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Abstract
We consider the problem of binary classification where the classifier can, for a particular cost,
choose not to classify an observation. Just as in the conventional classification problem, minimiza-
tion of the sample average of the cost is a difficult optimization problem. As an alternative, we
propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in
support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate
loss can be efficiently minimized. We study its statistical properties. We show that minimizing the
expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the
φ-risk approaches its minimum value. We show that fast rates are possible when the conditional
probability P(Y = 1|X) is unlikely to be close to certain critical values.
Keywords: Bayes classifiers, classification, convex surrogate loss, empirical risk minimization,
hinge loss, large margin classifiers, margin condition, reject option, support vector machines

1. Introduction

The aim of binary classification is to classify observations that take values in an arbitrary feature
space X into one of two classes, labeled −1 or +1. A discriminant function f : X → R yields a
classifier sgn( f (x)) ∈ {−1,+1} that represents our guess of the label Y of a future observation X
and we err if the margin y · f (x) < 0. The Bayes discriminant function

P{Y = 1|X = x}−P{Y = −1|X = x}

minimizes the probability of misclassification P{Y f (X) < 0}. Observations x for which the condi-
tional probability

η(x) = P{Y = +1|X = x}

is close to 1/2, are the most difficult to classify. In the extreme case where η(x) = 1/2, we may just
as well toss a coin to make a decision. While it is our aim to classify the majority of future observa-
tions in an automatic way, it is often appropriate to instead report a warning for those observations
that are hard to classify (the ones having conditional probability η(x) near the value 1/2). This mo-
tivates the introduction of a reject option for classifiers, by allowing for a third decision, r (reject),
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expressing doubt. For instance, in clinical trials it is important to be able to reject a tumor diagnostic
classification since the consequences of misdiagnosis are severe and scientific expertise is required
to make reliable determination. Although such classifiers are valuable in practice, few theoretical
results are available in the statistical literature (Herbei and Wegkamp, 2006; Ripley, 1996). In the
engineering community on the other hand this option is more common and empirically shown to
effectively reduce the misclassification rate (Chow, 1970; Fumera and Roli, 2002, 2004; Fumera
et al., 2000; Golfarelli et al., 1997; Györfi et al., 1978; Hansen et al., 1997; Landgrebe et al., 2006).

We propose to incorporate the reject option into our classification scheme by using a threshold
value 0 ≤ δ < 1 as follows. Given a discriminant function f : X → R, we report sgn( f (x))) ∈
{−1,1} if | f (x)| > δ, but we withhold decision if | f (x)| ≤ δ and report r. In this note, we assume
that the cost of making a wrong decision is 1 and the cost of using the reject option is d > 0. The
appropriate risk function is then

Ld,δ( f ) = E`d(Y f (X)) = P{Y f (X) < −δ}+dP{|Y f (X)| ≤ δ} (1)

for the discontinuous loss

`d,δ(z) =





1 if z < −δ,

d if |z| ≤ δ,

0 otherwise.

The classifier associated with the discriminant function f ∗d (x) that minimizes the risk Ld,δ( f ) assigns
−1,1 or r depending on which of η(x), 1−η(x) or d is smallest. Since we never reject if d > 1/2,
we restrict ourselves to the cases 0 ≤ d ≤ 1/2. The generalized Bayes discriminant function f ∗d (x)
is then

f ∗d (x) =





−1 if η(x) < d
0 if d ≤ η(x) ≤ 1−d
+1 if η(x) > 1−d

(2)

with risk
L∗

d = Ld,δ( f ∗d ) = Emin{η(X),1−η(X),d}.

The case (δ,d) = (0,1/2) reduces to the classical situation without the reject option. We emphasize
that the rejection cost d should be known a priori. In a medical setting when determining whether a
disease is present or absent, the reject option often leads to quantifiable costs for additional tests and
perhaps in delays of treatment. The exact value of d will be dictated by such considerations. From
the above we can also view d as an upper bound on the conditional probability of misclassification
(given X) that is considered tolerable.

