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Abstract
Motivated by mathematical learning from training data, we introduce the notion of refinable ker-
nels. Various characterizations of refinable kernels are presented. The concept of refinable kernels
leads to the introduction of wavelet-like reproducing kernels. We also investigate a refinable kernel
that forms a Riesz basis. In particular, we characterize refinable translation invariant kernels, and
refinable kernels defined by refinable functions. This study leads to multiresolution analysis of
reproducing kernel Hilbert spaces.
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1. Introduction

The main purpose of this paper is to introduce the notion of refinable kernels, wavelet-like reproduc-
ing kernels and multiresolution analysis of a reproducing kernel Hilbert space. Before proceeding
to the motivation, it is worthwhile to know that there has been a large body of literature on similar
notions such as refinable functions (Cavaretta et al., 1991; Daubechies, 1992), multiresolution anal-
ysis of L2(R) (Mallat, 1989; Meyer, 1992) and kernels constructed by wavelet functions (Amato et
al., 2006; Rakotomamonjy and Canu, 2005; Rakotomamonjy et al., 2005). The connection of these
well-known notions with those to be presented will become clear as we proceed this study.

We first motivate the concept of refinable kernels by learning via a kernel. Let X be a prescribed
set which is called in the theory of learning an input space and is associated with an output space
Y ⊆ C. A typical learning task aims at inferring from a finite set of training data z := {(x j,y j) : j ∈
Nm}, where Nm := {1,2, . . . ,m}, a function f from X to Y so that f (x) gives a satisfactory output
of an input x ∈ X . A popular choice of f is a minimizer of a certain error functional. Specifically,
we let H be a given class of functions on X , Q : C×C → R+ be a loss function (Schölkopf and
Smola, 2002) measuring how well g fits the training data z, N : H → R+ be a controller of the
set of functions in H from which we choose f , and µ be a positive regularization parameter. The
function f may be chosen as

argmin
g∈H

∑
j∈Nm

Q(g(x j),y j)+µN (g). (1)
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XU AND ZHANG

The selection of the function class H is critical for the behavior of f and thus it deserves special
attention. In practice, H may be chosen through a kernel K on X , a function from X ×X to C such
that for all finite sets t := {t j : j ∈ Nn} ⊆ X the matrix

K[t] := [K(t j, tk) : j,k ∈ Nn] (2)

is hermitian and positive semi-definite (see, for example, Cucker and Smale, 2002; Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). The importance of kernels in
learning is that the function evaluation K(x,y) is able to measure the similarity of x,y ∈ X . A kernel
K on X corresponds to a Hilbert space

HK := span{K(·,y) : y ∈ X} (3)

of functions on X with an inner product determined by

(K(·,y),K(·,x))HK
= K(x,y), x,y ∈ X . (4)

The space HK is a reproducing kernel Hilbert space (RKHS), that is, point evaluations are continu-
ous linear functionals on HK (Aronszajn, 1950). Moreover, HK is the only Hilbert space of functions
on X such that for all x ∈ X , we have that K(·,x) ∈ HK and

f (x) = ( f ,K(·,x))HK
, f ∈ HK . (5)

Due to Equation (5), K is often interpreted as the reproducing kernel of HK . A RKHS has exactly
one reproducing kernel (Aronszajn, 1950). To construct a learning function f : X →Y from the train-
ing data z, we start with a kernel K on X . Choose in (1) H := HK and N := ‖·‖2

HK
, the square of the

norm on HK . In this case, the minimization problem in (1) reduces to a regularization in the RKHS,
which has received much attention in the literature (see, for example, Bousquet and Elisseeff, 2002;
Cucker and Smale, 2002; Micchelli and Pontil, 2005a,b; Mukherjee et al., 2006; Schölkopf and
Smola, 2002; Smale and Zhou, 2003; Steinwart and Scovel, 2005; Vapnik, 1998; Wahba, 1999;
Walder et al., 2006; Ying and Zhou, 2007; Zhang, 2004, and the references cited therein). In this
setting, the representer theorem in learning (see, for example, Kimeldorf and Wahba, 1971; Mic-
chelli and Pontil, 2004; Schölkopf et al., 2001; Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Walder et al., 2006) asserts that there exists c := [c j : j ∈ Nm]T ⊆ C

m, depending
on the training data z and the kernel K, such that the minimizer (1) is

f = ∑
j∈Nm

c jK(·,x j). (6)

The choice of kernels K is certainly one of the most important issues in the above learning
scheme via regularization. It is often based on the training data z currently available to us. However,
the old training data may be updated to z′ := {(x′j,y′j) : j ∈ Nm′} by adding to z more new samples
from X ×Y . The kernels that we use should offer us a convenient way to update the kernel. In other
words, we are looking for kernels with the ability of learning dynamically expanding training data.
Specifically, we demand kernels K having the feature that there is a cheap way of updating K to a
new kernel K ′ such that HK � HK′ . Here and throughout the paper, we make the convention that
whenever we write W1 � W2 for Hilbert spaces W1,W2, the inclusion is in the sense that W1 ⊆ W2

2084



REFINABLE KERNELS

and for all u,v ∈ W1, (u,v)W1
= (u,v)W2

. The inclusion HK � HK′ has a natural interpretation.
When we have a larger training data set z′, we may expect that the minimization

min
g∈HK′

∑
j∈Nm′

Q(g(x′j),y
′
j)+µ′‖g‖2

HK′ , (7)

yields a better predictor f ′ than f . This becomes possible only if the new space HK′ includes HK

as a subspace. Moreover, we require the updating from K to K ′ to have the feature that computing
minimizer f ′ from (7) should be able to make use of the previously computed minimizer f from (1).
Moreover, when the representation (6) for f is available, we want to process it efficiently.

This motivates us to introduce the concept of refinable kernels. We shall study characterizations
of a refinable kernel, fundamental properties of refinable kernels and wavelet-like reproducing ker-
nels, and multiscale structures of a RKHS induced by refinable kernels. It is important to note that
the concept of wavelet-like reproducing kernels differs from that of “wavelet kernels” in Amato et
al. (2006), Rakotomamonjy and Canu (2005), and Rakotomamonjy et al. (2005). The earlier means
the kernels defined by the difference of kernels at two consecutive scales while the latter means
the kernels defined by a linear combination of dilations and translations of wavelet functions. This
paper is organized in seven sections. We present in Section 2 two characterizations of refinable
kernels. Section 3 is devoted to wavelet-like reproducing kernels and a multiscale decomposition
of the RKHS of a refinable kernel. In Section 4, we investigate refinable kernels of a Riesz type
and we also introduce the notion of a multiresolution analysis for a RKHS. As concrete examples of
refinable kernels, we formulate in Sections 5 and 6, respectively, conditions for translation invariant
kernels and kernels defined by a refinable function to be refinable. In Section 7, we have a brief
discussion of potential applications of refinable kernels and make a conclusion.

2. Characterizations of γ-Refinable Kernels

We define in this section γ-refinable kernels and present their characterizations. Let γ : X → X be
a given bijective mapping and let ι denote the identity mapping from X to itself. We introduce a
sequence of mappings from X to itself by recursions

γ−1 := γ−1, γ−n−1 := γ−1 ◦ γ−n, and γ0 := ι, γn := γ◦ γn−1, n ∈ N.

A kernel K on X is called γ-refinable if there exists a positive constant λ depending only on K and γ
such that

HK � HK1 ,

where
K1(x,y) := λK (γ(x),γ(y)) , x,y ∈ X .

The constant λ is a normalization factor which ensures the inner product on HK identical to that on
HK1 . Examples of the mappings γ include the dilation mapping x → 2x in R

d and in general, the
dilation mapping x → Ax where A is an expanding matrix. We simply call the γ-refinable kernels in
this case refinable kernels.

Let K be a kernel on the input space X , and λ a positive constant. For any bijective mapping γ
and any n ∈ Z, we let

Kn(x,y) := λnK(γn(x),γn(y)), x,y ∈ X . (8)

We next identify the RKHS defined by Kn.
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Theorem 1 If K is a kernel on X, then for each n ∈ Z, the RKHS of kernel Kn is

HKn = { f ◦ γn : f ∈ HK} (9)

with inner product
( f ,g)HKn

:= λ−n( f ◦ γ−n,g◦ γ−n)HK
, f ,g ∈ HKn . (10)

Proof It can be shown that Kn is a kernel on X . We set Hn := { f ◦ γn : f ∈ HK} and introduce an
inner product on Hn by

( f ,g)Hn := λ−n( f ◦ γ−n,g◦ γ−n)HK
, f ,g ∈ Hn.

It is clear that Hn is a Hilbert space with this inner product. Note that for any x ∈ X , Kn(·,x) ∈ Hn

and for any f ∈ Hn, f ◦ γ−n ∈ HK . Hence, for f ∈ Hn, we obtain by (5) and the definition of the
inner product (·, ·)HKn

that for x ∈ X

f (x) = ( f ◦ γ−n)(γn(x)) = ( f ◦ γ−n,K(·,γn(x)))HK
= λn( f ,K(γn(·),γn(x))Hn .

Combining this equation with the definition of the kernel Kn leads to f (x) = ( f ,Kn(·,x))Hn , x ∈ X .
This implies that Kn is the reproducing kernel for Hn. By the unique correspondence between a
RKHS and its reproducing kernel, we conclude that HKn = Hn.

A direct consequence of Theorem 1 is that if K is a γ-refinable kernel then for each n ∈ Z, the
kernel Kn is γ-refinable. This result justifies the usage of the same mapping γ to update Kn to Kn+1

in (8) for each n ∈ Z.

Proposition 2 If the kernel K is γ-refinable, then for each n ∈ Z, Kn is γ-refinable. Conversely, if
for some n ∈ Z, Kn is γ-refinable, then K is γ-refinable.

Proof Suppose that K is γ-refinable. Then, we have that HK � HK1 . Let f ∈ HKn . By Theorem 1,
we deduce that f ◦γ−n ∈ HK �HK1 , which implies that f ∈ HKn+1 . In addition, Theorem 1, Equation
(10) and the γ-refinability of K ensure that for f ,g ∈ HKn ,

( f ,g)HKn
= λ−n( f ◦ γ−n,g◦ γ−n)HK

= λ−n( f ◦ γ−n,g◦ γ−n)HK1

= λ−n−1( f ◦ γ−n−1,g◦ γ−n−1)HK
= ( f ,g)HKn+1

.

This confirms that Kn is γ-refinable.
Conversely, we suppose that Kn is γ-refinable for some n ∈ Z. Since

K(x,y) = λ−nKn(γ−n(x),γ−n(y)), x,y ∈ X ,

the arguments in the proof of the first statement of this proposition show that K is γ-refinable.

The next result follows immediately from the last proposition.

Corollary 3 If K is γ-refinable, then for all f ,g ∈ HK and n ∈ N, f ,g ∈ HKn and ( f ,g)HKn
=

( f ,g)HK
.
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We now present our first characterization of γ-refinable kernels.

Theorem 4 A kernel K is γ-refinable if and only if

K(γ−1(·),x) ∈ HK , for all x ∈ X (11)

and
(K(γ−1(·),y),K(γ−1(·),x))HK

= λK(x,y), for all x,y ∈ X , (12)

where λ is the same constant in the definition of a γ-refinable kernel.

