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Abstract

Classifiers favoring sparse solutions, such as support vector machines, relevance vector machines,
LASSO-regression based classifiers, etc., provide competitive methods for classification problems
in high dimensions. However, current algorithms for training sparse classifiers typically scale quite
unfavorably with respect to the number of training examples. This paper proposes online and multi-
pass algorithms for training sparse linear classifiers for high dimensional data. These algorithms
have computational complexity and memory requirements that make learning on massive data sets
feasible. The central idea that makes this possible is a straightforward quadratic approximation to
the likelihood function.
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1. Introduction

We consider the problem of learning high-dimensional sparse linear classifiers from large numbers
of training examples. A number of different applications from finance, text mining, and bioinfor-
matics motivate this work. We concern ourselves specifically with binary classification and consider
L1-regularized logistic and probit regression models. Such models have provided excellent predic-
tive accuracy in many applications (see, for example, Genkin et al., 2007; Figueiredo and Jain,
2001; Shevade and Keerthi, 2003) and attack overfitting and variable selection in a unified manner.
L1-regularization and a maximum a posteriori (MAP) Bayesian analysis with so-called Laplacian
priors yield identical results (Tibshirani, 1996) and in order to streamline our presentation, we adopt
the Bayesian approach. Many training algorithms now exist for L1-logistic regression that can han-
dle high-dimensional input vectors (Hastie et al., 2004; Shevade and Keerthi, 2003; Koh et al.,
2007). However, these algorithms generally begin with a “load data into memory” step that pre-
cludes applications with large numbers of training examples. More precisely, consider a training
data set that comprises t examples each of dimension d. Due to matrix multiplications on t× t or
d×d matrices, typical computational time requirements are O(t3 +d3), with memory requirements
that are O(td + d2). In our target applications, both t and d can exceed 106 so standard algorithms
become impractical.
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This paper presents two basic algorithms for learning L1-logistic and/or probit regression mod-
els. Both operate in the data streaming model, by which we mean that they scan the data sequen-
tially, and never require storing processed observations. The first algorithm we present is an online
algorithm which sequentially processes each observation only once. This algorithm is provably non-
divergent and uses in the worst case O(d2) time and O(d2) space to assimilate each new training
example (note that both costs are constant with respect to the number of observations, t). Further, if
the input data are sparse, the practical computational cost can be significantly lower.

For massive data sets where t is constant, that is, when given a fixed training data set, we present
a second algorithm that allows practitioners to trade-off computational time for improved accuracy.
This multi-pass algorithm (the MP algorithm) also processes data sequentially but makes a small
constant number of extra passes over the data set. Hence, this sequential algorithm provides results
similar to those of batch algorithms for this problem. The MP algorithm’s computational cost is a
constant factor higher and memory costs are essentially the same as those of the online algorithm.
Finally, we propose the RMMP (Reduced Memory MP) algorithm that has significantly lower worst
case memory costs, O(d +k2) (where k� d) and the same computational costs as the MP algorithm
(thus both computational and memory costs are essentially linear in t and d). We will comment on
the similarities and differences of our technique to other learning algorithms, in particular other
online algorithms, in the following sections.

2. Background and Notation

Throughout this manuscript, we concern ourselves with the task of binary classification, with class
labels y ∈ {0,1}. The training data comprise t labeled training examples, that is, Dt = {(xi,yi)}t

i=1,
with input vectors xi = [xi1, . . . ,xid]

T in R
d and corresponding labels yi, i = 1, . . . , t. We consider

probabilistic classifiers of the form:

p(y = 1|x) = Φ(βT x)

where β ∈ R
d is a vector of regression parameters and Φ(·) is a link function. We restrict our

analytical results to the two most commonly used link functions, the probit Φ(z) =
R z
−∞

1√
2π e−x2/2dx

and logistic Φ(z) = ez

1+ez link functions.
The machine learning problem is thus to estimate the parameters β, in the light of the training

data Dt . We tailor our results towards high input dimension, that is, large d, and large numbers of
training vectors, large t. Viewing the learning problem as one of Bayesian inference, we work with
the posterior distribution of the parameters β conditioned on a labeled training data set Dt , given a
prior distribution on the parameters β:

p(β|Dt) ∝

(

t

∏
i=1

p(yi|β)

)

p(β). (1)

The quantity on the left hand side of (1) is the required posterior distribution of β given the data set
Dt , while the second term on the right hand side is the prior distribution on β, which we will specify
momentarily. The first term on the right hand side is the likelihood:

t

∏
i=1

p(yi|β) =
t

∏
i=1

(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

.
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Finding the MAP β leads to the optimization problem we wish to solve (now on the log scale):

max
β

(log p(β|Dt))

≡ max
β

(

t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

− log p(β)

)

. (2)

The prior distribution p(β) we pick for the parameters is the LASSO prior (Tibshirani, 1996), a
product of independent Laplacian or double-exponential prior distributions on each component β j

(with mean 0):

p(β j|γ) =
γ
2

e−γ|β j|,γ > 0, j = 1, . . . ,d.

A prior of this form places high probability mass near zero and along individual component axes.
It also has heavier tails than a Gaussian distribution—see Figure 1 for plots of the 2-dimensional
distributions. It thus favors locations in parameter space with component magnitudes either exactly

(a) (b)

Figure 1: (a) A standard Laplacian distribution, γ = 1 (b) A superposition of standard (zero mean,
unit variance) Gaussian distribution, and the Laplacian distribution showing both the
higher probability mass the Laplacian assigns along the axes and at zero as well as its
heavier tails.

zero, and hence pruned from our predictive model, or shrunk towards zero. With this prior distri-
bution, (2) presents a convex optimization problem and yields the same solutions as the LASSO
(Tibshirani, 1996) and Basis Pursuit (Chen et al., 1999):

max
β

(log p(β|Dt))

≡ max
β

(

t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

− γ‖β‖1

)

. (3)

The parameter γ in the above problem controls the amount of regularization. Figure 2 shows
a 2-dimensional visualization of how the objective function of the optimization problem changes
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as γ is varied. The choice of the regularization parameter is an important but separate question in
itself (Efron et al., 2004; Hastie et al., 2004). Methods such as cross validation can be used to pick
its value and algorithms also exist to find solutions for all values of the regularization parameter
(commonly called regularization path algorithms). However, we do not address such issues in this
manuscript, and we simply assume γ is some fixed, user-specified constant.

Figure 2: L1-regularization in two dimensions (i.e., d = 2). The axes are the solid lines, the horizon-
tal axis representing β1 and the vertical axis representing β2. The diamond represents the
origin and the open circle represents the (non-regularized) maximum likelihood solution.
The figure shows contours of the function in (3), the objective function, for increasing
amounts of regularization (right to left and then top to bottom). The star shows the MAP
location. The top row, left figure, shows negligible regularization; the MAP and maxi-
mum likelihood estimates coincide and the contours show no L1-induced discontinuities.
The top row, right figure, shows noticeable L1 effects and the MAP and maximum likeli-
hood solutions differ. The bottom row, middle panel shows enough L1-regularization to
set β2 to zero (i.e., variable selection has occurred). The bottom row, right panel, shows
extreme regularization, where both β1 and β2 are zero.