We postpone the discussion on the choice of the threshold δ until after Theorem 2.
Plug-in classification rules replace the regression function η(x) by an estimate η̂(x) in the for-

mula for f ∗d (x) above. It is shown by Herbei and Wegkamp (2006) that the rate of convergence of the
risk (1) to the Bayes risk L∗

d of a general plug-in rule with reject option depends on how well η̂(X)
estimates η(X) and on the behavior of η(X) near the values d and 1− d. This condition on η(X)
nicely generalizes the margin condition of Tsybakov (2004) from the classical setting (d = 1/2)
to our more general framework (0 ≤ d ≤ 1/2). The same paper derives oracle inequalities for the
excess risk Ld,δ( f̂ )−L∗

d of the (naive) empirical risk minimizer f̂ of ∑n
i=1 `d,δ(Yi f (Xi)) based on n
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independent observations (Xi,Yi), over a class of discriminant functions F . The results are in line
with recent theoretical developments (Boucheron et al., 2006, 2005; Massart, 2007) of standard bi-
nary classification (d = 1/2). Despite its attractive theoretical properties, the naive empirical risk
minimization method is often hard to implement. This paper addresses this pitfall by considering a
convex surrogate for the loss function akin to the hinge loss that is used in SVMs. In the engineering
literature, there are recently encouraging empirical results on SVMs with a reject option (Bounsiar
et al., 2006; Fumera et al., 2003; Fumera and Roli, 2002; Tortorella, 2004).

The next section introduces a piecewise linear loss function φd(x) that generalizes the hinge loss
function max{0,1−x} in that it allows for the reject option and φd(x) = max{0,1−x} for d = 1/2.
We prove that f ∗d in (2) also minimizes the risk associated with this new loss and that the excess
risk Ld,δ −L∗

d can be bounded by 2d times the excess risk based on the piecewise linear loss φd if
δ = 1/2. Thus classifiers with small excess φd-risk automatically have small excess classification
risk, providing theoretical justification of the more computationally appealing method.

In Section 3, we illustrate the computational convenience of the new loss, showing that the SVM
classifier with reject option can be obtained by solving a standard convex optimization problem.

Finally, in Section 4, we show that fast rates (for instance, faster than n−1/2) of the SVM clas-
sifier with reject option are possible under the same noise conditions on η(X) used by Herbei and
Wegkamp (2006). As a side effect, for the standard SVM (the special case of d = 1/2), our results
imply fast rates without an assumption that η(X) is unlikely to be near 0 and 1, a technical condition
that has been imposed in the literature for that case (Blanchard et al., 2008; Tarigan and van de Geer,
2006).

2. Generalized Hinge Loss

Instead of the discontinuous loss `d,δ, we consider the convex surrogate loss

φd(z) =





1−az if z < 0,

1− z if 0 ≤ z < 1,

0 otherwise

where a = (1−d)/d ≥ 1. The next result states that the minimizer of the expectation of the discrete
loss `d,δ(z) and the convex loss φd(z) remains the same.

Proposition 1 The Bayes discriminant function (2) minimizes the risk

Lφd ( f ) = Eφd(Y f (X))

over all measurable f : X → R. Furthermore,

dLφd ( f ∗d ) = Ld,δ( f ∗d ).

Proof Observe that

Lφd ( f ) = Eη(X)φd( f (X))+E(1−η(X))φd(− f (X)).

Hence, for

rη,φd (z) = ηφd(z)+(1−η)φd(−z) (3)
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it suffices to show that

z∗ =





−1 if η < 1/(1+a),

0 if 1/(1+a) ≤ η ≤ a/(1+a),

1 if η > a/(1+a)

minimizes rη,φd (z). The function rη,φd (z) can be written as

rη,φd (z) =





η−aηz if z ≤−1,

1+ z(1− (1+a)η) if −1 ≤ z ≤ 0,

1+ z(−η+a(1−η)) if 0 ≤ z ≤ 1,

z(a(1−η))+(1−η) if z ≥ 1

and it is now a simple exercise to verify that z∗ indeed minimizes rη,φd (z). Finally, since Lφd ( f ) =
Erη,φd ( f (X)) and

inf
z

ηφd(z)+(1−η)φd(−z)

= ηφd(z
∗)+(1−η)φd(z

∗)

=
η
d

1 [η < d]+1 [d ≤ η ≤ 1−d]+
1−η

d
1 [η > 1−d] ,

where 1 [A] denotes the indicator function of a set A, we find that

dLφd ( f ∗d ) = E [min(η(X),1−η(X),d)] = L∗
d .

and the second claim follows as well.

We see that φd(z) ≥ `d,δ(z) for all z ∈ R as long as 0 ≤ δ ≤ 1−d. Since this pointwise relation
remains preserved under taking expected values, we immediately obtain Ld,δ( f ) ≤ Lφd ( f ). The
following comparison theorem shows that a relation like this holds not only for the risks, but for the
excess risks as well.

Theorem 2 Let 0 ≤ d < 1/2 and a measurable function f be fixed. For all 0 < δ ≤ 1/2, we have

Ld,δ( f )−L∗
d ≤

d
δ
(
Lφd ( f )−L∗

φd

)
,

where L∗
φd

= Lφd ( f ∗d ). For 1/2 ≤ δ ≤ 1−d, we have

Ld,δ( f )−L∗
d ≤ Lφd ( f )−L∗

φd
.