Proof By Proposition 2, K is γ-refinable if and only if

HK−1 � HK . (13)

Suppose that K is γ-refinable. The definition of kernel K−1 leads to

K(γ−1(·),x) = λK−1(·,γ(x)) ∈ HK−1 , for x ∈ X ,

for some constant λ. This combined with relation (13) ensures the validity of (11). By (13), (10)
and (4), we obtain for all x,y ∈ X that

(K(γ−1(·),y),K(γ−1(·),x))HK
= (K(γ−1(·),y),K(γ−1(·),x))HK−1

= λ(K(·,y),K(·,x))HK
= λK(x,y),

which is Equation (12).
Conversely, we suppose that (11) holds and (12) is satisfied with some constant λ, and we prove

that inclusion relation (13) is valid. Let f ∈ HK . By (3), there exists a sequence

fn ∈ span{K(·,y) : y ∈ X}, n ∈ N

that converges to f in HK . Equation (11) implies that fn ◦ γ−1 ∈ HK , n ∈ N, and Equation (12)
implies for all m,n ∈ N that

‖ fm ◦ γ−1 − fn ◦ γ−1‖HK
= λ1/2‖ fm − fn‖HK

.

Therefore, fn ◦ γ−1 is a Cauchy sequence in HK , whose limit is denoted by f−1. Recall that point
evaluations are continuous linear functionals on HK . An application of this fact yields that

f−1(x) = lim
n→∞

( fn ◦ γ−1)(x), x ∈ X . (14)

In the same manner, since fn converges to f in HK , we have for each x ∈ X that

( f ◦ γ−1)(x) = lim
n→∞

( fn ◦ γ−1)(x). (15)

We observe from (14) and (15) that f ◦ γ−1 = f−1. It is hence proved that f ◦ γ−1 ∈ HK for each
f ∈ HK . This combined with (9) shows that the elements of HK−1 are contained in HK . Finally, we
verify by (12) for each f ,g ∈ HK that

( f ◦ γ−1,g◦ γ−1)HK
= ( f−1,g−1)HK

= lim
n→∞

( fn ◦ γ−1,gn ◦ γ−1)HK
= λ lim

n→∞
( fn,gn)HK

= λ( f ,g)HK
.
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By the above equation and (10), the inner product on HK−1 coincides with the one on HK . We con-
clude that (13) holds true and complete the proof.

Another characterization of γ-refinable kernels K is in terms of a feature map for K. A function
Φ from X to a Hilbert space W is called a feature map for the kernel K if

K(x,y) = (Φ(x),Φ(y))W , x,y ∈ X . (16)

We call the Hilbert space W the feature space of K. It is known (Aronszajn, 1950) that K is a kernel
on X if and only if there exists a map Φ : X → W satisfying (16). In the next result, we identify the
RKHS HK in terms of a feature map Φ for K. To state the result, we denote by Φ(X) the image of
X under Φ, spanΦ(X) the closure of spanΦ(X) in W , and PΦ the orthogonal projection from W
onto spanΦ(X).

Lemma 5 Let K be a kernel having a representation (16) in terms of a feature map Φ from X to
W . Then HK = {(Φ(·),u)W : u ∈ W } with inner product

((Φ(·),u)W ,(Φ(·),v)W )HK
= (PΦv,PΦu)W , u,v ∈ W . (17)

A proof of this result in the special case that K is a Hilbert-Schmidt kernel was provided in Opfer
(2006) (see Lemma 3.4, Theorem 3.5 therein). The proof works for the general case described in
Lemma 5. The result can also be found in Micchelli and Pontil (2005a). In the application of
Lemma 5, it is always convenient to assume that there holds

spanΦ(X) = W (18)

since otherwise W can be replaced by spanΦ(X). If (18) holds then for each f ∈ HK there exists
a unique u f ∈ W such that f = (Φ(·),u f )W . Moreover, one can see by Lemma 5 that the linear
transformation Γ from HK to W defined by

Γ f := u f (19)

is an isomorphism, that is, it is one-to-one, onto and satisfies ‖Γ f‖W = ‖ f‖HK
, for f ∈ HK .

We call a feature map Φ from X to W γ-refinable provided that there is a bounded linear operator
T on W such that

λ−1/2Φ◦ γ−1 = T Φ, (20)

where λ−1/2 plays the role of a normalization parameter. Throughout this paper, we mean that T is
a function from a Hilbert space W to itself whenever we say that T is an operator on W . Recall
that a linear operator A on W is isometric if for all u ∈ W , ‖Au‖W = ‖u‖W . One can see that A is
isometric if and only if A∗A is equal to the identity operator on W , where A∗ denotes the adjoint
operator of A.

We characterize a refinable kernel in terms of its feature map.

Theorem 6 Suppose that K is a kernel on X with a feature map Φ : X → W satisfying (18). Then
K is γ-refinable if and only if Φ is γ-refinable and the adjoint operator T ∗ of T in (20) is isometric.
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Proof Suppose that Φ is γ-refinable, that is, it satisfies (20) for some bounded operator T on W ,
and suppose that T ∗ is isometric. We first observe by (16) and (20) for each x ∈ X that

K(γ−1(·),x) = (Φ◦ γ−1(·),Φ(x))W = λ1/2(T Φ(·),Φ(x))W = λ1/2(Φ(·),T ∗Φ(x))W . (21)

Lemma 5 with the equation above yields that for each x ∈ X , K(γ−1(·),x) ∈ HK . Moreover, (18)
implies that PΦ is the identity operator on W . This fact, together with Equations (21) and (17)
ensures for all x,y ∈ X that

(K(γ−1(·),y),K(γ−1(·),x))HK
= λ((Φ(·),T ∗Φ(y))W ,(Φ(·),T ∗Φ(x))W )HK

= λ(T ∗Φ(x),T ∗Φ(y))W .

By hypothesis, T T ∗ is the identity. Hence, the right hand side of the above equation becomes
λ(Φ(x),Φ(y))W , which is equal to λK(x,y), since Φ is a feature map for K. That is, (12) holds. We
conclude by Theorem 4 that K is γ-refinable.

Conversely, suppose that K is γ-refinable, that is, HK−1 � HK . We shall choose a bounded linear
operator T on W such that Φ satisfies (20) and T ∗ is isometric. By Theorem 1 and Lemma 5,
functions in HK−1 have the form (Φ ◦ γ−1(·),u)W , u ∈ W . The inclusion HK−1 � HK implies that
for each u ∈ W there exists vu ∈ W such that

λ−1/2(Φ◦ γ−1(·),u)W = (Φ(·),vu)W . (22)

Equation (18) ensures that for each u ∈ W there is a unique vu ∈ W satisfying (22). Let A denote
the map u → vu and observe that A is a linear operator on W . We shall prove that it is isometric.
Since by (16) for all x,y ∈ X

K−1(x,y) = λ−1K(γ−1(x),γ−1(y)) = λ−1(Φ(γ−1(x)),Φ(γ−1(y)))W ,

the map Φ−1 := λ−1/2Φ◦ γ−1 : X → W is a feature map for K−1. Since γ is a bijective map from X
to itself, PΦ−1 is also equal to the identity operator on W . Therefore, by Lemma 5, we have for all
u ∈ W that

∥

∥

∥λ−1/2(Φ◦ γ−1(·),u)W

∥

∥

∥

HK−1

= ‖u‖W . (23)

Likewise, condition (18) and Lemma 5 imply that

‖(Φ(·),vu)W ‖HK
= ‖vu‖W . (24)

In addition, by the relation HK−1 � HK and (22), there holds

∥

∥

∥λ−1/2(Φ◦ γ−1(·),u)W

∥

∥

∥

HK−1

= ‖(Φ(·),vu)W ‖HK
. (25)

Combining Equations (23), (24) and (25) shows that A is isometric. By (22) we conclude for all
u ∈ W that

λ−1/2(Φ◦ γ−1(·),u)W = (Φ(·),Au)W = (A∗Φ(·),u)W .

We choose T := A∗ and observe from the above equation that (20) holds. Thus, Φ is γ-refinable and
T ∗ is isometric.
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3. Wavelet-like Reproducing Kernels

This section is devoted to developing a multiscale decomposition of the RKHS HK of a γ-refinable
kernel K. Specifically, we construct the nontrivial orthogonal complement of HKn in HKn+1 . In this
regard, an issue important to us is when HKn is a proper subspace of HKn+1 . Our first result concerns
this proper inclusion question. Let R (A) and N (A) denote the range and null space of an operator
A on W , respectively. We also denote for every V ⊆ W by V ⊥ the set of all elements in W that
are orthogonal to V .

Theorem 7 Suppose that K defined by (16) is γ-refinable and the feature map Φ satisfies (18). Then
HK−1 is a proper subspace of HK if and only if the operator T in (20) is not injective. Moreover, if
HK−1 is a proper subspace of HK , then for all n ∈ Z, HKn is a proper subspace of HKn+1 .

Proof Since K is γ-refinable, by Theorem 6, the feature map Φ is γ-refinable and T ∗ is isometric.
Hence, by (20), functions in HK−1 are of the form

λ−1/2(Φ◦ γ−1(·),u)W = (T Φ(·),u)W = (Φ(·),T ∗u)W , u ∈ W . (26)

On the other hand, Lemma 5 ensures that functions in HK have the form

(Φ(·),u)W , u ∈ W . (27)

The isometry of T ∗ guarantees that R (T ∗) is a closed subspace of W . This fact, together with
Equations (26), (27) and the isomorphism Γ introduced in (19), implies that HK−1 is a proper sub-
space of HK if and only if R (T ∗) is a proper subspace of W . The relation R (T ∗)⊥ = N (T ) (see,
Conway, 1990, page 35) proves that HK−1 is a proper subspace of HK if and only if N (T ) 6= {0}.
Hence, the first claim of this theorem is valid. The proof of the second statement is straightforward.

Theorem 7 allows us to construct the nontrivial orthogonal complement of HKn in HKn+1 . For
this purpose, we define

G := K1 −K, and Gn(x,y) := λnG(γn(x),γn(y)), x,y ∈ X , n ∈ Z.

Theorem 8 Suppose that K is a γ-refinable kernel on X. Then the following statements hold:
(1) For each n ∈ Z, Gn is a kernel on X.
(2) There holds HGn � HKn+1 , and HGn is the orthogonal complement of HKn in HKn+1 .
(3) For each n ∈ Z that

HGn = { f ◦ γn : f ∈ HG} (28)

and the inner product on HGn satisfies

( f ,g)HGn
= λ−n( f ◦ γ−n,g◦ γ−n)HG

, f ,g ∈ HGn . (29)

Proof Since K is γ-refinable, we have by Proposition 2 that Kn is γ-refinable, namely, HKn � HKn+1 .
Let Wn be the orthogonal complement of HKn in HKn+1 . It is clear that Wn is a RKHS with the inner
product of HKn+1 . By a property of reproducing kernels (see, Aronszajn, 1950, page 345), the sum
of Kn and the kernel of Wn is equal to Kn+1. Therefore, G is the kernel of W0, and it is observed
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by (8) that the kernel of Wn is Gn. This proves (1) and (2). The result (3) follows directly from
Theorem 1.

A direct consequence of Theorem 8 (2) is that for all n ∈ Z and for all f ,g ∈ HGn ,

( f ,g)HGn
= ( f ,g)HKn+1

.

