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Abstract
Multi Agent Reinforcement Learning (MARL) has received continually growing attention in the
past decade. Many algorithms that vary in their approaches to the different subtasks of MARL have
been developed. However, the theoretical convergence results for these algorithms do not give a
clue as to their practical performance nor supply insights to the dynamics of the learning process
itself. This work is a comprehensive empirical study conducted on MGS, a simulation system de-
veloped for this purpose. It surveys the important algorithms in the field, demonstrates the strengths
and weaknesses of the different approaches to MARL through application of FriendQ, OAL, WoLF,
FoeQ, Rmax, and other algorithms to a variety of fully cooperative and fully competitive domains in
self and heterogeneous play, and supplies an informal analysis of the resulting learning processes.
The results can aid in the design of new learning algorithms, in matching existing algorithms to
specific tasks, and may guide further research and formal analysis of the learning processes.
Keywords: reinforcement learning, multi-agent reinforcement learning, stochastic games

1. Introduction

Multi-Agent Reinforcement Learning (MARL) deals with the problem of learning to behave well
through trial and error interaction within a multi-agent dynamics environment when the environ-
mental dynamic and the algorithms employed by the other agents are initially unknown. Potential
applications of MARL range from load balancing in networks (Schaerf et al., 1995) and e-commerce
(Sridharan and Tesauro, 2000) to planetary exploration by mobile robot teams (Zheng et al., 2006).

MARL adopts the game theory model of a Stochastic (a.k.a. Markov) Game (SG) to model
the multi-agent-environment interaction. The non-cooperative1 game theoretic solution concept for
SGs is the Nash Equilibrium (NE). A NE is a behavioral profile, namely a set of decision rules,
or policies, for all agents, such that no agent can benefit from unilaterally changing its behavior.
However, SGs may have multiple NEs with different values, none of which is necessarily strictly
optimal (i.e., preferable by all agents to all other NEs). Thus, in the general case, it is not clear which
behavior should be considered “optimal,” even when the environmental dynamics and the other
players’ set of possible strategies are known. For this reason, development of MARL algorithms

∗. A preliminary version of this paper that covered some of the results on common-interest games appeared in Bab and
Brafman (2004).

1. In this context, the meaning of ‘non-cooperative’ is that agents are selfish and do not collaborate or communicate
with other agents, except through the game.
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has concentrated on algorithms for classes of SGs in which there is a unique NE, or in which all NEs
have the same value. In such cases, it is possible to measure the performance of learning algorithms
against a well defined target.2 In particular, most MARL algorithms are shown to converge to such
NEs in self play in either Common Interest SGs (CISGs) or Fixed Sum SGs (FSSGs), which we
describe next.

CISGs model environments in which the agents share common interests and have no conflicting
interests. In such environments, defining an optimal joint behavior for all agents is straightforward—
it is the joint behavior that maximizes the common interests. However, since the agents are inde-
pendent, they face the task of coordinating such joint behavior in the case in which there are several
optimal options. FSSGs, on the other hand, model environments in which two agents have fully
conflicting interests. In FSSGs, there is a well defined minimax solution (Filar and Vrieze, 1997).

Several different MARL algorithms have been proved to converge in the limit to optimal behav-
ior in CISGs (Littman, 2001; Wang and Sandholm, 2002) and in FSSGs (Littman, 1994). One has
been shown to converge to ε-optimal behavior in polynomial time in both CISGs and FSSGs (Braf-
man and Tennenholtz, 2002, 2003). Since MARL is, by its nature, an online task, determining the
abilities of the algorithms in practical domains is important. However, existing theoretical results
tell us very little about the practical efficacy of the algorithms;3 to this end a comprehensive em-
pirical comparison is necessary. Experimental results that have been published in the literature on
CISGs (Claus and Boutilier, 1997; Wang and Sandholm, 2002; Chalkiadakis and Boutilier, 2003)
and on FSSGs (Littman, 1994; Uther and Veloso, 2003; Bowling and Veloso, 2002), do not meet
this demand. They do not examine representative samples of algorithms and/or use small and simple
test models and/or do not examine online learning. Furthermore, the different experimental setups
used in different publications do not enable cross comparisons of the algorithms they examine.

This work provides a comprehensive empirical study of MARL algorithms in CISGs and FSSGs.
It offers a decomposition of the MARL task into subtasks. It then compares three algorithms for
learning in CISGs: FriendQ (Littman, 2001), OAL (Wang and Sandholm, 2002), and Rmax (Braf-
man and Tennenholtz, 2002); and three algorithms for learning in FSSGs: FoeQ (Littman, 1994,
2001), WoLF (Bowling and Veloso, 2002) and Rmax (Brafman and Tennenholtz, 2002). These
algorithms were selected because they represent a variety of approaches to the offered subtasks,
while providing certain convergence guarantees. We experimented with diverse variants of these
algorithms on several non-trivial test environments which we designed to demonstrate the efficacy
of the different approaches in each of the subtasks. To concentrate attention on the basic learning
task, full state observability and perfect monitoring (that is, the ability to observe the actions of
other agents) are assumed. The results allow us to rank the performance of the algorithms according
to properties of the environment and possible performance measures.

The experiments for this work have been conducted using MGS, a Markov Game Simulation
system developed for this purpose. MGS is implemented in the Java programming language and
supplies interfaces and abstract classes for the simple creation of players and grid worlds and con-
venient logging. We believe that MGS can be of good service to both MARL algorithm designers
and users. MGS is free, open source software available at http://www.cs.bgu.ac.il/˜mal.

2. Much recent work is concerned with the question of how to define and evaluate the performance of learning algo-
rithms in more general games. See, for example, Vohraa and Wellman (2007) which is devoted to this issue.

3. Vidal and Durfee (2003) take a step towards theoretical analysis of the learning dynamics. They offer theoretical
tools to analyzing and predicting behavior of multi-agent systems that are represented by simpler models than SGs.
Powers and Shoham (2005) offer experimental results on iterative games, which are a much simpler model than SGs.
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The paper is organized as follows. Necessary background is given in Section 2. Sections 3
and 4 describe the particular problems and algorithms for CISGs and FSSGs, respectively, and
present experimental results and analysis. Section 5 describes MGS and Section 6 concludes the
paper.

2. Multi-Agent Reinforcement Learning and Stochastic Games

Multi-Agent Reinforcement Learning (MARL) is an extension of RL (Sutton and Barto, 1998;
Kaelbling et al., 1996) to multi-agent environments. It deals with the problems associated with
the learning of optimal behavior from the point of view of an agent acting in a multi-agent en-
vironment. At the outset, the environmental dynamics and the algorithms employed by the other
players are unknown to the given agent. The environment is modeled by a finite set of states and
the agents-environment interaction is discretized into time steps. At each time step, the players
simultaneously choose actions, available from individual sets of actions. Depending stochastically
on the joint action, the environment transitions into its next state and each player is rewarded. The
present work assumes full state observability and perfect monitoring, namely, the agent observes
the actions taken and rewards received by the other players. It also assumes that the agents have
no additional means of communication. The multi-agent-environment interaction is modeled by a
Stochastic (a.k.a Markov) Game (SG).

Definition 2.1 (Stochastic Game) An SG G := {α,A,S,T,R} consists of:

• α = {1, ...,n} - a set of players. We will typically use n to denote the number of players.

• A = A1×A2× ...×An – a set of joint actions. Ai is a set of private actions available to player
i.

• S - a set of states.

• T : S×A× S→ [0,1] - a transition function. T (s,a,s′) = Pr(s′ | s,a) is the probability that
the system transitions to state s′ when joint action a is taken at state s (∑s′ T (s,a,s′) = 1).

• R : S×A×S→ R
n - a payoff function. [R(s,a,s′)]i is i’s reward upon transition from state s

to state s′ under joint action a.

The behavior of player i in an SG is described by a policy. A policy is a mapping πi : H →
PD(Ai) where H := {(s0,a1,s1,a2, ...,s j) | j ≥ 0} is the set of possible histories of the process
and PD(Ai) is a probability distribution over Ai. A policy that depends only on the current state
of the process, that is, πi : S →PD(Ai) is called stationary. A deterministic policy, that is a
mapping, πi : H → Ai is called pure, whereas a stochastic policy is called mixed. A tuple of
policies π = (π1, . . . ,πn) for n players of a SG is called a policy profile. The objective of an agent
in a SG is to maximize some function of its accumulated payoffs, referred to as the agent’s return.
In this study, the infinite horizon discounted return (IHDR) is considered. The expected IHDR for
player i, resulting from policy profile π, is defined by the sum ∑∞

t=0 γtEπ(ri
t) where ri

t is player i’s
payoff at time t and γ ∈ [0,1) is a discount factor. Consequently, a state-policy value function, V is
defined by Vi(s,π) = ∑∞

t=0 γtEπ(ri
t | s0 = s).

We note that different algorithms optimize different objectives. Yet, typically, the same un-
derlying ideas can be used to formulate different variants of the same basic algorithm that aim to
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maximize different natural objectives. While we use formulations that aim to maximize IHDR, the
games we experiment on are such that any good policy will reach an absorbing state (following
which the agents are placed in their initial states) quickly. In this setting, given a reasonably high
discount factor, γ, IHDR maximizing behavior will be identical to behavior maximizing average
reward. Consequently, we will sometimes find it more natural to report performance measures such
as average reward per step.

For single agent domains, where n = 1, there is always an optimal pure stationary policy that
maximizes V (s,π) for all s∈ S (Filar and Vrieze, 1997). The single-agent state-policy value function
for the optimal policy, referred to as the state-value function, is the unique fixed point of the Bellman
optimality equations

V ∗(s) = max
a∈A

(

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)V ∗(s′)

)

,∀s ∈ S .

An optimal policy may be specified by π∗(s) = argmaxa∈A(R(s,a)+ γ∑s′∈S T (s,a,s′)V ∗(s′)) (Put-
erman, 1994). Many single agent Reinforcement Learning (RL) methods interleave approximation
of the value function with derivation of a learning policy from the current approximation.

In MARL, maximizing the IHDR cannot be done by simply maximizing over (private) policies
since the return depends also on the other players’ policies which, in turn, may depend on the
agent’s actions. Hence, to maximize the IHDR, the agent must adopt a policy that is a best response
to the other players’ policies. Formally, πi is a best response to π−i = (π1, ...,πi−1,πi+1, ...,πn) if
Vi(s,π1, ...,πi, ...,πn)≥Vi(s,π1, ...,π′i, ...,πn) for all π′i and s∈ S. A best response function is defined
by BR(π−i) =

{

πi | πi is a best response to π−i
}

. In general,
T

π−i BR(π−i) = /0, namely, there is no
policy that is a best response to all of the possible behaviors of the other players.

Whereas the goal of single-agent reinforcement learning is clear—maximizes some aggregate
of your reward stream, the picture is more complex in multi-agent settings. Here, one’s performance
depends on what the other agents do, and strategic considerations come to the fore. For instance,
the well-known notion of Nash Equilibria does not, in general, provide a clear target for learning
algorithms, as many such equilibria may exist in a game, none of which dominates the others.
Although some recent work has attempted to clarify this issue (Brafman and Tennenholtz, 2004;
Shoham et al., 2007), there is still no clear agreement on the goal of MARL. However, there are
two special classes of SGs in which there is a clear target for learning: Common-interest SGs, and
Fixed-sum SGs. These are two extreme cases of SGs where players are either fully cooperative or
fully opposed. Much work in the area of MARL has concentrated on these classes of SGs, and
algorithms with good theoretical guarantees exist for each of them. In this paper, we analyze a
number of algorithms for such games.