Finally, for (δ,d) = (0,1/2), we have

L( f )−L∗ ≤ Lφ( f )−L∗
φ, (4)

where L( f ) := P{Y f (X) < 0}, L∗ := Emin(η(X),1−η(X)) and φ(x) = max{0,1− x}.
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Remark 3 The optimal multiplicative constant (d/δ or 1 depending on the value of δ) in front of
the φd-excess risk is achieved at δ = 1/2. For this choice, Theorem 2 states that

Ld,1/2( f )−L∗
d ≤ 2d

(
Lφd ( f )−L∗

φd

)
.

For all d ≤ δ ≤ 1− d, the multiplicative constant in front of the φd-excess risk does not exceed 1.
The choice δ = 1/2 with the smallest constant 2d < 1 is right in the middle of the interval [d,1−d].
The choice δ = 1−d corresponds to the largest value of δ for which the piecewise constant function
`d,δ(z) is still majorized by the convex surrogate φd(z). For δ = d we will reject less frequently than
for δ = 1−d and δ = 1/2 can be seen as a compromise among these two extreme cases.

Inequality (4) is due to Zhang (2004).

Before we prove the theorem, we need an intermediate result. We define the functions

ξ(η) = η1 [η < d]+d1 [d ≤ η ≤ 1−d]+ (1−η)1 [η > 1−d]

and

H(η) = inf
z

ηφd(z)+(1−η)φd(−z)

=
η
d

1 [η < d]+1 [d ≤ η ≤ 1−d]+
1−η

d
1 [η > 1−d] .

(We suppress their dependence on d in our notation.) Their expectations are L∗
d = Eξ(η(X)) and

L∗
φd

= EH(η(X)), respectively. Furthermore, we define

H−1(η) = inf
z<−δ

(ηφd(z)+(1−η)φd(−z)) ,

Hr(η) = inf
|z|≤δ

(ηφd(z)+(1−η)φd(−z)) ,

H1(η) = inf
z>δ

(ηφd(z)+(1−η)φd(−z)) ;

ξ−1(η) = η−ξ(η),

ξr(η) = d −ξ(η),

ξ1(η) = 1−η−ξ(η).

Proposition 4 Let 0 ≤ d < 1/2.
If 0 < δ ≤ 1/2, then, for b ∈ {−1,1,r},

ξb(η) ≤
δ
d
{Hb(η)−H(η)}.

If d ≤ δ ≤ 1−d, then, for b ∈ {−1,1,r},

ξb(η) ≤ Hb(η)−H(η).

If (δ,d) = (0,1/2), then, for b ∈ {−1,1,r},

ξb(η) ≤ Hb(η)−H(η).
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The proof is in the appendix.
Proof [Proof of Theorem 2] Recall that Ld,δ( f ) = P(η1 [ f < −δ]+d1 [−δ ≤ f ≤ δ]+(1−η)1 [ f > δ])
and Lφd ( f ) = Prη,φd ( f ) with rη,φd defined in the proof of Proposition 1. Here P is the probability
measure of X and Pg =

R

gdP for any P-integrable g. Assume 0 < δ ≤ 1/2 and 0 ≤ d < 1/2. Define
ψ(x) = xδ/d. By linearity of ψ, we have for any measurable function f ,

ψ(Ld,δ( f )−L∗
d) = P(1 [ f < −δ]ψ(ξ−1(η))+1 [−δ ≤ f ≤ δ]ψ(ξr(η))

+1 [ f > δ]ψ(ξ1(η))) .

Invoke now Proposition 4 to deduce

ψ(Ld,δ( f )−L∗
d) ≤ P(1 [ f < −δ] [H−1(η)−H(η)]+1 [−δ ≤ f ≤ δ] [Hr(η)−H(η)]

+1 [ f > δ] [H1(η)−H(η)])

≤ P
{

rη,φd ( f )−H(η)
}

and conclude the proof by observing that the term on the right of the previous inequality equals
Lφd ( f )−L∗

φd
.

For the case (δ,d) = (0,1/2) and the case (δ,d) with d ≤ δ ≤ 1− d and 0 ≤ d < 1/2, take
ψ(x) = x.

3. SVM Classifiers with Reject Option

In this section, we consider an SVM-like classifier for classification with a reject option, and show
that it can be obtained by solving a quadratically constrained quadratic program (QCQP).