Theorem 8 leads to the decomposition

HKn+1 = HKn ⊕HGn ,

where the notation A⊕B denotes the orthogonal direct sum of A and B. We call Gn the wavelet-like
reproducing kernels and in particular, G the initial wavelet-like kernel. It is clear that the initial
wavelet-like kernel G is nontrivial if and only if HK−1 is a proper subspace of HK . Repeatedly using
the above decomposition with n = −1, we have the decomposition for the RKHS

HK = HG−1 ⊕·· ·⊕HG−m ⊕HK−m , m ≥ 1. (30)

One should notice the difference between wavelet-like reproducing kernels that we introduce here
and the “wavelet kernels” studied in Amato et al. (2006), Rakotomamonjy and Canu (2005), and
Rakotomamonjy et al. (2005). The latter are a class of Hilbert-Schmidt kernels defined as a super-
position of dilations and translations of a wavelet function.

We now consider the decomposition (30) when m → ∞. To this end, we define the space

H−∞ :=
\

n∈Z

HKn

and we describe the space in the next theorem.

Theorem 9 Suppose that K defined by (16) is γ-refinable and the feature map Φ satisfies (18). Then
the closed subspace H−∞ of HK has the form

H−∞ =

{

(Φ(·),u)W : u ∈
\

n∈N

R ((T ∗)n)

}

. (31)

Moreover, H−∞ = {0} if and only if

lim
n→∞

‖T nu‖W = 0, for all u ∈ W . (32)

Proof Since HKn , n ≤ 0, are closed subspaces of HK , H−∞ is a closed subspace of HK . By (20), we
use induction to conclude for each n ∈ N that

λ−n/2(Φ◦ γ−n(·),u)W = (T nΦ(·),u)W = (Φ(·),(T ∗)nu)W , u ∈ W . (33)

By Theorem 1 and Equation (27), functions in HK−n are of the form λ−n/2(Φ ◦ γ−n(·),u)W . This
combined with (33) proves formula (31).
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It remains to prove the second statement. Since for each n ∈ N, (T ∗)n is isometric, R ((T ∗)n) is
a closed subspace of W . Therefore,

W−∞ :=
\

n∈N

R ((T ∗)n)

is a closed subspace of W . It suffices to show that W−∞ = {0} if and only if (32) holds. Suppose
that (32) is satisfied. Let v ∈ W−∞ and by the definition of W−∞, there exists for each n ∈ N a
vn ∈ W such that (T ∗)nvn = v. Since T ∗ is isometric, ‖vn‖W = ‖v‖W , which ensures that for each
u ∈ W and n ∈ N,

|(u,v)W | = |(u,(T ∗)nvn)W | = |(T nu,vn)W | ≤ ‖T nu‖W ‖vn‖W = ‖T nu‖W ‖v‖W .

Let n → ∞ in the above inequality and by condition (32) we conclude that each u ∈ W is orthogonal
to W−∞. Consequently, W−∞ contains only the zero element.

Conversely, we suppose that W−∞ = {0}. By the relation that

\

n∈N

R ((T ∗)n) =

(

[

n∈N

N (T n)

)⊥
, (34)

the union of N (T n), n ∈ N, is dense in W . Let u ∈ W . For each ε > 0 there exists an m ∈ N and
v ∈ N (T m) such that ‖u− v‖W ≤ ε. For each operator A on W , its norm ‖A‖ is defined as

‖A‖ := sup{‖Aw‖W : w ∈ W , ‖w‖W = 1}.
An operator on W has the same norm as its adjoint (Conway, 1990). Since T ∗ is isometric, we have
‖T‖ = ‖T ∗‖ = 1. By the definition of the norm of an operator on W , there holds

‖Tw‖W ≤ ‖w‖W , w ∈ W ,

We get from the above equation for all n ≥ m that T nv = 0 and

‖T nu‖W = ‖T nu−T nv‖W ≤ ‖u− v‖W ≤ ε.

This verifies (32) and completes the proof.

The decomposition (30) can now be extended to the decomposition

HK = (H−∞)
M

n∈N

HG−n . (35)

This decomposition gives a multiresolution analysis (Mallat, 1989; Meyer, 1992) of the RKHS HK ,
in terms of a sequence of orthogonal subspaces, each of which is a RKHS corresponding to the
wavelet-like kernels.

In passing, we make an additional remark on condition (32). It has a close relation with the
translation invariant subspaces in Hardy spaces (Beurling, 1949), which in turn has an important
application to the Bedrosian identity (Yu and Zhang, 2006). Under the assumption that the linear
span of the eigenelements of T is dense in W , the condition is equivalent to that all the eigenvalues
of T have the absolute value less than one (see Beurling, 1949, and the references therein).

To close this section, we prove a corollary of Theorem 7, which concerns the finite dimensional
feature space and presents an example of trivial refinable kernels, in the sense that its wavelet-like
kernel is the zero kernel.
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Corollary 10 If K defined by (16) is γ-refinable, the feature map Φ satisfies (18), and the feature
space W is finite dimensional, then HK−1 = HK .

Proof Since K is γ-refinable, by Theorem 6, T ∗ is isometric, or equivalently, T T ∗ is equal to the
identity operator on W . It follows that for every w ∈ W , there holds w = T (T ∗w). Therefore, T is a
surjective operator on W . Since W is finite dimensional, T must be injective as well. By Theorem
7, there holds HK−1 = HK .

As an application of Corollary 10, we investigate the finite dot-product kernel (FitzGerald et al.,
1995). Set Z+ := N∪{0}, and An := {α := (α j : j ∈ Nd) ∈ Z

d
+ : ∑ j∈Nd

α j = n}, n ∈ Z+. It can be
seen that the kernel

K(x,y) := ∑
α∈An

cαxαyα, x,y ∈ R
d ,

is refinable on R
d , where cα, α ∈ An, are positive constants. A feature map Φ for this kernel is

Φ(x) := [
√

cαxα : α ∈ An] ∈ `2(An), x ∈ R
d

and the feature space `2(An) is of finite dimension. By Corollary 10, K is a trivial refinable kernel
on R

d in the sense that HK−1 = HK . Examples of nontrivial refinable kernels on R
d will be given in

Sections 5 and 6.

4. γ-Refinable Kernels of a Riesz Type

The study in this section is motivated by the representation (6), which indicates a need of a countable
subset X of X such that the linear span of KX := {K(·,x) : x ∈ X } is dense in HK . In practical
computations, it is also desirable to have a convenient and stable way of finding an approximation
f̃ ∈ spanKX of a function f ∈ HK . This leads to consideration of requiring KX to be a frame or a
Riesz basis for HK .

We recall the basic concept of frames and Riesz bases (cf., Daubechies, 1992; Duffin and Scha-
effer, 1952; Mallat, 1998; Young, 1980). Let J be an index set. A family of elements {ϕ j : j ∈ J} in
a Hilbert space W forms a frame if there exist 0 < α ≤ β < ∞ such that for all f ∈ W

α‖ f‖2
W ≤ ∑

j∈J

|( f ,ϕ j)W |2 ≤ β‖ f‖2
W . (36)

The constants α,β are called the frame bounds for {ϕ j : j ∈ J}. We call a frame {ϕ j : j ∈ J} a tight
frame when its two frame bounds are equal, that is, α = β. If, in addition to (36), {ϕ j : j ∈ J} is a
linearly independent set, we call it a Riesz basis for W . A Riesz basis {ϕ j : j ∈ J} is equivalent to
an orthonormal basis {ψ j : j ∈ J} for W , namely, there exists a bounded linear operator L on W
having a bounded inverse such that L(ψ j) = ϕ j, j ∈ J.

An arbitrary element in W can be expressed as a linear combination of a frame {ϕ j : j ∈ J} for
W . We denote by `2(J) the Hilbert space of the square summable sequences on J with the inner
product (c,d)`2(J) := ∑ j∈J c jd j. Define the frame operator F from W to `2(J) by setting for all
f ∈ W , (F f ) j := ( f ,ϕ j)W , for all j ∈ J. Then F∗F is a bounded positive self-adjoint operator on
W with a bounded inverse and

{

ϕ̃ j := (F∗F)−1ϕ j : j ∈ J
}
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is a frame for W . We shall refer to it as the dual frame of {ϕ j : j ∈ J} since we have for all f ∈ W

f = ∑
j∈J

( f ,ϕ j)W ϕ̃ j = ∑
j∈J

( f , ϕ̃ j)W ϕ j. (37)

When {ϕ j : j ∈ J} is a Riesz basis, one can see from (37) that (ϕ j, ϕ̃k)W = δ j,k, j,k ∈ J. We hence
say in this case that {ϕ j : j ∈ J} and {ϕ̃ j : j ∈ J} constitute a pair of biorthogonal bases for W .

Let Z := {z j : j ∈ J} ⊆ X be a countable set. For a kernel K on X , we are interested in the
conditions for which the set KZ := {K(·,z j) : j ∈ J} is a Riesz basis for HK . Let us begin with a
simple necessary and sufficient condition which follows directly from the reproducing property (5)
and the definition of a Riesz basis.

Proposition 11 The family KZ is a Riesz basis for HK with frame bounds 0 < α ≤ β < ∞ if and
only if for every finite subset X ⊆ Z, K[X ] is nonsingular, and for all f ∈ HK

α‖ f‖2
HK

≤ ∑
j∈J

| f (z j)|2 ≤ β‖ f‖2
HK

.

We remark that Proposition 11 is closely related to the concept of universal kernels. If X is a
topological space, we call a kernel K on X a universal kernel if for all compact X ⊆ X , the linear
span of {K(·,y) : y ∈ X } is dense in C(X ), the Banach space of continuous functions on X . Various
characterizations of universal kernels are studied in Micchelli et al. (2006). By a result of Zhou
(2003), universal kernels have the property that for all finite subsets x of X , K[x] is nonsingular.

We next present a characterization for KZ to be a Riesz basis for HK in terms of a uniqueness
set Z. We call X ⊆ X a uniqueness set for HK if there is not a nontrivial f ∈ HK that vanishes on X
(Micchelli et al., 2003, 2006). We shall also need the matrix

Λ := [K(z j,zk) : j,k ∈ J]. (38)

Note that each bounded operator A : `2(J) → `2(J) can be represented via a unique matrix [A j,k :
j,k ∈ J] as

(Ac) j := ∑
k∈J

A j,kck, c ∈ `2(J), j ∈ J.

For simplicity, we shall not distinguish a linear operator on `2(J) from its corresponding represen-
tation matrix. The matrix associated with the adjoint operator A ∗ of A is

(A∗) j,k := Ak, j, j,k ∈ J.

We also denote by AT and Ā the transpose and conjugate of a matrix A , respectively, namely,

(AT ) j,k = Ak, j, (Ā) j,k = A j,k, j,k ∈ J.

Proposition 12 The family KZ forms a Riesz basis for HK if and only if Z is a uniqueness set for
HK and there exist 0 < α ≤ β < ∞ such that

α‖c‖2
`2(J) ≤ (Λc,c)`2(J) ≤ β‖c‖2

`2(J). (39)
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Proof The proof follows directly from the fact (see, for example, Young, 1980, page 32) that for
{ϕ j : j ∈ J} to be a Riesz basis for a Hilbert space W with frame bounds 0 < α ≤ β < ∞, it is
necessary and sufficient that its linear span is dense in W and for all c ∈ `2(J)

α‖c‖2
`2(J) ≤

∥

∥

∥

∥

∑
j∈J

c jϕ j

∥

∥

∥

∥

2

W
≤ β‖c‖2

`2(J).

