
Journal of Machine Learning Research 8 (2007) 2701-2726 Submitted 6/07; Revised 7/07; Published 12/07

Stagewise Lasso

Peng Zhao PENGZHAO@STAT.BERKELEY.EDU

Bin Yu BINYU@STAT.BERKELEY.EDU

Department of Statistics
University of Berkeley
367 Evans Hall
Berkeley, CA 94720-3860, USA

Editor: Saharon Rosset

Abstract
Many statistical machine learning algorithms minimize either an empirical loss function as in Ad-
aBoost, or a penalized empirical loss as in Lasso or SVM. A single regularization tuning parameter
controls the trade-off between fidelity to the data and generalizability, or equivalently between
bias and variance. When this tuning parameter changes, a regularization “path” of solutions to
the minimization problem is generated, and the whole path is needed to select a tuning parameter
to optimize the prediction or interpretation performance. Algorithms such as homotopy-Lasso or
LARS-Lasso and Forward Stagewise Fitting (FSF) (aka e-Boosting) are of great interest because
of their resulted sparse models for interpretation in addition to prediction.

In this paper, we propose the BLasso algorithm that ties the FSF (e-Boosting) algorithm with
the Lasso method that minimizes the L1 penalized L2 loss. BLasso is derived as a coordinate descent
method with a fixed stepsize applied to the general Lasso loss function (L1 penalized convex loss).
It consists of both a forward step and a backward step. The forward step is similar to e-Boosting
or FSF, but the backward step is new and revises the FSF (or e-Boosting) path to approximate
the Lasso path. In the cases of a finite number of base learners and a bounded Hessian of the loss
function, the BLasso path is shown to converge to the Lasso path when the stepsize goes to zero. For
cases with a larger number of base learners than the sample size and when the true model is sparse,
our simulations indicate that the BLasso model estimates are sparser than those from FSF with
comparable or slightly better prediction performance, and that the the discrete stepsize of BLasso
and FSF has an additional regularization effect in terms of prediction and sparsity. Moreover, we
introduce the Generalized BLasso algorithm to minimize a general convex loss penalized by a
general convex function. Since the (Generalized) BLasso relies only on differences not derivatives,
we conclude that it provides a class of simple and easy-to-implement algorithms for tracing the
regularization or solution paths of penalized minimization problems.

Keywords: backward step, boosting, convexity, Lasso, regularization path

1. Introduction

Many statistical machine learning algorithms minimize either an empirical loss function or a penal-
ized empirical loss, in a regression or a classification setting where covariate or predictor variables
are used to predict a response variable and i.i.d. samples of training data are available. For example,
in classification, both AdaBoost (Schapire, 1990; Freund, 1995; Freund and Schapire, 1996) and
SVM (Vapnik, 1995; Cristianini and Shawe-Taylor, 2002; Schölkopf and Smola, 2002) build linear
classification functions of basis functions of the covariates (predictors). Adaboost minimizes an

c©2007 Peng Zhao and Bin Yu.

ZHAO AND YU

exponential loss function of the margin, while SVM a penalized hinge loss function of the margin.
A single regularization tuning parameter, the number of iterations in AdaBoost and the smoothing
parameter in SVM, controls the bias-and-variance trade-off or whether the algorithm overfits or un-
derfits the data. When this tuning parameter changes, a regularization “path” of solutions to the
minimization problem is generated. These algorithms have been shown to achieve start-of-the-art
prediction performance. A tuning parameter value, or equivalently a point on the path of solutions, is
chosen to minimize the estimated prediction error over a proper test set or through cross-validation.
Hence it is necessary to have algorithms that can generate the path of solutions in an efficient man-
ner. Path following algorithms have also been devised in other statistical penalized minimization
problems such as the problems of information bottleneck Tishby et al. (1999) and information dis-
tortion Gedeon et al. (2002) where the loss and penalty functions are different from these discussed
in this paper. In fact, following the solution paths of numerical problems is the focus of homo-
topy, a sub-area in numerical analysis. Interested readers are referred to the book Allgower and
Georg (1980) (http://www.math.colostate.edu/emeriti/georg/AllgGeorgHNA.pdf) and references at
http://www.math.colostate.edu/emeriti/georg/georg.publications.html.

Among all the machine learning methods, those that produce sparse models are of great inter-
est because sparse models lend themselves more easily to interpretation and therefore preferred in
sciences and social sciences. Lasso (Tibshirani, 1996) is such a method. It minimizes the L2 loss
function with an L1 penalty on the parameters in a linear regression model. In signal processing it
is called Basis Pursuit (Chen and Donoho, 1994). The L1 penalty leads to sparse solutions, that is,
there are few predictors or basis functions with nonzero weights (among all possible choices). This
statement is proved asymptotically under various conditions by different authors (see, e.g., Knight
and Fu, 2000; Osborne et al., 2000a,b; Donoho et al., 2006; Donoho, 2006; Rosset et al., 2004;
Tropp, 2006; Zhao and Yu, 2006; Zou, 2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006).

Sparsity has also been observed in the models generated by Forward Stagewise Fitting (FSF)
or e-Boosting. FSF is a gradient descent procedure with more cautious steps than L2Boosting (i.e.,
the usual coordinatewise gradient descent method applied to the L2 loss) (Rosset et al., 2004; Hastie
et al., 2001; Efron et al., 2004). Moreover, these papers also study the similarities between FSF (e-
Boosting) with Lasso. This link between Lasso and e-Boosting or FSF is more formally described
for the linear regression case through the LARS algorithm (Least Angle Regression Efron et al.,
2004). It is also shown in Efron et al. (2004) that for special cases (such as orthogonal designs)
e-Boosting or FSF can approximate Lasso path infinitely close, but in general, it is unclear what
regularization criterion e-Boosting or FSF optimizes. As can be seen in our experiments (Figure 1
in Section 6.1), e-Boosting or FSF solutions can be significantly different from the Lasso solutions
in the case of strongly correlated predictors which are common in high-dimensional data prob-
lems. However, FSF is still used as an approximation to Lasso because it is often computationally
prohibitive to solve Lasso with general loss functions for many regularization parameters through
Quadratic Programming.

In this paper, we propose a new algorithm BLasso that connects Lasso with FSF or e-Boosting
(and the B in the name stands for this connection to boosting). BLasso generates approximately the
Lasso path in general situations for both regression and classification for L1 penalized convex loss
function. The motivation for BLasso is a critical observation that FSF or e-Boosting only works in a
forward fashion. It takes steps that reduce empirical loss the most regardless of the impact on model
complexity (or the L1 penalty). Hence it is not able to adjust earlier steps. Taking a coordinate
(difference) descent view point of the Lasso minimization with a fixed stepsize, we introduce an

2702

STAGEWISE LASSO

innovative “backward” step. This step uses the same minimization rule as the forward step to define
each fitting stage but with an extra rule to force the model complexity or L1 penalty to decrease.
By combining backward and forward steps, BLasso is able to go back and forth to approximate the
Lasso path correctly.

BLasso can be seen as a marriage between two families of successful methods. Computationally,
BLasso works similarly to e-Boosting and FSF. It isolates the sub-optimization problem at each
step from the whole process, that is, in the language of the Boosting literature, each base learner
is learned separately. This way BLasso can deal with different loss functions and large classes of
base learners like trees, wavelets and splines by fitting a base learner at each step and aggregating
the base learners as the algorithm progresses. Moreover, the solution path of BLasso can be shown
to converge to that of the Lasso, which uses explicit global L1 regularization for cases with a finite
number of base learners. In contrast, e-Boosting or FSF can be seen as local regularization in the
sense that at any iteration, FSF with a fixed small stepsize only searches over those models which
are one small step away from the current one in all possible directions corresponding to the base
learners or predictors (cf. Hastie et al., 2006, for a recent interpretation of the ε → 0 case).

In particular, we make three contributions in this paper via BLasso. First, by introducing the
backward step we modify e-Boosting or FSF to follow the Lasso path and consequently generate
models that are sparser with equivalent or slightly better prediction performance in our simulations
(with true sparse models and more predictors than the sample size). Secondly, by showing conver-
gence of BLasso to the Lasso path, we further tighten the conceptual ties between e-Boosting or FSF
and Lasso that have been considered in previous works. Finally, since BLasso can be generalized to
deal with other convex penalties and does not use any derivatives of the Loss function or penalty, we
provide the Generalized BLasso algorithm as a simple and easy-to-implement off-the-shelf method
for approximating the regularization path for a general loss function and a general convex penalty.