3. Learning in CISGs

In CISGs, the payoffs are identical for all agents. That is, for any given choice of s,a and s′ and
any pair i, j of agents, we have that [R(s,a,s′)]i = [R(s,a,s′)] j. Therefore, all agents have identical
interests and we may speak of optimal joint policies, namely, policy profiles that maximize the
common IHDR for the team of agents. Such profiles are also NEs because no agent can gain by
deviating from them. CISGs pose all the standard challenges of single-agent RL, in particular the
need to balance exploration and exploitation and to propagate new experience. In addition, they
challenge the agents to coordinate behavior since to obtain maximum value may require that agents
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select a particular joint action. On the other hand, CISGs do not require that agents confront the
more difficult task of optimizing behavior against an adversary.

For efficient learning in CISGs, agents are required to coordinate on two levels: (i) select
whether to explore or exploit in unison; and (ii) coordinate the exploration and exploitation moves.
This requirement stems from the dependence of the team’s next state on the actions of all its mem-
bers. Hence, it is impossible for the team to exploit unless all agents exploit together, and using the
same choice of exploitation strategy. Exploration, too, can be less effective when only some agents
explore.

Furthermore, even when the model is known, multiple NEs yielding maximal payoffs to the
agents are likely to exist, and the agents still face the task of reaching consensus on which specific
NE to play.

This section describes and compares three algorithms for learning in CISGs: OAL (Wang and
Sandholm, 2002), FriendQ (Littman, 2001), and Rmax (Brafman and Tennenholtz, 2002). They
were selected because each embodies a different approach to learning, while guaranteeing conver-
gence to optimal behavior in CISGs. Diverse variants of these algorithms are examined with the aim
of gaining better understanding of their performance with respect to their approach to exploration-
exploitation, information propagation, and coordination tasks.4 These variants and the tasks on
which they were tested are described in the following subsections.

3.1 FriendQ

FriendQ (Littman, 2001) extends single agent Q-learning into CISGs. After taking a joint action
a = (a1, ...,an) in state s at time t and reaching state s′ with reward rcur, each agent updates its
Q-value estimates for 〈s,a〉 as follows:

Qt(s,a)← (1−αt)Qt−1(s,a)+αt

(

rcur + γmax
a′∈A

Q(s′,a′)

)

.

As in single agent Q-learning, given that ∑∞
t=0 αt = ∞, ∑∞

t=0 α2
t < ∞ and that every joint action is

performed infinitely often in every state, the Q-values are guaranteed to converge asymptotically to
Q∗ (Littman, 2001). Convergence to optimal behavior is achieved using Greedy in the Limit with
Infinite Exploration Learning Policies (GLIELP) (Sutton and Barto, 1998).

There are two types of GLIELPs, directed and undirected. Directed GLIELPs reason about
the uncertainty of the current belief about action values (Kaelbling, 1993; Dearden et al., 1998,
1999; Chalkiadakis and Boutilier, 2003). However, the computational complexity of the underlying
statistical methods makes directed exploration impractical for simulations of the size conducted in
this study.5 Two popular undirected exploration methods are ε-greedy action selection and Boltzman
distributed action selection. There is no established technique for applying Boltzman exploration to
FriendQ, so in our experiments it is executed with ε-greedy exploration only. ε-greedy exploration
is applied to SGs in the following way: each agent randomly picks an exploratory private action
with probability ε, and with probability 1− ε takes its part of an optimal (greedy) joint action with

4. By this we mean the ability of the algorithm to propagate information observed in one state to other states. For
example, Q-learning does not propagate information beyond the current state, unless techniques such as eligibility
traces are used.

5. It can be argued that many realistic applications impose severe constraints on the length of trajectories. In this
case, directed exploration techniques and techniques such as transfer learning appear to be essential for success.
Conducting a study of algorithms for such contexts would seem to be of great interest.
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respect to the current Q-value (Claus and Boutilier, 1997). ε is asymptotically decreased to zero
over time.

Since full state observability, perfect monitoring, and identical initial Q-values to all agents are
assumed, all agents maintain identical Q-values throughout the process, and consequently the same
classification of greedy actions. But, two problems arise: (i) Because randomization is used to select
exploration or exploitation, the agents cannot coordinate their choice of when and what to explore.
(ii) In the case of multiple optimal policies, that is, several joint actions with maximal Q-values in
a certain state, the agents must agree on one such action. The original FriendQ algorithm has no
explicit mechanism for handling these issues.

This work compares some enhanced versions of FriendQ: First, Uncoordinated FriendQ (UFQ),
the simple version described above, is tested. Next, the effect of adding coordination of greedy joint
actions by using techniques introduced by Brafman and Tennenholtz (2003) is examined. Basically,
a shared order over joint actions is used for selecting among equivalent NEs. If such an order is
not built into the agents, it is established during a preliminary phase using an existing technique
(Brafman and Tennenholtz, 2003). This version is referred to as Coordinated FriendQ (CFQ). Then,
coordination of exploration and exploratory actions is added in Deterministic FriendQ (DFQ). In
DFQ, the agents explore and exploit in unison, always exploring the least tried joint action. An
exploratory action is taken each b1/εc′th move. Finally, we add Eligibility Traces (Sutton and
Barto, 1998) to DFQ (ETDFQ).6 Eligibility Traces propagate new experience to update Q-values of
previously visited states and not only the most recently visited state.

3.2 OAL

OAL combines classic model-based reinforcement learning with a new fictitious play algorithm for
action and equilibrium selection named BAP (Biased Adaptive Play) (Wang and Sandholm, 2002).
BAP is an action-selection method for a class of repeated games that contains common interest
games. Here, BAP is described in the context of common interest repeated games. Let m and k
be integers such that 1 ≤ k ≤ m. Each agent maintains a memory of the past m joint actions. At
the first m steps of the repeated game, each player randomly chooses its actions. Starting from step
m+1, each agent randomly samples k out of the m most recent joint actions. Let SPi be the set of k
joint actions drawn by agent i at some time step. If (i) there is a joint action a′ that is estimated to
be ε-optimal, such that for all a ∈ SPi, a−i ⊂ a′ (where a−i ⊂ a′ denotes the fact that the individual
actions of all agents other than agent i are identical in a and a′), and (ii) there is at least one optimal
joint action a ∈ SPi, then agent i chooses its part of the most recent optimal joint action in SPi. If
the above two conditions are not met, then agent i chooses an action ai that maximizes its expected
payoff under the assumption that the other players’ sampled history reflects their future behavior.
This type of action selection is known as fictitious play (Brown, 1951).

EP(ai) = ∑
a−i∈SPi

R(ai∪a−i)
N(a−i,SPi)

k

where N(a−i,SPi) is the number of occurrences of a−i in SPi. Given that there is no sub-optimal NE
and m ≥ k(n + 2), BAP is guaranteed to converge to a NE. It was shown that, for every game that
satisfies these conditions, there is some positive probability p and some positive integer T such that

6. A variant of Eligibility Traces called Replacing Traces was used (Singh and Sutton, 1996). In Replacing Traces, the
eligibility traces are bounded by 1.
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for any history of plays, with probability at least p, BAP converges to a consensus in T steps. That
is, all players agree in the same joint-action which is a NE.

After observing a transition from state s on action a, OAL updates Q-values according to the
learning rule

Qt+1(s,a) = Rt(s,a)+ γ∑
s′

Tt(s,a,s′)max
a′

Qt(s
′,a′)

where Rt , the approximated mean reward, and Tt , the approximated transition probability are esti-
mated using the statistics gathered up to time t. At each step, OAL constructs a Virtual Game (VG)
for the current state-game (the matrix game defined by the current state’s Q-values) and plays ac-
cording to it. The VG has common payoff 1 for any optimal joint action and payoff 0 for any other
action. In our implementation we use the VG in conjunction with ε-greedy as well as Boltzman
action selection. Boltzman action selection is implemented as follows: At each step, an action is
sampled according to the Boltzman distribution induced by the Expected Payoffs in the current VG

eEP(s,a)/τ

∑b eEP(s,b)/τ .

If a sub-optimal action is sampled, it is explored by the agent, otherwise BAP is executed on the VG
to select an exploitation action.

We examine OAL also with an addition of Prioritized Sweeping (PS) (Moore and Atkeson,
1993) to the underlying Q-learning algorithm (PSOAL). PS is a heuristic method for optimizing
finite propagation of TD-errors in the model. PS attempts to order propagation according to the size
of the change to the Q-values, for example, states that are liable to have a greater update should
be updated first. For comparison, a combination of the model-based Q-learning algorithm used
by OAL with the action and equilibrium-selection technique used by CFQ is also examined. This
combination is referred to as ModelQ (MQ).

3.3 Rmax

Rmax (Brafman and Tennenholtz, 2002) is a model-based algorithm designed to handle learning in
MDPs and in fixed-sum stochastic games. However, because Rmax does not make random decisions
(e.g., random exploration), its MDP version can also be used to tackle MARL in CISGs. Brafman
and Tennenholtz (2003) view a CISG as an MDP controlled by a distributed team of agents and
show how such a team can coordinate its behavior given a deterministic algorithm such as Rmax. In
a preliminary phase of the game, a protocol is used to establish common knowledge of the individual
action sets, of orders over these sets, and of an order over the agents. At each point in time, all agents
have an identical model of the environment and know what joint action needs to be executed next
(when a number of actions are optimal with respect to the current state, the agents use the shared
order over joint actions to select among these actions). Thus, each agent plays its part of this action.
It is shown that even weaker coordination devices can be used, and that these ideas can be employed
even under imperfect monitoring.

Rmax maintains a model of the environment, initialized in a particular optimistic manner. It
always behaves optimally with respect to its current model, while updating this model (and hence
its behavior) when new observations are made. The model M ′ used by Rmax consists of n+1 states
S′ = {s0, ...,sn} where s1, ...,sn correspond to the states of the real model M, and s0 is a fictitious
state.7 The transition probabilities in M′ are initialized to TM′(s,a,s0) = 1 ∀〈s,a〉 ∈ S′×A. The

7. The model may be constructed online as states are discovered.
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reward function is initialized to RM′(s,a) = Rmax ∀〈s,a〉 ∈ S′×A, where Rmax is an upper bound on
maxs∈S,a∈A R(s,a). Each state/joint-action pair in M′ is classified either as known or as unknown.
Initially, all entries are unknown.

Rmax computes an optimal policy with respect to M ′ and follows this policy until some entry
becomes known. It keeps the following records: (i) number of times each action was taken at each
state and the resulting state; (ii) the actual rewards, rac(s,a), received at each entry. An entry (s,a)
becomes known after it has been sampled K1 times, such that with high probability TM(s,a,s′)−ρ≤
PE(s,a,s′|K1) ≤ TM(s,a,s′) + ρ where TM is the transition function in M, PE(s,a, · |K1) is the
empirical transition probability according to the K1 samples, and ρ is the accuracy required from M ′.
When an entry (s,a) becomes known, the following updates are made: TM′(s,a, ·)← PE(s,a, · |K1)
and RM′(s,a)← rac(s,a). Then, a new deterministic optimal policy with respect to the updated
model is computed and followed. Rmax converges to an ε-optimal policy in polynomial number of
steps.

The worst-case bounds on K1 (Brafman and Tennenholtz, 2002) assume maximal entropy on
the transition probabilities, that is, TM(s,a,s′) = 1/|S| for all s,a,s′. These bounds, although polyno-
mial, are impractical. In the experiments, these bounds are violated, which enables us to eliminate
knowledge of the state space size. Furthermore, Rmax is not assumed to be known. Instead, it is
initialized to some positive value and updated online to be twice the highest reward encountered so
far.

3.4 Discussion of Algorithms

Returning to the FriendQ algorithm, the efficiency of GLIELPs depends on the topology and dy-
namic of the environment. If the probability to explore falls low before “profitable” parts of the
environment are sufficiently sampled, the increasing bias to exploit may keep the agents in sub-
optimal states. As a result, GLIELPs can exhibit significant differences depending on the particular
schedule of exploration. In model free algorithms, and FriendQ, in particular, this phenomenon is
intensified by the decreasing learning rate that makes learning from the same experience slower over
time. GLIELPs also suffer from their inability to completely stop exploration at some point. Thus,
even when greedy behavior is optimal, the agent is unable to attain optimal return.