The third characterization is in terms of a feature map for the kernel K.

Theorem 13 Let K be given by (16). Then KZ is a Riesz basis for HK if and only if Φ(Z) is a Riesz
basis for spanΦ(X).

Proof We only discuss the case when (18) holds true, for the other can be handled in a similar way.
Since the operator Γ defined by (19) is an isomorphism from HK onto W , KZ is a Riesz basis if and
only if Γ(KZ) is a Riesz basis for Γ(HK) = W . By (16) and the definition of Γ, Γ(KZ) = Φ(Z).
This completes the proof.

The following corollary is a direct consequence of Theorem 13.

Corollary 14 Let K be given by (16). If (18) holds then KZ is a Riesz basis for HK if and only if the
features Φ(Z) of Z is a Riesz basis for the feature space W .

For the simplicity of notations, we set

φn, j := λn/2K(γn(·),z j), (n, j) ∈ Z× J.

Note that φ0, j = K(·,z j), j ∈ J. In the following presentation, we shall adopt the convention that we
use m,n to denote integers and j,k, l to denote indices in J. The next result regards the sequence
φn, j being a Riesz basis for HKn . Since the proof is standard (cf., Daubechies, 1992), we omit the
details.

Proposition 15 Suppose that KZ is a Riesz basis for HK with frame bounds 0 < α ≤ β < ∞. Then
for each n ∈ Z, {φn, j : j ∈ J} is a Riesz basis for HKn with the same frame bounds α,β.

For the rest of this section we assume that KZ is a Riesz basis for HK . This assumption implies
that the linear operator S on HK defined by

S f := ∑
j∈J

f (z j)K(·,z j), f ∈ HK (40)

is bounded positive self-adjoint and so is its inverse operator S−1 on HK (see, for example, Daubechies,
1992, pages 58–59). Note that S is a special case of the operator F ∗F introduced at the beginning
of this section. A particular example of the operator S was studied in Smale and Zhou (2007) to
approximate integral operators.
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Proposition 16 Suppose that KZ is a Riesz basis for HK and let S be the operator on HK defined
by (40). Then the function

K̃(x,y) := (S−1K(·,y))(x), x,y ∈ X (41)

is a kernel on X and the corresponding RKHS is

HK̃ = { f : f ∈ HK} (42)

with inner product ( f ,g)HK̃
:= (S f ,g)HK

.

Proof Since for all x,y ∈ X

(S−1K(·,y))(x) = (S−1(K(·,y)),K(·,x))HK

and S−1 is positive self-adjoint, the function K̃ defined by (41) is a kernel on X . Clearly, W := { f :
f ∈ HK} with inner product ( f ,g)W := (S f ,g)HK

is a RKHS. We also observe by (5) and the fact
that S = S∗ for each f ∈ HK and x ∈ X that

f (x) = ( f ,K(·,x))HK
= (S f ,S−1(K(·,x)))HK

= ( f ,S−1(K(·,x)))W = ( f , K̃(·,x))W ,

which implies that K̃ is the kernel of W . Consequently, we have (42).

We call K̃ defined by (41) the dual kernel of K. By the general theory of frames introduced at
the beginning of this section, the dual Riesz basis of KZ is

K̃Z := {K̃(·,z j) : j ∈ J}. (43)

To obtain an explicit expression of this dual basis, we need to understand the operator S−1. We shall
use notation Λ̃ for the inverse Λ−1 of matrix Λ defined by (38).

Theorem 17 If KZ is a Riesz basis for HK , then for each n ∈ Z, the dual Riesz basis {φ̃n, j : j ∈ J}
of {φn, j : j ∈ J} for HKn has the form

φ̃n, j = ∑
k∈J

Λ̃k, jφn,k, j ∈ J (44)

and

S−1 f = ∑
j∈J

(

∑
k∈J

Λ̃ j,k f (zk)

)(

∑
l∈J

Λ̃l, jK(·,zl)

)

, f ∈ HK . (45)

Proof Since KZ is a Riesz basis for HK , by Proposition 12, (39) holds for some positive constants
α,β. We hence have for all c ∈ `2(J) that (see, for example, Daubechies, 1992, page 58)

β−1‖c‖2
`2(J) ≤ (Λ̃c,c)`2(J) ≤ α−1‖c‖2

`2(J). (46)

Moreover, by Proposition 15, {φn, j : j ∈ J} is a Riesz basis for HKn . This combined with (46) shows
that φ̃n, j defined by (44) belong to HKn . By (10) and (5), we have for all j,k ∈ J that

(φ̃n, j,φn,k)HKn
= (φ̃0, j,K(·,zk))HK

= φ̃0, j(zk) = ∑
l∈J

Λ̃l, jK(zk,zl) = ∑
l∈J

Λk,lΛ̃l, j = δ j,k,
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which shows that {φ̃n, j : j ∈ J} is the dual Riesz basis of {φn, j : j ∈ J} in HKn .
We next establish the representation (45) of S−1. It follows that for each f ∈ HK the function

(denoted by g) in the right hand side of (45) is in HK . Recalling the definition of matrix Λ̃, the
function g satisfies for j ∈ J that

g(z j) = ∑
l∈J

Λ̃ j,l f (zl).

As a consequence, we have by the definition (40) of S for all k ∈ J that

(Sg)(zk) = ∑
j∈J

(

∑
l∈J

Λ̃ j,l f (zl)

)

K(zk,z j) = ∑
l∈J

f (zl) ∑
j∈J

Λ̃ j,lΛk, j = ∑
l∈J

f (zl)δk,l = f (zk).

Since, by Proposition 12, Z is a uniqueness set for HK , we have Sg = f .

We remark that the functions defined by Equation (44) satisfy

φ̃n, j = λn/2φ̃0, j ◦ γn, j ∈ J, n ∈ Z.

Another implication of Theorem 17 is that φ̃0, j, j ∈ J, are the interpolating functions on Z, that is,

φ̃0, j(zk) = δ j,k, j,k ∈ J.

For each n ∈ Z we introduce the sampling operator In,J by

(In,J f ) j := λ−n/2 f (γ−n(z j)), j ∈ J, f ∈ HKn .

It is pointed out that a special case of I0,J has been introduced in Smale and Zhou (2007). A function
f ∈ HKn can be completely recovered from its sample In,J f , that is,

f = ∑
j∈J

(Λ̃In,J f ) jφn, j = ∑
j∈J

(In,J f ) jφ̃n, j. (47)

In particular, we have the representation for our original kernel K

K(x,y) = ∑
j,k∈J

K(x,z j)Λ̃ j,kK(zk,y), x,y ∈ X . (48)

The Riesz basis provides a characterization of γ-refinable kernels in terms of the sampling op-
erator, which we present next.

Theorem 18 Suppose that KZ is a Riesz basis for HK . Then K is γ-refinable if and only if

{I−1,Jφ0, j : j ∈ J} ⊆ `2(J), (49)

(Λ̃I−1,Jφ0, j, I−1,Jφ0,k)`2(J) = K(zk,z j), j,k ∈ J, (50)

and
φ−1, j = ∑

k∈J

(Λ̃I−1,Jφ0, j)kK(·,zk), j ∈ J. (51)
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Proof Suppose that conditions (49), (50) and (51) hold true. For j,k∈ J, we set C j,k := (Λ̃I−1,Jφ0, j)k.
By (49) and (46), [C j,k : k ∈ J] ∈ `2(J). Since KZ is a Riesz basis for HK , it follows from (51) that
φ−1, j ∈ HK , j ∈ J. Equations (50), (47) and (10) imply for all j,k ∈ J that

(φ−1, j,φ−1,k)HK
= K(zk,z j) = (φ−1, j,φ−1,k)HK−1

. (52)

For each f ∈ HK−1 , we have by Proposition 15 a sequence fn ∈ span{φ−1, j : j ∈ J}, n ∈ N that
converges to f in HK−1 . By (52), there holds for each n ∈ N that fn ∈ HK and

( fn, fn)HK
= ( fn, fn)HK−1

. (53)

This means that fn is a Cauchy sequence in HK . There hence exists g ∈ HK that is the limit of fn in
HK . We get by (5) for each x ∈ X that

g(x) = (g,K(·,x))HK
= lim

n→∞
( fn,K(·,x))HK

= lim
n→∞

fn(x) = lim
n→∞

( fn,K−1(·,x))HK−1
= f (x).

Therefore, f ∈ HK , and by (53)

( f , f )HK−1
= lim

n→∞
( fn, fn)HK−1

= lim
n→∞

( fn, fn)HK
= (g,g)HK

= ( f , f )HK
.

We conclude that HK−1 � HK , that is, K is γ-refinable.
Conversely, suppose that HK−1 � HK . Then since KZ is a Riesz basis for HK with the dual basis

K̃Z defined by (43), we let n = 0 and f = φ−1, j in (47) to get that (49), (51) hold true. The inclusion
HK−1 � HK also implies (52). Through a calculation, we notice that (50) is a consequence of (52).
The proof is complete.

In the rest of this section, we construct a frame for the RKHS HG of the wavelet-like kernel
G := K1 −K.

Lemma 19 Suppose that K is γ-refinable and KZ is a Riesz basis for HK with frame bounds 0 <
α ≤ β < ∞. Then

ψ0, j := λ−1/2G(·,γ−1(z j)), j ∈ J

form a frame for HG with the same frame bounds α,β.

Proof By the definition G = K1 −K, we have that

ψ0, j = φ1, j −λ−1/2K(·,γ−1(z j)), j ∈ J.

Let f ∈ HG. Since f is orthogonal to HK in HK1 , we have for each j ∈ J that

( f ,ψ0, j)HG
= ( f ,ψ0, j)HK1

= ( f ,φ1, j)HK1
,

where the first equality holds because of Theorem 8 (2). Applying Proposition 15 and ‖ f‖HG
=

‖ f‖HK1
yields that {ψ0, j : j ∈ J} is a frame for HG with frame bounds α,β.

The frame for the RKHS HG is now translated to a frame for the RKHSs HGn .
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Proposition 20 Suppose that K is γ-refinable and KZ is a Riesz basis for HK with frame bounds
0 < α ≤ β < ∞. Then for each n ∈Z, ψn, j := λn/2ψ0, j ◦γn, j ∈ J form a frame for HGn with the same
frame bounds α,β. Furthermore, there holds

ψn, j = ∑
k∈J

D j,kφn+1,k, (54)

where
D j,k := δ j,k −λ−1 ∑

l∈J

Λ̃k,lK(γ−1(zl),γ−1(z j)). (55)

Proof Arguments similar to those in the proof of Proposition 15 with Lemma 19, equations (28)
and (29) prove the first claim of this proposition. For each n ∈ Z, by Theorem 17, {φ̃n+1,k : k ∈ J}
is the dual Riesz basis of {φn+1,k : k ∈ J} for HKn+1 . Since HGn � HKn+1 , we obtain for each j ∈ J

ψn, j = ∑
k∈J

(ψn, j, φ̃n+1,k)HKn+1
φn+1,k.

By (44) we confirm that (ψn, j, φ̃n+1,k)HKn+1
is equal to D j,k defined by (55), proving the result.

We next present the reconstruction of a function f ∈ HGn from its samples ( f ,ψn, j)HGn
, j ∈ J.

