a,
S*). When the first assignment a is accepted into L, return E(a, S*) as the error bound, and stop.
To order assignments by E(a, S*), train a classifier g, and apply it to each input in W to form the
assignment with zero error. Invert that assignment to form the assignment with maximum error.
Invert single elements of that assignment to produce assignments with the next greatest error rates.
Then invert pairs of elements, then triples, etc. (This technique reduces computation only by a small
fraction when the bound is effective; the reduction is only about half for an error bound of 0.5 and
even less for smaller error bounds. On the other hand, it does contribute to “fast failure” when the
bound is not effective.)

6. Virtual Partitions

Section 6.1 introduces the virtual partition filter. Section 6.2 describes the leave-one-out filter.
Section 6.3 presents scoring functions. Section 6.4 suggests a scoring function for support vector
machines.

6.1 Virtual Partition Filter

Define a general likely set Ly, based on some function h:
Ln = {a € {0,1}"|Pg[h(a,S) > h(a,S*)] > 3},
where the probability is over subsets S of {1, ..., t+w}. Define a general error bound

max

En(a,S) = acly

E(a,S").
If the filter

Pslh(a,S) > h(a,S*)] > &

can be computed for each assignment a without explicitly computing h(a, S) over some subsets S,
then we call it a virtual partition filter.

867

BAX AND CALLEJAS

6.2 Leave-One-Out Filter

For example, let h(a, S) be the number of leave-one-out errors in W(a, S). (A leave-one-out error is
an example in C(a) that has a different label than the closest other example in C(a), with distance
based on some metric over the input domain.) A filter based on leave-one-out errors excludes
assignments a that cause an improbably large fraction of the leave-one-out errors in C(a) to be
in the working set. Frequencies of leave-one-out errors in W(a, S) over subsets S can be computed
without explicitly iterating over the subsets. The frequencies have a hypergeometric distribution—if
there are m leave-one-out errors in C(a), then

t+w—
Po(a,) =] = (] ><<t+vvvvw>jm)
W

where the probability is uniform over size-t subsets S of {1, ..., t+w}.
Compute the filter for each assignment as follows. Set the labels of Z;. 1, ..., Zi+w according to
a. Then compute the number of leave-one-out errors in C(a); call it m. Next, compute frequencies:

Vj € {max(0,m—t),....,min(w,m)} : f; = (m > < tw=m >

J W—j

Let j*=h(a,S*), that is, the number of leave-one-out errors in W(a, S*). Let

min(w,m)
V= fj.
=
For random tie breaking, subtract from v a number drawn uniformly at random from [0, f;, —1]. Then
divide by the number of partitions:
t+w
W .

If the result is & or less, then reject assignment a.

6.3 Scoring Functions
In general, let s be a scoring function on examples in C(a) that returns an integer. Let

h(a,S) = Z s(Z).

ZeW(a,S)

Let n(Z) be the nearest neighbor to Z in TUW—{Z}. For example, when counting leave-one-out
errors,

[1 ifn2)y#2Zy

5(2) = { 0 otherwise

where .y after an example denotes the output, Y, for the example.
Another useful scoring function counts leave-one-out errors caused by example Z:

868

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

S(Z) = [{Q € TUW[n(Q) =Z and Quy #Z.y}].

For scoring functions, such as this one, that have a range other than {0,1}, the hypergeometric
distribution does not apply. However, dynamic programming allows efficient computation of the
frequencies, as follows. Let

CijkE

)

beA

that is, the number of size-j subsets of the first i examples in C(a) that have sum of scores k. The
base cases are

{A c{1,...,i}||A|=jand Z s(Zp) = k}

V(j,k) :cojk =0
except
Cooo = 1,
and
vk <0:cjjk=0.

The recurrence is

Cijk = Ci—1,j k T Ci—1,j—1 k—s(i)>
where s(i) is the score of example i. The frequencies are:

Ps[h(a,S) = k] = Ctiwwk-

Computing an error bound using virtual partitions requires O(2"poly(t+w)) time because the scor-
ing function is computed for each of the 2% assignments. (This assumes O(poly(t+w)) time to
compute the filter for each assignment.) The computation requires O(poly(t+w)) space since each
assignment can be filtered without reference to others, and the maximum error of a likely assignment
can be maintained using a single variable.

6.4 Scoring Functions for SVMs

Now consider filters with virtual partitions for support vector machines (SVMs). A leave-one-
out filter can require much computation—for each assignment, training separate SVMs with each
example held out in order to compute the number of leave-one-out errors. Joachims discovered a
method to bound the number of leave-one-out errors based on the results of training a single SVM
on all examples. The method is called ea-estimation (Joachims, 2002, Ch. 5). Computing the
ea-estimator involves producing a set of examples that are potential leave-one-out errors. The set
can be used as the basis for a filter that is binary-valued—each example in the set scores one and
each other example scores zero. The €a-estimation procedure can also be used as the basis of a
more complex filter, because it computes scores for examples before using a threshold to determine
which ones are in the set. So the scores (or discretized scores) can be used directly as the scoring
function for a filter.

869

BAX AND CALLEJAS

7. Efficient Computation of Error Bounds for 1-Nearest Neighbor Classifiers

When using virtual partitions based on leave-one-out errors to produce an error bound for a 1-
nearest neighbor classifier, there is a way to avoid iterating over all assignments to compute the
bound. Avoiding this iteration leads to an efficient method to compute an error bound for a 1-
nearest neighbor classifier, that is, a method that requires time polynomial in the size of the problem.
This section begins with some preliminary concepts before presenting the recurrences and dynamic
programming algorithm. Next there is a small example to illustrate the algorithm. Then there are
details on how to compute the recurrences efficiently. This section ends with a note on how to
extend the algorithm to improve the bounds by allowing random tie breaking for ranking.

7.1 Preliminaries and Concepts

To begin, ensure that each example has a unique nearest neighbor by randomly perturbing the inputs
of examples that tie to be nearest neighbors to any example. Perturb by so little that no new nearest
neighbor can be introduced. Repeat until each example has a unique minimum distance to another
example.

Lemma 7.1.1

This form of random tie breaking makes it impossible for a cycle of three or more examples to
have each example in the cycle the nearest neighbor of the next.