To the best of our knowledge, all existing algorithms solve the above convex optimization prob-
lem in the batch setting, that is, by storing the data set Dt in memory and iterating over it (Fu, 1998;
Osborne et al., 2000; Zhang, 2002; Shevade and Keerthi, 2003; Genkin et al., 2007; Koh et al.,
2007). Consequently, these algorithms cannot be used in the massive data/online scenario, where
memory costs dependent on t represent a significant practical impediment. The approach we present
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now attempts to overcome this limitation and thereby provide algorithms for training sparse linear
classifiers without loading the entire data set into memory.

3. Approximating the Likelihood for Online Learning

The Bayesian paradigm supports online learning in a natural fashion; starting from the prior, the first
training example produces a posterior distribution incorporating the evidence from the first example.
This then becomes the prior distribution awaiting the arrival of the second example, and so on. In
practice, however, except in those cases where the posterior distribution has the same mathematical
form as the prior distribution, some form of approximation is required to carry out the sequential
updating.

We want to avoid algorithms that begin with a “load data into memory” step and also avoid
memory costs that increase with increasing amounts of data. In other words, we want memory costs
independent of t. This requirement in turn, necessitates that we “forget” examples after processing
them. We achieve this by maintaining the sufficient statistics of a quadratic approximation in β to
the log-likelihood of the parameters after incorporating each observation.

We approximate the log-likelihood as:

t

∑
i=1

log(p(yi|β)) =
t

∑
i=1

log
(

yiΦ(βT xi)+(1− yi)(1−Φ(βT xi)
)

≈
t

∑
i=1

(

ai(βT xi)
2 +bi(βT xi)+ ci

)

,

where ai(βT xi)
2 + bi(βT xi)+ ci approximates logΦ(βT xi) when yi = 1 and approximates log(1−

Φ(βT xi)) when yi = 0, i = 1, . . . , t. In either case the approximation uses a simple Taylor expan-
sion around βT

i−1xi, where βi−1 estimates the posterior mode given the first i− 1 examples, Di−1

(Appendix A provides expressions for ai,bi for the probit and logistic link functions). We then
have:

t

∑
i=1

log(p(yi|β)) ≈
t

∑
i=1

(

ai(βT xi)
2 +bi(βT xi)+ ci

)

=
t

∑
i=1

ai(βT xi)(xT
i β)+

t

∑
i=1

bi(βT xi)+
t

∑
i=1

ci

= βT Ψtβ+βT θt +
t

∑
i=1

ci

where:

Ψt =
t

∑
i=1

aixixT
i , and θt =

t

∑
i=1

bixi.

We now substitute this approximation of the log-likelihood function into Equation (3) to obtain the
modified (approximate) optimization problem:

max
β

(log p(β|Dt))≈max
β

(

βT Ψtβ+βT θt − γ‖β‖1

)

. (4)
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Note that we can ignore the term involving the ci’s, as it is not a function of β. Further, the fixed
size d×d matrix Ψ and the d×1 vector θ can be updated in an online fashion as data accumulate:

Ψt+1 = Ψt +at+1xt+1xT
t+1, and θt+1 = θt +bt+1xt+1. (5)

The size of the optimization problem in (4) doesn’t depend on t, the size of the data set seen so
far. Thus, solving a fixed (with respect to t) size optimization problem allows one to sequentially
process labeled data items and march through the data set. In data streaming terminology, the matrix
Ψ and the vector θ provide a constant size sketch or summary of the labeled observations seen so
far.

A number of questions now present themselves: how good is this approximation? How do we
solve the approximate optimization problem efficiently? How does this approach differ from other
likelihood approximation schemes (some of which are also quadratic)? Also, the scheme as set
up requires O(d2) memory in the worst case. Since we would like to use this approach for high
dimensional data sets, can we reduce the memory requirements?

The remainder of this manuscript addresses these and other questions. First, we consider how
to efficiently obtain the MAP solution of (4), the approximate optimization problem.

3.1 The Modified Shooting Algorithm

Recall that we need to find β that solves:

max
β

(

βT Ψβ+βT θ− γ‖β‖1

)

. (6)

In the above equation and following discussion, we drop the subscript t from Ψ,θ for notational
convenience. This is a convex optimization problem and a number of efficient techniques exist
to solve it. Newton’s method and other Hessian-based algorithms may be prohibitively expensive
as they need O(d3) computational time in order to construct the Hessian/invert d × d matrices.
Other authors have described good results on the arguably tougher (non-approximate) optimization
problem for logistic regression (essentially the terms in Equation 3, but with L2 regularization of β)
with techniques such as fixed memory BFGS (Minka, 2000), modified conjugate gradient (Komarek
and Moore, 2005) and cyclic coordinate descent (Zhang and Oles, 2001; Genkin et al., 2007).

In this paper, we employ instead a slight modification of the Shooting algorithm (Fu, 1998), see
Algorithm 1. Shooting is essentially a coordinate-wise gradient ascent algorithm, explicitly tailored
for convex L1-constrained regression problems (squared loss). Since our approximate optimization
problem is also quadratic, the resulting modifications required are straightforward. The vector Ω
in the algorithm is defined as Ω = 2Ψ′β + θ, where Ψ′ is the matrix Ψ with its diagonal entries set
to zero (see Appendix B for details). This vector is related to the gradient of the differentiable part
of the objective function and consequently can be used for optimality checking. Minor variants of
this algorithm have been independently proposed by Shevade and Keerthi (2003) and Krishnapuram
et al. (2005). Although Fu originally derived the algorithm by taking the limit of a modified Newton-
Raphson method, it can also be obtained by a subgradient analysis of the system (subgradients are
necessary due to the non-differentiability that the L1 constraints on β result in, see Appendix B for
the derivation).

While one can think of numerous stopping criteria for the algorithm, in this paper we stop
when successive iterates are sufficiently close to each other (relatively, and with respect to the L2
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SPARSE CLASSIFIERS FOR MASSIVE DATA

Algorithm 1: The modified Shooting algorithm.

Data: Ψ,θ,β0,γ.
β0 is initial β vector.
Ω j refers to the j’th component of Ω.
Ψ j j refers to the ( j, j)’th element of matrix Ψ.
Result: β satisfying (6).
while not converged do

for j← 1 to d do

β j =











0, if |Ω j| ≤ γ
γ−Ω j

2Ψ j j
, if Ω j > γ

−γ−Ω j

2Ψ j j
, if Ω j <−γ

Update Ω.
end

end

norm). More precisely, we declare convergence whenever ‖βi−βi−1‖2/‖βi−1‖2 is less than some
user specified tolerance. Note that βi is the parameter vector at iteration i, which is obtained after
cycling through and updating all d components once.