To describe the reconstruction, we remark that for each (n, j) ∈ Z× J there holds

φn, j = ∑
k∈J

C j,kφn+1,k (56)

and
φ̃n, j = ∑

k∈J

C̃ j,kφ̃n+1,k, (57)

where
C̃ j,k := λ−1/2 ∑

l∈J

Λ̃l, jK(γ−1(zk),zl).

For j,k ∈ J, we let
D̃ j,k := δ j,k −∑

l∈J

Cl, jC̃l,k.

Theorem 21 Suppose that K is γ-refinable and KZ is a Riesz basis for HK . For each n ∈ Z, the
functions

ψ̃n, j := φ̃n+1, j − ∑
k∈J

Ck, jφ̃n,k, j ∈ J (58)

constitute a frame for HGn and have the representation

ψ̃n, j = ∑
k∈J

D̃ j,kφ̃n+1,k. (59)

Moreover, there holds for all f ∈ HGn that

f = ∑
j∈J

( f , ψ̃n, j)HGn
ψn, j = ∑

j∈J

( f ,ψn, j)HGn
ψ̃n, j. (60)
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Proof Since K is γ-refinable, by Proposition 2, HKn �HKn+1 . This together with Theorem 17 follows
that the functions ψ̃n, j defined by (58) are in HKn+1 . Moreover, it can be verified by (56) that they
are orthogonal to HKn . Therefore, {ψ̃n, j : j ∈ J} ⊆ HGn . Arguments similar to those in the proof of
Proposition 20 yield that ψ̃n, j, j ∈ J form a frame for HGn with the same frame bounds as those of
{φ̃0, j : j ∈ J} for HK . Equation (59) is obtained by substituting (57) into (58).

We next prove the first equality of (60). To this end, for any fixed f ∈ HGn we define

g := ∑
j∈J

( f , ψ̃n, j)HGn
ψn, j

and observe that g ∈ HGn . It can be verified that

g = ∑
j∈J

( f , φ̃n+1, j)HKn+1
ψn, j

= ∑
j∈J

( f , φ̃n+1, j)HKn+1
(φn+1, j −λ−(n+1)/2Kn(·,γ−n−1(z j)))

= f −λ−(n+1)/2 ∑
j∈J

( f , φ̃n+1, j)HKn+1
Kn(·,γ−n−1(z j)).

The above equation ensures that g− f ∈ HGn ∩HKn , which implies that g = f . Likewise, we may
prove the second equality of (60).

Suppose that K is a kernel on X and Kn, n ∈ Z, are defined by (8). The RKHS HK is said to have
a multiresolution analysis if

· · · � HK−2 � HK−1 � HK ,
\

n∈N

HK−n = {0},

and KZ with a countable set Z := {z j : j ∈ J} ⊆ X is a Riesz basis for HK . The following theorem
characterizes a RKHS that has a multiresolution analysis.

Theorem 22 Let K be a kernel on an input space X with a feature map Φ from X to a Hilbert space
W that satisfies (18). The RKHS HK has a multiresolution analysis if and only if Φ is refinable, that
is, it satisfies (20) for some bounded linear operator T on W whose adjoint T ∗ is isometric, T has
the property (32) and there exists a countable subset Z of X such that Φ(Z) is a Riesz basis for W .

Proof The result of this theorem follows directly from Theorems 6, 9 and 13.

Suppose that HK has a multiresolution analysis. By (35), Lemma 19 and Proposition 20, we
have that

HK =
M

n∈N

HG−n

and λ(n−1)/2G(γn(·),γ−1(z j)), j ∈ J form a frame for HGn , n ≤−1. The multiresolution analysis on
HK is hence generated by the wavelet-like kernel G.

To close this section, we present the decomposition and reconstruction algorithms. These al-
gorithms are analogues to the Mallat algorithms (cf., Mallat, 1989) in wavelet analysis. They are
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important for fast computation. With Equations (56), (57), (54) and (59), we now establish a recur-
sive scheme for the decomposition (30). For

f ∈
[

m≥0

HKm ,

we denote by Pn f the orthogonal projection of f onto HKn , for n ≤ 0. We have that

Pn+1 f = Pn f + ∑
j∈J

( f , ψ̃n, j)HGn
ψn, j = Pn f + ∑

j∈J

( f ,ψn, j)HGn
ψ̃n, j, n ≤−1.

We define four vectors

αn := [( f ,φn, j)HKn
: j ∈ J], α̃n := [( f , φ̃n, j)HKn

: j ∈ J],

βn := [( f ,ψn, j)HGn
: j ∈ J] and β̃n := [( f , ψ̃n, j)HGn

: j ∈ J].

By (47), the projection Pn f is completely described by αn or α̃n. Likewise, by (60), the difference
Pn+1 f −Pn f between two levels of consecutive projections is completely determined by βn or β̃n.
We introduce the matrix notations:

C := [C j,k : j,k ∈ J], C̃ := [C̃ j,k : j,k ∈ J], D := [D j,k : j,k ∈ J], D̃ := [D̃ j,k : j,k ∈ J].

Suppose that α0 is given and for each n ≤ −1 we then use C and D to decompose αn, n ≤ 0
recursively to obtain αn, βn

αn = C αn+1, βn = D αn+1. (61)

Conversely, αn+1 can be reconstructed from αn and βn by using C̃ and D̃

αn+1 = C̃ T αn + D̃T βn, n ≤−1. (62)

Alternatively, the decomposition and reconstruction process can start from α̃0

α̃n = C̃ α̃n+1, β̃n = D̃ α̃n+1, α̃n+1 = C T α̃n +DT β̃n, n ≤−1. (63)

Since {φ0, j : j ∈ J} and {φ̃0, j : j ∈ J} are Riesz bases for HK and Riesz bases are equivalent to
orthonormal bases,

{[( f ,φ0, j)HK
: j ∈ J] : f ∈ HK} = {[( f , φ̃0, j)HK

: j ∈ J] : f ∈ HK} = `2(J),

we have by (61), (62) and (63) that

C̃ T C + D̃T D = C T C̃ +DT D̃ = I, (64)

where I is the identity matrix. We say that C , C̃ ,D,D̃ form a perfect reconstruction system if they
satisfy (64).
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5. Refinable Translation Invariant Kernels

In this section, we consider refinable kernels with specializing our input space to R
d , d ∈ N, the

mapping γ to the dilation mapping x → 2x in R
d and kernels to translation invariant kernels K on

R
d , that is, for all x,y,a ∈ R

d

K(x−a,y−a) = K(x,y).

In other words, the main purpose of this section is to characterize refinable translation invariant
kernels on R

d .
We need the notation of Fourier transform defined for f ∈ L1(Rd) as

f̂ (t) :=
1

(2π)d

Z

Rd
f (x)e−i(x,t)dx, t ∈ R

d ,

where (x, t) denotes the inner product of x, t in R
d . The Fourier transform f̂ of f ∈ Lp(Rd), 1 < p ≤

∞, is defined in the weak sense (Grafakos, 2004). If both f , f̂ belong to L1(Rd) then there holds

f (x) =
Z

Rd
f̂ (t)ei(x,t)dt, x ∈ R

d .

Clearly, K is translation invariant if and only if there exists a function k : R
d → C such that

K(x,y) = k(x− y), x,y ∈ R
d . (65)

Note that in this section k will always denote a function. It was established by Bochner (1959) that
if k is continuous on R

d then (65) defines a kernel if and only if there exists a finite positive Borel
measure µ on R

d such that

k(x) =
Z

Rd
ei(x,t)dµ(t), x ∈ R

d . (66)

We shall consider only measures µ that are absolutely continuous with respect to the Lebesgue
measure. This means that µ(A) = 0 whenever the Lebesgue measure |A| of a Borel subset A ⊆ R

d

is zero. By the Radon-Nikodym theorem (Rudin, 1987), µ in (66) is absolutely continuous with
respect to the Lebesgue measure if and only if k̂ is a nonnegative Lebesgue integrable function on
R

d .
Specifically, we shall characterize nonnegative k̂ ∈ L1(Rd) for which the kernel K given by

K(x,y) = k(x− y) =
Z

Rd
ei(x−y,t)k̂(t)dt, x,y ∈ R

d (67)

is refinable, that is, there holds
HK−1 � HK . (68)

Note that in this section K j, j ∈ Z are defined through a positive constant λ as

K j(x,y) = λ jK(2 jx,2 jy), x,y ∈ R
d . (69)

We shall use j to denote integers while m,n, l to denote elements in Z
d . We shall also discuss

conditions for KZd := {K(·,n) : n ∈ Z
d} to be a Riesz basis for HK .

2102



REFINABLE KERNELS

We next identify a feature map for the kernel K. Let L2(Rd , k̂dt) be the space of Borel mea-
surable functions f : R

d → C such that
R

Rd | f (t)|2k̂(t)dt < ∞. It is a Hilbert space with the inner
product

( f ,g)L2(Rd ,k̂dt) :=
Z

Rd
f (t)g(t)k̂(t)dt.

We observe from (67) that

K(x,y) = (Φ(x),Φ(y))L2(Rd ,k̂dt), x,y ∈ R
d ,

where the feature map Φ : R
d → L2(Rd , k̂dt) is defined by Φ(x)(t) := ei(x,t), t ∈ R

d . It is clear that
spanΦ(Rd) is dense in L2(Rd , k̂dt). By Lemma 5, the functions in HK are of the form

fΦ := (Φ(·), f )L2(Rd ,k̂dt), f ∈ L2(Rd , k̂dt) (70)

and the inner product on HK is given by

( fΦ,gΦ)HK
= (g, f )L2(Rd ,k̂dt), f ,g ∈ L2(Rd , k̂dt). (71)

We now present a special result on characterization of refinable translation invariant kernels.
For this purpose, we set

Ω := {t ∈ R
d : k̂(t) > 0} (72)

and denote by χΩ the characteristic function of Ω. We remark that Ω is a Lebesgue measurable
subset of R

d .

Theorem 23 Let K be the translation invariant kernel given in (67) through a nonnegative k̂ ∈
L1(Rd) and let Ω be defined by (72). Then K is a refinable kernel on R

d if and only if

Ω ⊆ 2Ω (73)

and

k̂ =
λ
2d χΩk̂

( ·
2

)

. (74)

Proof This proof is based on Theorem 4. Through a change of variables, we have for each y ∈ R
d

that
K
( x

2
,y
)

= 2d
Z

Rd
ei(x,t)e−i2(y,t)k̂(2t)dt, x ∈ R

d .

It follows by (70) that K( ·
2 ,y) ∈ HK for each y ∈ R

d if and only if there exists a nonnegative g ∈
L2(Rd , k̂dt) such that

k̂(2·) = gk̂. (75)

Suppose that (75) is valid. Then it can be verified by the uniqueness of Fourier transforms, and (71)
that

(

K
( ·

2
,y
)

,K
( ·

2
,x
))

HK

= λK(x,y), for all x,y ∈ R
d

if and only if
2dg2 k̂ = λk̂(2·). (76)
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Suppose that (73) and (74) are true. We then obtain by hypothesis (74) that equations (75) and (76)
hold true for g = λ

2d χ Ω
2
, which, by (73), is contained in L2(Rd , k̂dt). Conversely, if (75) and (76) are

valid then (73) follows from (75), and (74) is a consequence of (73), (75) and (76).

In the next corollary, we prove special properties of a refinable translation invariant kernel.