The proof is by contradiction. Let n(Z) be the nearest neighbor of example Z in T UW — {Z}.
Suppose there is a cycle of examples Z1, ..., Zm, Z1 with m > 2 and each example the nearest
neighbor of the next, that is,

Vie{l,...m}:Z =n(Z1),
and

Let d be the distance metric over example inputs. Then

d(Z1,22) <...<d(Zm,Z1) < d(Z1,Z5).
For cycles greater than length two, the tie breaking makes equality impossible. So we have

d(Z1,22) < ... <d(Zm,Z1) < d(Z1,Z2).
Having the same distance on the left and right implies that the distance from the first example to the

second is greater than itself, which is impossible, completing the proof.
Let G be a directed graph with each example in Z1, ..., Zi.w a node and with edges

{<n(zl)7zl>a cey (n<ZI+W)7Zt+W)}7
that is, an edge to each example from its nearest neighbor. By Lemma 7.1.1, G has no cycles of
length greater than two. So G is a directed tree or forest, plus some directed edges that complete
length two cycles by going back along tree edges. Let F be a directed forest created by removing
from G one edge from each two-cycle. The algorithm to efficiently compute an error bound uses
dynamic programming, starting at the leaves of F and working up to the root or roots.

870

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

7.2 Recurrences and Algorithm

Let F(k) be the subtree of F rooted at example Z, that is, Zx and all nodes that can be reached by
following directed sequences of edges from Z. Let A(i,j,k) be the subset of assignments in {0,1}W
that have i leave-one-out errors among the training examples in F(k) and j leave-one-out errors
among the working examples of F(k). Let n(Z,T) be the nearest neighbor of example Z among the
training examples. Define

o max

k= aeAd, k)
that is, it is the maximum number of working examples in the subtree of F rooted at example Zg
that are misclassified by their nearest training examples, with the maximum being over assignments
that have i leave-one-out errors on the training examples in the subtree, j leave-one-out errors on the
working examples in the subtree, and label y on example Z. If there are no such assignments, then
define

HZeF(k)NnW|Zy=yand Z.y #n(Z,T).y}|,

Bijky = —1,

to signify that the value is “undefined.”
The base cases are leaves of F. For a leaf example Z that is in T and has label y,

ooky = 0,
and, for all other combinations of i, j, and y,
Bijky = —1.

For a leaf example Z that is in W and has label vy,

ooky = 0,
€00k 1-y = 1,
and, for all other combinations of i, j, and y,
Cijky = -1

Before defining the general recurrence, we first define some terms that express how interactions
between examples and their parent examples in F influence the numbers of leave-one-errors in T
and W and the error. Let Z; be an example, Lety; = Z;.y, let Zy be the parent of Z; in F, and lety, =
Zy.y. Define

. 1 ZeTandy;
CT(|7yi7k7yk) :{ 0 | O'“’]erWiysle;é yk ’

to count whether Zy having label y, causes example Z; to be a leave-one-out error in T. Define

©)

. 1 ZveTyy ,and Zy=n(Z
dT(I,yi,Kyk):{ , e ﬁt)(]';rwise' @0 (10)

871

BAX AND CALLEJAS

to count whether example Zy having label y, causes example Zy to be a leave-one-out error in T.
Define

) 1 ZieWandy;
CW(lvyiakayk) = { 0 | OtherWéIe?é " ’

to count whether example Zy having label y, causes example Z; to be a leave-one-out error in W if
it has label y;. Define

(11)

1 ZxeW,y; # Yk, and Zj = n(Zy)

dW(i>yi’k7yk) = { 0 otherwise) (12)

to count whether example Z; having label y; causes example Zy to be a leave-one-out error in W if it
has label y,.. Define nt(Z) to be the nearest neighbor of example Z in T. Define

[1 ZxeW and yg # nt(Zk).y
hik.yi) = { 0 otherwise ’

to count whether example Zy having label y, causes example Z to be misclassified by its nearest
training example.
Let r(Z) be the parent of example Z in F. Define

B(k) = {b|r(Zv) = Z},
that is, B(k) is the set of positions in C of the children of Z, in F. Lety, = Zy.y. Then
Cijky = max h(k,yx) + €ipjnbyb- (13)
{(ib,Io.b.Yb) b € BK), &y, # ~L}St. beg(k) e
3 beBk)[Ib + €T (b, Yo, K.y) +dr (b, Yb, K, y)] =i, and
Y bes(k) i+ ow (0, Yo, K,Y) + dw (b, Yo, K, Y)] = |

Let A(i,j) be the subset of assignments in {0,1}" that have i leave-one-out errors on training exam-
ples and j leave-one-out errors on working examples. Define

Vij = max {Z eW|Zy#n(Z,T).y},

ac

that is, the maximum error over assignments that have i leave-one-out errors on training examples
and j leave-one-out errors on working examples. If there are no such assignments, then let
Vij = 0.

Define

B = {b|Zpisaroot of F}.

Then
Vij = o max eibjbbyb.
{(ib, jb,b,yp) b€ B, €y jnbys #—1}st. bgB

Ypesib =1i,and
YbeBlb =

872

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

Let u;; be the probability that j or more leave-one-out errors are in W(S) for a random size-t subset
Sof {1,..., t+w}, given that there are i+] leave-one-out errors in TUW. Then

- _)<i+j>(t+w—i—j)
min(w,i+j _
Uij = ZZJ ’ <'[+WW> ’ . (14)

W

For a given 9, the value

Mmax\vij (15)
Uij>9d
bounds the number of working examples misclassified by their training examples, with probability
at least 1-d.

Note that the recurrence for each term e;jx, depends on terms e;jjpy for all beB(k). So produce an
ordering ok on examples in C that places all children before their parents in F. Compute terms €;jy
in that order, to ensure that each term is computed prior to computing any term that depends on it.
Next compute terms vj; based on terms e;j,, for all beB. Then compute values ujj using Equation
(14), and compute the bound according to Equation (15).

7.3 Example of Computing Values &y

Consider a small example to demonstrate the recurrence for ejjiy. Use the following examples:

example input output set
0 111 0 T
1 12.3 1 T
2 15.6 ? w

The graph G of nearest neighbors has edges (0,1), (1,0), and (1,2). Removing the first edge produces
a tree F, with node 1 as root and the other nodes as leaves. An ordering that places children before
parents in F is (0, 2, 1). So compute terms e;jiy for k =0, then k =2, then k = 1.

For k =0, node 0 is a leaf in F. Since example O is in T and has output y, = 0,

€oo00 = 0,

meaning that, in the single-node subtree consisting of node 0, there are no leave-one-out errors in T
or in W, and there are no examples in W misclassified by nearest neighbors in T. For all other i, j,
andy

eijoy = —1.