We would like to note that, for the original Lasso problem, that is, the least squares problem (L2

loss) with an L1 penalty, algorithms that give the entire Lasso path have been established, namely,
the homotopy method by Osborne et al. (2000b) and the LARS algorithm by Efron et al. (2004).
For parametric least squares problems where the number of predictors is not large, these methods
are very efficient as their computational complexity is on the same order as a single Ordinary Least
Squares regression. For other problems such as classification and for nonparametric setups like
model fitting with trees, FSF or e-Boosting has been used as a tool for approximating the Lasso
path (Rosset et al., 2004). For such problems, BLasso operates in a similar fashion as FSF or e-
Boosting but, unlike FSF, BLasso can be shown to converge to the Lasso path quite generally when
the stepsize goes to zero.

The rest of the paper is organized as follows. In Section 2.1, the gradient view of Boosting is
provided and FSF (e-Boosting) is reviewed as a coordinatewise descent method with a fixed stepsize
on the L2 loss. In Section 2.2, the Lasso empirical minimization problem is reviewed. Section 3
introduces BLasso that is a coordinate descent algorithm with a fixed stepsize applied to the Lasso
minimization problem. Section 4 discusses the backward step and gives the intuition behind BLasso
and explains why FSF is unable to give the Lasso path. Section 5 introduces a Generalized BLasso
algorithm which deals with general convex penalties. In Section 6, results of experiments with
both simulated and real data are reported to demonstrate the attractiveness of BLasso. BLasso is
shown as a learning algorithm that gives sparse models and good prediction and as a simple plug-in
method for approximating the regularization path for different convex loss functions and penalties.
Moreover, we compare different choices of the stepsize and give evidence for the regularization

2703

ZHAO AND YU

effect of using moderate stepsizes. Finally, Section 7 is a discussion and a summary. In particular,
it comments on the computational complexity of BLasso, compares with the algorithm in Rosset
(2004), explores the possibility of BLasso for nonparametric learning problems, summarizes the
paper, and points to future directions.

2. Boosting, Forward Stagewise Fitting and the Lasso

Boosting was originally proposed as an iterative fitting procedure that builds up a model sequentially
using a weak or base learner and then carries out a weighted averaging (Schapire, 1990; Freund,
1995; Freund and Schapire, 1996). More recently, boosting has been interpreted as a gradient
descent algorithm on an empirical loss function. FSF or e-Boosting can be viewed as a gradient
descent with a fixed small stepsize at each stage and it produces solutions that are often close to
the Lasso solutions (path). We now give a brief gradient descent view of Boosting and of FSF
(e-Boosting), followed by a review of the Lasso minimization problem.

2.1 Boosting and Forward Stagewise Fitting

Given data Zi = (Yi,Xi)(i = 1, ...,n), where the univariate Y can be continuous (regression problem)
or discrete (classification problem), our task is to estimate the function F : Rd → R that minimizes
an expected loss

E[C(Y,F(X))], C(·, ·) : R×R → R+.

The most prominent examples of the loss function C(·, ·) include exponential loss (AdaBoost), logit
loss and L2 loss.

The family of F(·) being considered is the set of ensembles of “base learners”

D = {F : F(x) = ∑
j

β jh j(x),x ∈ Rd ,β j ∈ R},

where the family of base learners can be very large or contain infinite members, for example, trees,
wavelets and splines.

Let β = (β1, ...β j, ...)
T , we can re-parametrize the problem using

L(Z,β) := C(Y,F(X)),

where the specification of F is hidden by L to make our notation simpler.
To find an estimate for β, we set up an empirical minimization problem:

β̂ = argmin
β

n

∑
i=1

L(Zi;β).

Despite the fact that the empirical loss function is often convex in β, exact minimization is
usually a formidable task for a moderately rich function family of base learners and with such
function families the exact minimization leads to overfitted models. Because the family of base
learners is usually large, Boosting can be viewed as finding approximate solutions by applying
functional gradient descent. This gradient descent view has been recognized and studied by various
authors including Breiman (1998), Mason et al. (1999), Friedman et al. (2000), Friedman (2001)
and Buhlmann and Yu (2003). Precisely, boosting is a progressive procedure that iteratively builds
up the solution (and it is often stopped early to avoid overfitting):

2704

STAGEWISE LASSO

(ĵ, ĝ) = argmin
j,g

n

∑
i=1

L(Zi; β̂t +g1 j), (1)

β̂t+1 = β̂t + ĝ1 ĵ, (2)

where 1 j is the jth standard basis vector with all 0’s except for a 1 in the jth coordinate, and g ∈ R
is stepsize. In other words, Boosting favors the direction ĵ that reduces most the empirical loss and
ĝ is found through a line search. The well-known AdaBoost, LogitBoost and L2Boosting can all be
viewed as implementations of this strategy for different loss functions.

Forward Stagewise Fitting (FSF) (Efron et al., 2004) is a similar method for approximating the
minimization problem described by (1) with some additional regularization. FSF has also been
called e-Boosting for ε-Boosting as in Rosset et al. (2004). Instead of optimizing the stepsize as in
(2), FSF updates β̂t by a fixed stepsize ε as in Friedman (2001).

For general loss functions, FSF can be defined by removing the minimization over g in (1):

(ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L(Zi; β̂t + s1 j), (3)

β̂t+1 = β̂t + ŝ1 ĵ. (4)

This description looks different from the FSF described in Efron et al. (2004), but the underlying
mechanic of the algorithm remains unchanged (see Section 5). Initially all coefficients are zero. At
each successive step, a basis function or predictor or coordinate is selected that reduces most the
empirical loss. Its corresponding coefficient β ĵ is then incremented or decremented by a fixed

amount ε, while all other coefficients β j, j 6= ĵ are left unchanged.
By taking small steps, FSF imposes some local regularization or shrinkage. A related approach

can be found in Zhang (2003) where a relaxed gradient descent method is used. After T < ∞
iterations, many of the estimated coefficients by FSF will be zero, namely those that have yet to be
incremented. The others will tend to have absolute values smaller than the unregularized solutions.
This shrinkage/sparsity property is reflected in the similarity between the solutions given by FSF
and Lasso which is reviewed next.

2.2 General Lasso

Let T (β) denote the L1 penalty of β = (β1, ...,β j, ...)
T , that is, T (β) = ‖β‖1 = ∑ j |β j|, and Γ(β;λ)

denote the Lasso (least absolute shrinkage and selection operator) loss function

Γ(β;λ) =
n

∑
i=1

L(Zi;β)+λT (β).

The general Lasso estimate β̂ = (β̂1, ..., β̂ j, ...)
T is defined by

β̂λ = min
β

Γ(β;λ).

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate. Setting λ = 0
reverses the Lasso problem to minimizing the unregularized empirical loss. On the other hand, a

2705

ZHAO AND YU

very large λ will completely shrink β̂ to 0 thus leading to the empty or null model. In general,
moderate values of λ will cause shrinkage of the solutions towards 0, and some coefficients may
end up being exactly 0. This sparsity in Lasso solutions has been researched extensively in recent
years (e.g., Osborne et al., 2000a,b; Efron et al., 2004; Donoho et al., 2006; Donoho, 2006; Tropp,
2006; Rosset et al., 2004; Meinshausen and Bühlmann, 2005; Candes and Tao, 2007; Zhao and Yu,
2006; Zou, 2006; Wainwright, 2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006). Sparsity
can also result from other penalties as in, for example, Fan and Li (2001).

Computation of the solution to the Lasso problem for a fixed λ has been studied for special
cases. Specifically, for least squares regression, it is a quadratic programming problem with linear
inequality constraints; for 1-norm SVM, it can be transformed into a linear programming problem.
But to get a model that performs well on future data, we need to select an appropriate value for the
tuning parameter λ. Very efficient algorithms have been proposed to give the entire regularization
path for the squared loss function (the homotopy method by Osborne et al. 2000b and similarly
LARS by Efron et al. 2004) and SVM (1-norm SVM by Zhu et al., 2003).