Corollary 24 Let K be a refinable translation invariant kernel defined by (67). If k̂ is nontrivial,
then λ ≥ 1 and if Ω = Ω

2 6= /0, then k̂(t) is not continuous at t = 0.

Proof Since K is refinable, by Theorem 23, Equations (73) and (74) hold. We then observe by (74)
that

Z

Ω
k̂(t)dt = λ

Z

Ω
2

k̂(t)dt. (77)

The inclusion (73) and Equation (77) imply that there must hold λ ≥ 1 since k̂ is nontrivial.
We next prove that k̂(t) is not continuous at t = 0. Assume to the contrary that k̂ is continuous

at t = 0 and Ω = Ω
2 6= /0. In this case, we first see from (77) that λ = 1 and then by (74) for each

t ∈ Ω that

k̂(t) = lim
j→∞

k̂(2− jt)
2d j = 0

because by hypothesis k̂(t) is continuous at t = 0. This contradicts the assumption that Ω 6= /0.

As a consequence of this corollary, we have the following interesting observation. For an inclu-
sion relation of the RKHSs of Gaussian kernels, see Walder et al. (2007).

Corollary 25 The Gaussian kernels

Gσ(x,y) := exp
(

−σ‖x− y‖2) , x,y ∈ R
d , σ > 0,

where ‖x‖ := (x,x)1/2, are not refinable.

Proof Since the Gaussian kernels can be represented as

Gσ(x,y) =
1

(2π)d

Z

Rd

(π
σ

)d/2
ei(x−y,t)e−

‖t‖2

4σ dt,

and e−
‖·‖2

4σ , supported on the whole R
d , is clearly continuous at t = 0, by Corollary 24, they are not

refinable.

We now present a nontrivial refinable translation invariant kernel.

Corollary 26 For a,b,σ ≥ 0, let k̂ := ‖ · ‖σχ[−a,b]d . Then the kernel K defined by (67) with k̂ is

refinable with Ω = [−a,b]d \{0} and λ = 2σ+d .
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Proof It can be verified directly that k̂ satisfies condition (73) and (74) with Ω = [−a,b]d \{0} and
λ = 2σ+d . Hence, by Theorem 23, K is refinable.

We next characterize when HK−1 is a proper subspace of HK if K is a refinable translation
invariant kernel. For this purpose, we identify the feature map for such a K with

λ−1/2Φ
( ·

2

)

= T Φ,

where
T f := λ−1/2 f

( ·
2

)

χΩ, f ∈ L2(Rd , k̂dt). (78)

Theorem 27 Suppose that a kernel K defined by (67) is refinable on R
d and Ω is defined by (72).

Then HK−1 is a proper subspace of HK if and only if

|2Ω−Ω| > 0. (79)

If (79) holds true then λ > 1 and
\

j∈Z

HK j = {0}. (80)

Proof Set f ∈ L2(Rd , k̂dt). We observe by (78) that T f = 0 if and only if f (x) = 0, a.e. x ∈ Ω
2 .

Therefore, N (T ) is nontrivial if and only if (79) is true. The first statement of this theorem hence
follows from Theorem 7.

To prove the second statement, we suppose that (79) holds. We prove (80) by verifying condition
(32) in Theorem 9. To this end, we note by (78) for each j ∈ N that

T j f = λ− j
2 f
( ·

2 j

)

χΩ

and

k̂(2 j·) =

(

λ
2d

) j

k̂χ Ω
2 j

. (81)

The above two equations imply that

‖T j f‖2
L2(Rd ,k̂dt)

=
Z

Ω
2 j

| f (t)|2k̂(t)dt. (82)

We integrate both sides of (81) over R
d to get that

1
λ j

Z

Ω
k̂(t)dt =

Z

Ω
2 j

k̂(t)dt.

This with (79) implies that λ > 1. Hence,

lim
j→∞

Z

Ω
2 j

k̂(t)dt = 0,

which with (82) ensures that
lim
j→∞

‖T j f‖L2(Rd ,k̂dt) = 0,
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proving the result.

Let us turn to establishing conditions for KZd to be a Riesz basis for HK . We begin with a
technical lemma.

Lemma 28 The family KZd is a Riesz basis for HK if and only if EZd := {ei(n,t) : n ∈ Z
d} is a Riesz

basis for L2(Rd , k̂dt).

Proof This lemma follows from Theorem 13 and the density of spanΦ(Rd) in L2(Rd, k̂dt).

Our next approach is based on the characterization of Riesz bases mentioned at the beginning of
the proof for Proposition 12. We shall use the property of Ω that for all Lebesgue measurable sets
A ⊆ Ω with |A| > 0 there exists a σ > 0 such that

∣

∣{t ∈ A : k̂(t) ≥ σ}
∣

∣> 0.

Lemma 29 The linear span of EZd is dense in L2(Rd, k̂dt) if and only if

|Ω∩ (Ω+2nπ)| = 0, n ∈ Z
d \{0}. (83)

Proof Suppose that there exists a nonzero n ∈ Z
d such that |Ω∩ (Ω+2nπ)|> 0. For σ1 > 0, a ∈ R,

0 < δ < π we set
A1 := {t : t ∈ Ω∩ (Ω+2nπ), k̂(t) ≥ σ1}∩ [a,a+δ]d.

We can choose some σ1 > 0, a ∈ R such that A1 has nonzero Lebesgue measure. Since the set
A1 − 2nπ is contained in Ω with |A1 − 2nπ| = |A1| > 0, we can find a σ2 > 0 such that |A2| > 0,
where A2 := {t : t ∈ A1 − 2nπ, k̂(t) ≥ σ2}. Set A := A2 + 2nπ, σ := min{σ1,σ2}. The set A so
constructed has the properties that |A| > 0, A∩ (A− 2nπ) = /0 and k̂(t) ≥ σ, for t ∈ A∪ (A− 2nπ).
Using this set, we define a function f ∈ L2(Rd , k̂dt) as

f (t) :=







−1, t ∈ A,
1, t ∈ A−2nπ,
0, otherwise.

For an arbitrary g ∈ E := spanEZd , we have that
Z

Rd
|g(t)− f (t)|2k̂(t)dt ≥

Z

A
|g(t)− f (t)|2k̂(t)dt +

Z

A−2nπ
|g(t)− f (t)|2k̂(t)dt

≥ σ
Z

A
(|g(t)+1|2 + |g(t)−1|2)dt ≥ σ|A|.

This shows that E would not be dense in L2(Rd , k̂dt) if (83) were invalid.
On the other hand, suppose that (83) is true. For n ∈ Z

d , we define Ω̃n := (Ω−2nπ)∩ [0,2π]d

and observe that these sets satisfy the condition
[

{Ω̃n : n ∈ Z
d} ⊆ [0,2π]d, |Ω̃n ∩ Ω̃m| = 0, n 6= m.

Let

ρ(t) :=

{

k̂(t +2nπ), t ∈ Ω̃n, n ∈ Z
d ,

0, otherwise
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and for f ∈ L2(Rd , k̂dt) we introduce a new function g ∈ L2([0,2π]d,ρdt) by setting

g(t) :=

{

f (t +2nπ), t ∈ Ω̃n, n ∈ Z
d ,

0, otherwise.

Since E is dense in L2([0,2π]d,ρdt), for each ε > 0 there exists f̃ ∈ E such that

‖g− f̃‖L2([0,2π]d ,ρdt) < ε.

Note that
‖ f − f̃‖L2(Rd ,k̂dt) = ‖g− f̃‖L2([0,2π]d ,ρdt).

Combining the two relations above proves the lemma.

We next present a necessary and sufficient condition for KZd to be a Riesz basis for HK if K is a
translation invariant kernel defined by (67) through a nonnegative k̂ ∈ L1(Rd).

Theorem 30 Let K be a translation invariant kernel defined by (67) through a nonnegative k̂ ∈
L1(Rd) and Ω be defined by (72). Then KZd is a Riesz basis for HK if and only if

∑
n∈Zd

χΩ(·+2nπ) = 1, a.e. (84)

and there exist 0 < α ≤ β < ∞ such that

α ≤ k̂(t) ≤ β, a.e. t ∈ Ω. (85)

Proof By Lemma 28, KZd is a Riesz basis for HK if and only if the linear span of EZd is dense in
L2(Rd , k̂dt), which is equivalent to (83) by Lemma 29,

∑
n∈Zd

cnei(n,t) ∈ L2(Rd , k̂dt), c ∈ `2(Zd) (86)

and for some constants 0 < α ≤ β < ∞

α(2π)d‖c‖2
`2(Zd) ≤

∥

∥

∥

∥

∑
n∈Zd

cnei(n,t)

∥

∥

∥

∥

2

L2(Rd ,k̂dt)
≤ β(2π)d‖c‖2

`2(Zd), c ∈ `2(Zd). (87)

One can use arguments similar to those on pages 139–140 of Daubechies (1992) to show that rela-
tion (86) and inequality (87) hold true if and only if there exist 0 < α ≤ β < ∞ such that

α ≤ ∑
n∈Zd

k̂(·+2nπ) ≤ β, a.e. (88)

The proof is completed by noting that (83) and (88) hold true if and only if (84) and (85) are satis-
fied.

Inequality (88) was established for a different purpose in Smale and Zhou (2004), where it was
proved that Λ := [K(m,n) : m,n ∈ Z

d ] satisfies (39) for J := Z
d if and only if (88) holds true.

In the next theorem, we construct k̂ that satisfy conditions (73), (74), (84) and (85) to obtain a
refinable kernel K on R

d with KZd being a Riesz basis for HK .
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Theorem 31 Let K be defined by (67) where nonnegative k̂ ∈ L1(Rd) is continuous at 0. Then K is
refinable and KZd is a Riesz basis for HK if and only if λ = 2d and

k̂ = ηχΩ, a.e. (89)

where η is a positive constant, and Ω satisfies (73) and (84). Moreover, if (84) and (89) hold true
then functions

1√
η(2π)d/2

K(·,n), n ∈ Z
d (90)

form an orthonormal basis for HK .

Proof Suppose that λ = 2d , k̂ is given by (89) with a positive constant η, and Ω satisfies (73) and
(84). By Theorem 23, K defined by (67) is refinable, and by Theorem 30, KZd is a Riesz basis for
HK .

Conversely, we suppose that k̂ ∈ L1(Rd) is continuous at 0, K is refinable and KZd is a Riesz
basis for HK . These hypotheses imply that there hold (73), (74), (84) and (85). Choose η = k̂(0).
Repeatedly using Equation (74) with iterations, we have for all t ∈ Ω that

k̂(t) =

(

λ
2d

) j

k̂
( t

2 j

)

, j ∈ N.

This formula with condition (85) ensures that λ = 2d . Equation (89) follows from the formula above,
(85) and the continuity of k̂ at 0. This completes the proof of the necessary and sufficient condition.

It remains to show that the functions defined by (90) form an orthonormal basis for HK . Since
(84) and (89) are true, we obtain by direct computation for all m,n ∈ Z

d that

1
η(2π)d (K(·,n),K(·,m))HK

=
1

(2π)d

Z

Ω
ei(m−n,t)dt

=
1

(2π)d

Z

Rd
ei(m−n,t)χΩ(t)dt

=
1

(2π)d

Z

[0,2π]d
ei(m−n,t) ∑

l∈Zd

χΩ(·+2lπ)dt

=
1

(2π)d

Z

[0,2π]d
ei(m−n,t)dt = δm,n.