The exploration method of Rmax is less susceptible to the structure of the environment. As long
as Rmax cannot achieve actual return ε-close to optimal, it will have a strong bias for exploration
since unknown entries seem very attractive. This strategy is profitable when the model can be
learned in a short time. However, the theoretical worst-case bounds for convergence in Rmax are
impractical. In practice, much lower values of K1 suffice. Bayesian exploration (Dearden et al.,
1999; Chalkiadakis and Boutilier, 2003) and locality considerations might help to obtain better
adaptive bounds, but these approaches are not pursued here.

GLIELPs make learning “slower” as the agents get “older”. To accelerate learning, an algorithm
can try to use new experience in a more exhaustive manner, using it to improve behavior in previ-
ously visited states. Eligibility traces are used to propagate information in FriendQ. In model-based
algorithms, an exhaustive computation per new experience is too expensive (in CPU time). Thus,
OAL is tested with Prioritized Sweeping and Rmax makes one exhaustive computation each time a
new entry becomes known (and does no further computation).

Exploration in FriendQ and OAL algorithms is not coordinated. Each of the agents indepen-
dently chooses an exploratory action with some diminishing probability. Thus, joint actions that
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have no element (private action) of some optimal joint action have a lower chance of being ex-
plored. Hence, some popular techniques for decreasing exploration in the single agent case lead to
finite exploration in the multi agent case. For example, taking ε = 1/time for ε-greedy policies will
make the chance of exploring such joint actions 1/timen, where n is the number of agents.

Equilibrium selection in Rmax and CFQ comes with no cost. In OAL, it is essentially a random
protocol for achieving consensus. This protocol may take long to reach consensus with respect to
the current Q-values, but provides for another exploration mechanism at early stages, when Q-values
are frequently updated.

All three algorithms have parameters that need to be preset. Parameter tuning is task specific
and based more on intuition and trial and error than on theoretical results. FriendQ has a range
of parameters for decaying the learning rate, the exploration probability and the eligibility traces,
which also pose inter-parameter dependencies. For decreasing the learning rate parameter, we used
the results presented in Even-Dar and Mansour (2003). OAL takes parameters for history sample
size and for exploration. In this respect, Rmax is friendlier. It has a single and very intuitive
parameter—number of visits to declare an entry known. When the value of this parameter is high,
a very accurate model is learned and behavior will be, eventually, very close to optimal. But this
comes at the cost of possibly unnecessary exploration and delayed exploitation.

Table 1 summarizes the differences between the three algorithms according to the features men-
tioned above.

property UFQ CFQ DFQ OAL Rmax
Exploration ε-greedy with exponential and polynomial

decay of ε
Boltzman &
ε-greedy (polyno-
mial decay)

Greedy w.r.t opti-
mistic model

Coordination None Common order;
non-deterministic

Common order;
deterministic

Random protocol;
non-deterministic

Common order;
deterministic

Greedy Action
Selection

Maximize common return Fictitious
play/consensus

Maximize com-
mon return

Information
Propagation

Single sweep per step & ET Single sweep per
step & PS

Limited exhaus-
tive computations

Parameter Tun-
ing

Many parameters, task sensitive, not intuitive One parameter,
not sensitive,
intuitive

Table 1: Major differences between the experimented algorithms.

3.5 Experimental Results & Analysis

This section describes experiments with the FriendQ, OAL, and Rmax algorithms on three CISGs.
The games were designed to evaluate the effects of exploration, coordination, and information-
propagation methods on performance in different environments. All games are grid-based. The grid
cells are referred to by (row, column) coordinates indexed from (0,0) at the top left corner of the
grid. In all games, the available actions for each agent are up, down, left, right, and stand. The games
were played in both deterministic and stochastic modes. In deterministic mode, the action always
succeeds. In stochastic mode, each action, excluding stand, succeeds with probability 0.6. With
probability 0.4, uniformly at random, the agent is moved to the each of the other adjacent cells or
left in place. Action stand succeeds with probability 1. If the direction of motion is towards a wall,
the player remains in place. Similarly, two players cannot occupy the same position. Therefore, if
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two agents attempt to move into the same cell, they both fail and remain in their current place. Note
that in stochastic mode, these rules apply to the actual (stochastic) outcome of the action.

Additionally, for each game, we examined the results of learning by heterogeneous agents, that
is, agents using different learning algorithms. Finally, to test how well each algorithm scales up
with the number of players, we introduced a fourth game in which the state and action spaces do
not grow too fast with the number of players. With this game, we were able to play games with up
to 5 players.

Adjusting the parameters of the different algorithms was done by a process of trial and error. The
algorithms were repeatedly executed in an experimental setup, varying their parameters between
executions until some optimum was reached. The parameters that achieved the best performance
were then used throughout. Each set of experimental conditions, other than those related to Rmax,
was subjected to 100 repeated trials. For Rmax, 20 trials were carried out using K1 = 50, 40 with
K1 = 100 and 40 with K1 = 200.8 The discount factor was 0.98 in all trials. Unless mentioned
otherwise, the presented results are averages over all trials.

The following parameter settings were tested:

FriendQ

Exploration: ε-greedy with (i) εt ← 1/count0.5000001
t where countt is the number of ex-

ploratory steps taken by time t. (ii)εt ← 0.99998countt . (Unless specified otherwise, (i)
is used.)9

Learning rate: αs,a← 1/n(s,a)0.5000001 where n(s,a) is the number of times action a was
taken in state s.

Q-value were initialized to 0.

OAL

Exploration: For ε-greedy, εt ← 1/count0.5000001
t , as in FriendQ. For Boltzman exploration,

the temperature parameter was decreased by τ← 100/count0.7.

History: Random history sample size k = 5. History memory size m = 20 (m must satisfy
m≥ k× (n+2). OAL with ε-greedy exploration is referred to as ε-OAL, and OAL with
Boltzman exploration is referred to as B-OAL.

Q-value were initialized to 0.

Rmax

Sampling: values of 50, 100, 200 and 300 for K1 (visits to mark an entry known) were
tested.

Accuracy of Policy Iteration: Offline policy iteration was halted when the difference be-
tween two successive approximations was less than 0.001.

8. Because Rmax is a deterministic algorithm, fewer samples were required.
9. Exponential decay of ε violates the infinite exploration condition for convergence.
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3.5.1 GAME 1

This game, introduced in Hu and Wellman (1998), was devised to emphasize the effects of equilibrium-
selection methods. It has a single goal state (the only reward-yielding state) and several optimal
ways of reaching it. The game is depicted in Figure 1. S(X) and G(X) are the respective initial
and goal positions of agent X . In the goal state G, both agents are in their goal positions and their
reward is 48. Upon reaching the goal, the agents are reset to their initial position. The underlying
SG has 71 states. The optimal behavior in deterministic mode reaches G in four steps and yields an
average reward per step (a.r.p.s.) of 12.10 There are 11 different optimal equilibria. In stochastic
mode, the optimal policies yield an a.r.p.s. of ∼5.285. Algorithms were executed for 107 rounds on
both settings.

S(A)

S(B)

G(B)

G(A)

Figure 1: Game 1 - initial and goal states.

Deterministic Mode
Table 2 reports the number of trials (of 100 in total) in which each algorithm learned a policy,

with four levels of final performance based on the number of steps required to reach the goal. For
this deterministic domain, we find this measure, which is directly correlated with the more standard
a.r.p.s. measure, to be more informative. Here xFQ is a variant of FriendQ in which the agents
explore in unison but do not coordinate exploratory actions. The suffix “εed” denotes exponential
decay of ε. In the present context, the agents’ learning of an optimal policy means that their greedy
choice of actions is optimal. That is, with any residual exploration deactivated. Figure 2 presents
the a.r.p.s. obtained by the agents over time.

steps to

goal

UFQ CFQ xFQ DFQ DFQεed ε-OAL B-OAL B-OALPS MQ Rmax

4 62 49 47 100 100 26 49 41/60 1 100
5 38 49 46 62 51 19/60 49
6+ 2 7 12 29
∞ 21

Table 2: Game 1 – classification of final performance of learned policies for 100 trials of each
algorithm

10. As we noted earlier, our implementation is based on the widely used discounted reward model. But in our goal
oriented domains, optimal and near-optimal strategies require a relatively small number of steps to reach the goal.
Thus, we chose to report the performance of the learned policies using more intuitive measures such as average
reward per step and average steps to reach the goal.

2645



BAB AND BRAFMAN

 0

 2

 4

 6

 8

 10

 12

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

s
te

p
.

FriendQ variants on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

UFQ
CFQ
xFQ
DFQ

DFQeed
DFQETeed

(a) FriendQ variants

 0

 2

 4

 6

 8

 10

 12

 0  200000  400000  600000  800000  1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

s
te

p
.

OAL variants and ModelQ on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

B-OAL
e-OAL

B-OALPS
MQ

(b) OAL variants and MQ

 0

 2

 4

 6

 8

 10

 12

 0  200000  400000  600000  800000  1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

s
te

p

Rmax on deterministic Game-1.
Average reward over time.
Averaged over 100 trials.

Rmax K1=200
Rmax K1=100
Rmax K1=50

(c) Rmax

 0

 2

 4

 6

 8

 10

 12

 0  200000  400000  600000  800000  1e+06
round number

a
v
e
ra

g
e
 r

e
w

a
rd

 p
e
r 

s
te

p

Rmax, B-OALPS and DFQETeed on det. Game-1.
 Average reward over time.
 Averaged over 100 trials

DFQETeed
Rmax K1=50

B-OALPS
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Figure 2: Game 1 – average reward per step under deterministic mode. (a) presents first 8× 106

rounds. (b), (c) and (d) present first 106 rounds.

As can be inferred from the table, in this problem optimal behavior is such that the agents
reach the goal in four steps. FriendQ converges quickly to second-best behavior (Figure 2a). From
that point on, the average learning curves of UFQ, CFQ and xFQ increase stepwise rather than
continuously (although this is a bit difficult to see in the figure). This behavior results from a
sudden switch of the FriendQ agents from sub-optimal to optimal behavior once the relative order
of the Q-values of different agents changes.
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ε-OAL does not present a similar trend. In the trials in which OAL converged to second-best
behavior in the first 2.5× 105 rounds, it failed to find an optimal policy even after 107 rounds
(Figure 2b). In DFQ, since exploration is deterministic, this switch is always at the same time,
specifically after 7×106 rounds(Fig. 2a).

Surprisingly, UFQ fares better than CFQ (Table 2, Fig. 2a), in spite of its less sophisticated
coordination strategy. At an early learning stage, dis-coordination leads to exploration. Later on, the
estimated Q-values of optimal actions are rarely equal, and thus, coordinating exploitation does not
pose a problem (at the examined time interval). Exponential decay of ε supplies more exploration at
an early period than polynomial decay (Fig. 3) leading to faster convergence of DFQεed (Fig. 2a).

Eligibility traces did not contribute much in this example. The parameters of eligibility traces
were hard to tune and very sensitive to change in other parameters or environment dynamics.
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Figure 3: Exponential vs. polynomial decay of ε-greedy exploration probability

OAL agents converge relatively quickly to optimal or second-best behavior, and from that time
onwards stick to their behavior (Fig. 2b). Whether, in the latter case, they fail to structure the Q-
values properly, or the fictitious play prevents the agents from changing their behavior after the
Q-values are ordered properly, is not clear from the data. B-OAL converges faster and more often
to optimal than ε-OAL (Fig. 2b, Table 2). This behavior seems to stem from the effect of the decay
methods we used. The Boltzman method yields more exploration than the ε-greedy method in the
early period of learning. Later on, ε-greedy maintains a low exploration probability that decays very
slowly while Boltzman exploration drops faster to zero. Thus, even when ε-OAL learns optimal
behavior, it keeps achieving only near-optimal average-reward.

As expected B-OALPS improves on the performance of B-OAL (Fig. 2b, Table 2) because of
its more rapid propagation of learned information.