In the worst case, each iteration of Shooting requires O(d2) computational time. However, for
reasonable amounts of regularization, where the final set of non-zero β values is small, the time
requirements are much smaller. Indeed, the practical computational cost is perhaps better reflected
by bounds in terms of the sparsity of MAP β. Let m denote the maximum number of non-zero
components of β along the solution path to MAP β (hence m≤ d). Implemented carefully, Shooting
requires O(md) time per iteration (see Appendix B for details). Shooting can be initialized with
β0 = 0 if no information about the optimal β is known or to an appropriate “warm” starting point.

While coordinate-wise approaches are commonly regarded as slow in the literature (for example,
Minka, 2001a), for sparse classifiers, they are much faster (see for example, Shevade and Keerthi,
2003). In our experiments, the Shooting algorithm has proven to be practical even for d in the
hundreds of thousands.

4. An Online Algorithm

The quadratic approximation and the Shooting algorithm lead straightforwardly to an online algo-
rithm. After initializing the sketch parameters Ψ0,θ0 and the initial parameter vector β0, process
the data set one observation at a time. Calculate the quadratic Taylor series approximation to each
observation’s log-likelihood at the current estimate of the posterior mode, βi−1, thus finding param-
eters ai,bi. Use these parameters and the observation to update the sketches, Ψ,θ. Now run the
modified Shooting algorithm to update the posterior mode, producing βi and repeat for the next
labelled observation—see Algorithm 2.

We show the performance of the online algorithm on a low dimensional simulated data set
in Figure 3 (the data generating mechanism is a logistic regression model with d = 11, and t =
100,000. For details see the Experiments section of the manuscript). As we process greater num-
bers of observations, the online estimates (the solid lines) improve, that is, get closer to the batch

319



BALAKRISHNAN AND MADIGAN

Algorithm 2: The Online algorithm.
Data: Dt ,γ.
Result: For each i, produces βi, an approximation to the MAP estimate of β for observations

(x1,y1) . . .(xi,yi).
Initialize β0 = θ0 = 0, Ψ0 = 0, i = 1.
while i < t do

Get i’th observation (xi,yi).
Obtain quadratic approximation to term likelihood at βi−1, that is, obtain ai,bi.
Ψi←Ψi−1 +aixixT

i .
θi← θi−1 +bixi.
βi← modified Shooting(Ψi,θi,βi−1,γ)
i← i+1.

end

estimates (the dashed lines which we obtain using BBR, Genkin et al. 2007, publicly available
software for batch L1 penalized logistic regression). See Figure 3, where different colors represent
different components of MAP βi. Figure 4 shows individual plots of the online and batch estimates
for four representative components of MAP βi in blue. We also plot the absolute difference between
the batch and online estimates in green (dotted line) on the same plot on the right (green) axis. As
we expect, after the parameter estimates stabilize, this difference steadily tapers off with increasing
amounts of data.

t = 2x104 t = 6x104 t = 105

βtrue Batch Online Batch Online Batch Online
0.259 0.244 0.242 0.248 0.247 0.254 0.253
0.761 0.700 0.690 0.743 0.739 0.740 0.737
-0.360 -0.360 -0.356 -0.401 -0.399 -0.394 -0.393
0.876 0.980 0.966 0.918 0.913 0.922 0.919
0.913 0.920 0.907 0.920 0.916 0.931 0.929
-0.302 -0.275 -0.270 -0.327 -0.324 -0.317 -0.315
-0.820 -0.826 -0.814 -0.806 -0.802 -0.819 -0.816

0 0 0 -0.010 -0.010 -0.005 -0.005
0 0.050 0.049 0 0 0.013 0.013
0 0.038 0.037 0.014 0.014 0.013 0.013

-0.319 -0.298 -0.294 -0.318 -0.316 -0.320 -0.319
L1 Norm 0.066 0.025 0.016

Table 1: Table with columns showing values of βtrue, and the MAP estimates of β obtained by the
batch algorithm and the online algorithm, for increasing amounts of data on the simulated
data set. To aid assessing convergence of the online to the batch estimates, we show the
value of the L1 norm of the adjacent vectors (batch vs. online estimates) in the last row.
For this example, γ = 10 (logistic link function).

In the worst case, the online algorithm requires O(d2) space and O(d2) computational time to
compute the MAP β for each new observation. Note however, that if the input data has sparsity,
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Figure 3: Performance of the online algorithm on a simulated data set, with regularization parame-
ter γ = 100 (see text for details). The y-axis is the parameter value, the x-axis the number
of observations processed, t.

which is true of text data for instance, the algorithm leverages this. Let the maximum number of
non-zero components in any x be f and assume a constant number of iterations of the modified
Shooting algorithm. In such case, the practical computational time requirement of the algorithm is
O( f 2 +md) per observation (we remind the reader that the md term, is for the cost of the Shooting
algorithm—see 3.1). Although the practical memory costs of the algorithm will likely be less than
O(d2), exactly how much less depends heavily on the data, since Ψ (the part of the sketch domi-
nating the memory requirements) is a weighted sum of outer products of the xi’s. It is possible that
even very sparse data may result in the full O(d2) memory requirement.

Here, we highlight the fact that the online algorithm is accurate and practical if the problem is
of low to medium input dimension, but massive in terms of the number of observations. Appendix
C proves non-divergence of the algorithm in the infinite data limit.

4.1 Heuristics for Improvement/Issues

While one can also obtain parameter estimates for fixed t ( batch problems) using the online algo-
rithm, multiple passes typically provide better estimates, albeit with increased computational cost.
Denote by β∗ the solution to the exact optimization problem (3) for some fixed t. Since the online
algorithm typically initializes itself far from β∗, it is only after processing a sufficient number of
examples that the online algorithm’s term approximations will start being taken closer to β∗. The
update formulae, (5), reveal that for values of i < t, both Ψi and θi are (comparatively) smaller in
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Figure 4: Slightly more detailed version of Figure 3. The panels show four representative parame-
ters from that figure, also showing tapering L1 loss (dotted green line) between the online
and batch algorithm estimates on the right axis (in green). Simulated data set, γ = 100.
Once again, the (left) y-axis is the parameter value and the x-axis the number of observa-
tions processed, t.

magnitude than their respective final values, Ψt ,θt . However, the amount of regularization remains
relatively fixed at γ‖β‖1. Hence, if the online algorithm is initialized at β0 = 0, for any i < t, the
output MAP estimate βi will be more shrunk towards zero than β∗. Figure 3 illustrates this for
smaller values of t where the solid lines (approximate MAP estimates) are closer to zero than the
dashed lines (exact batch estimates).

This suggests the following two heuristics to improve the quality of estimates from the online
algorithm. The first is to increase the amount of regularization gradually as the algorithm processes
observations sequentially (via a schedule, linearly say, ∝ t from zero initially to the specified value
γ at the end of the data set1). Less regularization of the first few observations somewhat mitigates
the effect of taking term approximations at shrunken parameter estimates.