However, it remains open how to give the entire regularization path of the Lasso problem for
general convex loss function. FSF exists as a compromise since, like Boosting, it is a nonparamet-
ric learning algorithm that works with different loss functions and large numbers of base learners
(predictors) but it is local regularization and does not converge to the Lasso path in general. As can
be seen in Sec. 6.2, FSF has also less sparse solutions comparing to Lasso in our simulations.

Next we propose the BLasso algorithm which works in a computationally efficient fashion as
FSF. In contrast to FSF, BLasso converges to the Lasso path for general convex loss functions when
the stepsize goes to 0. This relationship between Lasso and BLasso leads to sparser solutions for
BLasso comparing to FSF with similar or slightly better prediction performance in our simulation
set-up with different choices of the stepsize.

3. The BLasso Algorithm

We first describe the BLasso algorithm (Algorithm 1). This algorithm has two related input param-
eters, a stepsize ε and a tolerance level ξ.

The tolerance level is needed only to avoid numerical instability when assessing changes of the
empirical loss function and should be set as small as possible while accommodating the numerical
accuracy of the implementation. (ξ is set to 10−6 in the implementation of the algorithm that used
in this paper.)

We will discuss forward and backward steps in depth in the next section. Immediately, the fol-
lowing properties can be proved for BLasso (see Appendix for the proof).

Lemma 1.

1. For any λ ≥ 0, if there exist j and s with |s|= ε such that Γ(s1 j;λ)≤ Γ(0;λ), we have λ0 ≥ λ.

2. For any t, we have Γ(β̂t+1;λt) ≤ Γ(β̂t ;λt)−ξ.

3. For ξ ≥ 0 and any t such that λt+1 < λt , we have Γ(β̂t ± ε1 j;λt) > Γ(β̂t ;λt)− ξ for every j
and ‖β̂t+1‖1 = ‖β̂t‖1 + ε.

Lemma 1 (1) guarantees that it is safe for BLasso to start with an initial λ0 which is the largest
λ that would allow an ε step away from 0 (i.e., larger λ’s correspond to β̂λ = 0). Lemma 1 (2) says

2706

STAGEWISE LASSO

Algorithm 1 BLasso
Step 1 (initialization). Given data Zi = (Yi,Xi), i = 1, ...,n and a small stepsize constant ε > 0 and a
small tolerance parameter ξ > 0, take an initial forward step

(ĵ, ŝ ĵ) = arg min
j,s=±ε

n

∑
i=1

L(Zi;s1 j),

β̂0 = ŝ ĵ1 ĵ,

Then calculate the initial regularization parameter

λ0 =
1
ε
(

n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi; β̂0)).

Set the active index set I0
A = { ĵ}. Set t = 0.

Step 2 (Backward and Forward steps). Find the “backward” step that leads to the minimal empirical
loss:

ĵ = argmin
j∈It

A

n

∑
i=1

L(Zi; β̂t + s j1 j) where s j = −sign(β̂t
j)ε. (5)

Take the step if it leads to a decrease of moderate size ξ in the Lasso loss, otherwise force a forward
step (as (3), (4) in FSF) and relax λ if necessary:
If Γ(β̂t + ŝ ĵ1 ĵ;λt)−Γ(β̂t ,λt) ≤−ξ, then

β̂t+1 = β̂t + ŝ ĵ1 ĵ, λt+1 = λt .

Otherwise,

(ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L(Zi; β̂t + s1 j), (6)

β̂t+1 = β̂t + ŝ1 ĵ,

λt+1 = min[λt ,
1
ε
(

n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ)],

It+1
A = It

A ∪{ ĵ}.

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

that for each value of λ, BLasso performs coordinate descent until there is no descent step. Then,
by Lemma 1 (3), the value of λ is reduced and a forward step is forced. The stepsize ε controls
fineness of the grid BLasso runs on. The tolerance ξ controls how large a descend need to be made
for a backward step to be taken. It is needed to accommodate for numerical error and should be set
to be much smaller than ε to have a good approximation (see Proof of Theorem 1). In fact, we have
a convergence result for BLasso (detailed proof is included in the Appendix):

2707

ZHAO AND YU

Theorem 1. For a finite number of base learners and ξ = o(ε), if ∑L(Zi;β) is strongly convex
with bounded second derivatives in β then as ε → 0, the BLasso path converges to the Lasso path
uniformly.

Note that Conjecture 2 of Rosset et al. (2004) follows from Theorem 1. This is because if all
the optimal coefficient paths are monotone, then BLasso will never take a backward step, so it will
be equivalent to e-Boosting.

Many popular loss functions, for example, squared loss, logistic loss, and negative log-likelihood
functions of exponential families are convex and twice differentiable, and they satisify the condi-
tions in Theorem 1. Moreover, from the proof of this theorem in the appendix, it is easy to see
that it suffices to have the conditions in the theorem satisfied over a bounded set of β. For the ex-
ponential loss, Lemma 1 implies that there is a finite λ0 < ∞ for every data set (Zi). Thus we can
restrict the proof of Theorem 1 to this bounded set of β to show the result for the exponential loss.
Other functions like the hinge loss (SVM) is continuous and convex but not differentiable. The
differentiability, however, is only necessary for the proof of Theorem 1. BLasso does not use any
gradient or higher order derivatives but only the differences of the loss function therefore remains
applicable to loss functions that are not differentiable or of which differentiation is too complex
or computationally expensive. It is theoretically possible that BLasso’s coordinate descent strategy
gets stuck at nondifferentiable points for functions like the hinge loss. However, as illustrated in our
third experiment, BLasso may still work for cases like 1-norm SVM empirically.

Theorem 1 does not cover nonparametric learning problems with an infinite number of base
learners either. In fact, for problems with large or infinite number of base learners, the minimization
in (6) is usually done approximately by functional gradient descent and a tolerance ξ > 0 needs to
be chosen to avoid oscillation between forward and backward steps caused by slow descending. We
discuss more on this topic in the discussion (Sec. 7).

4. The Backward Step

We now explain the motivation and working mechanic of BLasso. Observe that FSF only uses
“forward” steps, that is, it only takes steps that lead to a direct reduction of the empirical loss.
Comparing to classical model selection methods like Forward Selection and Backward Elimination,
Growing and Pruning of a classification tree, a “backward” counterpart is missing. Without the
backward step, when FSF picks up more irrelevant variables as compared to the Lasso path in
some cases (cf. Figure 1 in Section 6.2), it does not have a mechanism to remove them. As seen
below, this backward step naturally arises in BLasso because of our coordinate descent view of the
minimization of the Lasso loss. (Since ξ exists for numerical purpose only, it is assumed to be 0
thus excluded in the following theoretical discussion.)

For a given β 6= 0 and λ > 0, consider the impact of a small ε > 0 change of β j to the Lasso loss
Γ(β;λ). For an |s| = ε,

∆ jΓ(Z;β) = (
n

∑
i=1

L(Zi;β+ s1 j)−
n

∑
i=1

L(Zi;β))+λ(T (β+ s1 j)−T (β))

:= ∆ j(
n

∑
i=1

L(Zi;β))+λ∆ jT (β).

Since T (β) is simply the L1 norm of β, ∆T (β) reduces to a simple form:

2708

STAGEWISE LASSO

∆ jT (β) = ‖β+ s1 j‖1 −‖β‖1 = |β j + s|− |β j|
= ε · sign+(β j,s) (7)

= ε ·
{

1 if sβ j > 0 or β j = 0
-1 if sβ j < 0

.

Equation (7) shows that an ε step changes the penalty by a fixed ε in absolute value for any j.
That is, only the sign of the penalty change may vary. In the beginning of BLasso, all j directions
are leaving zero and hence changing the L1 penalty by the same positive amount λ ·ε. Therefore the
first step of BLasso is a forward step because minimizing Lasso loss is equivalent to minimizing the
L2 loss due to the same positive change of the L1 penalty. As the algorithm proceeds, some of the
penalty changes might become negative and minimizing the empirical loss is no longer equivalent to
minimizing the Lasso loss. In fact, except for special cases like orthogonal covariates (predictors),
the FSF steps might result in negative changes of the L1 penalty. In some of these situations, a step
that goes “backward” reduces the penalty with a small sacrifice in the empirical loss. In general, to
minimize the Lasso loss, one needs to go “back and forth” to trade off the penalty with the empirical
loss for different regularization parameters.