For k =2, node 2 is a leaf in F. Since example 2 is in W, it may have outputy, =0ory, = 1. Ify, =
0, then example 2 is misclassified by its nearest neighbor in T, which is example 1. So

€oo20 = 1.

Ify, =1, then example 2 is properly classified by example 1, so

873

BAX AND CALLEJAS

€o021 = 0.
For k =1, example 1isin T, and y; = 1. Node 1 has two children in G—nodes 0 and 2. For child
node 0, only the term eqq is defined. For child node 2, terms egg2o and egop1 are defined. Each pair
of terms with one from each child node can produce a term for node 1.
Begin with the pair egoo and egg20. Relationships between node 1 and each child node contribute
to the term. For the relationship between node 1 and node 0, the valuesaren=0,y,=0,k =1, and
Yk = 1. With these arguments:

1. ¢7(0,0,1,1) = 1 because example 1 (the parent) misclassifies example 0 (the child), causing a
leave-one-out error in T.

2. dt(0,0,1,1) = 1 because example 0 (the child) misclassifies example 1 (the parent), causing a
leave-one-out error in T.

3. ¢w(0,0,1,1) =0 and dw(0,0,1,1) = 0 because neither example is in W.

For the relationship between node 1 and node 2, the valuesaren=2,y,=0,k =1, and y, = 1.
With these arguments:

1. ¢7(2,0,1,1) = 0 because example 2 (the child) isnotin T.
2. dr(2,0,1,1) = 0 because example 2 (the child) does not classify example 1 (the parent).

3. cw(2,0,1,1) = 1 because example 1 (the parent) misclassifies example 2 (the child), causing a
leave-one-out error in W.

4. dw(2,0,1,1) = 0 because example 1 (the parent) is not in W.

The resulting term has

= [i0+CT(070a171)+dT(0a07171)] + [i2+CT(270a1’1)+dT(2a07131)]
=[0+1+1]+[0+0+0]=2

and

j = [j0+CW(070717 1) +dW(070717 1)] + [j2+CW(2707 171) +dW(2707 171)]
—[04+0+0]+[0+1+0] =1.

So the term is e2111. The value is

e2111 = h(1,1) +eooo0 +€0020 =0+ 0+1=1.

(The value of h(1,1) is zero since example 1 is not in W.) The value e»17; = 1 means that, in the
subtree of F rooted at node 1, that is, in F, it is possible to have two leave-one-out errors in T, one
leave-one-out error in W, and one example in W misclassified by its nearest neighbor in T.

Now consider the other pair of terms from children, egopp and egoz1. The relationship between
node 1 and node 0 is the same as for the previous pair. The relationship between node 1 and node 2
changes because nowy, =1,son=2,y,=1, k=1, andy, = 1. With these arguments:

874

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

1. ¢1(2,1,1,1) = 0 because example 2 (the child) is notin T.
2. dt(2,1,1,1) = 0 because example 2 (the child) does not classify example 1 (the parent).

3. cw(2,1,1,1) = 0 because example 1 (the parent) properly classifies example 2 (the child),
causing no leave-one-out error in W.

4. dw(2,1,1,1) = 0 because example 1 (the parent) is not in W.

The resulting term has

i = [i0+CT(0,0,1,1)+dT(0,0,1,1)] + [i2+CT(2,1,1,1)+dT(2,171,1)]
—[0+1+1+[0+0+0]=2

and

j=ljo+cw(0,0,1,1)+0dw(0,0,1,1)] +[j2+cw(2,1,1,1) +dw(2,1,1,1)]
—[0+0+0]+[0+0+0] =0.

So the term is eop11. The value is

e2011 = h(1,1) +eoooo + €0o21 = 0+0+0 =0,

which means that it is possible to have two leave-one-out errors in T, zero leave-one-out errors in
W, and zero examples in W misclassified by nearest neighbors in T. Other than e»111 and exp11, for
all other i, j, and y

eijy = —1.

This completes the computation of e;jk, values for this problem.

7.4 Efficient Computation

The bound can be computed using storage and time O(poly(t+w)). Computing values €;jiky and vj;
directly from the recurrences is inefficient. First consider values ejjk,. Recurrence (13) handles
terms for all children of example Z, at the same time. To improve efficiency, accumulate terms from
one child at a time, as follows. Define e,.ky to be the “slice” of values with the specified k and y and
all values of i and j. To compute each slice, iterate through children Z,, of Z, using a slice-sized
array prev to store the accumulation over terms from children before Zy, and a slice-sized array next
to store the accumulation of terms from children up to and including Zy,. In other words, when the
iteration begins for child Zy, prev;; is the value that ejjky would have if the subtree in F rooted at k
had children

U Zy.

{beB(K)|b<b*}

And when the iteration ends for child Zy, next;; is the value that e;j, would have if the subtree in F
rooted at k had children

875

BAX AND CALLEJAS

U Zy.

{beB(K)|b<b*}
Compute the iteration for child Z- according to the recurrence:

nextjj = max PreVi,ja + €ipe i bryps -
.(ia.ji-i,ib*7 jb‘vybx) : pra/iaja 7é _17qb*jb*bxyb* 7é _17
fa-+ib +CT (b, Yo k,Y) + 7 (b" Yok, Y) = i,and
jat b +ow (0%, Yo, K, Y) +dw (b*, Yo K, Y) = .

The base cases for this recurrence are the definitions for values of prev for the first child. By the
definition of prev, these values should treat Zy as a leaf in F. So use the base case values given
previously for terms e;jxy for leaves in F to initialize prev.

Algorithm 7.4.1 computes an error bound efficiently. The inputs are:

1. Z - An array of examples, ordered such that children in F come before their parents. (The
variables Z[k].x and Z[K].y store (X, Yk), the input and output for example k.)

2. B — An array of arrays B, with B[K] the array of indices b such that Z[b] is a child of Z[K] in
F.

3. R—An array of indices b such that Z[b] is a root in F.
4. u- Anarray with u[i][j] = u;; as defined in Equation (14).
5. delta — The acceptable probability of the bound being invalid, d.

The algorithm uses subprocedures:

1. cT, dT, cW, and dW — As defined in Equations (9) to (12).

2. nT — Returns the nearest neighbor to an example among examples in T, that is, nt(2).
Algorithm 7.4.1

procedure bound(Z, B, R, u, delta)
e[O...t][0...w][O...t+w][O...1] := -1;
// Initialize all e[]1[1[1[] values to 1.