Let K : X 2 → R be the kernel of a reproducing kernel Hilbert space (RKHS) H , and let ‖ f‖ be
the norm of f in H . The SVM classifier with reject option is the minimizer of the empirical φd-risk
subject to a constraint on the RKHS norm.1 The following theorem shows that this classifier is the
solution to a QCQP, that is, it is the minimizer of a convex quadratic criterion on a convex subset of
Euclidean space defined by quadratic inequalities. Thus, the classifier can be found efficiently using
general-purpose algorithms.

Theorem 5 For any x1, . . . ,xn ∈ X and y1, . . . ,yn ∈ {−1,1}, let f̂ ∈ H be the solution to

minimize f 7→
n

∑
i=1

φd (yi f (xi))

such that ‖ f‖2 ≤ r2,

where r > 0. Then we can represent f̂ as the finite sum

f̂ (x) =
n

∑
i=1

α̂iK(xi,x),

1. Notice that we parameterize the optimization problem in terms of the constraint on the RKHS norm, rather than
in terms of its Lagrange multiplier, which is more standard. The regularization path—the set of solutions to these
problems as the parameter of the optimization problem varies—is identical.
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where α̂1, . . . , α̂n is the solution to the following QCQP.

min
αi,ξi,γi

1
n

n

∑
i=1

(
ξi +

1−2d
d

γi

)

such that ∑
i, j

αiα jK(xi,x j) ≤ r2

ξi ≥ 0, γi ≥ 0,

ξi ≥ 1− yi

n

∑
j=1

α jK(xi,x j),

γi ≥−yi

n

∑
j=1

α jK(xi,x j) for i = 1, . . . ,n.

Proof The fact that f̂ can be represented as a finite sum over the kernel basis functions is a standard
argument (Kimeldorf and Wahba, 1971; Cox and O’Sullivan, 1990). It follows from Pythagoras’
theorem in Hilbert space: the squared RKHS norm can be split into the squared norm of the com-
ponent in the space spanned by the kernel basis functions x 7→ K(xi,x) and that of the component in
the orthogonal subspace. Since the cost function depends on f only at the points xi, and the repro-
ducing property f (xi) = 〈K(xi, ·), f 〉 shows that these values depend only on the component of f in
the space spanned by the kernel basis functions, the orthogonal subspace only makes the constraint
harder to satisfy, but does not affect the cost function. Thus, a minimizing f̂ can be represented in
terms of the solution α̂ to the minimization

min
α1,...,αn

1
n

n

∑
i=1

φd

(
yi

n

∑
j=1

α jK(xi,x j)

)

such that ∑∑
1≤i, j≤n

αiα jK(xi,x j) ≤ r2.

But then it is easy to see that we can decompose φd as

φd(β) = max{0,1−β}+
1−2d

d
max{0,−β}.

Parameterizing φd using the slack variables

ξi = max{0,1− yi f (xi)}, γi = max{0,−yi f (xi)}

gives the QCQP.

4. Tsybakov’s Margin Condition, Bernstein Classes, and Fast Rates

In this section, we consider methods that choose the function f̂ from some class F so as to minimize
the empirical φd-risk

L̂φd ( f ) =
1
n

n

∑
i=1

φd(Yi f (Xi)).
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For instance, to analyze the SVM classifier with reject option, we could consider classes Fn = { f ∈
H : ‖ f‖ ≤ cn} for some sequence of constants cn. We are interested in bounds on the excess φd-
risk, that is, the difference between the φd-risk of f̂ and the minimal φd-risk over all measurable
functions, of the form

ELφd ( f̂ )−L∗
φd
≤ 2 inf

f∈F

(
Lφd ( f )−L∗

φd

)
+ εn.

Such bounds can be combined with an assumption on the rate of decrease of the approximation error

inf f∈Fn

(
Lφd ( f )−L∗

φd

)
for a sequence of classes Fn used by a method of sieves, and thus provide

bounds on the rate of convergence of risk Ld,δ( f̂ ) to the optimal Bayes risk L∗
d .

For many binary classification methods (including empirical risk minimization, plug-in esti-
mates, and minimization of the sample average of a suitable convex loss), the estimation error term
εn approaches zero at a faster rate when the conditional probability η(X) is unlikely to be close
to the critical value of 1/2 (Audibert and Tsybakov, 2007; Bartlett et al., 2006; Blanchard et al.,
2008; Steinwart and Scovel, 2007; Tarigan and van de Geer, 2006; Tsybakov, 2004). For plug-in
rules, Herbei and Wegkamp (2006) showed an analogous result for classification with a reject op-
tion, where the corresponding condition concerns the probability that η(X) is close to the critical
values of d and 1− d. In this section, we prove a bound on the excess φd-risk of f̂ that converges
rapidly when a condition of this kind applies. We begin with a precise statement of the condition.
For d = 1/2, it is equivalent to the margin condition of Tsybakov (2004).