The second heuristic is for the online algorithm to keep a block of observations in memory
temporarily instead of immediately discarding each observation after processing it. The algorithm

1. While the choice of this regularization schedule in this setting is understudied in the literature, asymptotic consistency
results for a slightly modified form of the problem may be of theoretical interest. We refer readers to Zou (2006), and
the references therein.

322



SPARSE CLASSIFIERS FOR MASSIVE DATA

then uses the value of the parameter estimates after having seen/processed all the observations in
a block to update the sketches for the whole block. Note that this will involve keeping track of
the corresponding updates to the sketches for the block (the block’s contributions to Ψ and θ). In
experiments not reported here, both of these heuristics improve the final online estimates somewhat.

One possibility for improving upon the O(d2) worst case computational requirement of the
online algorithm is as follows. In the infinite data case, in order to obtain sparsity in parameter
estimates, the amount of regularization must be allowed to increase as observations accumulate—
an increasingly weighty likelihood term will inundate any fixed amount of regularization. In this
setting (where we have the freedom to choose the amount of regularization), we can use exactly
the same quadratic approximation machinery to pick the value of γ that maximizes the approximate
one-step look ahead likelihood (although the expressions for this approximation would be slightly
different). The resulting scheme has the flavor of predictive automatic relevance determination as
presented in Qi et al. (2004).

The worst case O(d2) memory requirement of the online algorithm, however, presents a greater
challenge. In the next section we outline a multi-pass algorithm based on the same sequential
quadratic approximation that improves the accuracy of estimates when applied to finite data sets
and also uses less memory than the online algorithm.

5. A Multi-pass Algorithm

The block heuristic of the previous section implies that taking all term approximations at the final
online algorithm MAP βt value would certainly produce better estimates of Ψt ,θt . This in turn
would lead to a better estimate of β∗.

Therefore, for fixed data sets where computational time restrictions still permit a few passes
over the data set, this suggests the following algorithm, which we will refer to as the MP (Multi-
Pass) algorithm: Initialize β0 = θ0 = 0, Ψ0 = 0, z = 1. The quantity z will count the number of
passes through the data set. Compute Ψt ,θt by the steps in Online Algorithm (Algorithm 2), except
take all term approximations at the fixed value βz. Note that consequently there is no need for the
shooting algorithm during the pass through the data set. Once a pass through the data set is com-
plete, compute a revised estimate of β∗ by running modified Shooting, that is, set βz+1 =modified
Shooting(Ψt ,θt ,βz,γ). Iteratively loop over the data set, appropriately incrementing z.

For a constant number of passes, the MP algorithm has the worst case computational time re-
quirement of O(td2) to do an equivalent batch MAP β estimation. Once again, if the data set
is sparse, this cost is closer in practice to O(t f 2 + md) (the first term is the cost of updating the
sketches and the second md term is the cost of the Shooting algorithm).

The worst case memory requirement of the MP algorithm is O(d2), which is just a constant with
respect to t. Expectation Propagation (Minka, 2001b) by contrast requires explicitly storing term ap-
proximations and thus has memory costs that scale linearly with t, that is, O(t). The next subsection
presents a modification of the MP algorithm that reduces this worst case memory requirement.

5.1 A Reduced Memory Multi-pass Algorithm

The key to reducing the memory requirements of the algorithm in the previous subsection is ex-
ploiting the sparsity of β∗. Towards this end, consider the modified Shooting algorithm upon con-
vergence; say βMAP is the sparse converged solution Shooting obtains with inputs Ψ,θ and γ. Now
consider the smaller system obtained by only retaining those rows of the vectors, and also corre-
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sponding columns for matrices, for which the components of βMAP are nonzero (denoted with a )̃.
The important observation is that the solution to the reduced size system β̃MAP, obtained using Ψ̃, θ̃
and Ω̃, has exactly the same nonzero components as βMAP obtained for the full system.

We use this fact to derive the RMMP (Reduced Memory Multi-Pass) algorithm, Algorithm
3. The central idea is to use the optimality criteria for the Shooting algorithm to determine which
components of β to keep track of. Call this set S, the active set, which is fixed during every iteration.
Specifically, we set S = { j : |Ω j| ≥ γ}. That is, the active set is the set of variables that are either
nonzero and optimal or variables that violate optimality at the start of a pass (the corresponding
nonzero elements of the vectors/matrices are denoted by their previous symbols but with a ˜ above
them). Now, during the pass we keep track of the much smaller matrix Ψ̃, while also keeping
track of the unmodified/original full length vectors θ and Ω. The update for θ is unchanged and
Appendix B shows how to perform the update for the full length vector Ω in small space. The
algorithm continues by using Ψ̃,Ω, and θ from the latest pass to re-estimate the active set, S and so
on.

A desirable consequence of the setup is that no new approximation is introduced. The search
for the optimal parameter values is slightly more involved though, now proceeding iteratively by
first identifying candidate nonzero components of βMAP, and then refining the estimates for these
components. We can employ the same stopping criteria as for modified Shooting algorithm.

Algorithm 3: The RMMP algorithm.
Data: fixed data set Dt , γ.
Result: βz, the MAP estimate of β that solves (3).
Initialize β0 = 0, S = {},z = 1.
while not converged do

Set θ = 0, Ψ̃ = 0, i = 1.
for i = 1,2, . . . , t do

Get i’th observation (xi,yi).
Obtain quadratic approximation to term likelihood at βz−1, that is, obtain ai,bi.
Ψ̃← Ψ̃+ai(x̃ix̃i

T ).
θ← θ+bixi.
Update Ω.

end
βz← modified Shooting(Ψ̃, θ̃, β̃z−1,γ).
Obtain new active set S = { j : |Ω j| ≥ γ}.
z← z+1.

end

Note that memory requirements are now O(d + k2), where k is the number of variables in the
largest active set. However, we can be even more stringent and set k to be a user specified constant
provided k is bigger than the final number of nonzero components of β∗. Typically, setting k very
close to this limit results in some loss of accuracy and the cost of a few more passes over the data
for convergence. The worst case computational time requirements for a constant number of passes,
are still O(td2) to do an equivalent batch MAP β estimation. Under the same sparsity assumptions
as in previous sections, in practice this cost is better quantified as O(t(k2 + f 2)+kd) (again, the first
term is the cost associated with updating the sketches and the second term is the cost of Shooting).
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We now draw attention to a few practical considerations about the RMMP algorithm. The first
is that although we consider initializing the parameter vector to zero, β0 = 0, better guesses of
β0 (guesses closer to the MAP β) would likely result in fewer passes for convergence. Further,
given we do initialize at zero, the first pass is completed very rapidly. This is because no outer
products are computed, since the active set is initialized as the empty set; the first pass is used
simply to determine the size and components of the active set and the parameter estimates for the
next iteration are still zero, β1 = 0. Typically, setting the reduced memory parameter k to be larger
than this first active set size results in further RMMP iterations mimicking iterations of the MP
algorithm. This is seen by observing two facts. One, for both algorithms, the only components that
change in successive iterations are those in the active set (components that are either non-zero and
optimal or not optimal). Two, in a typical search path for the MAP β, the size of the active set
decreases (and finally stabilizes) as the MAP β is honed in on. Both of these observations together
imply that if we start the RMMP algorithm with enough memory allotted to look at all possibly
relevant β components, we will follow the MP search path (as a motivating example, consider that
setting k = d results in the MP algorithm exactly).