// Compute slices, one for each example and assignment to the
// label of the example.
for ((k, yk) in {0,...,t+w} x {0,1})
if (Z[IK] in T and yk != Z[K].y) continue;
// Impossible assignment, so skip it.

prev[0...t][0...w] :
next[0...t][0...w] :

_1;
_1;

// Initialize prev[0][0].

876

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

if (Z[K] in T) prev[0][0] := O;
if (Z[K] in W)

Z[K]-y = yk;
it (nTZ[K]) '= Z[k].y) prev[O0][0] := 1; else prev[0][0] := O;
end if

// Compute the contribution for each child b of k in F.
for ((b, yb) in B[K] x {0,1})
if (Z[b] in T and yb != Z[b].y) continue;
// impossible assignment, so skip it.
if (Z[b] in W) Z[b].y := yb;
di := cT(b,k) + dT(b,k);
dj := cW(b,k) + dw(b,k);

for ((i, J) in {0,...,t} x {0,...,w} such that e[i][j1[b][yb] != -1)
for ((ii, jj) in {0,...,t} x {0,...,w} such that prev[ii][jj] != -1)
next[ii + 1 + di]J[jj + J + dj] = max(next[ii + 1 + di][jj + J + djl,
prevliillij] + e[i101[b1LybD);
end for (ii, jj)
end for (i, j)

// Prepare to compute contribution for next child b of k in F.
prev := next;
next[O0...t][0...w] := -1;

end for (b, yb)

// Copy the slice into e[1[1[1L]-
for ((i, j) in {0,..., t3x{0, ..., w}) e[i101IKILYk] = prev[i][il;
end for (k, yk)

// Combine roots: treat each root as a child of a virtual super-root.
prev[0...t][0...w] = -1;
next[0...t][0...w] = -1;

prev[0][0] := 0; // The virtual super-root introduces no errors.

// Accumulate terms over roots b in R.
for ((b, 1, J) in R x {0,...,t} x {0,,w})
m = max(e[110 101001, e[il101[PI[1]);

if (m!=-1)
for ((ii, jj) in {0,...,t} x {0,...,w} such that prev[ii][jj]'=-1)
next[ii + 1][JJ + J] := max(next[ii + i][J + J1, prev[ii][jj] + m);
end for (ii, jj)
end if

877

BAX AND CALLEJAS

prev = next;
next[0...t][0...w] = -1;
end for (b, i, J)

// Maximize v over feasible u to produce a bound on error count.
vV = prev;

for ((i, J) in {0,...,t}x{0,...,w})
if (U[illi] >= delta) mx = max(mx, v[ilQD
end for (i, j)

return mx;
end procedure

Appendix A contains Java code to compute error bounds by this procedure. The code uses
O(t?w?(t+w)) time and O(tw(t+w)) storage. Appendix A also contains a note on how to use less
storage.

7.5 Random Tie Breaking for Ranking

Random tie breaking for ranking, as defined in Section 4 and applied to virtual partitions in Section
6, cannot be applied to the bound returned by the algorithm above. The error count that is the bound
corresponds to an assignment that maximizes the error of using training examples to classify work-
ing examples, subject to the constraints that there are i leave-one-out errors on training examples,
there are j leave-one-out errors on working examples, and the counts i and j make the assignment
likely even without random tie breaking. It is valid to apply random tie breaking to the assignment
behind the error count that is a candidate for the bound, as explained in Section 6. However, if
random tie breaking declares the assignment unlikely, then we are left without a next candidate for
the bound.

To use random tie breaking, the algorithm needs to store all candidates rather than just the
maximum error count candidate in each variable ejjy and vjj. So instead of storing a single max-
imum value in each variable, store a vector indexed by error counts, with values indicating how
many partial assignments (for variables e;jiy) or assignments (for variables v;j) produce each error
count. Follow the structure of the maximization algorithm, but replace maximization by accumulat-
ing candidates. Compute values u;; as in the maximization algorithm above, and use those values
to determine which vectors vjj count potentially likely candidates for the bound. (Only the combi-
nations of i and j that are likely without random tie breaking are potentially likely with random tie
breaking.) . Then iterate through possible error counts, in descending order. For each error count,
for each candidate counted by a vector of potentially likely candidates, apply random tie breaking
to the candidate. If the candidate is likely, then return it as the bound.

878

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

8. Tests

This section presents results of tests for bounding methods developed in this paper. First there are
tests comparing different bounding methods. Next, there are tests to examine the joint frequencies
of errors and error bounds. Then there are tests to explore the effect of working set size on error
bounds.

8.1 Comparing Bounding Methods

Here are results of tests to compare different bounding methods on 1-nearest neighbor classification
for different types of data. The different bounding methods are:

Complete — Use the complete filter.

100 — Use a sample filter with 100 sample partitions.

1000 — Use a sample filter with 1000 sample partitions.
10,000 — Use a sample filter with 10,000 sample partitions.

LOO - Use virtual partitioning, with a filter that scores one for each leave-one-out error.

© o &~ w M -

Double — Use virtual partitioning, with a filter that scores one for each example that is mis-
classified by both of its two nearest neighbors in TUW.

All bounding methods use ranking with random tie breaking, as explained in Sections 4 and 6.
The sample filters draw partitions without replacement.

For each type of data, there is a table of results. Each row holds results for a different value of the
bound certainty parameter &. The first column of each table shows errors from using training data
as a 1-nearest neighbor classifier on working data. The other columns show differences between the
bounds on error and actual error for different bounding methods.

Each cell shows a mean and standard deviation over 1000 trials. The cells in the “Error” column
show mean and standard deviation of errors. The cells in subsequent columns show mean and
standard deviation of difference between bound and error. For example, suppose the error has mean
0.3 and standard deviation 0.4, and a bounding method has mean 0.1 and standard deviation 0.0.
This indicates that the error averages 0.3 over the 1000 trials, and the error varies quite a bit, but the
bound is always exactly 0.1 greater than the actual error.

Note that the standard deviations displayed in cells are standard deviations of the values over
1000 trials. They are not standard deviations of the estimates of the means of values over 1000 trials,
that is, their large sizes do not indicate uncertainty about the accuracy of the means. Since there
are 1000 trials, those standard deviations are about 1/33 of the ones shown, indicating that most
differences in means for different bounding methods in the tests below are statistically significant.