The performance of ModelQ is inferior to that of OAL (Fig. 2b, Table 2), presumably because
ModelQ does not explore as much as OAL: At early stages of learning, fictitious play provides
OAL with other means of exploration. When the agents make many stochastic action choices in
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early stages of learning, fictitious play amplifies the random behavior. However, at later stages of
learning, deviation from constant action choice is rare and will probably not affect fictitious play. In
this setting, ModelQ shows slower convergence than the model-free FriendQ.

The learning graph of Rmax can be precisely divided into two periods, an initial learning period
in which Rmax attains very low return due to exploration, followed by a period of exploitation in
which Rmax attains optimal return (Fig. 2c). The length of the initial period depends linearly on
K1.11 Figure 2d compares the best performing variant of each algorithm.

Stochastic Mode
Figure 4 presents the results for the stochastic mode. As expected, due to the stochastic effects

of actions, the value of the optimal policy decreases, and more importantly, the learning algorithms
require more trials to converge. By contrast to the deterministic case, MQ performs as well as ε-OAL
(Fig. 4a). This improvement is attributable to additional exploration stemming from the stochastic
nature of the environment. For the same reason, CFQ performs almost the same as UFQ (Fig. 4a).
When we compare the gap between the DFQεed to U/CFQ at the first 106 rounds in stochastic mode
vs. the deterministic mode we find that the gap is smaller. This difference is due to the fact that the
additional early exploration supplied by the exponential decay of ε is redundant in the stochastic
case. The slightly higher return gained by DFQεed later on is due to the faster decay of ε. Another
interesting difference from the deterministic setting is that initially ε-OAL gains lower return than
B-OAL but while B-OAL keeps attaining the same average reward, ε-OAL improves slowly over
time and eventually gains a higher average reward than B-OAL. In this case, the slower convergence
of the exploration probability to zero enables ε-OAL to “overcome” randomly “bad” exploration in
initial learning phases.

Rmax behaves similarly in stochastic and deterministic modes. While the other algorithms
achieve only near-optimal return, Rmax attains optimal return (Fig. 4b,c). Rmax’s strong explo-
ration bias results in low return until model entries are known. From that point on, Rmax attains
an optimal return. The histogram (Fig. 4d) shows that Rmax converges to higher return than the
other algorithms not only in the average case but also in the worst case (i.e., almost all runs of
Rmax were better than the best runs for the other algorithms). Very low values for K1, which mean
rough transition probability estimates, are enough for computing near-optimal behavior. Indeed, the
exploration vs. exploitation tradeoff is evident even in this simple example. We see how a smaller
value of K1 leads to faster convergence, but at the cost of slightly smaller average reward.

Overall, it appears that the major issue for the FQ and OAL class of algorithms is exploration.
As the space of joint-actions is quite large, there are many relevant options to try. Especially in
the deterministic case, the rather standard exploration techniques we used appear to be insufficient.
Although stochastic domains naturally lead to more exploration, we can see that the model-free
algorithms are sub-optimal. It appears that model-free algorithms—at least in their standard form—
have difficulty determining whether certain states were explored sufficiently, and that standard ex-
ploration schemes are too crude. Overall, many of the phenomena observed in Game 1 were present
in Games 2 and 3. Therefore, in the following experiments, only phenomena not observed in Game
1 will be emphasized.

11. If it is known ahead of time that the environment is deterministic, then K1 can be set to 1. Similar locality consider-
ations on stochastic environments can help determine tight bounds on K1.
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mode. Subfigures (a) and (c) present all 107 rounds, while (b) presents the first 106

rounds.

3.5.2 GAME 2

This game was designed to minimize the effects of equilibrium selection, to show how GLIELPs
may keep agents exploiting suboptimal possibilities, and to emphasize the importance of coordi-
nated exploration. The game has four goal states and one optimal equilibrium. The game is de-
picted in Figure 5(a). It consists of an additional element, an object that can be moved by the
agents. The agents can move in four directions or stay in place. They can push the object by
standing to its right(left) and moving left(right) and pull the object by standing to its right(left) and
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moving right(left). However, the object is too heavy for one agent and requires cooperation of the
two agents to be moved. The manner by which the object is moved is depicted in Figure 5(b).
Note that the push/pull effect is a by-product of the agents’ moves. Thus, in stochastic mode, what
determines if the action is push or pull is not the chosen action but its actual effect.

S(A) S(B)

xG2 G1

(a) Initial state and Goal states.

A
←

B
←x - A Bx

(b1) Moving the object by pushing simultaneously.

(Agents’ order does not matter).

A
→

B
→x - A Bx

(b2) Moving the object by pushing and pulling simultaneously.

(Agents’ order does not matter).

Figure 5: Game 2

The agents’ goal is to move the object into one of the upper corners of the grid, at which point the
game is reset to its initial state. Moving the object to the upper right (G1) or left (G2) corner yields
a reward of 80 and 27, respectively. The optimal behavior under deterministic mode is to move the
object to G1 in 8 steps. The average reward per step of an optimal strategy under deterministic mode
is 10, and the discounted return is ∼ 465. The second-best strategy is moving the object to G2 in 4
steps, with an a.r.p.s. of 9 and discounted return of ∼ 440. In stochastic mode, the optimal policy
may stochastically lead to one of the goal positions. The a.r.p.s. of the optimal policy in stochastic
mode is ∼ 3.8. The underlying CISG contains 164 states. Algorithms were executed for 3× 107

rounds.

Deterministic Mode
Table 3 classifies the number of trials (of 100 per algorithm) according to the algorithms and

learned policies. Figure 6 shows the a.r.p.s. over time obtained by the different algorithms.
The main reasons for the sub-optimal performance of OAL and CFQ in this game are: (i) Ran-

dom exploration has a greater chance of reaching G2 than G1. Discovering G2 before G1 further
reduces the chance of visiting G1 because of the increasing bias toward exploitation. (ii) Explo-
ration of the CFQ and OAL agents is not coordinated. If reaching G2 is the current greedy policy,
then G1 will not be visited unless both agents explore simultaneously. Game 1 demonstrated an
advantage of exponential decay of the ε-greedy exploration probability over polynomial decay of
this probability. Game 2 demonstrates an opposite phenomenon, Fig. 6a and Table 3 show that CFQ
does better with polynomial decay of ε than with exponential decay. This result stems from finite
exploration supplied by exponential decay. However, this finite amount of exploration is sufficient
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Goal steps
to
goal

CFQ CFQεed DFQεed ε-OAL B-OAL Rmax

G1 8 100 1 100
G2 3 99 65 54 91
G2 4 1 35 46 8

Table 3: Game 2 – Characteristics of the learned policy on a per-trial basis for each algorithm in
deterministic mode.
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Figure 6: Game 2 – Average Reward under deterministic mode. Subfigure (a) presents all 3×107

rounds; Subfigure (b) presents first 3×106 rounds.

when exploration is coordinated as shown by the learning curve of DFQεed (Fig. 6b) and by Table 3.
Furthermore, DFQεed converges to optimal greedy behavior while both CFQ variants do not.

Stochastic Mode
Figure 7 presents statistics for the stochastic mode. It exhibits two interesting phenomena that

have not been observed in the previous experiments. One is that, in contrast to previous results,
ModelQ outperforms ε-OAL (Fig. 7a,c). Since the only difference between ε-OAL and ModelQ is
the greedy action selection method, a reasonable explanation is that BAP (OAL’s action selection
mechanism) delays behavioral change that should follow Q-value updates (which in turn may delay
learning of Q-values). This outcome is because BAP plays a best response to the strategy implied
by the other agent’s past plays. Since both agents react to each other’s past plays using BAP, it
may take long to converge to a new NE when the optimal joint actions are changed. The second
phenomenon is that Rmax requires larger values of K1 to converge to optimal behavior (Fig. 7b).
This finding can be explained by the fact that the optimal behavior involves longer cycles of state
transitions and hence the model has to be more accurate.

As in Game 1, we see that exploration strategies have a great impact on the ability of different
algorithms to converge. In this respect, Game 2 highlights the need for coordinated exploration.
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Thus, in cooperative multi-agent systems, we face the standard problem, clearly visible in Game
1, of ensuring sufficient exploration, but we need to ensure that this exploration is effective by
coordinating exploratory moves of different agents.
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Figure 7: Game 2 – Average reward per step and learned policies per number of trials under stochas-
tic mode. (a) presents all 3×107 rounds; (b) presents first 3×106 rounds.

3.5.3 GAME 3

In the previous games, one had to explore considerable parts of the state space in order to construct
good policies. This game is characterized by a maximum return attainable by staying in a small
local set of states anywhere on the state graph. The initial position of the agents within a 3×3 grid
is random. They are rewarded for reaching a position in which their locations are adjacent. If this
position is attained by unaltered positions of both agents, the reward is 5. If movement is involved,
the reward is 10. Algorithms were executed for 106 rounds.
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As opposed to previous experiments, in deterministic mode, B-OAL and the FriendQ variants
converged faster to optimal (greedy) behavior than Rmax (Fig. 8a). Rmax explores the whole model
before it starts exploiting while FriendQ’s and OAL’s choice of greedy actions is optimal long before
good estimates of all Q-values are attained. However, in stochastic mode the GLIELPs no longer
have this advantage since stochastic transitions do not enable the agents to concentrate on exploiting
a local set of states (Fig. 8b).
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Figure 8: Game 3 – average reward per step under deterministic and stochastic modes.

3.5.4 HETEROGENEOUS PLAYERS

A CISG is most naturally viewed as a model of a distributed stochastic system. As such, it is natural
to have in mind a view of a system’s designer, and one would expect such a designer to equip the
players with identical algorithms. However, CISGs arise also when self-interested agents need to
coordinate, typically on the use of some resource, where coordination is beneficial to all parties
involved. Examples include which side of the road to travel on, the meaning attached to a symbol,
etc. Thus, it is natural to ask how the algorithms tested fare in the context of other algorithms. We
reran the above experiments with pairs of different algorithms. The results, presented in Figure 9 are,
quite uniform (similar performance is observed in the deterministic games). The top performance,
and as is clearly visible, by a wide margin, was obtained by OAL+FriendQ. Pairs containing Rmax
performed much worse, with Rmax+OAL typically fairing slightly better than Rmax+FriendQ. In
fact, comparing the results to the homogeneous case, the OAL+FriendQ combination performed
almost optimally in Game 1: 4.7 vs. 5. In Game 2 it obtained 2.3 vs. 3.8, and in Game 3 it
achieved 5.85 vs. 7.2.12 And while Rmax and, to a lesser extent, FriendQ do better against their
own kind, OAL does better against FriendQ. It may be the case that for equilibrium selection, OAL’s
mechanism works best when one agent ”insists” more on a particular equilibrium, thus more quickly
breaking up symmetries.

These results might be interpreted as an indication of the “rigidity” of each of the algorithms.
FriendQ is the simplest of the three algorithms, it makes no internal assumptions about its partners

12. The version of FriendQ used was CFQ with replacing traces. The OAL version used ε-greedy exploration.
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Figure 9: Heterogeneous play games 1-3.

and simply adapts. Rmax is at the other extreme, it strongly relies on the behavior of its partners
in order to systematically explore and then exploit. OAL is somewhere in between. It does have a
sophisticated mechanism for selecting among different equilibria, but this mechanism is stochastic
and can handle noise, and is based on fictitious play, which is a mechanism that adapts to the
empirical behavior of the other agents. Thus, one would expect Rmax to fail when its assumptions
are not met, as its implicit coordination mechanism is based upon them. In contrast, FriendQ and
OAL, which make weak internal assumptions about their peers, should work well, especially when
their opponent shows some flexibility and adaptivity.