This proves that functions defined by (90) constitute an orthonormal basis for HK and completes the
proof.

By noting that (84) can be interpreted as that Ω+2nπ, n ∈ Z
d , form a tiling of R

d , we construct
examples of refinable kernels K such that KZd are Riesz bases for HK . The readers are referred to
Grünbaum and Shephard (1989) for the subject of tiling. We describe our examples in the following
two corollaries.

Corollary 32 For a∈ [0,2π], let Ω := [−a,2π−a]d. Then the kernel K defined by (67) with k̂ having
the form (89) is a refinable kernel such that KZd is a Riesz basis for HK .

We remark that when a = π, k is the well-known sinc function. The result in the last corollary
can be extended.
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Corollary 33 Suppose that α and β are constants satisfying either π
2 ≤ α ≤ β ≤ 2π

3 or 2π
3 ≤ α ≤

β ≤ π. Let

Ω := ([−2π+α,−2π+β]∪ [−π,−β]∪ [−α,α]∪ [β,π]∪ [2π−β,2π−α])d . (91)

Then the kernel K defined by (67) with k̂ having the form (89) with η = 1 is a refinable kernel such
that KZd is a Riesz basis for HK . Moreover,

k(x) = ∏
j∈Nd

2sinαx j

x j
+ ∏

j∈Nd

4sin π−β
2 x j

x j
cos

π+β
2

x j + ∏
j∈Nd

4sin β−α
2 x j

x j
cos

α+β
2

x j, x ∈ R
d ,

where x j denotes the j-th component of x.

When both α and β in (91) are chosen as π, k is also reduced to the sinc function.

6. Refinable Kernels Defined by Refinable Functions

We present in this section a construction of refinable kernels via refinable functions. For a complete
reference of refinable functions, the readers are referred to Cavaretta et al. (1991) and Daubechies
(1992). As in the last section, we assume that the mapping γ has the form x → 2x throughout this
section.

Let ϕ be a compactly supported continuous function on R
d that is refinable, namely, there exists

h := [hn : n ∈ Z
d ] such that

ϕ
( ·

2

)

= ∑
n∈Zd

hnϕ(·−n). (92)

We always assume that ϕ is nontrivial, and the cardinality of {n : hn 6= 0, n ∈ Z
d} is finite by the

compact support of ϕ. Suppose further that we have an infinite matrix A satisfying for some positive
constants α,β that

α‖c‖2
`2(Zd) ≤ (Ac,c)`2(Zd) ≤ β‖c‖2

`2(Zd), c ∈ `2(Zd). (93)

The above inequality implies that A is a bounded positive self-adjoint operator on `2(Zd) and its
inverse A−1 is also bounded positive self-adjoint (see, for example, Daubechies, 1992, page 58).

Motivated by (48), associated with the matrix A we define our kernel K by

K(x,y) := (AΨ(x),Ψ(y))`2(Zd), x,y ∈ R
d , (94)

where Ψ is a mapping from R
d to `2(Zd) given by Ψ(x) := [ϕ(x−n) : n ∈ Z

d ], x ∈ R
d . Assuming

that A := [Am,n : m,n ∈ Z
d ], we have that

K(x,y) = ∑
m∈Zd

∑
n∈Zd

Am,nϕ(x−n)ϕ(y−m), x,y ∈ R
d . (95)

Kernels in the form

∑
n∈Zd

ψ(x−n)ψ(y−n) (96)

constructed by a refinable function ψ were considered in Opfer (2006), and kernels defined as a
superposition of frame elements in RKHS were discussed in Gao et al. (2001), Opfer (2006), and
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Rakotomamonjy and Canu (2005). When A is the identity infinite matrix I, we see that K defined
by (95) has the form (96) with ψ = ϕ. We are interested in the necessary and sufficient condition
for K to degenerate to the form (96) for some function ψ on R

d such that the series converges for
all x,y ∈ R

d . We need the following technical lemma, whose proof is standard and thus is omitted.

Lemma 34 The linear span of Ψ(Rd) is dense in `2(Zd), that is, Ψ(Rd)⊥ = {0}.

The next proposition shows that kernels in the form (95) are more general than those in the
degenerate form (96) and in general cannot be written in the degenerate form.

Proposition 35 Let A be an infinite matrix satisfying (93) and K be defined by (95) through a
compactly supported continuous function ϕ. Then K can be represented as (96) if and only if

Am,n = Am−n,0, m,n ∈ Z
d . (97)

Proof Suppose that the kernel K defined by (95) has the form (96). It follows that for all x,y ∈ R
d

and for l ∈ Z
d , K(x− l,y− l) = K(x,y). Using (95), we rewrite the above equation as

∑
m∈Zd

∑
n∈Zd

Am−l,n−lϕ(x−n)ϕ(y−n) = ∑
m∈Zd

∑
n∈Zd

Am,nϕ(x−n)ϕ(y−n).

By Lemma 34, we have for all m,n, l ∈ Z
d that Am−l,n−l = Am,n. In this equation, letting l = n yields

(97).
Conversely, we suppose that (97) is satisfied. For n ∈ Z

d , we set an := An,0 and observe that for
all c ∈ `2(Zd)

(Ac,c)`2(Zd) =
1

(2π)d

Z

[0,2π]d

(

∑
n∈Zd

anei(n,t)
)∣

∣

∣

∣

∑
n∈Zd

cnei(n,t)

∣

∣

∣

∣

2

dt.

This with (93) implies that

α ≤ ∑
n∈Zd

anei(n,t) ≤ β, a.e. t ∈ [0,2π]d,

where the constants α and β are the lower and upper bound in (93). Therefore, there exists b ∈
`2(Zd) such that

∑
n∈Zd

bnei(n,t) =

(

∑
n∈Zd

anei(n,t)
)1/2

, a.e. t ∈ [0,2π]d.

We then define the matrix B by setting Bm,n := bm−n,0, m,n ∈ Z
d . Clearly, we have B = B∗ and

A = B2, which ensures that

K(x,y) = (BΨ(x),BΨ(y))`2(Zd), x,y ∈ R
d .

One can see that K can be rewritten as (96) with ψ := ∑m∈Zd B0,mϕ(·−m).

The main purpose of this section is to formulate conditions on h and A so that the kernel K in the
form (95) is refinable. Our discussions will be based on the following result concerning the RKHS
HK .
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Proposition 36 The RKHS of the kernel K defined by (94) is

HK := {cΨ := (Ψ(·),c)`2(Zd) : c ∈ `2(Zd)}

with inner product
(cΨ,dΨ)HK

= (A−1d,c)`2(Zd), c,d ∈ `2(Zd).

Proof Since the operator A satisfies (93), there exists a bounded positive self-adjoint operator A1/2

on `2(Zd) such that A1/2A1/2 = A (see, Conway, 1990, ,page 240). It is observed that K has the
following feature map representation K(x,y) = (Φ(x),Φ(y))`2(Zd), x,y ∈ R

d , where

Φ := A1/2Ψ. (98)

The proposition now follows immediately from Lemmas 5 and 34.

Let λ be a fixed positive number and K j, j ∈ Z be defined as in (69). We shall give a charac-
terization for K to be refinable, that is, (68) holds. To this end, we introduce the infinite matrix H
associated with h as

Hm,n := hn−2m, m,n ∈ Z
d . (99)

It can be seen by the generalized Minkowski inequality that the matrix H induces a bounded operator
on `2(Zd). In fact, we have for each c ∈ `2(Zd) that

‖Hc‖`2(Zd) ≤
(

∑
n∈Zd

|hn|
)

‖c‖`2(Zd).

We next characterize refinable kernels in terms of matrices A and H.

Theorem 37 Suppose that ϕ is a nontrivial compactly supported refinable function satisfying (92).
Then the kernel K defined by (94) is refinable if and only if

HA−1H∗A = λI. (100)

Proof The function Φ : R
d → `2(Zd) defined by (98) is a feature map for K. We observe by (92)

that it satisfies a refinement equation

λ−1/2Φ
( ·

2

)

= λ−1/2A1/2Ψ
( ·

2

)

= λ−1/2A1/2HΨ = λ−1/2A1/2HA−1/2Φ,

where A−1/2 denotes the inverse of A1/2. Setting

T := λ−1/2A1/2HA−1/2, (101)

by Theorem 6, K is refinable if and only if T ∗ is isometric, or equivalently, T T ∗ = I. The proof is
complete by noting that equation T T ∗ = I has the form (100).

We need the following lemma to study the proper inclusion of HK−1 in HK .
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Lemma 38 Let [an : n∈Z
d ] be a nontrivial vector in `2(Zd) with a finite number of nonzero compo-

nents. Then the linear span of {ãm := [am−n : n ∈ Z
d ] : m ∈ Z

d} is dense in `2(Zd), and ãm, m ∈ Z
d

are linearly independent.

Proposition 39 Let ϕ be a nontrivial compactly supported continuous refinable function on R
d ,

A,h satisfy (93) and (100), and K be defined by (94). Then HK−1 is a proper subspace of HK .

Proof By Theorem 7, HK−1 is a proper subspace of HK if and only if the null space N (T ) of
operator T defined by (101) contains nonzero elements in `2(Zd), which is equivalent to that

N (H) 6= {0}. (102)

Set b̃m := [hn−m : n ∈Z
d ], m ∈Z

d . Assume that N (H) = {0}. This implies that span{b̃2m : m ∈Z
d}

is dense in `2(Zd). Choose l ∈ Z
d \ 2Z

d . Since [hn : n ∈ Z
d ] has a finite number of nonzero com-

ponents, b̃l can be represented as a finite linear combination of b̃2m, m ∈ Z
d . However, Lemma 38

ensures that b̃m, m ∈ Z
d are linearly independent. This contradiction implies the validity of (102).

When A and H commute, Equation (100) reduces to

HH∗ = λI. (103)

Through a scaling of the matrix H, one may consider HH∗ = I. This equation arose also in the
construction of orthonormal wavelets and it has been well understood in the one-dimensional case
(cf., Daubechies, 1992). For a special class of solutions h of (103) in the multidimensional case, see
Chen et al. (2003) and Chen et al. (2007). These h can be used to construct A and H satisfying (93)
and (100).

Proposition 40 Let h be a solution of (103). Then for each real number a ∈ R \ {±λ−1/2} the
matrix A defined by

A := ((I +aH)(I +aH∗))−1 (104)

satisfies (93) with α := (1+ |a|
√

λ)−2 and β := (1−|a|
√

λ)−2, and (100).

Proof For a ∈ R\{±λ−1/2} we set B := (I +aH)(I +aH∗). By direct computation, we obtain for
each c ∈ `2(Zd) that

(Bc,c)`2(Zd) = (1+a2λ)‖c‖2
`2(Zd) +a((H +H∗)c,c)`2(Zd). (105)

Equation (103) leads to the estimates

‖Hc‖`2(Zd) ≤
√

λ‖c‖`2(Zd), and ‖H∗c‖`2(Zd) ≤
√

λ‖c‖`2(Zd).

Equation (105) with these two estimates implies that

(1−|a|
√

λ)2‖c‖2
`2(Zd) ≤ (Bc,c)`2(Zd) ≤ (1+ |a|

√
λ)2‖c‖2

`2(Zd).