Each row of each table is based on the same 1000 trials, but different rows are based on different
sets of trials. For each trial, a size t+w subset of examples is selected at random from a data set. A
size-t subset is selected at random to form the training set T, and the remaining w examples form the
working set W. The error is computed, and each bounding method is applied to (T,W) to compute an
error bound. The error is subtracted from each bound, and the differences are accumulated into the
statistics for the bounding methods. In each row, we show the least mean among bounding methods
in bold print.

879

BAX AND CALLEJAS

1 Error Complete 100 1000 10,000 LOO Double
0.1 | 0.0+£0.0 | 0.21+0.096 0.23+0.10 0.21+0.097 0.21+0.10 0.25+0.18 | 0.11+0.24
0.2 | 0.0+£0.0 | 0.068+0.11 0.085+0.12 0.068+0.11 0.072+0.11 0.10+£0.18 | 0.079+0.20
0.3 | 0.0+0.0 | 0.0085:+0.045 | 0.011+0.050 | 0.0065+0.04 | 0.007+0.041 | 0.042+0.14 | 0.051+0.16

Table 1: Bound Methods Compared on Iris Data

All tests ran on an Apple Macintosh, with dual 1.42 GHz PowerPC processors and 512 MB of
RAM. The longest-running tests were for the data set involving diabetes among Pima Indians, with
t = 200 training examples and w = 15 working examples. The tests for 8=0.1,3=10.2, and 6=0.3
ran concurrently, taking about a day and a half for the 3000 trials, or about a minute per trial.

8.1.1 IRIS DATA

Table 1 has results for a data set involving iris classification. The data set is from the repository
of data sets for machine learning maintained by the University of California at Irvine, which is
available online. The data set contains examples for three types of iris; we use only the examples
for the first two types in order to have binary classification problems. This leaves 100 examples,
with 50 from each class. Each example has four input dimensions. We use t = 40 training examples
and w = 4 working examples for each trial. The iris data are easy to classify, as indicated by the fact
that the errors are always zero.

For 6= 0.1, the best method is virtual partitioning with a filter based on whether the two nearest
neighbors to an example both misclassify the example. To understand why this filter is effective
for data sets that are easy to classify, imagine a lone working example in the midst of many train-
ing examples that all have the same label. Suppose an assignment gives the opposite label to the
working example. The two nearest neighbors are both training examples with the other label, so
the filter recognizes the working example. On the other hand, even if the working example is the
nearest neighbor of several training examples, the filter ignores the fact that the working example
misclassifies those examples, because their next-nearest neighbors are other training examples with
the same label. Contrast this with a filter based on leave-one-out errors. This filter would recognize
the incorrectly labeled working example, but it would also recognize any nearby training examples
that had the working example as nearest neighbor.

The best method for & = 0.2 uses a complete filter. The best method for & = 0.3 uses a sample
size of 1000. For all values of 8, methods using sampled filters based on 1000 and 10,000 partitions
perform about as well as the method using a complete filter—the differences between them are not
statistically significant. The method using a sampled filter based on 100 partitions performs slightly
worse, indicating that using fewer samples for ranking allows into the likely set some assignments
with high error on the working set that would be rejected by using more samples. In general, more
samples give stronger bounds, but at the cost of added computation.

8.1.2 DIABETES DATA

Table 2 has results for data involving diabetes in Pima Indians. This data set is also from the UC
Irvine repository. The inputs have different scales, so we normalize the data, translating and scaling
each input dimension to make each input dimension have mean zero and standard deviation one.
There are 768 examples, with 500 from one class and 268 from another. There are eight input

880

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

o Error 100 1000 LOO
0.1]032+0.12|0.23+0.13 | 0.20+0.13 | 0.26 £ 0.15
02]031+0.12|0.16+0.13 | 0.154+0.13 | 0.20 £ 0.16
03]031+012 | 012+0.13 | 0.11+£0.13 | 0.16 = 0.15

Table 2: Bound Methods Compared On Diabetes Data

0 Error 100 1000 LOO Double
0.1 | 0.070 +0.085 | 0.22 +=0.11 0.204+0.10 | 0.27+0.14 | 0.29 £+ 0.17
0.2 | 0.060 +0.074 | 0.13+0.094 | 0.124+0.093 | 0.194+0.14 | 0.22 +0.17
0.3 | 0.068 4+ 0.080 | 0.084 £+ 0.097 | 0.074+0.096 | 0.13 +0.14 | 0.18 +£0.17

Table 3: Bound Methods Compared on Data with a Linear Class Boundary

o) Error 100 1000 LOO Double
0.1|018+0.13 |0.274+0.15 | 0.24+0.14 | 0.31 £ 0.17 | 0.39 £ 0.12
0.2]018+0.12|0.17+0.14 | 0.164+0.14 | 0.22 +0.17 | 0.32 £ 0.18
03]016+0.11|0.12+0.13|0.114+0.13 | 0.18+0.17 | 0.28 = 0.18

Table 4: Bound Methods Compared on Data with a Nonlinear Class Boundary

dimensions. We use t = 200 training examples and w = 15 working examples for each trial. We use
1-nearest neighbor classification.

The error indicates that this is a challenging data set for 1-nearest neighbor classification; even
a classifier that always returns the label of the class with 500 examples of the 768 in the data would
have average error about 0.35. The bounding method that uses 1000 partitions in a sampled filter
performs best for all three values of 8. On average, that method adds error rate margins of 20% for
0=0.1, about 15% for 6 = 0.2, and about 11% for 6 = 0.3.

8.1.3 DATA WITH A LINEAR CLASS BOUNDARY

Table 3 has results for randomly generated data. The data consist of 1100 examples drawn uniformly
at random from a three-dimensional input cube with length one on each side. The class label is zero
if the input is from the left half of the cube and one if the input is from the right half of the cube.
For these tests, there are t = 100 training examples and w = 10 working examples, using 1-nearest
neighbor classification. Once again, the method that uses a sample filter with 1000 partitions in the
sample outperforms the other methods in the test. On average, the method adds error rate margins
of 20% for 6 = 0.1, about 12% for = 0.2, and about 7.5% for 6= 0.3.