To be precise, for a given β̂, a backward step is such that:

∆β̂ = s j1 j, subject to β̂ j 6= 0, sign(s) = −sign(β̂ j) and |s| = ε.

Making such a step will reduce the penalty by a fixed amount λ ·ε, but its impact on the empirical
loss can be different, therefore as in (5) we want:

ĵ = argmin
j

n

∑
i=1

L(Zi; β̂+ s j1 j) subject to β̂ j 6= 0 and s j = −sign(β̂ j)ε,

that is, ĵ is selected such that the empirical loss after making the step is as small as possible.
While forward steps try to reduce the Lasso loss through minimizing the empirical loss, the

backward steps try to reduce the Lasso loss through minimizing the Lasso penalty. In summary, by
allowing the backward steps, we are able to work with the Lasso loss directly and take backward
steps to correct earlier forward steps that might have picked up irrelevant variables.

Since much of the discussion on the similarity and difference between FSF and Lasso is focused
on Least Squares problems (e.g., Efron et al., 2004; Hastie et al., 2001), we next examine the BLasso
algorithm in this case. It is straightforward to see that in LS problems both forward and backward
steps in BLasso are based only on the correlations between fitted residuals and the covariates (pre-
dictors). It follows that BLasso in this case reduces to finding the best direction in both forward and
backward steps by examining the inner-products, and then deciding whether to go forward or back-
ward based on the regularization parameter. This not only simplifies the minimization procedure
but also significantly reduces the computation complexity for a large number of observations since
the inner-product between ηt and X j can be updated by

(ηt+1)′X j = (ηt − sX ĵt)
′X j = (ηt)′X j − sX ′

ĵt X j, (8)

which takes only one operation if X ′
ĵt
X j is precalculated. Therefore, when the number of base

learners is small, based on precalculated X ′X and Y ′X , BLasso could use (8) to make its computation

2709

ZHAO AND YU

complexity independent from the number of observations. This nice property is not surprising as it
is also observed in established algorithms like LARS and Osborne’s homotopy method which are
specialized for LS problems.

In nonparametric situations, the number of base learners is large therefore the aforementioned
strategy becomes inefficient. BLasso has a natural extention to this case as follows: similar to boost-
ing, the forward step is carried out by a sub-optimization procedure such as fitting trees, smoothing
splines or stumps. For the backward step, only inner-products between base learners that have en-
tered the model need to be calculated. The inner products between these base learners and residuals
can be updated by (8). This makes the backward steps’ computation complexity proportional to the
number of base learners that are already chosen instead of the number of all possible base learners.
Therefore BLasso works not only for cases with large sample size but also for cases where a class
of large or infinite number of possible base learners is given.

As mentioned earlier, there are already established efficient algorithms for solving the least
square (L2) Lasso problem, for example, the homotopy method by Osborne et al. (2000b) and
LARS (Efron et al., 2004). These algorithms are very efficient for giving the exact Lasso paths
for parametric settings. For nonparametric learning problems with a large or an infinite number of
base learners, we believe BLasso is an attractive strategy for approximating the path of the Lasso,
as it shares the same computational strategy as Boosting which has proven itself successful in ap-
plications. Also, in cases where the Ordinary Least Square (OLS) method performs well, BLasso
can be modified to start from the OLS estimate, go backward and stop in a few iterations.

5. Generalized BLasso

As stated earlier, BLasso not only works for general convex loss functions, but also extends to
convex penalties other than the L1 penalty. For the Lasso problem, BLasso does a fixed stepsize
coordinate descent to minimize the penalized loss. Since the penalty has the special L1 norm and
(7) holds, a step’s impact on the penalty has a fixed size ε with either a positive or a negative
sign, and the coordinate descent takes form of “backward” and “forward” steps. This reduces the
minimization of the penalized loss function to unregularized minimizations of the loss function as in
(6) and (5). For general convex penalties, since a step on different coordinates does not necessarily
have the same impact on the penalty, one is forced to work with the penalized function directly.
Assume T (β): Rm → R is a convex penalty function. We next describe the Generalized BLasso
algorithm (Algorithm 2).

In the Generalized BLasso algorithm, explicit “forward” or “backward” steps are no longer seen.
However, the mechanism remains the same—minimize the penalized loss function for each λ, relax
the regularization by reducing λ through a “forward” step when the minimum of the loss function
for the current λ is reached.

6. Experiments

In this section, three experiments are carried out to illustrate the attractiveness of BLasso. The
first experiment runs BLasso under the classical Lasso setting on the diabetes data set (cf. Efron
et al., 2004) often used in studies of Lasso with an added artificial covariate variable to highlight the
difference between BLasso and FSF. This added covariate is strongly correlated with a couple of
the original covariates (predictors). In this case, BLasso is seen to produce a path almost exactly the

2710

STAGEWISE LASSO

Algorithm 2 Generalized BLasso
Step 1 (initialization). Given data Zi = (Yi,Xi), i = 1, ...,n and a fixed small stepsize ε > 0 and a
small tolerance parameter ξ ≥ 0, take an initial forward step

(ĵ, ŝ ĵ) = arg min
j,s=±ε

n

∑
i=1

L(Zi;s1 j), β̂0 = ŝ ĵ1 ĵ.

Then calculate the corresponding regularization parameter

λ0 =
∑n

i=1 L(Zi;0)−∑n
i=1 L(Zi; β̂0)

T (β̂0)−T (0)
.

Set t = 0.
Step 2 (steepest descent on Lasso loss). Find the steepest coordinate descent direction on the penal-
ized loss:

(ĵ, ŝ ĵ) = arg min
j,s=±ε

Γ(β̂t + s1 j;λt).

Update β̂ if it reduces Lasso loss by at least a ξ amount, otherwise force β̂ to minimize L and
recalculate the regularization parameter:
If Γ(β̂t + ŝ ĵ1 ĵ;λt)−Γ(β̂t ,λt) < −ξ, then

β̂t+1 = β̂t + ŝ ĵ1 ĵ, λt+1 = λt .

Otherwise,

(ĵ, ŝ ĵ) = arg min
j,|s|=ε

n

∑
i=1

L(Zi; β̂t + s1 j),

β̂t+1 = β̂t + ŝ ĵ1 ĵ,

λt+1 = min[λt ,
∑n

i=1 L(Zi; β̂t)−∑n
i=1 L(Zi; β̂t+1)

T (β̂t+1)−T (β̂t)
].

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

same as the Lasso path which shrinks the added irrelevant variable back to zero, while FSF’s path
parts drastically from Lasso’s due to the added strongly correlated covariate and does not move it
back to zero.

In the second experiment, we compare the prediction and variable selection performance of FSF
and BLasso in a least squares regression simulation using a large number (p = 500 >> n = 50) of
randomly correlated base learners to emulate the nonparametric learning scenario and when the true
model is sparse. The result shows, overall, BLasso gives sparser solutions than FSF and with similar
or slightly better predictions. And this holds for various stepsizes. Moreover, we find that when the
stepsize increases, there is a regularization effect in terms of both prediction and sparsity, for both
BLasso and FSF.

2711

ZHAO AND YU

The last experiment is to illustrate BLasso as an off-the-shelf method for computing the reg-
ularization path for general convex loss functions and general convex penalties. Two cases are
presented. The first case is bridge regression (Frank and Friedman, 1993) on diabetes data using
different Lγ (γ ≥ 1) norms as penalties. The other is a simulated classification problem using 1-norm
SVM (Zhu et al., 2003) with the hinge loss.

6.1 L2 Regression with L1 Penalty (Classical Lasso)

The data set used in this experiment is the diabetes data set where n=442 diabetes patients were
measured on 10 baseline predictor variables X 1, ...,X10. A prediction model was desired for the
response variable Y , a quantitative measure of disease progression one year after baseline. We
add one additional predictor variable to make more visible the difference between FSF and Lasso
solutions. This added variable is

X11 = −X7 +X8 +5X9 + e,

where e is i.i.d. Gaussian noise (mean zero and variance 1/442). The following vector gives the
correlations of X11 with X1,X2, ...,X10:

(0.25 , 0.24 , 0.47 , 0.39 , 0.48 , 0.38 , −0.58 , 0.76 , 0.94 , 0.47).