Another consideration is a very useful practical advantage of the proposed algorithm: knowl-
edge of Ω implies the practitioner can confirm when convergence to β∗ has/has not occurred. In
practice, for numerical stability, slightly expanding the active set seems to be a good heuristic. In
our experiments that follow, we do so only if we have extra space (if k is bigger than the number of
variables in the current active set, for any iteration) in two ways: 1. We retain in the active set vari-
ables that were in the active set in the previous iteration and, 2. we add to the active set components
that are close to violating optimality (close in terms of a threshold, τ < 1. This amounts to replacing
the rule in Algorithm 3 with S = { j : |Ω j| ≥ τγ}).

In the next section, we place our work in the context of existing literature on similar problems.

6. Related Work

Although the Bayesian paradigm facilitates sequential updating of the posterior distribution (online
learning) in a natural way, some form of approximation is almost always necessary for practical
applications. Approximating the posterior distribution at every stage by a multivariate Gaussian
distribution (which implies a quadratic approximation of the log posterior distribution) seems a
natural first step backed by asymptotic Bayesian central limit results that imply this approximation
will get better and better with the addition of data (Bernardo and Smith, 1994).

Indeed, approximating the log-likelihood function by a quadratic polynomial is a standard
technique in Bayesian learning applications; see for example Laplace approximation (Kass and
Raftery, 1995; MacKay, 1995), Assumed Density Filtering (ADF)/Expectation Propagation (EP)
(Minka, 2001b), some variational approximation methods such as Jaakkola and Jordan (2000) and
in Bayesian online learning (Opper, 1998). We would like to stress here that many of the above
schemes are for the harder task of approximate inference—we are concerned only with the easier
problem of approximate convex optimization. The similarities in the approaches are confined to the
nature of the approximate (Gaussian) posterior.

The next sections describes results we obtained on some simulated as well as real examples
using the proposed algorithms.
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7. Experiments

We now present examples illustrating the application of the Online, MP and RMMP algorithms to
simulated data sets, where we control the data generating mechanism, and some real data sets. We
make logistic regression comparisons to results obtained using BBR (Genkin et al., 2007). BBR is
publicly available software for Bayesian binary logistic regression that handles the Laplacian prior.
We make probit regression comparisons to results obtained using a batch EM algorithm for Lapla-
cian prior based probit regression (we implemented a slightly modified version of the algorithm in
Figueiredo and Jain, 2001). We generally do not present prediction accuracy results here as our goal
is to obtain accurate, that is, close to batch, parameter values. What we wish to accomplish with
the experiments is demonstrate practical efficiency and applicability of the algorithms. In so doing
and by obtaining essentially identical parameter estimates to batch algorithms, our predictive per-
formance will mirror those of the batch algorithms. Several papers provide representative predictive
performance results for L1-regularized classifiers, for example, Genkin et al. (2007); Figueiredo and
Jain (2001).

We carried out all the experiments on a standard Windows OS based 2Ghz processor machine
with 1GB RAM. For all experiments we set the modified Shooting convergence tolerance to be
10−6, and τ = 0.8 (for experiments involving the RMMP algorithm).

We use the following data sets:
• Simulated data sets: d=11, t=10,000. The data generating mechanism is either a probit or lo-
gistic regression model with one intercept term and 10 model coefficients, for a total of 11 fixed
parameters. Of the ten model variables, three are intentionally set as redundant variables (set with
zero coefficients in the model). The data vectors x, are draws from i.i.d. Gaussian distributions with
mean zero and unit variance. For the experiments with the online algorithm (Figure 3, Table 1),
we used the same model parameters as above, but with t = 100,000 and only a logistic regression
model.
• ModApte training data set: d = 21,989, t = 9,603. This is a text data set, the ModApte split of
Reuters-21578 (Lewis, 2004). We examine one particular category, “earn”, to which we fit a logistic
regression model.
• BIG-RCV data set: d = 288,062, t = 421,816, a data set constructed from the RCV1-v2 data set
(Lewis et al., 2004). It consists of the training portion of the LYRL2004 split plus 2 parts of the test
data (the test data is made publicly available in 4 ≈ 350 MB parts)—see Figure 5. We also use just
the training portion of RCV1-v2 in some experiments. RCV1-v2 training data set : d = 47,236,
t = 23,149 (the features in this data set are a particular subset of the features in BIG-RCV). Our
results are for a single topic “ECAT”, whether or not a document is related to economics.

7.1 Results

The low dimensional simulated data set highlights typical results we obtain with the Online algo-
rithm and the MP algorithm (the RMMP algorithm is not of practical significance in this case). See
Table 2. Each column in the table is an 11-dimensional vector which is the MAP β estimate of the
parameter values (as a reminder, the true parameter values used to generate the data can be seen
in Table 1). The parameter estimates from the Online algorithm are quite close to batch estimates,
likely due to the relatively large data set size (t being large relative to d). Also, with very few passes
over the data set, denoted as before by the variable z, we obtain parameter estimates practically
identical to those obtained by the batch algorithm. The results in the table are typical for both link
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Figure 5: Schematic showing the construction of the various RCV1-v2 based data sets used in the
experiments. The solid line bordered rectangles show the data as publicly available, the
dashed-line bordered rectangles show the data sets we assembled. The shaded portion of
the data is used only during testing.

functions and over a wide range of settings for the regularization parameter, γ. To show this, the
tables report results for both too little regularization (γ = 10, probit link) and too much regulariza-
tion (γ = 100, logistic link) for this particular data set. As a guide to assessing convergence in this
and other tables that follow, we show the L1 norm of the difference between the batch algorithm
estimates (EM or BBR as appropriate) and the Online, MP or RMMP algorithm iterates (also as
appropriate).

We next examine the first real data set, the training data for the ModApte split of Reuters-
21578 (Lewis et al., 2004). This is a moderate dimensional (d = 21989 features) data set with
t = 9603 labelled observations (we use the feature vectors that can be downloaded from the paper’s
appendix.). The features of this data set are weighted term occurrences and it is quite sparse, as is
typical for text data. The batch EM algorithm for probit regression is prohibitively expensive on
this data set as it involves inverting a high dimensional matrix, but we can run BBR to obtain batch
logistic regression results. Hence we focus our results on logistic regression for this data set. We
examine two reasonable settings for the regularization parameter, γ = 10 and γ = 100. For γ = 10,
BBR returns 150 nonzero components and for γ = 100, the MAP β BBR returns has 31 non-zero
components. Since the data set is sparse, and presents no memory limitations, we are able to apply
the Online and MP algorithms in addition to the RMMP algorithm—see Tables 3 and 4.