8.1.4 DATA WITH A NONLINEAR CLASS BOUNDARY

Table 4 shows results for randomly generated data with a nonlinear class boundary. The data have
the same characteristics as in the previous test, except that each class label is determined by the
XOR of whether the input is in the left half of the cube, the bottom half of the cube, and the front
half of the cube. In other words, the cube is cut into eight sub-cubes, and each sub-cube has a
different class than the three sub-cubes with which it shares a side. This class scheme adds some

881

BAX AND CALLEJAS

Bound
Error | 00/ 01(02|03|04 |05/06/|07|08|09]10
0.0 1 |17] 95 | 45| 4
0.1 41 | 187 | 88 | 1
0.2 1 35190 |66 | 2
0.3 1 119] 95 | 36
0.4 10 | 34 | 8
0.5 1|14 | 4
0.6 2 2 1
0.7
0.8
0.9
1.0

Table 5: Bounds vs. Errors for d=0.1

error. As in the previous test, the method that uses a sample filter with 1000 partitions in the sample
outperforms the other methods in the test. The method adds error rate margins that are higher than
for the previous test, that is, about 24% for & = 0.1, about 16% for & = 0.2, and about 11% for & =
0.3.

8.1.5 COMPARISON TO BOUNDS BASED ON VC DIMENSION

The test results in tables 1 to 4 show that error bounds based on worst likely assignments can be
effective for small data sets. Compare these bounds to error bounds based on VC dimension (Vapnik
and Chervonenkis, 1971), as follows. Suppose that we train linear classifiers on the training sets for
our tests. To simplify our analysis, assume that all trained classifiers are consistent, that is, they
have zero error on their training data. This consistency assumption produces stronger VC bounds,
allowing us to use the bound formula (Cristianini and Shawe-Taylor, 2000, p. 56):

gdlogﬂog
g\ 48y Tgs)

where t is the number of training examples, d is the VC dimension, which is one more than the
number of input dimensions for linear classifiers, and & is the allowed probability of bound failure.
Let & = 0.3. For the iris problem, t = 40 and d = 5, producing bound 1.5. For the diabetes problem,
t =200, d = 9, and the bound is 0.65. For the problems with randomly generated data, t = 100, d =
4, and the bound is 0.62. Compare these bounds to those for d = 0.3 in tables 1 to 4.

8.2 Joint Frequencies of Errors and Error Bounds

Tables 5, 6, and 7 show bound versus error for 1000 trials using the same XOR-based random data
generator used in the previous test and the same classification method, 1-nearest neighbor. These
results are for a sampled filter with 1000 sample partitions. Errors are listed down the left column,
and error bounds are listed across the top. The value in each cell is the number of trials that have
the error indicated by the row and the bound indicated by the column. Cells with value zero are left
blank.

882

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

Bound
Error | 0001 (02|03 |04 |05|/06|07|08|09]1.0
0.0 11] 95 | 52 | 4
0.1 22 | 166 | 110 | 4
0.2 22 | 168 | 102 | 7
0.3 12 | 93 | 61 1
0.4 4 | 29 | 18
0.5 1| 12 4
0.6
0.7 1 1
0.8
0.9
1.0

Table 6: Bounds vs. Errors for d=0.2

Bound
Error | 0001|0203 |04|(05|06(07|08/|09]10
0.0 43 | 87 | 14
0.1 5 199 | 200 22 | 2
0.2 1 |96 |164 | 25
0.3 2 |5 |91 |10 1
0.4 2 |26 | 33| 4
0.5 5 7 2
0.6 2
0.7 1
0.8
0.9
1.0

Table 7: Bounds vs. Errors for 5=0.3

Bound Margin
0 | <0.0(failure) 0.0 (exact) +0.1 | +0.2

0.1 3.1% 5.8% 13.8% | 26.8%
0.2 6.4% 13.3% 25.1% | 28.0%
0.3 11.0% 19.6% 27.3% | 26.9%

Table 8: Frequencies of Bound Margins

The diagonal from the top left to the bottom right contains cells for which the error and the
bound are the same. Cells below this diagonal indicate bound failure—the bound is less than the
actual error. Cells above indicate bounds above actual errors. Note how the cloud of values moves
toward the diagonal as & progresses from 0.1 to 0.3.

883

BAX AND CALLEJAS

w 1000 LOO Double

3 1 020£0.16 | 0.23+0.22 | 0.073£0.21
4 | 021+0.10 | 0.27 £0.18 | 0.13+0.25
5 10.22+0.084 | 0.31 £0.19 | 0.23 +0.25
6 | 0.24+0.087 | 0.35+0.18 | 0.30 +0.21
7 10.26+0.078 | 0.39+£0.18 | 0.34£0.21
8 [0.29+0.074 | 0.44+0.17 | 0.38£0.21
9 10.31+0.076 | 0.47 +0.18 | 0.40 £0.22
10 | 0.33+£0.074 | 0.52 £0.17 | 0.45+0.22

Table 9: Bounds vs. Number of Working Examples for = 0.1

Table 8 summarizes the frequencies of bound margins, that is, of differences between bound
and error. A bound margin less than zero means the bounding method fails, supplying an invalid
error bound. From the failure column in Table 8, observe that the actual frequency of bound failure
is significantly less than , the allowed rate of failure. The subsequent columns indicate differences
between bound and actual error: exact match, over by 0.1, and over by 0.2.

Suppose we define bound failure as a negative margin and bound success as a valid bound within
0.2 of actual error. Then for d = 0.1, we have about 3% failure and about 46% success. For 6 = 0.2,
we have about 6% failure and about 66% success. For o = 0.3, we have 11% failure and about 74%
success.

8.3 Working Set Sizes and Bounds

The next results are from tests to explore how working set sizes affect error bounds. In general, since
the bounding methods rely on training examples to constrain the set of likely assignments and hence
to constrain the error bound, having more training examples and fewer working examples produces
stronger bounds. These tests illustrate this effect and compare it over some bounding methods.

These tests use the iris classification data. The bounding methods are a sampled filter with
1000 sample partitions (1000), virtual partitioning with a leave-one-out filter (LOO), and virtual
partitioning with a filter that scores one for each example misclassified by both of its two nearest
neighbors (Double). For 8 = 0.1, & = 0.2, and & = 0.3, the number of training examples is held
constant at t = 40 while the number of working examples w varies from three to 10.

Table 9 shows results for & = 0.1, with the lowest mean score for a bounding method in each
row in bold. Note that the double-error method is better than the other two methods for small
working sets, but not for larger ones. Recall that the double-error method is most effective when
each working example has as nearest neighbors training examples that agree with one another. As
working set sizes increase, it becomes more likely that working examples become nearest neighbors
of other working examples, weakening the double-error filter.