The classical Lasso (L2 regression with L1 penalty) is applied to this data set with the added co-
variate. Location and scale transformations are made so that all the covariates or predictors are
standardized to have mean 0 and unit length, and the response has mean zero.

The penalized loss function has the form:

Γ(β;λ) =
n

∑
i=1

(Yi −Xiβ)2 +λ‖β‖1.

The middle panel of Figure 1 shows the coefficient path plot for BLasso applied to the modified
diabetes data. Left (Lasso) and Middle (BLasso) panels are indistinguishable from each other. Both
FSF and BLasso pick up the added artificial and strongly correlated X 11 (the solid line) in the earlier
stages, but due to the greedy nature of FSF, it is not able to remove X 11 in the later stages thus every
parameter estimate is affected leading to significantly different solutions from Lasso.

The BLasso solutions were built up in 8700 steps (making the step size ε = 0.5 small so that the
coefficient paths are smooth), 840 of which were backward steps. In comparison, FSF took 7300
pure forward steps. BLasso’s backward steps concentrate mainly around the steps where FSF and
BLasso tend to differ.

6.2 Comparison of BLasso and Forward Stagewise Fitting by Simulation

In this experiment, we compare the model estimates generated by FSF and BLasso in a large
p(=500) and small n(=50) setting to mimic a nonparametric learning scenario where FSF and
BLasso are computationally attractive. In this least squares regression simulation, the design is
randomly generated as described below to guarantee a fair amount of correlation among the covari-
ates (predictors). Otherwise, if the design is close to orthogonal, the FSF and BLasso paths will be
too similar for this simulation to yield interesting results.

2712

STAGEWISE LASSO

Lasso BLasso FSF

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

t = ∑ |β̂ j| → t = ∑ |β̂ j| → t = ∑ |β̂ j| →

Figure 1: Regularization path plots, for the diabetes data set, of Lasso, BLasso and FSF: the curves
(or paths) of estimates β̂ j for 10 original and 1 added covariates (predictors), as the reg-
ularization is relaxed or t tends to infinity. The thick solid curves correspond to the 11th
added covariate. Left Panel: Lasso solution paths (produced using simplex search method
on the penalized empirical loss function for each λ) as a function of t = ‖β‖1. Middle
Panel: BLasso solution paths, which can be seen indistinguishable to the Lasso solutions.
Right Panel: FSF solution paths, which are different from Lasso and BLasso.

We first draw 5 covariance matrices Ci, i = 1, ..,5 from .95×Di + .05Ip×p where Di is sampled
from Wishart(20, p) then normalized to have 1’s on diagonal. The Wishart distribution creates a
fair amount of correlation in Ci (average absolute value is about 0.18) between the covariates and
the added identity matrix guarantees Ci to be full rank. For each of the covariance matrix Ci, the
design X is then drawn independently from N(0,Ci) with n = 50.

The target variable Y is then computed as

Y = Xβ+ e,

where β1 to βq with q = 7 are drawn independently from N(0,1) and β8 to β500 are set to zero to
create a sparse model. e is the Gaussian noise vector with mean zero and variance 1. For each of
the 5 cases with different Ci, both BLasso and FSF are run using stepsizes ε = 1

5 , 1
10 , 1

20 , 1
40 and 1

80 .
We also run Lasso which is listed as BLasso when ε = 0.

To compare the performances, we examine the solutions on the regularization paths that give the
smallest mean squared error ‖Xβ−X β̂‖2. The mean squared error (on log scale) of these solutions
are tabulated together with the number of nonzero estimates in each solution. All cases are run 50
times and the average results are reported in Table 1.

As can be seen from Table 1, since our true model is sparse, in almost all cases the BLasso
solutions are sparser and have similar prediction performances comparing to the FSF solutions with
the same stepsize. It is also interesting to note that, smaller stepsizes require more computation but
often give worse predictions and much less sparsity. We conjecture that there is also a regularization
effect caused by the discretization of the solution paths (more discussion in Section 8) and this effect
has also been observed by Gao et al. (2006) in a language ranking problem.

2713

ZHAO AND YU

Design ε = 1
5 ε = 1

10 ε = 1
20 ε = 1

40 ε = 1
80 Lasso (ε = 0)

C1 MSE BLasso 18.60 18.27 18.33 18.60 19.42 19.98
FSF 19.77 19.40 19.60 19.82 19.96

q̂ BLasso 15.38 20.08 21.76 21.44 20.50 21.86
FSF 18.32 24.00 27.28 30.48 32.14

C2 MSE BLasso 19.58 19.28 19.65 19.94 20.76 21.12
FSF 20.67 20.29 20.63 20.94 21.11

q̂ BLasso 14.80 18.92 20.18 21.22 20.52 21.82
FSF 18.34 21.90 25.70 28.80 29.38

C3 MSE BLasso 18.83 18.14 18.55 18.90 19.32 20.15
FSF 19.35 19.11 19.52 19.78 19.93

q̂ BLasso 15.22 19.10 19.92 20.02 19.52 21.08
FSF 15.38 19.72 23.30 25.88 27.30

C4 MSE BLasso 20.09 19.88 19.85 20.20 21.84 21.70
FSF 21.53 21.09 21.13 21.35 21.57

q̂ BLasso 15.76 20.82 22.20 22.42 21.12 22.24
FSF 18.90 24.64 30.38 32.02 34.16

C5 MSE BLasso 18.79 18.62 18.70 19.09 19.47 20.12
FSF 19.99 19.92 19.84 20.19 20.36

q̂ BLasso 15.58 19.16 21.26 21.92 22.18 22.76
FSF 17.10 23.24 28.24 30.94 32.84

Table 1: Comparison of FSF and BLasso in a simulated nonparametric regression setting. The log
of MSE and q̂ =# of nonzeros are reported for the oracle solutions on the regularization
paths. All results are averaged over 50 runs.

Design ε = 1
5 ε = 1

10 ε = 1
20 ε = 1

40 ε = 1
80

C1 MSE BLasso−Lasso -1.38 (0.37) -1.71 (0.23) -1.65 (0.21) -1.38 (0.21) -0.56 (0.35)
BLasso−FSF -1.17 (0.27) -1.13 (0.28) -1.27 (0.26) -1.22 (0.26) -0.54 (0.24)

q̂ BLasso−Lasso -6.48 (0.64) -1.78 (0.70) -0.10 (0.67) -0.42 (0.63) -1.36 (0.65)
BLasso−FSF -2.94 (0.89) -3.92 (1.22) -5.52 (1.26) -9.04 (1.43) -11.64 (1.64)

C2 MSE BLasso−Lasso -1.54 (0.37) -1.84 (0.29) -1.47 (0.26) -1.18 (0.25) -0.36 (0.45)
BLasso−FSF -1.09 (0.32) -1.01 (0.27) -0.98 (0.23) -1.00 (0.23) -0.35 (0.38)

q̂ BLasso−Lasso -7.02 (0.58) -2.90 (0.65) -1.64 (0.52) -0.60 (0.50) -1.30 (0.48)
BLasso−FSF -3.54 (0.99) -2.98 (0.88) -5.52 (1.09) -7.58 (1.31) -8.86 (1.41)

C3 MSE BLasso−Lasso -1.32 (0.35) -2.01 (0.36) -1.60 (0.33) -1.25 (0.32) -0.83 (0.32)
BLasso−FSF -0.53 (0.28) -0.97 (0.22) -0.97 (0.23) -0.88 (0.23) -0.62 (0.24)

q̂ BLasso−Lasso -5.86 (0.81) -1.98 (0.72) -1.16 (0.54) -1.06 (0.55) -1.56 (0.56)
BLasso−FSF -0.16 (0.78) -0.62 (0.87) -3.38 (1.05) -5.86 (0.97) -7.78 (1.08)

C4 MSE BLasso−Lasso -1.61 (0.45) -1.82 (0.33) -1.85 (0.33) -1.50 (0.33) 0.14 (0.66)
BLasso−FSF -1.44 (0.30) -1.20 (0.28) -1.28 (0.24) -1.15 (0.29) 0.27 (0.67)

q̂ BLasso−Lasso -6.48 (0.71) -1.42 (0.85) -0.04 (0.73) 0.18 (0.52) -1.12 (0.67)
BLasso−FSF -3.14 (0.92) -3.82 (1.16) -8.18 (1.12) -9.60 (1.35) -13.04 (1.68)

C5 MSE BLasso−Lasso -1.33 (0.38) -1.50 (0.26) -1.41 (0.26) -1.03 (0.22) -0.65 (0.22)
BLasso−FSF -1.20 (0.25) -1.30 (0.23) -1.14 (0.28) -1.10 (0.29) -0.89 (0.28)

q̂ BLasso−Lasso -7.18 (0.84) -3.60 (0.64) -1.50 (0.58) -0.84 (0.52) -0.58 (0.55)
BLasso−FSF -1.52 (0.88) -4.08 (1.10) -6.98 (1.08) -9.02 (1.21) -10.66 (1.50)

Table 2: Means and Standard Errors of the differences of MSE and q̂ between BLasso and Lasso,
and between Blasso and FSF in Table 1.