3.5.5 n > 2 PLAYERS

So far, we considered only two-player games. The reason is practical: Experiments conducted on
large state spaces take long to execute. It is especially true for Rmax which must solve the MDP
each time the model changes. This effort grows with the state-space, and the state-space grows
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exponentially with the number of players. Thus, to get an idea of how these algorithms fare with
a large number of players, we devised a simpler, fourth game in which we could run experiment
with up to 5 players. This is a simple linear grid with 5 positions. Players can move to the left and
the right. When two players attempt to move to the same position, the result is with probability 1/3
none move, and with probability 1/3 each one of the players makes the move and the other stays in
place. In the initial state, player i is in position 5− i. The goal position of each player is i. Generally,
the reward at each state is the number of players located at their goal positions. However, when all
players are in their goal position, they receive a reward of 3 times the number of players, at which
point all players transition automatically to the initial position.
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Figure 10: Results for 2-5 players on game 4.

The results are presented in Figure 10. Note the difference in scale for the X-axis for OAL
and FriendQ, which is intended to show that the suboptimal a.r.p.s. to which they converge does
not increase even when we look at millions of steps. As in the previous section, we used the CFQ
version of FriendQ with replacing traces, ε-greedy exploration for OAL, and K1 = 100 for Rmax.
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For all algorithms, the value is greater as the number of players increases due to the game’s
reward definition, which is sensitive to the number of players. All algorithms converge quickly
on this game for all number of players. However, the values they converge to differ. Among the
three algorithms, Rmax converges to the highest average per step reward, FriendQ is next, and OAL
is last. The relative performance is consistent with the performance displayed in the three earlier
two-player games. This finding is a reasonable indication that the relative performance of these
algorithms is qualitatively similar regardless of the number of players, at least for small player sets.

3.5.6 SUMMARY

Section 3.5 presents an experimental study of three fundamentally different algorithm families for
learning in CISGs. The results illustrate the strengths and weaknesses of different aspects of these
algorithms in different settings, highlighting the accentuated importance of effective exploration,
which is enabled in this class of games only by coordinated behavior, the advantage of deterministic
behavior for attaining such coordinated behavior, and the benefits of propagation of information.

Each of the experimental domains emphasizes different aspects of the learning task in CISGs.
The results show that the parameters of OAL and FriendQ are very sensitive to environmental topol-
ogy and dynamic. Exploration and coordination strategies suitable for one environment may be very
inefficient in other environments. Rmax, on the other hand, is stable in this respect. It has a single
parameter, K1, that has to be preset. Its convergence time depends linearly on K1 (and the size of
the state-action space) and it turns out that Rmax converges to near optimal behavior using values
of K1 that achieve faster convergence than that of OAL and FriendQ. However, the convergence
dynamics of Rmax does not suit tasks in which the agents must attain some value during the learn-
ing period, because during its exploration phase, Rmax is indifferent to rewards lower than Rmax.
However, Rmax is also the simplest algorithm, and thus it is easy to alter it, for instance, to obtain
satisficing behavior, for example, by lowering the value of Rmax in the model, or by starting with a
moderate value and then increasing it as better values are observed. Overall, when we control the
algorithm of all agents in the system, Rmax seems to be the best alternative—it converges quickly
to values higher than those of OAL and FriendQ, it does not seem to be sensitive to an increase in
the number of players, except through its effect on the state space, and most importantly, it has very
simple exploration strategy. As we saw in games 1 and 2, the choice of exploration strategy has
much influence on the results of FriendQ and OAL, and the precise choice is sensitive to the nature
of the game, number of equilibria and their nature. Thus, the simple exploration behavior of Rmax
and the potential to alter it in various transparent ways is a clear benefit. Yet, when we may need
to coordinate with other players with unknown coordination mechanisms, or if our underlying state
space is too big for repeated value computations, FriendQ seems to offer the best choice.

4. Learning in FSSGs

In two-player Zero Sum SGs (ZSSGs), the players’ payoffs sum up to zero at every entry. That is,
[R(s,a1,a2)]1 = −[R(s,a1,a2)]2 for every s ∈ S, a1 ∈ A1 and a2 ∈ A2. Such payoffs indicate that
the agents’ interests completely conflict. A ZSSG can be modeled with a single payoff function
R′(s,a1,a2) = [R(s,a1,a2)]1 by redefining Player’s 2 objective as to minimize the IHDR (infinite
horizon discounted reward). For the rest of this section, it is assumed that Player 1 is the max-
imizer and Player 2 is the minimizer the payoff function R. Let V (s,π1,π2) denote the expected
IHDR for starting at state s and playing the profile (π1,π2) of stationary mixed policies there-
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after, and V (π1,π2) = (V (1,π1,π2), ...,V (|S|,π1,π2)). Since the best response in a ZSSG is also
the worst for the opponent, ZSSGs have a unique NE value. To see this, assume by negation that
V (s,π1,π2) > V (s,µ1,µ2) and that both (π1,π2) and (µ1,µ2) are NE. Since π2 ∈ BR(π1), it follows
that V (s,π1,µ2)≥V (s,π1,π2) > V (s,µ1,µ2), which contradicts µ1 ∈ BR(µ2). The value of a policy
π may be defined as V (π,BR(π)). In ZSSGs, this definition coincides with that of a NE (any pair of
optimal policies is a NE and vice versa).

Consequently, the state-value function V (s) is redefined to be the expected IHDR under a profile
of optimal policies and Q(s,a1,a2) the expected IHDR for taking joint action (a1,a2) in state s and
continuing according to a NE thereafter. For any stationary strategy profile (π1,π2) in a ZSSG G,
(π1(s),π2(s)) is a NE for the matrix games defined by [Q(s,a1,a2)]a1∈A1,a2∈A2

for all s ∈ S if and
only if (π1,π2) is a NE for G and the NE values for the matrix games correspond to the state values
V (s,π1,π2) (Filar and Vrieze, 1997). Thus, the Bellman optimality equations can be rewritten for
ZSSGs as

Q∗(s,a1,a2) = R(s,a1,a2)+ γ∑
s′

T (s,a1,a2,s′)V ∗(s′)

V ∗(s) = ∑
a1∈A1,a2∈A2

π1(a
1)π2(a

2)Q(s,a1,a2) (1)

where (π1,π2) is a NE for the matrix game defined by the Q-values in state s. Given a method that
computes NE for zero sum matrix games, Equation (1) can be used as an iterative approximation
rule to compute the Q-values (Littman, 1994) and given the Q-values an optimal policy can be
derived. The NE policies for a zero sum matrix game M = [r(ai,b j)]

k,l
i=1, j=1 are the solutions to the

linear program that maximizes v under the constraints (Filar and Vrieze, 1997)

{

k

∑
i=1

π(ai)r(ai,b j)≥ v | j ∈ {1, ..., l}

}

.

In the following sections, this linear program is abbreviated as:

v = max
π∈PD(A)

min
b∈B

∑
a∈A

π(a)r(a,b).

If SG G is obtained from ZSSG G′ by adding a constant c to all payoffs of both players, then
V G

i (π1,π2) = V G′
i (π1,π2)+ c/(1− γ) for any policy profile (π1,π2) and the strategic properties of

the game are unchanged. G is referred to as a Fixed Sum Stochastic Game (FSSG). The adversarial
nature of FSSGs calls for agents that perform well not only in self play but also in heterogeneous
play, namely when engaged by agents that employ different learning algorithms. Under this setting,
the exploration/exploitation tradeoff wears a new guise as attempted exploration and exploitation
may be interfered by the opponent.

This section compares three algorithms for learning in FSSGs: FoeQ (Littman, 1994, 2001),
WoLF (Bowling and Veloso, 2002) and Rmax (Brafman and Tennenholtz, 2002). They were se-
lected because they represent different approaches to the exploration/exploitation tradeoff and to
information propagation while providing some theoretical guarantees. Specifically, Rmax and FoeQ
converge to a NE in FSSGs in self-play, while WoLF is known to converge in 2 player, 2 action,
repeated games.
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4.1 FoeQ

FoeQ (a.k.a MinimaxQ) (Littman, 1994, 2001) extends Q-learning into FSSGs by using a sample
backup learning rule based on Equation 1 (Littman, 1994). After taking a joint action (a,b) in state
s at time t and reaching state s′ with reward rcur, the agent updates the Q-value of 〈s,(a,b)〉 by

Qt(s,a,b)← (1−αt)Qt−1(s,a,b)+αt

(

rcur + γ max
π∈PD(A)

min
b′∈B

∑
a′∈A

π(a′)Q(s′,a′,b′)

)

.

Qt converges in the limit to Q∗ under the standard Q-learning conditions stated in Section 3.1. Also,
for similar reasons to those stated in Section 3.1, FoeQ is executed with an ε-greedy learning policy.

4.2 WoLF

WoLF (Bowling and Veloso, 2002) is designed to converge to a best response rather than a NE.
WoLF does not explicitly consider an adversary. It applies the standard single-agent Q-learning rule
to approximate Q-values of private actions and uses hill climbing to update its mixed policy. That
is, the policy is improved by increasing the probability of selecting a greedy action according to a
policy learning rate δ (which is distinct from the Q-value learning rate α), enabling mixed policies.
The uniqueness of WoLF is in using a variable policy learning rate according to the “Win or Learn
Fast” (hence WoLF) principle: if the expected return of the current policy given the current Q-values
is below (above) a certain threshold then a high, δl (low, δw), learning rate is set. A good threshold
would be the NE value of the game because if the player is receiving less than its value, its likely
playing a sub-optimal strategy, whereas if it receives more than the NE value, the other players
must be playing sub-optimally. Since the NE value is unknown, it is approximated by the expected
return of the average policy (averaged over the history of the game) given the current Q-values. The
motivation for the WoLF variable policy learning rate is to enable convergence to a NE. Indeed,
Bowling and Veloso (2002) show that gradient ascent with WoLF is guaranteed to converge to a
NE in self play on two-player, two-action, repeated matrix-games, while gradient ascent without
a variable learning rate is shown not to. Furthermore, they provide empirical results on FSSGs
in which WoLF converges to NE in self play. WoLF, as single agent Q-learning, is guaranteed to
converge in the limit to a best response under the standard conditions and given that the opponent(s)
converge to stationary policies.

4.3 Rmax

Section 3.3 describes the Rmax algorithm in the context of MDPs. The same algorithm is applicable
to FSSGs with the only difference that joint actions are considered and optimal policies with respect
to the fictitious model are computed according to (1). As mentioned in Section 3.3, Rmax always
behaves optimally with respect to an approximated, initially optimistic, model M ′ of the real model
M. Since unknown entries are modeled in an attractive manner in M ′, Rmax has a strong bias to
explore. Seeing that the optimal policy maximizes return against the worst opponent, if the opponent
prevents Rmax from visiting unknown entries then Rmax attains near-optimal return because the
known entries are accurately modeled. Thus, Rmax is guaranteed to either attain near optimal
return in the real model M or, with sufficiently high probability, visit unknown entries (Brafman and
Tennenholtz, 2002). This property assures that Rmax will attain near-optimal average reward after
a polynomial number of steps in FSSGs as well as in MDPs.
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As in the CISGs experiments, K1, the number of visits required to declare an entry known, is
treated as a parameter that has to be preset and Rmax is not assumed to be known. Instead, Rmax is
initialized to some positive value and updated online to be twice the highest reward encountered so
far.

4.4 Discussion of Algorithms

The shortcoming of GLIELPs discussed in Section 3.4, namely the possibility of untimely greed-
iness, applies also to FoeQ and WoLF in fixed sum environments and may be further exploited
by an informed adversary. Furthermore, FoeQ and WoLF do not reason about how the opponent
affects exploration. Thus, attempted exploration may result, depending on the opponent’s action
choice, in joint actions that are of low informative and materialistic value. FoeQ’s and WoLF’s
single step backups and possible premature decrease of the Q-learning rates may cause poor use of
new experience.