Definition 6 We say that η satisfies the margin condition at d with exponent α > 0 if there is a c ≥ 1
such that for all t > 0,

P{|η(X)−d| ≤ t} ≤ ctα and P{|η(X)− (1−d)| ≤ t} ≤ ctα.

The reason that conditions of this kind allow fast rates is related to the variance of the excess
φd-loss,

g f (x,y) = φd(y f (x))−φd(y f ∗d (x)),

where f ∗d minimizes the φd-risk. Notice that the expectation of g f is precisely the excess risk of
f , Eg f (X ,Y ) = Lφd ( f )−L∗

φd
. We will show that when η satisfies the margin condition at d with

exponent α, the variance of each g f is bounded in terms of its expectation, and thus approaches zero
as the φ-risk of f approaches the minimal value. Classes for which this occurs are called Bernstein
classes.

Definition 7 We say that G ⊂ L2(P) is a (β,B)-Bernstein class with respect to the probability mea-
sure P (0 < β ≤ 1, B ≥ 1) if every g ∈ G satisfies

Pg2 ≤ B(Pg)β .

We say that G has a Bernstein exponent β with respect to P if there exists a constant B for which G
is a (β,B)-Bernstein class.

Lemma 8 If η satisfies the margin condition at d with exponent α, then for any class F of mea-
surable uniformly bounded functions, the class G = {g f : f ∈ F } has a Bernstein exponent β =
α/(1+α).
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The result relies on the following two lemmas. The first shows that the excess φd-risk is at least
linear in a certain pseudo-norm of the difference between f and f ∗d . It is similar to the L1(P) norm,
but it penalizes f less for large excursions that have little impact on the φd-risk. For example, if
η(x) = 1, then the conditional φd-risk is zero even if f (x) takes a large positive value. For η ∈ [0,1],
define

ρη( f , f ∗d ) =





η| f − f ∗d | if η < d and f < −1,

(1−η)| f − f ∗d | if η > 1−d and f > 1,

| f − f ∗d | otherwise,

and recall the definition of the conditional φd-risk in (3).

Lemma 9 For η ∈ [0,1],

d
(
rη,φd ( f )− rη,φd ( f ∗d )

)
≥ (|η−d|∧ |η− (1−d)|)ρη( f , f ∗d ).

Proof Since rη,φd is convex,

rη,φd ( f ) ≥ rη,φd ( f ∗d )+g( f − f ∗d )

for any g in the subgradient of rη,φd ( f ) at f ∗d . In our case, rη,φd is piecewise linear, with four pieces,
and the subgradients include

η 1−d
d at f ∗d = −1,

|η−d| 1
d at f ∗d = −1,0,

|1−η−d| 1
d at f ∗d = 0,1,

(1−η) 1−d
d at f ∗d = 1.

Thus, we have

d(rη,φd ( f )− rη,φd ( f ∗d ))

≥





η(1−d)| f − f ∗d | if η < d and f < −1,

|η−d|| f − f ∗d | if η < d and f > −1,

(|η−d|∧ |1−η−d|) | f − f ∗d | if d ≤ η ≤ 1−d,

|1−η−d|| f − f ∗d | if η > 1−d and f < 1,

(1−η)(1−d)| f − f ∗d | if η > 1−d, f > 1.

=





(1−d)ρη( f , f ∗d ) if η < d and f < −1,

|η−d|ρη( f , f ∗d ) if η < d and f > −1,

(|η−d|∧ |1−η−d|)ρη( f , f ∗d ) if d ≤ η ≤ 1−d,

|1−η−d|ρη( f , f ∗d ) if η > 1−d and f < 1,

(1−d)ρη( f , f ∗d ) if η > 1−d, f > 1.

≥ (|η−d|∧ |1−η−d|)ρη( f , f ∗d ).

We shall also use the following inequalities.
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Lemma 10 If ‖ f‖∞ = B, then for η ∈ [0,1],

ρη( f , f ∗d ) ≤ | f − f ∗d |,

and

η |φd( f )−φd( f ∗d )|2 +(1−η) |φd(− f )−φd(− f ∗d )|2 ≤

(
1−d

d

)2

(B+1)ρη( f , f ∗d ).

Proof The first inequality is immediate from the definition of ρη. To see the second, use the fact
that φd is flat to the right of 1 to notice that

η |φd( f )−φd( f ∗d )|2 +(1−η) |φd(− f )−φd(− f ∗d )|2

=

{
η
∣∣φd( f )−φd( f ∗d )

∣∣2 if η < d and f < −1,

(1−η)
∣∣φd(− f )−φd(− f ∗d )

∣∣2 if η > 1−d and f > 1.