2714

STAGEWISE LASSO

2 4 6 8 10 12 14

0
20

40
60

80
10

0
BLasso
FSF
Lasso

2 4 6 8 10 12 14
0

20
40

60
80

10
0

BLasso
FSF
Lasso

Figure 2: Plots of in-sample Mean Squared Error (y-axis) versus ‖β‖1 (x-axis) for a typical realiza-
tion of the experiment (on run under C2 from Table 1). The step size is set to ε = 1

80 in
the left plot and ε = 1

5 in the right.

Table 2 gives a further analysis of the results in Table 1. It contains means and standard errors
of the differences of MSE and q̂, between BLasso and Lasso and between BLasso and FSF, for the
stepsizes given in Table 1. First of all, all the mean differences are negative and when compared with
their SE’s, the differences are also significant except for few cells for small stepsizes 1/40 and 1/80
(in the last two columns). This overwhelming pattern of significant negative difference suggests that,
for this simulation, BLasso is better than Lasso and FSF in terms of both prediction and sparsity
unless the stepsize is very small as in the last two columns. Moreover, for MSE the stepsize ε = 1/10
seems to bring the best improvement of BLasso over Lasso, and the improvement is pretty robust
against the choice of stepsize. On the other hand, the improvements of BLasso over FSF on MSE
are less then those of BLasso over Lasso because FSF has the same discrete stepsizes. Hence these
improvements reflect the gains only by the backward steps since FSF takes also forward steps. In
terms of q̂, the number of covariates selected, as expected, the larger the stepsize, the sparser the
BLasso model is relative to the Lasso model or the FSF model. The sparsity improvements over
Lasso are significant for all cells except for the last column with ε = 1/80. When compared with
FSF, the sparsity improvements are less and smaller (still significant). In terms of gains on both
MSE and sparsity and relative to both Lasso and FSF, stepsizes 1/10 and 1/20, that is, 0.1 or 0.05,
seem good overall choices for this simulation study.

2715

ZHAO AND YU

As suggested by one referee, we compare the Lasso empirical loss functions induced by BLasso,
FSF and Lasso (through LARS). Figure 2 shows plots of in-sample Mean Squared Error versus L1

norms of the coefficients taken from one typical run of the simulation conducted in this section. As
shown by the plots, the in-sample MSE from BLasso approximates the in-sample MSE from the
Lasso better than the FSF under both big and small step sizes. In particular, when the step size is
small, the BLasso path is almost indiscernible from the Lasso path. A final comment on Figure 2 is
in order. Although the in-sample MSE curve for BLasso in the right panel of Figure 2 does seem to
go up at the end of the plot, we can not extend the x-axis further to higher ||β||1 values because at
the stepsize ε = 1/5, the BLasso solution has achieved its L1 norm maximum around 14−15 – the
maximum of the x-axis on the right panel of Figure 2.

6.3 Generalized BLasso for Other Penalties and Nondifferentiable Loss Functions

First, to demonstrate Generalized BLasso for different penalties, we use the Bridge Regression
setting with the diabetes data set (without the added covariate in the first experiment). The Bridge
Regression (first proposed by Frank and Friedman 1993 and later more carefully discussed and
implemented by Fu 2001) is a generalization of the ridge regression (L2 penalty) and Lasso (L1

penalty). It considers a linear (L2) regression problem with Lγ penalty for γ ≥ 1 (to maintain the
convexity of the penalty function). The penalized loss function has the form:

Γ(β;λ) =
n

∑
i=1

(Yi −Xiβ)2 +λ‖β‖γ,

where γ is the bridge parameter. The data used in this experiment are centered and rescaled as in the
first experiment.

Generalized BLasso successfully produced the paths for all 5 cases which are verified by point-
wise minimization using simplex method (γ = 1, γ = 1.1, γ = 4 and γ = max) or close form solutions
(γ = 2). It is interesting to notice the phase transition from the near-Lasso to the Lasso as the so-
lution paths are similar but only Lasso has sparsity. Also, as γ grows larger, estimates for different
β j tend to have more similar sizes and in the extreme γ = ∞ there is a “branching” phenomenon—
the estimates stay together in the beginning and branch out into different directions as the path
progresses.

To demonstrate the Generalized BLasso algorithm for classification using an nondifferentiable
loss function with a L1 penalty function, we look at binary classification with the hinge loss. As in
Zhu et al. (2003), we generate n=50 training data points in each of two classes. The first class has
two standard normal independent inputs X 1 and X2 and class label Y = −1. The second class also
has two standard normal independent inputs, but conditioned on 4.5 ≤ (X 1)2 +(X2)2 ≤ 8 and has
class label Y = 1. We wish to find a classification rule from the training data. so that when given a
new input, we can assign a label from {1,−1} to it.

1-norm SVM (Zhu et al., 2003) is used to estimate β:

(β̂0,β) = argmin
β0,β

n

∑
i=1

(1−Yi(β0 +
m

∑
j=1

β jh j(Xi)))
+ +λ

5

∑
j=1

|β j|,

where hi ∈ D are basis functions and λ is the regularization parameter. The dictionary of basis
functions is D = {

√
2X1,

√
2X2,

√
2X1X2,(X1)2,(X2)2}. Notice that β0 is left unregularized so the

penalty function is not the L1 penalty.

2716

STAGEWISE LASSO

γ = 1 γ = 1.1 γ = 2 γ = 4 γ = ∞

600 1800 3000 600 1800 3000 600 1800 3000 600 1800 3000 100 400 700

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 3: Upper Panel: Solution paths produced by BLasso for different bridge parameters, on the
diabetes data set. From left to right: Lasso (γ = 1), near-Lasso (γ = 1.1), Ridge (γ = 2),
over-Ridge (γ = 4), max (γ = ∞). The Y -axis is the parameter estimate and has the range
[−800,800]. The X-axis for each of the left 4 plots is ∑i |βi|, the one for the 5th plot is
max(|βi|) because ∑i |βi| is unsuitable. Lower Panel: The corresponding penalty equal
contours for |β1|γ + |β2|γ = 1.

2717

ZHAO AND YU

Regularization Path Data

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

t = ∑5
j=1 |β̂ j| →

Figure 4: Estimates of 1-norm SVM coefficients β̂ j, j=1,2,...,5, for the simulated two-class classi-
fication data. Left Panel: BLasso solutions as a function of t = ∑5

j=1 |β̂ j|. Right Panel:
Scatter plot of the data points with labels: ’+’ for y = −1; ’o’ for y = 1.

The fitted model is

f̂ (x) = β̂0 +
m

∑
j=1

β̂ jh j(x),

and the classification rule is given by sign(f̂ (x)).

Since the loss function is not differentiable, we do not have a theoretical guarantee that BLasso
works. Nonetheless the solution path produced by Generalized BLasso has the same sparsity and
piecewise linearity as the 1-norm SVM solutions shown in Zhu et al. (2003). It takes General-
ized BLasso 490 iterations to generate the solutions. The covariates enter the regression equation
sequentially as t increase, in the following order: the two quadratic terms first, followed by the
interaction term then the two linear terms. As 1-norm SVM in Zhu et al. (2003), BLasso correctly
picked up the quadratic terms early. That come up much later are the interaction term and linear
terms that are not in the true model. In other words, BLasso results are in good agreement with Zhu
et al.’s 1-norm SVM results and we regard this as a confirmation for BLasso’s effectiveness in this
nondifferentiable example.