For both amounts of regularization the Online parameter estimates aren’t particularly good (al-
though between the two settings, the parameter estimates with the higher amount of regularization
are better). As discussed in Section 5, this is likely due to the relatively high dimensionality com-
pared to the number of examples in the data set. The MP algorithm improves parameter estimates
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Probit link function, γ = 10 Logistic link function, γ = 100
EM Online MP BBR Online MP

z = 1 z = 2 z = 3 z = 1 z = 2 z = 3
0.252 0.250 0.207 0.250 0.252 0.178 0.174 0.168 0.178 0.178
0.764 0.764 0.614 0.755 0.764 0.450 0.435 0.422 0.450 0.450
-0.318 -0.314 -0.263 -0.314 -0.318 -0.124 -0.120 -0.1161 -0.124 -0.124
0.834 0.821 0.667 0.824 0.834 0.713 0.689 0.666 0.712 0.713
0.894 0.880 0.719 0.884 0.894 0.656 0.634 0.613 0.655 0.656
-0.304 -0.297 -0.243 -0.301 -0.304 0 0 0 0 0
-0.782 -0.770 -0.627 -0.773 -0.782 -0.511 -0.493 -0.477 -0.510 -0.511
-0.039 -0.039 -0.037 -0.039 -0.039 0 0 0 0 0
-0.036 -0.036 -0.029 -0.036 -0.036 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
-0.327 -0.322 -0.266 -0.324 -0.327 -0.030 -0.029 -0.028 -0.030 -0.030

L1 Norm 0.074 0.878 0.050 0 0.0872 0.172 0.003 0

Table 2: Table with columns showing values of the MAP estimates of β obtained by the batch
algorithms (EM on the left half, for probit regression and BBR on the right half for logistic
regression), the Online algorithm and three successive iterates of the MP algorithm applied
to the simulated data set. The final row displays the L1 norm of the difference between
the batch algorithm estimates (EM or BBR as appropriate) and the Online/MP algorithm
estimates. The results shown here are representative of those obtained for other values of
γ as well.

as expected. For γ = 100, the MP algorithm converges in about z = 6 iterations to parameter values
indistinguishable from BBR—see the left three columns in Table 3. We next applied the RMMP
algorithm to this data set. Examining the size of the first active set reveals setting k ≈ 3000, would
give exactly the same results as the MP algorithm—see typical effects of changing k in Table 4 for
γ = 10. We point out that this is a huge reduction in the worst case memory required, an approx-
imately 98% reduction (k = 3000 vs. d = 21989 originally). Note also that the size of k should
be compared relative to the nonzero components for MAP β (150 and 31 for γ = 10 and γ = 100
respectively).

We further test the limits of the algorithm, by running it with k = 300 for γ = 100. The RMMP
algorithm performs very well, requiring about z = 7 passes (only two more than the MP algorithm)
to converge to correct parameter values. For γ = 10, where k = 300 is small (only twice the number
of non-zero components in the MAP β), once again the same kind of results hold, with the MP
algorithm needing about 7 passes over the data set and the RMMP algorithm needing about 15
passes to converge to the batch β.

Finally, we present results of application of the algorithms to the RCV1-v2 data sets. For the
RCV1-v2 training data (d = 47,236, t = 23,149), sparsity again enables application of BBR to
obtain the batch MAP β parameter values, as well as the Online and MP algorithms, although this is
quite cumbersome. See Table 5. Again, as expected (examining d vs. t for this data set), the Online
estimates are not very good. The multi-pass algorithms have improved parameter estimates. For
γ = 10 (a fairly high amount of regularization), we find essentially the same qualitative results as
the ModApte data set—it takes about z = 6 passes through the data set to obtain indistinguishable
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j BBR Online MP RMMP, k = 300
z = 3 z = 5 z = 3 z = 5 z = 7

Intercept -1.588 -1.404 -1.527 -1.586 -1.451 -1.573 -1.588
9 (bank) 1.188 0.697 0.957 1.185 0.688 1.143 1.188

13 (share) 0.847 0.609 0.793 0.846 0.678 0.839 0.847
147 (acquisit) 0.813 0.562 0.795 0.813 0.696 0.812 0.813

31 (offer) 0.801 0.337 0.618 0.800 0.356 0.772 0.801
...

...
...

...
...

...
...

...
3 (pct) -2.264e-2 -2.259e-2 -2.127e-2 -2.240e-2 -3.247e-2 -2.062e-2 -2.264e-2

62 (plan) -1.757e-2 -1.430e-2 -2.840e-2 -1.779e-2 -3.346e-2 -2.045e-2 -1.757e-2
2 (dlr) 1.552e-2 6.932e-3 1.542e-2 1.548e-2 1.610e-2 1.525e-2 1.552e-2

12 (net) -1.467e-2 -6.671e-3 -1.956e-2 -1.480e-2 -1.415e-2 -1.643e-2 -1.467e-2
8 (ct) 1.277e-2 3.587e-2 2.870e-2 1.320e-2 2.915e-2 1.776e-2 1.278e-2

L1 Norm 4.029 1.691 0.034 3.496 0.4027 3e-4

Table 3: Results obtained on the ModApte data set. The 5 highest and 5 lowest magnitude non-zero
coefficients of MAP β for γ = 100 are shown. In table are the indices of β (and word stem
features they correspond to in brackets), coefficients from BBR, and the Online algorithm,
those obtained after a particular number of passes over the data using the MP algorithm
(full memory) and parameters from the RMMP algorithm with k = 300.

j BBR Online RMMP, z = 8
k = 3120∗ k = 2000 k = 1000 k = 600 k = 300

292 (banker) 2.695 1.523 2.695 2.695 2.695 2.695 2.699
20 (4) 2.268 0.617 2.268 2.260 2.260 2.259 2.273

Intercept -2.010 -1.615 -2.010 -2.009 -2.009 -2.009 -2.005
341 (charg) 1.755 0.832 1.755 1.754 1.754 1.754 1.742

147 (acquisit) 1.572 0.862 1.572 1.572 1.572 1.572 1.568
...

...
...

...
...

...
...