WoLF compensates for the above limitations by the following properties: (i) Hill climbing
adjustment of the policy for enhanced exploration. Specifically, this exploration is regulated by
the variable policy learning rate to explore more while “winning”. The gradual policy update also
prevents formation of big gaps between Q-values of different entries and thus contributes to both fast
adjustment to changes in the adversary’s behavior and reduction of the effect of untimely greediness.
(ii) WoLF’s greedy policy is a best response rather than a NE. This fact results in high payoffs during
learning, fast growth of Q-values and hence fast convergence. (iii) WoLF does not explicitly model
the opponent. It maintains Q-values for the small action space of private actions resulting in faster
propagation of state-action values.

A major conceptual difference between WoLF and both Rmax and FoeQ is the target of learn-
ing, which also implies the definition of greediness during learning. Rmax’s and FoeQ’s greedy
policies are NE policies. Playing a NE policy is the best strategy against a rational opponent. It
also makes sense even if the adversary does not play a BR since it ensures at least the value of the
game. However, playing a NE policy w.r.t. a non-accurate model/Q-values during learning makes
the hidden assumption that the opponent is not only rational but also acts according to the same
model/Q-values. Under heterogeneous play, this assumption is not valid and may result in low pay-
offs during learning. FoeQ typically maintains pessimistic Q-values during learning. The resulting
(greedy) NE learning policy will attempt to avoid entries that are not well known since they seem
unprofitable. Thus, FoeQ’s greedy action choice may have low informative and materialistic value
when engaged in heterogeneous play. For model free algorithms, fast convergence depends on high
payoffs during learning. Rmax does not distinguish exploration from exploitation and guarantees to
either exploit or explore independent of the adversary’s actions. Thus, low payoffs during learning
are traded for faster convergence to a NE policy. However, Rmax is biased to explore and may
play exploratory actions even when it “knows” a submodel in which the value is attainable. WoLF
pursues the best response policy during learning. This strategy is efficient against adversaries that
converge to stationary policies. However, an adversary that knows WoLF’s strategy may play a
“decoy” policy until WoLF’s learning is slow and then switch to a best response.

Notwithstanding formal results (Even-Dar and Mansour, 2003), parameter tuning is still a task
that requires expert experience and intuition. In this respect, WoLF is the most complicated among
the three algorithms. On top of the parameters for decaying exploration and Q learning rates, which
also appear in FoeQ, it involves presetting the decay rate of the policy-learning rates and the relation
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between the two policy-learning rates δw and δl . Rmax is the simplest to tune among the three with
a single parameter, K1, the number of visits to declare an entry “known”.

Finally, We note that our discussion of convergence rates and the especially our experimental
evaluation focuses on the number of time steps,or multi-agent encounters rather than CPU-time.
Although the algorithms we evaluated are all considered practical for online reinforcement learning,
it should be noted that WoLF requires considerably less computation than FoeQ or Rmax since it
does not involve linear programming computations of equilibria.

4.5 Experimental Results & Analysis

This section describes experimental results on three 2-agent fixed-sum grid games. The games were
designed to evaluate the effects of exploration, information propagation, action selection and other
methods, on the performance of FoeQ, WoLF and Rmax in different environments. The algorithms
were tested in both self play and heterogeneous play. The available actions, indexing of the grid,
transition probabilities for the deterministic and stochastic modes, discount factor etcȧre the same
as in the CISG experiments. The process of adjusting the parameters was also similar to the CISG
experiments and was conducted on the “deterministic 3×3 Wall game” (see below).

The following parameter settings were used for testing:

FoeQ

Exploration: ε-greedy, εt←max
{

0.99999countt ,1/count0.5000001
t

}

where countt is the num-
ber of exploratory steps taken by time t.

Learning rate: αs,a←max
{

0.99908n(s,a),1/n(s,a)0.75
}

where n(s,a) is the number of
times action a was taken in state s.

Q-values were initialized to 0.

WoLF

Exploration: ε-greedy, εt ←max
{

0.5000001countt ,1/count0.5000001
t

}

.

Q Learning rate: αs,a←max
{

0.95n(s,a),1/n(s,a)0.0.5000001
}

.

Policy Learning rate: δl = 0.7×αs,ag , δw = 0.175×αs,ag where ag is a greedy action in
the current state s.

Rmax

Sampling: values of 50, 100 and 200 for K1 (visits to mark an entry known) were tested.

Accuracy of Policy Iteration: Offline Policy Iteration was halted when the difference be-
tween two successive approximations was less than 0.001

4.5.1 3×3 WALL GAME

In this 3× 3 grid game, one player, A, is an Attacker and the other, D, is a Defender. Figure 11a
depicts the initial position of the game. A’s goal is to reach the rightmost column of the grid. If
both players try to enter the same square or to enter each other’s current positions (that is, switch
places) then their locations are unchanged. The only exception to this rule is when the players are in
diagonally adjacent squares—in this case A moves and D’s position is unchanged (Fig. 11b), so that
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the attacker has a slight advantage. The fixed sum of the game is 40. When A reaches the rightmost
column of the grid, it receives a reward of 40, D receives a reward of 0 and the players are reset in
their initial positions. For any other move, A is rewarded by 15 and D is rewarded by 25. The game
was played under deterministic transition probabilities. Every experimental trial was over 4× 106

rounds. The minimax a.r.p.s. for the Attacker is ∼ 21.36.

A D

(a) Initial position

A -

D
6 -

A

D

(b) Attacker passes defender

Figure 11: 3x3 wall game
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(b) FoeQ and WoLF in self play
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Figure 12: 3x3 wall game – average reward per step
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Attacker’s policy Defender’s policy
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .514 .0 .0 .486 .0 1053 1200 .0 .383 .0 .617 .0 947 1200
RX RX 50 .514 .0 .0 .486 .0 — 838 .0 .383 .0 .617 .0 — 838
RX RX 100 .514 .0 .0 .486 .0 — 833 .0 .383 .0 .617 .0 — 833
RX RX 200 .515 .0 .0 .485 .0 — 831 .0 .385 .0 .615 .0 — 831
FQ FQ .415 .0 .297 .288 .0 966 — .0 .383 .0 .327 .290 947 —
WF WF .279 .006 .279 .432 .004 1095 — .067 .309 .022 .278 .324 966 —
RX FQ 50 .213 .0 .181 .606 .0 — 391 .087 .022 .0 .525 .366 265 —
RX FQ 100 .382 .0 .225 .393 .0 — 295 .054 .066 .068 .597 .215 452 —
RX FQ 200 .154 .0 .241 .605 .0 — 249 .074 .023 .009 .630 .264 715 —
FQ RX 50 .040 .094 .0 .727 .139 204 — .026 .484 .017 .473 .0 — 638
FQ RX 100 .018 .084 .033 .800 .065 338 — .048 .683 .075 .194 .0 — 516
FQ RX 200 .009 .115 .005 .847 .025 517 — .033 .810 .037 .120 .0 — 391
RX WF 50 .262 .0 .262 .476 .0 — 583 .06 .147 .013 .334 .446 958 —
RX WF 100 .388 .0 .170 .442 .0 — 579 .109 .043 .027 .419 .402 997 —
RX WF 200 .442 .025 .348 .185 .0 — 510 .253 .031 .142 .237 .337 1055 —
WF RX 50 .238 .0 .185 .577 .0 1061 — .0 .384 .004 .426 .186 — 487
WF RX 100 .214 .0 .231 .555 .0 1060 — .002 .371 .0 .532 .095 — 411
WF RX 200 .314 .0 .303 .378 .005 1082 — .026 .401 .010 .524 .039 — 365

Table 4: 3× 3 wall game – The first row reports the action probabilities of a NE policy profile in
the initial state, the Q-values for action 〈stand, stand〉 in the initial state and the number
of entries in the game. The next rows classify the average learned policies in the initial
state, the average learned Q-values for actions 〈stand, stand〉/〈stand〉 by the FoeQ/WoLF
players, respectively, in the initial state and the average number of known entries by Rmax,
after 4× 106 rounds, according to the players’ types. RX, FQ and WF are abbreviations
for Rmax, FoeQ and WoLF respectively. The first column, titled A, provides the Attacker’s
type. The second column, titled D, provides the Defender’s type. The third column, titled
K1, states the value of Rmax’s K1 parameter. The columns titled u, l, d, r, s specify
the probabilities for actions up, left, down, right, and stand, respectively, according to the
learned policies. The columns titled Q-val and KE specify the learned Q values by FoeQ
or WoLF and the number of known entries by Rmax.

Figure 12 presents the a.r.p.s. obtained by the different agents playing the Attacker’s role in self
and heterogeneous play.13 Table 4 classifies some significant variables of the average state of the
learning algorithms after 4×106 rounds according to the players’ types.

Self Play
In self play, all algorithms converge to minimax or almost minimax values (Fig. 12a,b). FoeQ

converges to within 0.5 of the minimax value within the first 106 rounds and from then on improves
very slowly because of its increasing bias to exploit combined with its decreasing learning rates.
The FoeQ Defender learns correct Q-values and an optimal policy while the Attacker learns a rough
estimation of the Q-values and a suboptimal policy (Table 4).14 WoLF converges to the minimax
value within 1.5×106 rounds and then oscillates around this value while the players keep updating

13. In figures where the behavior does not change after a certain point, we show only the initial phases. For example, in
Figure 12c).

14. The first row of Table 4 presents the policies as outputted by a value-iteration solver. It should be noted that there are
equivalent optimal policies in the initial state: i. For the Attacker, a probability mass of .514 may be divided in any
way between the actions up and down; ii. For the Defender, the actions right and stand are equivalent since it is next
to the right border of the grid, and for the Attacker, left and stand are equivalent.
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their best responses to each other (Fig. 12b). WoLF learns almost optimal policies and Q-values
(Table 4). Three main differences make WoLF more robust than FoeQ: first, it maintains a consid-
erably smaller state-action space since it considers only private actions. This difference results in
more efficient back propagation of the Q-values. Second, its learning policy is a best response pol-
icy rather than an equilibrium policy. For this reason, it collects higher rewards during early phases
of learning and in turn the Q-values converge faster. And third, the hill climbing policy updates
combined with the variable learning rate serve as an additional exploration mechanism. As long as
the WoLF players have not converged to equilibrium, an increased policy learning rate will always
be used by one of the players. As in the CISG case, Rmax’s learning period depends almost linearly
on K1. With K1 = 50, Rmax converges to the minimax value within 106 rounds (Fig. 12a). Unlike
the CISG case, Rmax converges to optimal policies before all entries become known (Table 4), thus
the unknown entries will not be (unnecessarily) further explored.

In self play, the identical exploration and exploitation techniques of both players gives rise
to efficient joint exploration and hence to fast convergence to policies that are close or equal to
the minimax policies. In contrast, when the opponents employ different learning algorithms, joint
exploration is impeded.

Heterogeneous Players
Figure 12c depicts the average learning curves for plays of FoeQ against Rmax. The curves start

at ∼ 16.25, which is the a.r.p.s. for the Attacker when random policies are played. The learning
curve for the FoeQ Attacker may be divided into three phases: in the first 50,000 to 100,000 rounds
(depending on K1), FoeQ’s a.r.p.s. increases rapidly, then drops back down to ∼ 17 and changes
very slowly thereafter. During the first phase, Rmax plays exploratory policies that enable FoeQ to
reach its goal states by playing suboptimal policies. As a result, FoeQ propagates Q-values of entries
that are not frequently visited by the NE strategies of the game and constructs a wrong estimate of
the strategic structure of the game. During the next phase, Rmax learns improved strategies. At
this stage, FoeQ is too biased to exploitation and the learning rates for some entries are too small to
overcome the distorted estimation in the first phase. In the third phase, new entries rarely become
known because of FoeQ’s bias to exploit and its slow learning. For lower values of the K1 parameter
in Rmax, FoeQ yields lower return in the first phase but recovers faster in the third phase because the
first phase is shorter for lower values of K1. This property in turn results in lower estimation of the
Q-values (Table 4) and hence smaller gaps between the true strategic structure of the game and the
strategic structure estimated by FoeQ after the first phase. The smaller gaps are easier to overcome
in the third phase. The learning curves and learned values and policies for the opposite mode,
Rmax Attacks FoeQ, are a bit less distinct but express similar dynamics. The main advantages of
Rmax over FoeQ, expressed in the results, are: An exploration technique that is not time dependent
instead of increasing greediness, exhaustive computations instead of single backup per step, and the
Rmax learning technique that is guaranteed to either explore or attain return that is at least near the
minimax, instead of heuristic exploration. Since, from some early stage, FoeQ mainly attempts to
exploit w.r.t. its inaccurate estimation of Q-values and strategic structure and since unknown entries
are estimated by FoeQ as having low Q-values, the joint policy does not frequently reach unknown
entries but rather yields high rewards for Rmax.15 Figure 12c also shows the learning curves for

15. It is known that Q-learning with low initial values can behave sub-optimally. Thus, the observed behavior of FoeQ
may be a consequence of the fact that Q-values are initialized to 0. However, unless prior information about the
possible rewards or their magnitude is available, this appears to be the most unbiased choice.
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plays of FoeQ against WoLF. The combination of FoeQ’s slow learning, fast “aging” and playing
an equilibrium policy w.r.t. its pessimistic estimated Q-values with WoLF’s fast learning of a good
response produces very poor performance for FoeQ in our particular set of experiments.