7. Discussion and Concluding Remarks

As seen from our simulations under sparse true models, BLasso generates sparser solutions with
similar or slightly better predictions relative to Lasso and FSF. The behavior relative to Lasso is due
to the discrete stepsize of BLasso, while the behavior relative to FSF is partially explained by its
convergence to the Lasso path as the stepsize goes to 0. We believe that the generalized version

2718

STAGEWISE LASSO

0500100015002000

0

200

400

λ

Figure 5: Estimates of regression coefficients β̂3 for the diabetes data set. Solutions are plotted as
functions of λ. Dotted Line: Estimates using stepsize ε = 0.05. Solid Line: Estimates
using stepsize ε = 10. Dash-dot Line: Estimates using stepsize ε = 50.

is also effective as an off-the-shelf algorithm for the general convex penalized loss minimization
problems.

Computationally, BLasso takes roughly O(1/ε) steps to produce the whole path. Depending on
the actual loss function, base learners and minimization method used in each step, the actual compu-
tation complexity varies. As shown in the simulations, choosing a smaller stepsize gives a smoother
solution path but it does not guarantee a better prediction. Actually, for the particular simulation
set-up in Sec. 6.2, moderate stepsizes gave better results both in terms of MSE and sparsity. It is
worth noting that the BLasso coefficient estimates are pretty close to the Lasso solutions even for
relatively large stepsizes.

For the diabetes data, using a moderate stepsize ε = 0.05, the solution path can not be distin-
guished from the exact regularization path. Moreover, even when the stepsize is as large as ε = 10
and ε = 50, the solutions are still good approximations.

BLasso has only one stepsize parameter (with the exception of the numerical tolerance ξ which
is implementation specific but not necessarily a user parameter). This parameter controls both how
close BLasso approximates the minimization coefficients for each λ and how close two adjacent λ on
the regularization path are placed. As can be seen from Figure 5, a smaller stepsize leads to a closer
approximation to the solutions and also finer grids for λ. We argue that, if λ is sampled on a coarse
grid we should not spend computational power on finding a much more accurate approximation of
the coefficients for each λ. Instead, the available computational power spent on these two coupled
tasks should be balanced. BLasso’s 1-parameter setup automatically balances these two aspects of
the approximation which is graphically expressed by the staircase shape of the solution paths.

Another algorithm similar to Generalized BLasso was developed independently by Rosset (2004).
There, starting from λ = 0, a solution is generated by taking a small Newton-Raphson step for each
λ, then λ is increased by a fixed amount. The algorithm assumes twice-differentiability of both

2719

ZHAO AND YU

loss function and penalty function and involves calculation of the Hessian matrix which could be
heavy-duty computationally when the number p of covariates is not small. In comparison, BLasso
uses only the differences of the loss function and involves only basic operations and does not require
advanced mathematical knowledge of the loss function or penalty. It can also be used a simple plug-
in method for dealing with other convex penalties. Hence BLasso is easy to program and allows
testing of different loss and penalty functions. Admittedly, this ease of implementation can cost
computation time in large p situations.

BLasso’s stepsize is defined in the original parameter space which makes the solutions evenly
spread in β’s space rather than in λ. In general, since λ is approximately the reciprocal of size of the
penalty, as a fitted model grows larger and λ becomes smaller, changing λ by a fixed amount makes
the algorithm in Rosset (2004) move too fast in the β space. On the other hand, when the model is
close to empty and the penalty function is very small, λ is very large, but the algorithm still uses the
same small steps thus computation is spent to generate solutions that are too close to each other.

As we discussed for the least squares problem, BLasso may also be computationally attractive
for dealing with nonparametric learning problems with a large or an infinite number of base learners.
This is mainly due to two facts. First, the forward step, as in Boosting, is a sub-optimization
problem by itself and Boosting’s functional gradient descend strategy applies. For example, in the
case of classification with trees, one can use the classification margin or the logistic loss function
as the loss function and use a reweighting procedure to find the appropriate tree at each step (for
details see, e.g., Breiman, 1998; Friedman et al., 2000). In the case of regression with the L2 loss
function, the minimization as in (6) is equivalent to refitting the residuals as we described in the
last section. The second fact is that, when using an iterative procedure like BLasso, we usually stop
early to avoid overfitting and to get a sparse model. And even if the algorithm is kept running, it
usually reaches a close-to-perfect fit without too many iterations. Therefore, the backward step’s
computation complexity is limited because it only involves base learners that are already included
from previous steps.

There is, however, a difference in the BLasso algorithm between the case with a small number of
base learners and that with a large or an infinite number of base learners. For the finite case, BLasso
avoids oscillation by requiring a backward step to be strictly descending and relax λ whenever no
descending step is available. Hence BLasso never reaches the same solution more than once and the
tolerance constant ξ can be set to 0 or a very small number to accommodate the program’s numerical
accuracy. In the nonparametric learning case, a different kind of oscillation can occur when BLasso
keeps going back and force in different directions but only improving the penalized loss function by
a diminishing amount, therefore a positive tolerance ξ is mandatory. As suggested by the proof of
Theorem 1, we suggest choosing ξ = o(ε) to warrant a good approximation to the Lasso path.

One direction for future research is to apply BLasso in an online or time series setting. Since
BLasso has both forward and backward steps, we believe that an adaptive online learning algorithm
can be devised based BLasso so that it goes back and forth to track the best regularization parameter
and the corresponding model.

We end with a summary of our main contributions:

1. By combining both forward and backward steps, the BLasso algorithm is constructed to min-
imize an L1 penalized convex loss function. While it maintains the simplicity and flexibility
of e-Boosting (or Forward Stagewise Fitting), BLasso efficiently approximate the Lasso so-

2720

STAGEWISE LASSO

lutions for general loss functions and large classes of base learners. This can be proven
rigorously for a finite number of base learners under some assumptions.

2. The backward steps introduced in this paper are critical for producing the Lasso path. Without
them, the FSF algorithm in general does not produce Lasso solutions, especially when the
base learners are strongly correlated as in cases where the number of base learners is larger
than the number of observations. As a result, FSF loses some of the sparsity provided by
Lasso and might also suffer in prediction performance as suggested by our simulations.

3. We generalized BLasso as a simple, easy-to-implement, plug-in method for approximating
the regularization path for other convex penalties.

4. Discussions based on intuition and simulation results are made on the regularization effect of
using stepsizes that are not very small.

Last but not least, matlab codes by Guilherme V. Rocha for BLasso in the case of L2 loss and L1

penalty can be downloaded at
http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

Acknowledgments

Yu would like to gratefully acknowledge the partial supports from NSF grants FD01-12731 and
CCR-0106656 and ARO grant DAAD19-01-1-0643, and the Miller Research Professorship in Spring
2004 from the Miller Institute at University of California at Berkeley. We thank Dr. Chris Holmes
and Mr. Guilherme V. Rocha for their very helpful comments and discussions on the paper. Fi-
nally, we would like to thank three referees and the action editor for their thoughtful and detailed
comments on an earlier version of the paper.

Appendix A. Proofs

Proof (Lemma 1)

1. It is assumed that there exist λ and j with |s| = ε such that

Γ(s1 j;λ) ≤ Γ(0;λ).

Then we have
n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi;s1 j) ≥ λT (s1 j)−λT (0).

Therefore

λ ≤ 1
ε
{

n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi;s1 j)}

≤ 1
ε
{

n

∑
i=1

L(Zi;0)− min
j′,|s|=ε

n

∑
i=1

L(Zi;s1 j′)}

=
1
ε
{

n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi; β̂0)}

= λ0.

2721

ZHAO AND YU

2. Since a backward step is only taken when Γ(β̂t+1;λt) < Γ(β̂t ;λt)− ξ and λt+1 = λt , so we
only need to consider forward steps. When a forward step is forced, if Γ(β̂t+1;λt+1) >
Γ(β̂t ;λt+1)−ξ, then

n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ < λt+1T (β̂t+1)−λt+1T (β̂t).

Hence
1
ε
{

n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ} < λt+1,

which contradicts the algorithm.

3. Since λt+1 < λt and λ can not be relaxed by a backward step, we immediately have ‖β̂t+1‖1 =
‖β̂t‖1 + ε. Then from

λt+1 =
1
ε
{

n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ},

we get
Γ(β̂t ;λt+1)−ξ = Γ(β̂t+1;λt+1).