...
66 (loan) 4.943e-3 9.106e-2 4.944e-3 4.849e-3 4.821e-3 4.849e-3 3.224e-3
134 (agre) 4.488e-3 4.836e-2 4.479e-3 4.720e-3 4.756e-3 4.712e-3 1.677e-2

267 (commerci) -2.057e-3 0 -2.068e-3 -1.863e-3 -1.897e-3 -1.852e-3 -3.427e-3
28 (stock) -1.652e-3 -3.879e-2 -1.644e-3 -1.542e-3 -1.560e-3 -1.537e-3 -1.991e-3

56 (interest) -1.518e-4 -7.623e-2 -1.540e-4 -3.059e-4 -2.983e-4 -3.121e-4 -8.640e-4
L1 Norm 28.290 1.4e-3 0.047 0.044 0.048 1.269

Table 4: Results for the ModApte data set: Illustrating the effect of changing k. The 5 highest
and 5 lowest magnitude non-zero coefficients of MAP β for γ = 10 are shown. In table
are the indices of β (and word stem features they correspond to in brackets), coefficients
from BBR, the Online algorithm, and those obtained after 8 passes over the data using the
RMMP algorithm. * For k = 3120, RMMP behaves the same as the MP algorithm.
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γ = 10 γ = 100, k = 2500
β BBR Online RMMP, k = 1500 β RMMP

index z = 2 z = 5 z = 10 index z = 10
12220 (econom) 18.065 16.145 0 18.084 18.065 12220 (econom) 17.234
27407 (moody) 9.909 9.982 7.988 9.904 9.909 37665 (shar) -11.901

37665 (shar) -8.201 -3.918 -2.255 -8.118 -8.201 43626 (union) 8.654
46160 (work) 7.144 6.339 4.061 7.133 7.144 27407 (moody) 8.308
5946 (budget) 6.453 6.327 5.142 6.436 6.453 5946 (budget) 8.215
33192 (profit) -6.211 -3.840 -2.066 -6.159 -6.211 19647 (inflat) 6.326
43626 (union) 6.164 5.789 4.430 6.157 6.164 39539 (statist) 5.782
21160 (july) 5.661 5.093 3.498 5.644 5.661 29641 (obligat) 4.728

19647 (inflat) 5.573 5.437 6.587 5.539 5.573 37471 (sery) 4.621
29641 (obligat) 5.472 6.250 4.810 5.473 5.472 41148 (tax) 4.507

L1 Norm 24.798 87.940 0.480 0.001

Table 5: RCV1-v2 results. Left portion RCV1-v2 training data set, right BIG-RCV data set.

parameter values as BBR (not shown in the table). The RMMP algorithm also gives excellent results
in about 10 passes, see the left portion of Table 5 with k = 1500.

For the BIG-RCV data set (d = 288,062, t = 421,816) however, computational and memory
limitations made it impossible to run the batch algorithms on this data set (also the Online and MP
algorithm). It is precisely for cases like this that the RMMP algorithm is useful, and we were able
to obtain parameter estimates for reasonable settings of regularization—see for example, the right
portion of Table 5.

Does training on the entire BIG-RCV data set actually result in improved predictive perfor-
mance? To address this, we conducted the following experiment. We obtained the best possible
predictive parameters using 10-fold cross-validation on the RCV1-v2 training data set with a batch
algorithm. This is an expensive computation, involving many repeated BBR runs for different val-
ues of the regularization parameter (we searched over γ = 0.01,0.1,1,10,100). The final cross-
validation chosen β has 1010 non-zero parameters.

We then trained a separate sparse logistic classifier on the BIG-RCV data set using the RMMP
algorithm with k = 3000 and γ = 40. Setting γ = 40 results in 1015 non-zero MAP β coefficients
which is approximately the same number of non-zero coefficients as the cross-validation chosen
β. Finally, we compare the predictive accuracy of both classifiers on the unused RCV test set
(comprising the unused two portions of the original RCV1-v2 test data).

The results, shown in Table 6, demonstrate that using the information in extra examples, the “un-
sophisticated” classifier trained on the much larger data set outperforms the “optimized” classifier
trained on a smaller data set.

8. Conclusions

In this paper we presented an asymptotically convergent online algorithm that builds sparse gener-
alized linear models for massive data sets. We also presented efficient multi-pass algorithms that
examine observations sequentially and thus enable learning on massive data sets. Both algorithms
exploit sparsity of input data. We applied the algorithms to large, sparse data sets, for which state-
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“Optimized” β trained “Naive” β trained
on RCV1-v2 training data on BIG-RCV
Relevant Not Relevant Relevant Not Relevant

Retrieved 38,821 7,415 (83.96%) 40,655 6,017 (87.11%)
Not Retrieved 16,368 (70.34%) 319,994 14,534 (73.67%) 321,392

Table 6: This table shows confusion matrices for prediction results on the RCV Test data set. The
CV β (trained on the RCV1-v2 training data set) results are on the left and the MAP β
(trained on the BIG-RCV data set, with γ = 30, k = 3000) results are on the right. Also
shown are recall and precision percentages in bold and brackets. There are approximately
383,000 examples in the test data set.

of-the-art batch algorithms are impractical/cumbersome, and our results show that examining such
data sets in their entirety can lead to better classifier performance.

Some areas of further research that this work opens up are: extension of the algorithms for a hi-
erarchical prior model so that the choice of regularization is less important, the possible application
of our methods to kernel classifiers, and applications to multi-class classification problems.
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Appendix A.

Here we show the Taylor expansions for the quadratic approximations to the log-likelihood function.
To simplify notation, let c(β) = βT xi and ĉ = βT

i−1xi. The link function (we will restrict analytical
results to the logistic and probit link functions) is Φ(z) as before and we denote its first and second
derivative, with respect to z, by Φ′(z) and Φ′′(z) respectively.

Consider the case where yi = 1:

logΦ(c) ≈ logΦ(ĉ)+(c− ĉ)
Φ′(ĉ)
Φ(ĉ)

+
(c− ĉ)2

2

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

∝
Φ′(ĉ)
Φ(ĉ)

c+
1
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Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

c2− ĉ

(

Φ′′(ĉ)
Φ(ĉ)

−
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Φ′(ĉ)
Φ(ĉ)

)2
)

c

so that:

ai =
1
2

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)
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and

bi =
Φ′(ĉ)
Φ(ĉ)

− ĉ

(

Φ′′(ĉ)
Φ(ĉ)

−
(

Φ′(ĉ)
Φ(ĉ)

)2
)

.

Analogously, when yi = 0:

log(1−Φ(c))≈ log(1−Φ(ĉ))− (c− ĉ)
Φ′(ĉ)

1−Φ(ĉ)
− (c− ĉ)2

2

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

so that:

ai =−1
2

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

and

bi =− Φ′(ĉ)
1−Φ(ĉ)

+ ĉ

(

Φ′′(ĉ)
1−Φ(ĉ)

+

(

Φ′(ĉ)
1−Φ(ĉ)

)2
)

.

For the probit link function:

Φ(z) =
Z z

−∞

1√
2π

e−x2/2dx

Φ′(z) =
1√
2π

e−z2/2

Φ′′(z) =
−z√
2π

e−z2/2,

whereas for the logistic link function:

Φ(z) =
ez

1+ ez

Φ′(z) =
ez

(1+ ez)2

Φ′′(z) =
(ez)(1− ez)

(1+ ez)3 .

These expressions then allow us to compute the ai,bi in the cases needed.

Appendix B.

In this appendix we derive the modified Shooting algorithm, Algorithm 1 and discuss its efficient
implementation. We derive Shooting by analyzing the subdifferential of the system (Rockafel-
lar, 1970). We need convex non-smooth analysis results because the regularization term is non-
differentiable at zero. Reviewing concepts very briefly, the subgradient ξ ∈ R

|x|, of a convex func-
tion f at x0 is defined to be any vector satisfying:

f (x)≥ f (x0)+ξT (x− x0).