The average learning curves for plays of WoLF against Rmax, presented in Figure 12d, converge
to the minimax value within the examined time interval under the following settings: Rmax Attacks
and K1 = 50, Rmax Defends and K1 = 50 or K1 = 100. Prior to convergence, WoLF gains return
higher than the minimax. In the cases of convergence to minimax value, Rmax also converges to,
at least almost, a NE policy. WoLF in these cases does not converge to NE but rather to some
other best response (Table 4). The dynamic of the learning process can roughly be divided into
stages, defined by the discovery of new entries by Rmax and the following policy updates. Rmax
starts off with a uniformly mixed policy. Before new entries become known to Rmax, WoLF learns
a deterministic response policy with a higher return to WoLF than the minimax value. In turn,
entries associated with WoLF’s deterministic policy are the first to become known to Rmax. Each
joint policy that results from Rmax’s policy updates has one of the following properties: (i) The
new joint policy seldom visits unknown entries. This policy provides Rmax with return close to or
greater than the minimax. (ii) The new joint policy frequently visits unknown entries and provides
Rmax with higher return than its average so far. (iii) The new joint policy frequently visits unknown
entries and provides Rmax with return equal or lower than its average return so far. In cases (i)
and (ii), WoLF will switch to “learn fast” mode and, unless Rmax is already playing the minimax
policy, will manage to learn a new response policy with return higher than the minimax before the
next stage. This joint policy is guaranteed to visit unknown entries but directs exploration to entries
more profitable to WoLF. WoLF’s hill climbing method, variable learning rate and small action
space enable it to adjust fast to Rmax’s new policies and maintain an average return higher than
the minimax until Rmax converges to the NE policy. Since Rmax starts off with highly exploratory
policies, WoLF is able to attain high payoffs at an early learning phase and thus maintain a high
threshold for determining switching of learning rates. By playing a best response, WoLF directs
joint exploration as to delay convergence of Rmax on one hand and encourage fast growth of its
estimated Q-values on the other.

The relation between the value of K1 in Rmax to the convergence time is not as clear as in self
play because higher values for K1 give WoLF more time to adapt and exploit each new policy of
Rmax. It should be noted that for deterministic models, K1 can be set to 1, leading to very rapid
convergence of Rmax. However, our parameter selection attempts to optimize for a wide range of
environmental dynamics and assumes this dynamic is not known ahead of time.

The phenomena observed in this game were repeated in the games described in the following
sections. Therefore, in the following, only phenomena not observed in the 3× 3 Wall game are
discussed.

4.5.2 5×2 WALL GAME

The transition rules of this game are identical to the 3× 3 Wall game. It is played on a 5× 2 grid
under deterministic transition probabilities. Figure 13 depicts the initial position of the game and A’s
reward structure. When A reaches the right column of the grid in row i, it is rewarded by ri, where
r0 = 100 and ri = ri−1 + 10i for i ∈ {1,2,3,4}, and the agents are reset in their initial positions.
Otherwise A is rewarded by 90. The fixed sum of the game is 200. The minimax a.r.p.s. for the
Attacker is ∼ 105.18. The game is designed to fool GLIELPs with random exploration played by
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A. If A explores randomly, it will probably discover the high rewards in the top rows before it will
discover the higher rewards in the lower rows. Later, its growing bias to exploit will prevent it from
sufficiently exploring the lower rows.

A D 100

110

130

160

20090

90

90

90

90

Figure 13: 5×2 wall game – initial position and rewards
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(b) FoeQ and WoLF in self play
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(d) Rmax vs WoLF

Figure 14: 5×2 wall game – average reward per step
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Attacker Defender
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .0 .0 1.0 .0 .0 5209 1125 .0 .0 1.0 .0 .0 4790 1125
RX RX 50 .0 .0 1.0 .0 .0 — 761 .0 .0 1.0 .0 .0 — 761
RX RX 100 .0 .0 .971 .029 .0 — 745 .0 .0 1.0 .0 .0 — 745
RX RX 200 .002 .005 .803 .185 .005 — 723 .0 .051 .903 .046 .0 — 723
FQ FQ .648 .0 .0 .306 .045 4783 — .897 .0 .0 .053 .050 4403 —
WF WF .0 .003 .938 .057 .002 5316 — .001 .0 .999 .0 .0 4742 —
RX FQ 50 .0 .0 1.0 .0 .0 — 272 .925 .026 .004 .036 .009 507 —
RX FQ 100 .0 .004 .970 .026 .0 — 229 .949 .006 .0 .023 .022 586 —
RX FQ 200 .049 .053 .473 .075 .350 — 199 .807 .024 .025 .091 .053 728 —
FQ RX 50 .213 .081 .158 .293 .255 1726 — .407 .492 .026 .025 .050 — 88
FQ RX 100 .252 .193 .014 .319 .222 2861 — .297 .652 .007 .031 .013 — 58
FQ RX 200 .312 .165 .033 .318 .172 3926 — .055 .931 .007 .007 .0 — 43
RX WF 50 .0 .029 .971 .0 .0 — 456 .0 .0 1.0 .0 .0 4795 —
RX WF 100 .0 .056 .813 .117 .014 — 438 .0 .0 .992 .004 .004 4832 —
RX WF 200 .0 .014 .718 .268 .0 — 406 .0 .007 .916 .025 .052 4863 —
WF RX 50 .0 .0 .996 .004 .0 5223 — .0 .0 1.0 .0 .0 — 449
WF RX 100 .025 .049 .856 .021 .050 5400 — .133 .059 .675 .106 .026 — 361
WF RX 200 .181 .083 .619 .064 .053 5475 — .176 .213 .391 .084 .136 — 221

Table 5: 5×2 wall game – NE policies and Average learned policies for state 〈(2,0),(2,1)〉, aver-
age learned Q-values for action 〈stand, stand〉/〈stand〉 in the initial state by FoeQ/WoLF,
respectively, and average number of known entries by Rmax, after 4×106 rounds, classi-
fied by players’ types. See format explanation in Table 4.

Figure 14 presents the a.r.p.s. obtained by the different agents playing the Attacker’s role. Table
5 classifies the average learned policies in state 〈(2,0),(2,1)〉 (both players on middle row), the
average learned values for action 〈stand, stand〉/〈stand〉 in the initial state by the FoeQ/WoLF
players and the average number of known entries by the Rmax players, according to the agents
playing A and D. The minimax policy for A and D when they are both in rows 0, 1 or 2 is to move
down. When A and D are both in rows 3 or 4 their minimax policy is mixed.

Self Play
Rmax with K1 = 50 converges to the minimax values (Fig. 14a) and policies (Table 5). With

values of 100 and 200 of K1, Rmax still has a small exploration bias after 4×106 rounds (Table 5)
and attains almost the minimax value (Fig. 14a). WoLF’s convergence to near the minimax value is
exceptionally fast in this domain, despite its GLIELP (Fig. 14b). The gradual increase in payoffs for
attacking in lower rows both guides exploration and speeds up learning by causing many switches
in the learning rate. By employing a high policy learning rate to find a best response, the WoLF
Attacker very quickly discovers the high return in the bottom rows and the WoLF Defender follows
by defending them. FoeQ on the other hand falls in the designed trap and converges to a suboptimal
policy (Fig. 14b). The FoeQ Attacker believes that it can gain higher rewards in the top rows and
assigns a high probability to action up in state 〈(2,0),(2,1)〉 instead of down. The FoeQ defender,
as well, believes that the upper rows are more worth defending and also assigns a high probability
to action up in this state (Fig. 14b, Table 5).16

Heterogeneous Players
Figure 14c shows A’s a.r.p.s. over time for plays of FoeQ against Rmax. FoeQ’s behavior is

16. Again, this behavior, too, could be attributed to low initial Q-values.

2666



MULTI-AGENT RL IN STOCHASTIC GAMES

similar to its behavior in self play. When D is played by FoeQ, it attempts to defend the top rows
while Rmax attacks in the bottom ones. When A is played by FoeQ, it attempts to Attack only in
the top rows (Table 5). Since the entries associated with states of both players being in the bottom
rows are unknown to the Rmax Defender, they are modeled as unrewarding by FoeQ, and hence,
its policy defends only in the top rows. The low numbers of known entries to Rmax (Table 5) is
evidence of FoeQ’s inability to sufficiently explore.

In plays of Rmax against WoLF, the players converge to minimax in the examined time interval
only for Rmax with K1 = 50 and WoLF gains a.r.p.s. higher than the minimax all the way to con-
vergence (Fig. 14d). During the learning period, WoLF’s policy is “one step ahead” of Rmax’s. In
particular, it assigns a greater probability to action down in the middle row. This advantage is also
expressed by the differences in the probability assigned to action down between the learned policies
for the different values of K1 (Table 5). When WoLF plays the Defender, it adjusts quickly to the
behavioral changes of Rmax. When WoLF plays the Attacker, the gradual increase of rewards for
attacking in lower rows directs WoLF’s exploration while maintaining a high a.r.p.s.

Removing the Intermediate Rewards
To eliminate the incentive to explore and learn quickly given to WoLF by the intermediate re-

wards, we studied a variant of the 5× 2 Wall game: the Attacker’s payoffs for attacking in the
second and third rows are modified to 100. All the other payoffs and transitions are unchanged. The
minimax policies and values are also unchanged since the attacker’s optimal policy in both settings
attacks only in the two bottom rows.
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Figure 15: Modified 5×2 wall game – a.r.p.s. over time

The convergence of WoLF in self play (Fig. 15a) is slower than its convergence on the first
reward structure, yet still faster than the other algorithms in self play. In plays of WoLF against
Rmax, WoLF has a disadvantage when it plays as the Attacker: The threshold for switching learning
rates does not grow in early learning and hence a low learning rate is more frequent while more
exploration is required to discover the benefits of attacking in the bottom rows. As an Attacker,
WoLF gains a lower return than the minimax value all the way to convergence (Fig. 15a). In the

2667



BAB AND BRAFMAN

Defender’s role, WoLF’s variable learning rate responds to the Rmax Attacker’s ”initiatives,” and
WoLF gains higher return than the minimax value all the way to convergence (Fig. 15b).

4.5.3 2×4 TAG GAME

This section describes the results of executing the algorithms on a stochastic Tag game. The game
is played on a 2× 4 grid with a missing corner. One of the players, C, is the tagger and the other,
E, is the Escaper. Fig. 16 depicts the initial configuration of the game. A tagging event (tag) occurs
when both players have the same positions. In the case of a tag, C receives a reward of 40, E
receives a reward of 0 and the players’ positions are unchanged. Otherwise C’s reward is 15 and E’s
reward is 25. C’s a.r.p.s. under the minimax policy is ∼ 18.22. C’s optimal strategy is to attempt to
trap E in the rightmost cell of the grid while E’s optimal strategy is to avoid this situation. To this
end, the minimax strategy is deterministic at all states except 〈(0,2),(0,3)〉.17 For example, in state
〈(0,1),(1,1)〉 the Escaper should move left and not right to avoid the danger of being forced to the
corner.