Add (λt −λt+1)‖β̂t‖1 to both sides, and recall T (β̂t+1) = ‖β̂t+1‖1 > |β̂t‖1 = T (β̂t), we get

Γ(β̂t ;λt)−ξ < Γ(β̂t+1;λt)

= min
j′,|s|=ε

Γ(β̂t + s1 j′ ;λt)

≤ Γ(β̂t ± ε1 j;λt)

for all j.

Proof (Theorem 1)
Theorem 3.1 claims that “the BLasso path converges to the Lasso path uniformly” for ∑L(Z;β)

that is strongly convex with bounded second derivatives in β. The strong convexity and bounded
second derivatives imply the Hessian w.r.t. β satisfies

mI � ∇2 ∑L � MI,

for positive constants M ≥ m > 0. Using these notations, we will show that for any t s.t. λt+1 > λt ,
we have

‖β̂t −β∗(λt)‖2 ≤ (
M
m

ε+
ξ
ε

2
m

)
√

p, (9)

where β∗(λt) ∈ Rp is the Lasso estimate with a regularization parameter λt .
The proof of (9) relies on the following inequalities for strongly convex functions, some of

which can be found in Boyd and Vandenberghe (2004). First, because of the strong convexity, we
have

∑L(Z;β∗(λt)) ≥ ∑L(Z; β̂t)+∇∑L(Z; β̂t)T (β∗(λt)− β̂t)+
m
2
‖β∗(λt)− β̂t‖2

2.

2722

STAGEWISE LASSO

The L1 penalty function is also convex although not strictly convex nor differentiable at 0, but
we have

‖β∗(λt)‖1 ≥ ‖β̂t‖1 +δT (β∗(λt)− β̂t)

hold for any p-dimensional vector δ with δi the i’th entry of sign(β̂t)T for the nonzero entries and
|δi| ≤ 1 otherwise.

Putting both inequalities together, we have

Γ(β∗(λt);λt) ≥ Γ(β̂t ;λt)+(∇∑L(Z; β̂t)+λtδ)T (β∗(λt)− β̂t)+
m
2
‖β∗(λt)− β̂t‖2

2. (10)

Using Equation (10), we can bound the L2 distance between β∗(λt) and β̂t by applying Cauchy-
Schwartz to get

Γ(β∗(λt);λt) ≥ Γ(β̂t ;λt)−‖∇∑L(Z; β̂t)+λtδ‖2‖β∗(λt)− β̂t‖2 +
m
2
‖β∗(λt)− β̂t‖2

2.

Since Γ(β∗(λt);λt) ≤ Γ(β̂t ;λt), we have

‖β∗(λt)− β̂t‖2 ≤
2
m
‖∇∑L(Z; β̂t)+λtδ‖2. (11)

By statement (3) of Lemma 1, for β̂t
j 6= 0, we have

∑L(Z; β̂t ± εsign(β̂t
j)1 j)±λtε ≥ ∑L(Z; β̂t)−ξ. (12)

At the same time, by the bounded Hessian assumption, we have

∑L(Z; β̂t ± εsign(β̂t
j)1 j) ≤ ∑L(Z; β̂t)± ε∇∑L(Z; β̂t)T sign(β̂t

j)1 j +
M
2

ε2. (13)

Connect these two inequalities, we have

∓ε× (∇∑L(Z; β̂t)T 1 jsign(β̂t
j)+λt) ≤

M
2

ε2 +ξ,

therefore

|(∇∑L(Z; β̂t)T 1 jsign(β̂t
j)+λt)| ≤

M
2

ε+
ξ
ε
. (14)

Similarly, for β̂t
j = 0, instead of (12), we have

∑L(Z; β̂t ± εsign(β̂t
j)1 j)+λtε ≥ ∑L(Z; β̂t)−ξ.

Combine with (13), we have

|∇∑L(Z; β̂t)T 1 j|−λt ≤
M
2

ε+
ξ
ε
.

For j such that β̂t
j = 0, we choose δ j appropriately and combine with (14) so that the right hand side

of (11) is controlled by
√

p× 2
m × (M

2 ε+ ξ
ε). This way we obtain (9).

2723

ZHAO AND YU

References

E.L. Allgower and K. Georg. Homotopy methods for approximating several solutions to nonlinear
systems of equations. In W. Forster, editor, Numerical solution of highly nonlinear problems,
pages 253–270. North-Holland, 1980.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801–824, 1998.

P. Buhlmann and B. Yu. Boosting with the l2 loss: regression and classification. Journal of American
Statistical Association, 98, 2003.

E. Candes and T. Tao. The danzig selector: Statistical estimation when p is much larger than n.
Annals of Statistics (to appear), 2007.

S. Chen and D. Donoho. Basis pursuit. Technical report, Department of Statistics, Stanford Univer-
sity, 1994.

N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines and other kernel-
based learning methods. Cambridge University Press, 2002.

D. Donoho. For most large undetermined system of linear equatnions the minimal l1-norm near-
solution approximates the sparsest solution. Communications on Pure and Applied Mathematics,
59(6):797–829, 2006.

D. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in
the presence of noise. IEEE Trans. Information Theory, 52(1):6–18, 2006.

B. Efron, T. Hastie, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407–499,
2004.

J. Fan and R.Z. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of American Statistical Association, 96(456):1348–1360, 2001.

I. Frank and J. Friedman. A statistical view od some chemometrics regression tools. Technometrics,
35:109–148, 1993.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:
256–285, 1995.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In Machine Learning:
Proc. Thirteenth International Conference, pages 148–156. Morgan Kauffman, San Francisco,
1996.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annal of Statistics,
29:1189–1232, 2001.

J.H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annal of Statistics, 28:337–407, 2000.

2724

STAGEWISE LASSO

W.J. Fu. Penalized regression: The bridge versus the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 2001.

J. Gao, H. Suzuki, and B. Yu. Approximate lasso methods for language modeling. Proceedings of
the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the
ACL, Sydney, pages 225–232, 2006.

T. Gedeon, A. E. Parker, and A. G. Dimitrov. Information distortion and neural coding. Canadian
Applied Mathematics Quarterly, 2002.

T. Hastie, Tibshirani, R., and J.H. Friedman. The Elements of Statistical Learning: Data Mining,
Inference and Prediction. Springer Verlag, 2001.

T. Hastie, J. Taylor, R. Tibshirani, and G. Walther. Forward stagewise regression and the monotone
lasso. Technical report, Department of Statistics, Stanford University, 2006.

K. Knight and W. J. Fu. Asymptotics for lasso-type estimators. Annals of Statistics, 28:1356–1378,
2000.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hy-
potheses. Advance in Large Margin Classifiers, 1999.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.
Annals of Statistics, 34:1436–1462, 2005.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional
data. Annals of Statistics (to appear), 2006.

M.R. Osborne, B. Presnell, and B.A. Turlach. A new approach to variable selection in least squares
problems. Journal of Numerical Analysis, 20(3):389–403, 2000a.

M.R. Osborne, B. Presnell, and B.A. Turlach. On the lasso and its dual. Journal of Computational
and Graphical Statistics, 9(2):319–337, 2000b.

S. Rosset. Tracking curved regularized optimization solution paths. NIPS, 2004.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

R.E. Schapire. The strength of weak learnability. Journal of Machine Learning, 5(2):1997–2027,
1990.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization and beyond. MIT Press, 2002.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267–288, 1996.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In The 37th annual
Allerton Conference on Communication, Control and Computing, 1999.

2725

ZHAO AND YU

J.A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE
Trans. Information Theory, 52(3):1030 –1051, 2006.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using `1-
constrained quadratic programming. Technical Report 709, Statistics Department, UC Berkeley,
2006.

C.-H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high dimensional linear
regression. Annals of Statistics (to appear), 2006.

T. Zhang. Sequentiall greedy approximation for certain convex optimization problems. IEEE Trans.
on Information Theory, 49(3):682–691, 2003.

P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning Research,
7 (Nov):2541–2563, 2006.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Advances in Neural
Information Processing Systems, 16, 2003.

H. Zou. The adaptive lasso and its oracle properties. Journal of American Statistical Association,
101:1418–1429, 2006.

2726