In words, any vector ξ, such that a plane through (x, f (x)) with slope ξ contains f in its upper
half-space qualifies as a subgradient (equivalently, a tangent plane supporting the convex function
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f ). The subdifferential, ∂ f , is just the set of all subgradients, ξ, at a particular point. This is a
generalization of the gradient which collapses to the gradient, whenever f is differentiable. As
a simple example, the subdifferential of f (β) = |β|, the absolute value function (which is non-
differentiable at β = 0) is:

∂ f =







{−1}, β < 0
[−1,1], β = 0
{1}, β > 0.

As one expects, analogous to optimality conditions resulting from setting the gradient of a differen-
tiable function to zero, optimality conditions for non-differentiable functions result from restrictions
on the subdifferential. In particular we appeal to the following result from non-smooth analysis
(Rockafellar, 1970):
Theorem β̂ is a global minimizer of a convex function f (β) if and only if 0 ∈ ∂ f (β̂).

Now to our particular problem. We need to find β that is a solution to:

max
β

(

βT Ψβ+βT θ− γ‖β‖1

)

.

The convexity of the problem allows us to make incremental progress towards the maxima coordinate-
wise. Starting from some parameter vector, we compute the jth component of the subdifferential of
the function (keeping all other components fixed):

∂
∂β j

(βT Ψβ)+ ∂
∂β j

(βT θ)− γ∂(∑d
j=1(|β j|)

= 2(Ψβ) j +θ j− γ∂(|β j|)
= 2Ψ j jβ j +2(Ψ′β) j +θ j− γ∂(|β j|)

where (Ψ′β) j is the j’th component of the vector Ψ′β and Ψ j j refers to the ( j, j)’th element of
the matrix Ψ (Recall that Ψ′ is defined to be the matrix Ψ with diagonal entries set to zero). The
second equation follows from the first as the subdifferential of a univariate differentiable function
is just its derivative and since matrix Ψ is symmetric (it is just a weighted sum of outer products).
Now if we plug in the subdifferential of the non-differentiable absolute value function, and set
Ω j = 2(Ψ′β) j + θ j (and thus define the vector Ω to be the gradient of the purely differentiable
part of the objective function), we obtain the subdifferential of the objective function, whose j’th
component we denote by ∂β j

as:

∂β j
=







{2Ψ j jβ j +Ω j + γ}, β j < 0
[Ω j − γ,Ω j + γ], β j = 0
{2Ψ j jβ j +Ω j − γ}, β j > 0.

This is a piecewise linear function with fixed negative slope 2Ψ j j and a constant jump of fixed size
2γ at β j = 0 (Ψ j j can be proven to always be negative by looking at the update formula for Ψ and
using the fact that ∀i,ai < 0). Using the optimality criteria (now for maximization since −|β j| is a
concave function) naturally leads to the modified Shooting algorithm, illustrated in Figure 6.

Now to questions regarding the efficient implementation of the Shooting algorithm, used by
the online, MP and RMMP algorithms. In the modified Shooting algorithm, after each component
update (change in β j) we need to modify Ω (the update Ω step in the algorithm). This can be
implemented efficiently using the following result (similar to the trick detailed in Minka, 2001):

Ωnew = Ωold +2Ψ′(. j)(∆β j)
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Figure 6: Illustration of cases occurring in the Shooting algorithm (a) If |Ω j| ≤ γ the constant por-
tion of the subdifferential contains zero. In this case, set β j = 0 (b) If instead, Ω j < −γ,

the optimality conditions will be satisfied by setting β j =
−γ−Ω j

2Ψ j j
(c) The case analogous

to (b) but when Ω j > γ. Here the subdifferential is set equal to zero when β j =
γ−Ω j

2Ψ j j
.
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where ∆β j is the change in β j and Ψ′(. j) is the j’th column of Ψ′. Thus each component update
of Shooting can be done in O(d) computational time. Now, if as before the maximum number of
non-zero components of β along the solution path to MAP β is m, only m such updates will need to
be made, giving a total time requirement per iteration of O(md).

Finally we detail how to carry out the Ω updates efficiently for the RMMP algorithm, Algo-
rithm 3. Recall that since we are discussing a multi-pass algorithm, the location where we take the
quadratic approximation, βi−1, is constant throughout the pass through the fixed data set, Dt . We
exploit this fact to show that in this case, you don’t explicitly need the matrix Ψ (or Ψ̃) to determine
Ω. Indeed, after going through all the observations in the data set (pass z, say):

Ω = 2Ψ′βz−1 +θ = 2

(

t

∑
i=1

ai
(

xixT
i −diag(x2

i )
)

)

βz−1 +
t

∑
i=1

bixi,

which follows from the definitions of Ω,θ and Ψ′. In the above equation, diag(x2
i ) is a d×d matrix

zero everywhere except the diagonal entries, which consists of the elements of the vector xi squared
component-wise. This leads to the following equation for Ω:

Ω = 2
t

∑
i=1

ai(βT
z−1xi)xi−2

t

∑
i=1

ai(x2
i βz−1)+

t

∑
i=1

bixi,

where (x2
i βz−1) is a vector whose entries are x2

i multiplied by βz−1 component-wise. Note the first
sum is just a weighted combination of the input data (βT

z−1xi is a scalar). Thus, our final update
formula results:

Ωnew = Ωold +(2aiβT
z−1xi +bi)xi−2ai(x2

i βz−1).

As can be seen, computing this update per observation takes time and space O(d), and having
restricted the number of non-zero components of β to k, a total computational cost per iteration of
Shooting to O(kd).

Appendix C.

We present a proof sketch for the convergence behavior of the online algorithm in the infinite data
limit. The intuition for is as follows: as t → ∞, the Bayesian central limit theorems dictate that
the posterior distribution tends (in distribution) to a multivariate Gaussian with ever shrinking co-
variance, (Bernardo and Smith, 1994). Thus, less and less information is required to encode the
posterior distribution as more and more data is added—to a point. Indeed, in the limit, only the
vector of the maximum likelihood value of the parameters, βMLE , is required to completely describe
the posterior distribution.

Suppose now that the online algorithm converges to a particular fixed point. In the infinite data
limit, an infinite number of term approximations are taken at this fixed point. Now, our Taylor
polynomial based approximation preserves both the function value and its gradient, and an infinite
number of approximations are jointly maximum at this fixed point. This implies the fixed point is
an optima of the posterior distribution.

Thus, if the approximation converges to a fixed point, it is the correct optima location. The above
is a modification of the fixed point Lemma in the paper on Laplace Propagation (Eskin et al., 2003).
One can also prove unbiasedness which follows from our update rules and a minor modification of
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a theorem in Opper (1998). Even though Opper derives his results based on a Gaussian prior on
the parameters β (corresponding to L2 regularization), the general format of Opper’s theorem is still
applicable in our case because, in the infinite data limit, the prior is inconsequential.
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