Since φd has Lipschitz constant a = (1−d)/d, this implies

η |φd( f )−φd( f ∗d )|2 +(1−η) |φd(− f )−φd(− f ∗d )|2

≤





ηa2| f − f ∗d |
2 if η < d and f < −1,

(1−η)a2| f − f ∗d |
2 if η > 1−d and f > 1,

a2| f − f ∗d |
2 otherwise

≤ a2(1+B)ρη( f , f ∗d ),

where the last inequality uses the fact that | f − f ∗d | ≤ B+1.

Proof [Proof of Lemma 8] By Lemma 9, we have

Lφd ( f )−L∗
φd
≥ d−1

Eρη( f , f ∗d )
(
|η− (1−d)|IE− + |η−d|IE+

)
,

with
E− = {|η− (1−d)| ≤ |η−d|}, E+ = {|η− (1−d)| > |η−d|}.

Using the assumption on η, there is an A ≥ 1 such that for all t > 0

P{|η(X)−d| ≤ t} ≤ Atα and P{η(X)− (1−d)| ≤ t} ≤ Atα.

Thus, for any set E,

Pρη( f , f ∗d )|η− (1−d)|IE ≥ tPρη( f , f ∗d )I{|η−(1−d)|≥t}IE

= tPρη( f , f ∗d )IE − tPρη( f , f ∗d )I{|η−(1−d)|<t}IE

≥ t{Pρη( f , f ∗d )IE − (B+1)Atα},

where B is such that | f | ≤ B and hence ρη( f , f ∗d ) ≤ | f − f ∗d | ≤ B+1. Similarly,

Pρη( f , f ∗d )|η−d|IE ≥ t{Pρη( f , f ∗d )IE − (B+1)Atα},
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and we obtain

Lφd ( f )−L∗
φd

≥ d−1t
(
Pρη( f , f ∗d )IE+∪E− −2(B+1)Atα)

= d−1t (Pρη( f , f ∗d )−2(B+1)Atα) .

Choose

t =

(
Pρη( f , f ∗d )

4(B+1)A

)1/α
,

in the expression above, and we obtain

Eg f (X ,Y ) = Lφd ( f )−L∗
φd
≥

1

2d(4(B+1)A)1/α (Pρη( f , f ∗d ))(1+α)/α ,

and so

Pρη( f , f ∗d ) ≤
{

2d(4(B+1)A)1/α
}α/(α+1){

Eg f (X ,Y )
}α/(1+α)

.

In addition, by Lemma 10,

E{g f (X ,Y )}2 = EE[{g f (X ,Y )}2|X ]

= P
(
η|φd( f )−φd( f ∗d )|2 +(1−η)|φd(− f )−φd(− f ∗d )|2

)

≤ (B+1)

(
1−d

d

)2

Pρη( f , f ∗d ).

Combining these two inequalities shows that

E{g f (X ,Y )}2 ≤ (B+1)

(
1−d

d

)2(
2d(4A(B+1))1/α

)α/(α+1)
(Eg f (X ,Y ))α/(1+α) .

Remark 11 Specialized to the case (δ,d) = (0,1/2), we note that Lemma 8 removes unnecessary
technical restrictions on η(X) near 0 and 1, imposed by Blanchard et al. (2008) and Tarigan and
van de Geer (2006). This is consistent with results of Steinwart and Scovel (2007) on SVMs with
Gaussian kernels.

Lemma 8 provides the main ingredient for establishing fast rates of minimizers f̂d of the empir-
ical risk L̂φd ( f ).

In the theorem, we use the notation N(ε,L∞,F ) to denote the ε-covering number of F in L∞,
that is, the smallest number of closed ε-balls in L∞ needed to cover F . The countability assumption
means that measurability is not an issue. It can be replaced by other mild sufficient conditions.

Theorem 12 If η satisfies the margin condition at d with exponent α, F is a countable class of
functions f : X → R satisfying ‖ f‖∞ ≤ B, and F satisfies

logN(ε,L∞,F ) ≤Cε−p

1833



BARTLETT AND WEGKAMP

for all ε > 0 and some 0 ≤ p ≤ 2, then there exists a constant C′ independent of n, such that

ELφd ( f̂d)−L∗
φd
≤ 2 inf

f∈F

(
Lφd ( f )−L∗

φd

)
+C′n−

1+α
2+p+α+pα ,

where f̂d = argmin f∈F L̂φd ( f ).

Proof We use the notation Pg f = Eg f (X ,Y ) and

Png f =
1
n

n

∑
i=1

g f (Xi,Yi).