Table 10 shows results for & = 0.2, with the lowest mean score for a bounding method in each
row in bold. A variety of methods perform well for small working sets, but the sampled filter method
works best for larger working sets.

Table 11 shows results for & = 0.3, with the lowest mean score for a bounding method in each
row in bold. For these tests, the sampled filter method performed best for all working set sizes.
Compare values in this table to values in the previous two tables. Notice that the performance of

884

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

W 1000 LOO Double

3 | 0.027£0.090 | 0.040 +0.15 | 0.047 + 0.17
4 | 0.063+0.11 | 0.11£0.18 | 0.074£0.20
5| 011+010 | 0.16+0.19 | 0.10+0.21
6 | 0.14£0.074 | 0.21+0.18 | 0.16 £0.24
7 | 0.15£0.067 | 0.26 +£0.19 | 0.22+0.26
8 | 0.17+0.074 | 0.31+£0.19 | 0.24£0.25
9 | 0.19+0.071 | 0.35+0.19 | 0.29+£0.25
10 | 0.22+0.068 | 0.40£0.18 | 0.33£0.25

Table 10: Bounds vs. Number of Working Examples for 4 = 0.2

w 1000 LOO Double

3 | 0.001740.024 | 0.018 +-0.11 | 0.040 + 0.16
4 | 0.00834-0.045 | 0.043 4+-0.15 | 0.057 + 0.17
5 | 0.0274-0.069 | 0.068 4-0.16 | 0.077 £ 0.17
6 | 0.0474+0.075 | 0.1140.18 | 0.10£0.19
7 | 0.070+0.075 | 0.16 =0.19 | 0.14+0.22
8 | 0.088+0.065 | 0.20+0.19 | 0.18 £0.23
9 0.11+0.061 0.24+0.20 | 0.244+0.24
10 | 0.13+0.064 0.294+0.19 | 0.27 +0.23

Table 11: Bounds vs. Number of Working Examples for 6 =0.3

the sampled filter method improves noticeably as & increases. In contrast, the performance of the
double-error filter does not change much with &, especially for small working sets.

9. Discussion

This paper introduces a new method to compute an error bound for applying a classifier based on
training examples to a set of working examples with known inputs. The method uses information
from the training examples and inputs of working examples to develop a set of likely assignments to
outputs of the working examples. A likely assignment with maximum error determines the bound.
The method is very effective for small data sets.

In the bounds, filters translate training examples and inputs of working examples into constraints
on the assignments to outputs of the working examples. Several filters are introduced in this paper.
The complete filter is simple and direct; it evaluates each assignment by comparing the error caused
by the training/working partition at hand to the errors caused by all other training/working partitions,
rejecting the assignment as unlikely if the error for the partition at hand is especially large. The
complete filter is effective because it optimizes directly over the error on the partition at hand,
which is the basis for the bound. The sampled filter is an easier-to-compute variant that uses only a
subset of training/working partitions rather than computing error for all of them. With a sufficient
number of samples, the sampled filter performs about as well as the complete filter.

Filters based on virtual partitions reduce computation by not computing errors over partitions
for each assignment. The tradeoff is that filters for virtual partitions rely on indirect measures of

885

BAX AND CALLEJAS

whether assignments are likely. This paper introduces a filter based on leave-one-out error and

presents an algorithm based on that filter to efficiently compute an error bound for 1-nearest neigh-

bor classification. This paper also introduces a filter based on whether the two nearest neighbors

both misclassify an example. Tests show that this filter can be more effective than the complete

filter for problems with little classification error and small numbers of working examples.
Directions for future research include:

1. Develop and analyze new filters for use with virtual partitions, to compete with the leave-one-
out and double-error filters presented here.

2. Analyze how training set size, working set size, and properties of the data influence the
bounds, with the goal of developing new filters that target different types of problems.

3. Develop efficient algorithms for nearest neighbor classifiers using virtual partitioning with
filters beyond the leave-one-out filter.

4. Develop efficient algorithms to compute error bounds using virtual partitioning for classi-
fiers other than nearest neighbor classifiers, such as condensed and edited nearest neighbors
classifiers (Devroye et al., 1996) and support vector machines (Vapnik, 1998).

5. Explore how to use efficient bounds for nearest neighbor classifiers to indirectly produce
bounds for other types of classifiers. For example, for support vector machines, first bound
nearest neighbor error. Then use the bound to constrain assignments, and bound the support
vector machine error by the maximum error over the constrained set of assignments.

6. Consider using alternatives to the set of sister partitions in the complete and sampled filters.
For example, with 100 training examples and 10 working examples, partition the training
examples into blocks of 10 examples each. Treating the working examples as another block,
there are 11 blocks. Each partition that has one block as the working examples and the
remaining blocks as the training examples is equally likely. So these partitions can be used in
place of the sister partitions. As another example, with 10 training examples and 10 working
examples, pair off each working example with a different training example. Each partition
that has one of each pair in the working examples and the other in the training examples is
equally likely. So these partitions can be used in place of the sister partitions.

Acknowledgments

We thank Joel Franklin for encouraging this research through his example and his teaching. We also
thank two anonymous referees for very helpful suggestions on notation and presentation.

Appendix A. Java Code to Compute Error Bounds for 1-Nearest Neighbor Classifiers

The excerpt of Java code below uses the approach described in Section 7.4 to efficiently compute
all ejjy in methods computePossibilities and computeSlice. (Array a in the code plays the role of
array prev in Section 7.4, and array b plays the role of array next.) The same technique is used to
compute all vij in method combineRoots. Each root is treated as a child of a virtual “super-root”.
The method named bound is included to give an overview of the computation.

886

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

public class VirtualPartitionBounder

{
Problem p; // Handles examples, labels, neighbors, memberships in T and W.
int[1000 e; /7 e[i101Ik1Y]’s-
int[1[1 a; 7/ a[ilJ]’s to accumulate a slice over children.
int[1[] b; 7/ b[i][J]1’s to accumulate a slice over children.
int[] order; // Ordering of examples with children in F before parents
int[]1[] children; // children[k][] is a list of children of k in F
int[] roots; // Examples that are roots in F

/**
* Constructor.
**/
public VirtualPartitionBounder(Problem p)
{
this.p = p;
this.e = new int[p.sizeTQ+1][p-sizeWQQ+1][p.sizeTuWO]1[2];
this.a = new int[p.sizeTO)+1][p-sizeW()+1];
this.b = new int[p.sizeTQ+1][p.sizeW()+1];
}
/**

* Returns a bound on the number of errors on W by T, with probability
* of bound failure at most delta.