C

E

Figure 16: 2x4 tag game – initial position

Figure 17 presents the a.r.p.s. obtained by the different agents playing the tagger’s role. Table
6 classifies the average learned policies in state 〈(0,1),(1,1)〉, the average learned values for action
〈stand, stand〉 / 〈stand〉 in state 〈(0,2),(0,3)〉 by the FoeQ/WoLF players, and the average number
of known entries by the Rmax players, after 4×106 rounds, according to the agents playing C and
E.

Self Play
In self play, the Rmax Escaper does not learn an optimal policy. Furthermore, in contrast to

the deterministic games, E’s policy improves with greater values of K1, although fewer entries
become known (Table 6).18 This is because more sampling is required to approximate the transition
probabilities. However, the learned policies yield an 0.2-optimal return (Fig. 17a), closer to the
optimal value than the other algorithms. FoeQ and WoLF converge to near the minimax value within
the first 6×105 rounds and both learn almost optimal/minimax policies. FoeQ performs much better
in this domain than in the previous deterministic domains because the stochastic transitions amplify
exploration.

Heterogeneous Players
When Rmax plays against FoeQ, more entries become known and FoeQ’s value estimates are

better compared to the deterministic games, again due to the amplification of exploration by the

17. Positions are denoted (row,column), with (0,0) being the upper left position. From state 〈(0,2),(0,3)〉 the players can
transit to state 〈(0,3),(0,2)〉 by the joint action 〈right,left〉 without the occurrence of a tag.

18. Recall that as K1 increases, more visits are required to mark an entry known. Therefore, fewer entries will be marked
within a given time frame.
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(b) FoeQ and WoLF in self play(first 106 rounds)
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(d) Rmax vs WoLF

Figure 17: 2×4 tag game – average reward per step

stochastic environmental dynamic. When FoeQ plays Escaper against Rmax, FoeQ learns bet-
ter policies when Rmax uses larger values of K1 (Table 6) and receives a greater average reward
(Fig. 17b)—opposite to what was observed in the 3×3 Wall Game. It seems that the longer periods
of Rmax playing fixed policies enable FoeQ to better approximate the different Q-values associated
with that policy. Despite the stochastic nature of the environment playing “in favor” of FoeQ, Rmax
is still superior in heterogeneous play. In plays of Rmax against WoLF, the algorithms converge to
the minimax value in five out of the six different configurations, whereas in the deterministic games
they converged in two or three out of the six. The convergence dynamic is similar to that observed
in the first two games, and WoLF receives an a.r.p.s. greater than the minimax value all the way to
convergence.
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Tagger Escaper
A D K1 u l d r s Q-val KE u l d r s Q-val KE
OptOpt .0 .0 1.0 .0 .0 956 1050 .0 1.0 .0 .0 .0 1044 1050
RX RX 50 .0 .0 1.0 .0 .0 — 844 .0 .450 .0 .550 .0 — 844
RX RX 100 .0 .0 1.0 .0 .0 — 838 .0 .750 .0 .250 .0 — 838
RX RX 200 .0 .0 1.0 .0 .0 — 833 .0 .850 .0 .150 .0 — 833
FQ FQ .0 .0 .995 .005 .0 889 — .002 .769 .0 .229 .0 1048 —
WF WF .0 .0 1.0 .0 .0 922 — .005 .655 .0 .340 .0 1089 —
RX FQ 50 .0 .0 .950 .050 .0 — 742 .138 .278 .164 .225 .195 566 —
RX FQ 100 .0 .0 1.0 .0 .0 — 649 .067 .150 .064 .618 .101 802 —
RX FQ 200 .0 .0 1.0 .0 .0 — 572 .038 .320 .061 .541 .040 952 —
FQ RX 50 .090 .094 .476 .120 .220 448 — .0 .750 .0 .025 .0 — 789
FQ RX 100 .112 .029 .471 .049 .339 618 — .0 .575 .0 .413 .012 — 711
FQ RX 200 .175 .051 .539 .020 .215 720 — .0 .461 .001 .438 .100 — 622
RX WF 50 .0 .0 1.0 .0 .0 — 583 .020 .668 .0 .317 .0 1050 —
RX WF 100 .0 .0 .983 .0 .017 — 547 .015 .601 .002 .383 .0 1063 —
RX WF 200 .0 .050 .850 .0 .010 — 488 .020 .392 .001 .531 .056 1098 —
WF RX 50 .0 .0 .992 .0 .008 973 — .0 .7 .0 .3 .0 — 608
WF RX 100 .003 .001 .994 .0 .002 977 — .0 .65 .0 .35 .0 — 567
WF RX 200 .032 .019 .928 .008 .013 992 — .0 0.7 .0 0.3 .0 — 508

Table 6: 2×4 tag game – NE policies and average learned policies for state 〈(0,1),(1,1)〉, average
Q-values for action 〈stand, stand〉 / 〈stand〉 in state 〈(0,2),(0,3)〉 by FoeQ/WoLF and
average number of known entries by Rmax, after 4× 106 rounds, classified by players’
types. See format explanation in Table 4.

4.5.4 SUMMARY

The adversarial exploration/exploitation tradeoff in FSSGs is more complicated than that observed
in the common interest CISG case. Optimizing behavior during learning introduces a tradeoff be-
tween exercising opponents’ exploration in order to gain higher return (may-be at the expense of
fast convergence to some fixed learning target), to exercising opponents’ exploration for joint ex-
ploration. When one algorithm takes the time to explore, the other algorithm can exploit and obtain
payoff higher than the NE. To this end, learning a best response proves better than learning a NE,
when combined in the WoLF algorithm with other properties that ensure fast adaptation to a chang-
ing adversary.

Indeed, WoLF appears to be the preferred algorithm in heterogeneous play, with good per-
formance in self-play as well. Nevertheless, WoLF fails to converge to NE in heterogeneous play
against an adversary that does converge to a NE, which may be its Achilles heel. WoLF’s robustness
makes up for the classic weakness of GLIELPs discussed in Section 3.4 (that is, the great sensitivity
to the exploration schedule in some domains), but not completely. Thus, while in most cases WoLF
is preferable over the other presented algorithms, in some situations this anomaly manifests itself
and Rmax outperforms WoLF.

Additional practical issues may affect the choice of algorithm for a specific task. WoLF is
computationally more efficient, mainly because it does not involve equilibrium computations. Rmax
is much simpler for pre-tuning, with a single intuitive parameter, but requires solving the underlying
stochastic game.
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5. MGS

MGS is a Markov Game Simulation system designed to evaluate online performance of MARL
algorithms. Three main software components take part in a simulation:

Players – user-defined implementations of MARL algorithms.

Referee – a user-defined program that represents a multi-agent environment.

Simulator – mediates between the Players and Referee.

MGS provides Java interfaces and an abstract Referee class that implements the backbone of typical
grid-world environments and makes the programming of grid worlds simple and easy. It should be
noted that the description of software components and methods in the rest of this section is for
illustrative purposes and is partial and incomplete.

Modeling real world environments (or simplifications of such environments) as Stochastic Games
is a tedious task for humans. To simplify the modeling task, MGS supports simple creation of grid-
world environments referred to as Grid Games (GG). In a GG, agents can move about between
squares of a grid, move/carry objects etc. GGs induce MGs in which the set of states S are the pos-
sible assignments to the state variables, which are typically the position of the agents and various
objects. Actions change the positions of the agents and the state of the objects.

5.1 The Referee

This program represents a GG. The state variables of the GG are memory variables of the Referee
program and reachable internal states of the Referee correspond to possible assignments to the state
variables. The Referee may manage additional memory variables, that is, variables that capture the
previous assignment to the state variables in order to implement the payoff function. The Referee
implements methods that simulate the environment such as:

• getStateIndex() - enumerates the state space. Returns a unique integer that corresponds to
the current state of the Referee.

• giveActions(int[] actions) - receives the action choices of the players and updates the
state variables to characterize the new state of the environment.

• getPlayerReward(int p) - returns the payoff for player p.

5.2 The Players

They implement the methods:

• play(int s) - returns the action choice in state s.

• update(int s, int[] acts, double r) - updates the algorithm’s model / values accord-
ing to the new state s, other Players’ actions acts and payoff r.

2671



BAB AND BRAFMAN

5.3 The Simulator

This module is the active process during simulation. Schematically, the Simulator loops over the
following steps:

1. get the Players’ actions in the current state.

2. pass the joint action to the Referee.

3. compute the index of the new state of the environment.

4. pass the new state index and payoffs to the players.

Typically, GGs involve actions that move the agents up, down, left and right on a two-dimensional
grid. To unburden the user from modeling these aspects of the environment, they are already built
into the system. The abstract Referee class implements various methods for manipulating the po-
sitions of the agents on a grid represented by a two dimensional integer array. The Simulator also
computes the new positions of the agents according to the five default actions up, left, down,
right and stand, and according to user input transition probabilities. In Step 2 above, the Simula-
tor also passes to the Referee the results of this computation in the form of suggested new positions
for the players.

MGS is a very flexible tool. Despite the implemented GG features, it can in fact be used to model
any discrete state-action space MG (although doing so may require more complicated programming
than the simple implementation of GGs). MGS offers various features that make it a convenient
experimental tool. Input can be specified either by a GUI or by a script. Scripts may specify multiple
independent simulations and may also include parameters for the Players’ algorithms. MGS logs
statistics of payoffs and selected actions and also supports logging by the Players. For further
information on MGS, see http://www.cs.bgu.ac.il/˜mal.

6. Conclusions

This paper presents a large empirical study of representative MARL algorithms conducted using the
MGS tool. Such comprehensive studies in this area are rare. The only other related study we are
aware of appeared in Powers and Shoham (2005) and involved the much simpler class of repeated
games with known game matrices. While most authors run some empirical studies, these often
focus on their algorithms and do provide a comprehensive comparison of strengths and weaknesses.

We believe that our results and analysis can serve to guide researchers in developing more
powerful algorithms and formal analytic tools, and practitioners in selecting and tuning algorithms
for specific tasks. Some of our results are closely related to phenomena observed in single-agent
reinforcement-learning algorithms, especially in common-interest environments, which can be viewed
as describing a distributed version of single-agent RL. In this domain, the issue of exploration vs.
exploitation appears to play a major role in the success of different algorithms. Here, we found
Rmax’s exhaustive approach to be very useful, being much less susceptible to being stuck in lo-
cal minima compared to GLIELP exploration. Of course, one does expect this almost-exhaustive
exploration approach to be costly in large domains. However, in our examples, Rmax was able to
perform well with small sample sizes, partly due to the locality of actions—that is, the fact that
most actions have a small number of possible outcomes and these effects do not change the agent’s
state drastically. In general, many real-world domains tend to have this property. We believe that
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online identification of locality properties may be used to construct more practical variants of Rmax
as well as other methods. Rmax also provides another capability we found important in common
interest games: coordinated exploration. It also seems to scale well with the number of agents. Per-
haps most important is the fact that it is very simple to understand its behavior, and consequently,
we believe, to modify it given background knowledge. However, Rmax is completely inadequate if
cooperation is to be obtained given a system with heterogeneous agents.

Fixed sum games provided an interesting setting, where we could test algorithms against each
other. We found that learning is more efficient when the greedy component of the learning policy
is a best response rather than a minimax strategy. The WoLF algorithm achieves fast adaptation
to a changing opponent by maintaining values for only the private action space and by regulating
behavior according to the dynamics of the learning process, and it seems to be the best choice in
such competitive environments.

Overall, it seems that there is much potential for improved performance by multi-agent learning
algorithms. We hope this study will motivate the design of algorithms that improve upon the current
state of the art, and we believe that the MGS test bed can be a useful tool for testing such new
techniques.
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