By definition of f̂d , we have

Lφd ( f̂d)−L∗
φd

= Pg f̂d

= 2Png f̂d
+(P−2Pn)g f̂d

≤ 2 inf
f∈F

Png f + sup
f∈F

(P−2Pn)g f .

Taking expected values on both sides, yields,

ELφd ( f̂d)−L∗
φd
≤ 2 inf

f∈F

(
Lφd ( f )−L∗

φd

)
+E

[
sup
f∈F

(P−2Pn)g f

]
.

Since |g f −g f ′ | ≤ | f − f ′|(1−d)/d, it follows that

E

[
sup
f∈F

(P−2Pn)g f

]
≤

1−d
d

εn +
1−d

d
BP

{
sup
f∈Fn

(P−2Pn)g f ≥ εn

}
,

where Fn is a minimal εn-covering net of F with

εn = Mn−(1+α)/(2+p+α+pα)

for some constant M to be selected later. The union bound and Bernstein’s exponential inequality
for the tail probability of sums of bounded random variables in conjunction with Lemma 8, yield

P

{
sup
f∈Fn

(P−2Pn)g f ≥ εn

}
≤ ∑

f∈Fn

P

{
(P−Pn)g f ≥

1
2
(Pg f + εn)

}

≤ |Fn|max
f∈Fn

exp

(
−

n
8

(εn +Pg f )
2

Pg2
f +B(εn +Pg f )/6

)

≤ exp(Cε−p
n − cnε2−β

n )

with 0 ≤ β = α/(1+α) ≤ 1 and some c > 0 independent of n. Conclude the proof by noting that

exp(Cε−p
n − cnε2−β

n ) = exp
(
−

c
2

nε2−β
n

)
,

and by choosing the constant M in εn such that Cε−p
n = cnε2−β

n /2 and exp(−nε2−β
n ) = o(εn).
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Remark 13 The constant 2 in front of the minimal excess risk on the right could be made closer to
1, at the expense of increasing C′.

Theorem 12 discusses minimizers of the empirical risk L̂φd over classes F of uniformly bounded
functions. The analysis of SVMs that minimize L̂φd plus a regularization term requires more work.

Remark 14 Consider for simplicity the case F is finite (p = 0). Then, if the margin condition holds
for α = +∞, we obtain from the proof of Theorem 12 rates of convergence of order log |F |/n. If
α = 0, we in fact impose no restriction on η(X) at all, and the rate equals (log |F |/n)1/2.

Remark 15 The entropy condition is satisfied for many classes. For instance, Kolmogorov and
Tichomirov (1961) prove the following result for Sobolev spaces with parameter β. Let X be a
bounded, convex subset of R

d and for every k = (k1, . . . ,kd) ∈ N
d , define the differential operator

Dk by

Dk =
∂k1+...+kd

∂xk1
1 . . .∂xkd

d

.

Let F = F (β,c1,c2) be the class of real valued, continuous functions f on X with uniformly
bounded partial derivatives of order k ≤ bβc (the greatest integer smaller than β),

max
k1+...+kn≤bβc

max
x∈X

∣∣Dk f (x)
∣∣≤ c1,

and which highest partial derivatives are Lipschitz of order β−bβc,

max
k1+...+kn=bβc

max
x,y∈X , x 6=y

|Dk f (x)−Dk f (y)|

‖x− y‖β−bβc ≤ c2.

The constants c1 and c2 are independent of f . Such classes have covering numbers (Kolmogorov
and Tichomirov, 1961; van der Vaart and Wellner, 1996)

logN(ε,L∞,F ) ≤Cd

(
1
ε

)d/β
,

for every ε > 0 and some constant Cd depending on the dimension d and the constants c1 and c2,
but not on ε. Applying the theorem with p = d/β, we obtain rates between n−β/(2β+d) (for α = 0)
and n−β/(d+β) (for α = +∞).

Another example is the case where F is a subset of a RKHS. For instance, let H be the RKHS
corresponding to the Gaussian kernel K(x,y) = exp(−‖x−y‖2/σ2) and let ‖ f‖ be the norm of f in
H . For F = FR = { f ∈ H : ‖ f‖ ≤ R}, Zhou (2003) proves that, for X = [0,1]d , fixed R and fixed
scale parameter σ, the entropy bound

logN(ε,L∞,F ) ≤Cd logd+1
(

R
ε

)

for some Cd < ∞ and the rates of convergence range between
√

logd+1(n)/n (α = 0) and logd+1(n)/n
(α = ∞). See also the results of Guo et al. (2002).
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Appendix A. Proof of Proposition 4

First we compute

inf
z≤−1

rη,φd (z) =
η
d

,

inf
−1≤z≤−δ

rη,φd (z) =
η
d

1 [η ≤ d]+

(
δ
d

η+1−δ
)