**/

public int bound(double delta)

{
int[][] v = computePossibilities();

double[][] u = computeTails();
intm=0;

for (int i=0; i<u.length; i++)
for (int j=0; j<u[i].length; j++)
{
it (u[il]>=delta) m = max(m, v[i][J]1);
}

return m;

}

/**
* Compute e-values by the slice, then combine roots to compute v-values.
**/

887

BAX AND CALLEJAS

public int[][] computePossibilities()

{
computeOrderChildrenAndRoots();

// Compute members order, children, and roots.
clearE(); // Set all e[i][jlIk]ll[y] to -1.

// Loop through slices.
for (int i=0; i<order.length; i++)
{

int k = order[i];

for (int yk=0; yk<2; yk++) computeSlice(k, yk, children[k]);
}

combineRoots(); // Use slices for roots to compute v-values.

return a;

}

/**
* Computes a slice e[][1Ik]1[yk] by accumulating terms over children.
**/
private void computeSlice(int k, int yk, int[] kids)
{
clearA(); // Set all a[i][j] to -1.
clearB(); // Set all b[i][j] to -1.

// Set intial values in a by treating k as a leaf in F.

if (p.inT(k)) // Example k is in T.

{
if (yk!=p.getLabel(k)) return; // Impossible label on k.
else a[0][0] = 0; // Correct label on k.

}

else // Example k is in W.

{
p.setLabel(k, yk); // Assign label yk to k.

it (p.isMisclassiftiedByT(k)) a[0][0] = 1;
else a[0][0] = O;
}

// Accumulate terms over children.
for (int look=0; look<kids.length; look++)

{

888

}

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

int n = kids[look]; // Get child.

for (int yn=0; yn<2; yn++) // Label child.

{
it (p.inT(n) && yn!=p.getLabel(n)) continue;
if (p.inW(n)) p.setLabel(n, yn);

int di
int dj

p.cT(n,k) + p.dT(n,k);
p.cW(n,k) + p.dW(n,k);

for (int i1=0; i<e.length; i++)
for (int j=0; j<e[i].length; j++)
if (e[i101In1Lyn]!=-1)
{
for (int 1i=0; ii<a.length; ii++)
for (int jj=0; jj<a[ii].length; jj++)
if (alnlnilt=-1
{
blii+i+di][Jj+j+dj] = max(b[ii+i+di][Jj+j+dj],
afii]iail + elil1G1In1LynD;

}

copyBToA(); // Copy b to a before handling the next child.
clearB(); // Set all b[i][j] to -1.

insertAlntoE(k, yk);

}

/**

* Combine roots to compute v-values. Treat each root as a child
* of a virtual super-root.

**/

private void combineRoots()

{

clearA(); // Set all a[i][j] to -1.
clearB(); // Set all b[i][j] to -1.

a[0][0] = 0; // The super-root introduces no errors.

// Accumulate terms over roots.
for (int look=0; look<roots.length; look++)

{

889

BAX AND CALLEJAS

int n = roots[look]; // Get root.

for (int 1=0; i<e.length; i++)
for (int j=0; j<e[i].length; j++)
{
int v = max(e[1101[n1[0], el[i101In1[1D);

if (vi=-1)
for (int 1i=0; ii<a.length; ii++)
for (int jj=0; jj<a[ii].length; jj++)
if [iif][ji]'=-1)
blii+i][ig+j] = max(b[ii+i][ij+j1,
, aliilbil + v);

copyBToA(); // Copy b to a before handling the next root.

}
}
}

Now consider the storage and time requirements for this technique. The storage is dominated
by the array e, which has size O(tw(t+w)). The time is dominated by the nested loops in methods
computePossibilities, computeSlice, and combineRoots. Examine the nested loops in computeSlice
that run for each child and possible y-value for the child. The nesting is four deep, with two loops of
size t+1 and two of size w+1. So, for each child-parent relationship, the time is O(t?w?). Note that
the loops for each root in combineRoots are similar to those for each child in computeSlice. Since
each of the t+w examples is a child of one example in F or a root in F, and there are at most two
possible y-values for each example, the total time is O(t?w?(t+w)).

To reduce storage, discard the slice for each example after using it to compute the slice for the
parent of the example in F. To reduce storage and time in most cases, store a list of nonnegative val-
ues for each slice rather than storing the slice in array form with all the —1’s included. Then iterate
over those lists rather than all pairs (i,j) and (ii,jj) in methods computeSlice and combineRoots.

References

J.-Y. Audibert. PAC-Bayesian Statistical Learning Theory. PhD thesis, Laboratoire de
Probabilities et Modeles Aleatoires, Universites Paris 6 and Paris 7, 2004. URL
http://cermis.enpc.fr/ audibert/ThesePack.zip.

E. Bax. Partition-based and sharp uniform error bounds. IEEE Transactions on Neural Networks,
10(6):1315-1320, 1999.

A. Blum and J. Langford. Pac-mdl bounds. In Proceedings of the 16th Annual Conference on
Computational Learning Theory (COLT), pages 344-357, 2003.

890

AN ERROR BOUND BASED ON A WORST LIKELY ASSIGNMENT

O. Catoni. A pac-bayesian approach to adaptive classification, preprint n.840. Technical report,
Laboratoire de Probabilities et Modeles Aleatoires, Universites Paris 6 and Paris 7, 2003. URL
http://www_proba. jussieu.fr/users/catoni/homepage/dea2005.pdf.

O. Catoni. Improved vapnik-chervonenkis bounds, preprint n.942. Technical report, Labora-
toire de Probabilities et Modeles Aleatoires, Universites Paris 6 and Paris 7, 2004. URL
http://www.proba. jussieu.fr/mathdoc/preprints/index.html#2004.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-
Based Learning Methods. Cambridge University Press, 2000.

P. Derbeko, R. El-Yaniv, and R. Meir. Error bounds for transductive learning via compression and
clustering. In Advances in Neural Information Processing Systems (NIPS) 16, pages 1085-1092,
Cambridge, MA, 2003. MIT Press.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

R. El-Yaniv and L. Gerzon. Effective transductive learning via objective model selection. Pattern
Recognition Letters, 26(13):2104-2115, 2005.

T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer Academic Publish-
ers, 2002.

N. Littlestone and M. Warmuth. Relating data compression and learnability, 1986. Unpublished
manuscript, University of California Santa Cruz.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16:264-280, 1971.

891