1 [η > d]

inf
−δ≤z≤0

rη,φd (z) = 1 [η ≥ d]+

(
δ
d

η+1−δ
)

1 [η < d]

inf
0≤z≤δ

rη,φd (z) = 1 [η ≤ 1−d]+

(
1+

δ
d
−δ−

δ
d

η
)

1 [η > 1−d]

inf
δ≤z≤1

rη,φd (z) =
1−η

d
1 [η > 1−d]+

(
1+

δ
d
−δ−

δ
d

η
)

1 [η ≤ 1−d]

inf
z≥1

rη,φd (z) =
1−η

d

It is now easy to verify that

H−1(η) = inf
z<−δ

ηφd(z)+(1−η)φd(−z)

=
η
d

1 [η < d]+

(
δ
d

η+1−δ
)

1 [η ≥ d]

so that

H−1(η)−H(η) =(
δ
d

η−δ
)

1 [d ≤ η ≤ 1−d]+

(
1+δ

d
η+1−δ−

1
d

)
1 [η > 1−d]

On the other hand,

ξ−1(η) = η−ξ(η)

= (η−d)1 [d ≤ η ≤ 1−d]+ (2η−1)1 [η > 1−d]

and we see that
δ
d

ξ−1(η) ≤ H−1(η)−H(η)

for all 0 < δ ≤ 1. Next, we compute

Hr(η) = inf
|z|≤δ

ηφd(z)+(1−η)φd(−z)

=

(
1−δ+

δ
d

η
)

1 [η < d]+1 [d ≤ η ≤ 1−d]

+

(
1−δ+

δ
d
−

δ
d

η
)

1 [η > 1−d]
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and

Hr(η)−H(η) =

(
1−δ−

1−δ
d

η
)

1 [η < d]

+

(
1−δ−

1−δ
d

+
1−δ

d
η
)

1 [η > 1−d] .

Since

ξr(η) = d −ξ(η)

= (d −η)1 [η < d]+ (d −1+η)1 [η > 1−d]

we find that
δ
d

ξr(η) ≤ Hr(η)−H(η)

provided 0 < δ ≤ 1/2. Finally, we find that

H1(η) = inf
z>δ

ηφd(z)+(1−η)φd(−z)

=
1−η

d
1 [η > 1−d]+

(
δ
d

+1−δ−
δ
d

η
)

1 [η ≤ 1−d]

and consequently

H1(η)−H(η) =

(
1−δ+

δ
d
−

δ
d

η−
η
d

)
1 [η < d]

+

(
δ
d
−δ−

δ
d

η
)

1 [d ≤ η ≤ 1−d] .

Now,

ξ1(η) = 1−η−ξ(η)

= (1−2η)1 [η < d]+ (1−η−d)1 [d ≤ η ≤ 1−d] ,

and we find that
δ
d

ξ1(η) ≤ H1(η)−H(η)

provided 0 < δ ≤ 1.
We now verify the second claim of Proposition 4. Assume that d ≤ δ ≤ 1−d.
First we consider the case η < d. Then

ξ−1(η) ≤ H−1(η)−H(η) holds trivially.

ξr(η)≤ Hr(η)−H(η) ⇐⇒ (1−δ−d)η ≤ (1−δ−d)d. As η ≤ d, we need that δ ≤ 1−d.

ξ1(η)≤H1(η)−H(η) ⇐⇒ (1+δ−2d)η≤ δ(1−d). As η≤ d, we need that (1+δ−2d)d ≤
δ(1−d), equivalently, (δ−d)(1−2d) ≥ 0.

Next, if d ≤ η ≤ 1−d, we see that
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ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (δ−d)η ≥ d(δ−d).

ξr(η) ≤ Hr(η)−H(η) holds trivially.

ξ1(η) ≤ H1(η)−H(η) ⇐⇒ (δ−d)η ≤ (1−d)(δ−d).

Finally, if η > 1−d, we find that

ξ−1(η) ≤ H−1(η)−H(η) ⇐⇒ (1 + δ− 2d)η ≥ (1 + dδ− 2d). For η ≥ 1− d this holds
provided (1+δ−2d)(1−d) ≥ (1+dδ−2d) ⇐⇒ (δ−d)(1−2d) ≥ 0.

ξr(η) ≤ Hr(η)−H(η) ⇐⇒ (1−δ−d)η ≥ (1−d)(1−δ−d).

ξ1(η) ≤ H1(η)−H(η) holds trivially.

This concludes the proof of the second claim, since d ≤ δ ≤ 1− d. The last claim for the case
(δ,d) = (0,1/2) follows as well from the preceding calculations.
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