The inverse operator A of B hence satisfies (93) with α := (1+ |a|
√

λ)−2 and β := (1−|a|
√

λ)−2.
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It remains to show that A satisfies Equation (100). It can be verified by (103) that the following
equation holds

H(I +aH)(I +aH∗)H∗ = λ(I +aH)(I +aH∗).

By the definition (104) of A, this is equivalent to the equation HA−1H∗ = λA−1, which confirms
that A satisfies (100).

The last proposition provides a class of refinable kernels given by (95) that never degenerate to
the form (96).

Proposition 41 Let h satisfy (103), where matrix H is defined by (99), and matrix A be of the form
(104) for some a ∈ R\{±λ−1/2}. If there exists at least one n ∈ Z

d such that the real part Re(hn)
of hn is not zero then A satisfies (97) if and only if a = 0.

Proof If a = 0 then A = I satisfies (97). Let a ∈ R\{0,±λ−1/2}. One can see that A satisfies (97)
if and only if A−1 does. Since A−1 = (1+a2λ)I +a(H +H∗), it satisfies (97) only if H +H∗ does.
Choose n ∈ Z

d such that Re(hn) 6= 0. There exists an m ∈ Z
d such that Re(hm) 6= Re(hn) since

h ∈ `2(Zd). As a consequence, we have

(H +H∗)−m,−m = 2Re(hm) 6= 2Re(hn) = (H +H∗)−n,−n.

This shows that H +H∗ does not satisfy (97). The proof is complete.

By Propositions 35 and 41, if h is a real vector in `2(Zd) satisfying (103) then for all a ∈
R\{0,±λ−1/2}, the refinable kernel K defined by (95) through A given in (104) can not be rewritten
as (96).

We now turn to an investigation of the intersection of HK j , for j ∈ Z, where K j are kernels
defined by (69).

Theorem 42 Suppose that ϕ is a nontrivial compactly supported continuous refinable function on
R

d , h satisfies (103), A satisfies (93) and (100), and K is defined by (94). Then (80) holds true if
and only if

hn 6= 0, for at least one n ∈ Z
d \2Z

d . (106)

If (106) does not hold then
\

j∈Z

HK j = {(Ψ(·),c)`2(Zd) : c ∈ N (H)⊥}. (107)

Proof Let F̃ be the function from `2(Zd) to L2([0,2π]d) defined for c ∈ `2(Zd) by (F̃ c)(t) :=
∑n∈Zd cnei(n,t), t ∈ [0,2π]d . Set B := λ−1/2H, m0 := F̃ (λ−1/2h), and let {ν j : j ∈ N2d} ⊆ Z

d denote
the set of extreme points of cube [0,1]d . By condition (32) in Theorem 9, (80) holds true if and only
if

lim
j→∞

‖T jc‖`2(Zd) = 0, for all c ∈ `2(Zd), (108)

where T is the operator defined by (101). Noting that T j = A1/2B jA−1/2, Equation (108) is equiva-
lent to the condition

lim
j→∞

(2π)−d/2‖F̃ (B jc)‖L2([0,2π]d) = lim
j→∞

‖B jc‖`2(Zd) = 0, for all c ∈ `2(Zd). (109)
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For each c ∈ `2(Zd), we define m1 := F̃ c. It can be verified by direct calculation that

F̃ (B jc)(t) =





1
2d ∑

j∈N2d

m0(−t −πν j)m1(t +πν j)









1
2d ∑

j∈N2d

m0(−t −πν j)





j−1

, t ∈ [0,2π]d.

Equation (103) can be rewritten in terms of m0 as

∑
j∈N2d

|m0(·+πν j)|2 = 2d . (110)

The Cauchy-Schwartz inequality with (110) ensures for all t ∈ [0,2π]d that
∣

∣

∣

∣

∑
j∈N2d

m0(t +πν j)

∣

∣

∣

∣

≤ 2d , (111)

where the equality holds at a point t0 ∈ [0,2π]d if and only if

m0(t0 +πν j) = a, j ∈ N2d for some a ∈ C with |a| = 1. (112)

If hn = 0 for each n ∈ Z
d \ 2Z

d then m0(·+ πν j) = m0 for all j ∈ N2d . This together with (110)
implies that (112) holds for all t0 ∈ [0,2π]d . Thus, the equality in (111) holds for all t ∈ [0,2π]d . We
now choose c such that m1 = m0(−·) and clearly for such a c (109) does not hold. Consequently,
(80) does not hold and this is equivalent to saying that (80) implies (106).

Conversely, suppose that (106) holds. By the fact that the zeros of a nontrivial real-analytic
function on R

d form a set of Lebesgue measure zero, the set of points t ∈ [0,2π]d for which the
equality in (111) holds has zero Lebesgue measure. Therefore, for a fixed c ∈ `2(Zd), F̃ (B jc) goes
to zero almost everywhere on [0,2π]d . Since

|F̃ (B jc)(t)| ≤
(

1
2d ∑

j∈N2d

|m1(t +πν j)|2
)1/2

, t ∈ [0,2π]d,

Equation (109) holds true by the Lebesgue dominated convergence theorem. Thus, we conclude
that (80) holds.

Now, suppose that (106) does not hold. Note that c ∈ `2(Zd) is in the union of N (T j), j ∈ N if
and only if A−1/2c ∈ N (H). We use Theorem 7 and (34) to get that

\

j∈Z

HK j = {(A1/2Ψ(·),c)`2(Zd) : c ∈ (A1/2N (H))⊥}.

The above equation can be rewritten as (107).

We next present a characterization for KZd to be a Riesz basis for HK .

Theorem 43 Let K be defined by (94) through a matrix A satisfying (93) and a compactly supported
continuous function ϕ on R

d . Then KZd is a Riesz basis for HK if and only if the polynomial

q(t) := ∑
n∈Zd

ϕ(n)ei(n,t), t ∈ R
d (113)

has no zeros.
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Proof By Theorem 13 and condition (93), KZd is a Riesz basis for HK if and only if ϕ̃m := [ϕ(m−n) :
n ∈ Z

d ], for m ∈ Z
d form a Riesz basis for `2(Zd). Lemma 38 states that ϕ̃m, m ∈ Z

d are linearly
independent if there exists t ∈ Z

d such that ϕ(t) 6= 0. Therefore, {ϕ̃m : m ∈ Z
d} is Riesz basis for

`2(Zd) if and only if there exist 0 < α ≤ β < ∞ such that for every c ∈ `2(Zd) there holds

α‖c‖2
`2(Zd) ≤ ∑

m∈Zd

|(ϕ̃m,c)`2(Zd)|2 ≤ β‖c‖2
`2(Zd). (114)

Since

∑
m∈Zd

|(ϕ̃m,c)`2(Zd)|2 =
1

(2π)d

Z

[0,2π]d

∣

∣

∣

∣

∑
n∈Zd

ϕ(n)ei(n,t)

∣

∣

∣

∣

2∣
∣

∣

∣

∑
n∈Zd

cnei(n,t)

∣

∣

∣

∣

2

dt,

Equation (114) holds for all c ∈ `2(Zd) if and only if α ≤ |q(t)|2 ≤ β, t ∈ [0,2π]d . The theorem
hence follows from the continuity of q on R

d .

We conclude this section by a result regarding a multiresolution analysis for HK .

Theorem 44 Let ϕ be a nontrivial compactly supported continuous refinable function on R
d , h

satisfy (103), A satisfy (93), and K be defined by (94). Then HK has a multiresolution analysis with
KZd being a Riesz basis for HK if and only if there holds (100), (106), and the polynomial (113) has
no zeros.

Proof This result is a direct consequence of Theorems 37, 42 and 43.

7. A Discussion of Applications and Conclusions

For the completeness of the paper, in this section we discuss how refinable kernels can be used to
efficiently update kernels for learning from increasing training data. Here we only use a simple
learning example to illustrate the main points. The general case requires further substantial research
and it will be reported on a different occasion.

In this special example, we assume that the input space X is R and that the initial training
data set is given by z := {( j,y j) : j ∈ Bm} ⊆ X ×Y , where we have set for each n ∈ N, Bn :=
{−n, . . . ,−1,0,1, . . . ,n}. Let K be a kernel on X and consider the loss function Q(p,q) := |p−q|2,
for p,q ∈ C. This loss function is important in practice (for example, in regularization networks
Evgeniou et al., 2000; Schölkopf and Smola, 2002; Vapnik, 1998). The predictor f from the training
data z is hence the minimizer of

min
g∈HK

∑
j∈Bm

|g( j)− y j|2 +µ‖g‖2
HK

,

where µ is a positive regularization parameter. The representer theorem (Kimeldorf and Wahba,
1971; Schölkopf et al., 2001; Schölkopf and Smola, 2002) ensures in this case that

f = ∑
j∈Bm

c jK(·, j). (115)
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Here, the vector c := [c j : j ∈ Bm]T satisfies the linear system

(µI2m+1 +K[Bm])c = y, (116)

where In denotes the n×n identity matrix and y := [y j : j ∈ Bm]T .
Suppose that the initial training data set is updated to a new data set z′ := {( j/2,y′j) : j ∈ B2m}

where y′2 j = y j for j ∈ Bm. We divide x′ := B2m/2 into two disjoint subsets x′1 := Bm/2 and x′2 =
B2m/2\Bm/2, and y′ := {y′j : j ∈ B2m} into y′1 and y′2, accordingly. For convenience, we set x′

2 :=
{x′2, j : j ∈ N2m}. If K is refinable on X = R then we update the kernel K to a new kernel K1 :=
λK(2·,2·). A new predictor f ′ is then obtained as the minimizer of

min
g∈HK1

∑
j∈B2m

|g( j/2)− y′j|2 +µ′‖g‖2
HK1

,

where µ′ is an updated regularization parameter. By the representer theorem, we have that

f ′ = ∑
j∈Bm

c′1, jK(·, j/2)+ ∑
j∈N2m

c′2, jK(·,x′2, j). (117)

The above vectors c′1 := [c′1, j : j ∈ Bm]T and c′2 := [c′2, j : j ∈ N2m]T satisfy the linear system
[

µ′I2m+1 +K1[x′1] K1[x′1,x
′
2]

K1[x′2,x
′
1] µ′I2m +K1[x′2]

][

c′1
c′2

]

=

[

y′1
y′2

]

, (118)

where K1[x′1,x
′
2] := [K1(p,q) : p ∈ x′1,q ∈ x′2].

It can be easily seen that the computational advantages offered by the refinability of the kernel
include:

• Efficient updating the kernel. Kernels Kn in all scales can be efficiently updated from a
refinable kernel K.

• Improvement of the predictor. Since HK � HK1 , the class of candidate functions for the
predictor is enlarged and the initial predictor f is in HK1 . Consequently, we can expect an
improvement in approximation quality from the initial predictor to the new predictor f ′.

• Efficiency in setting up the coefficient matrix. By refinability, we observe that the block
matrix K1[x′1] in (118) satisfies the relation

K1[x′1] = K1[Bm/2] = λK[Bm].

Therefore, the coefficient matrix of system (118) is an augmentation of that of system (116).
As a result, we do not need to recompute the entries in the block K1[x′1].

• Fast solving the linear system for the updated data set. Because of the special structure
in its coefficient matrix that results from the refinability of the kernel, the linear system can
be solved efficiently by a fast algorithm analogous to the multi-level (wavelet) method (cf.,
Chen et al., 2005, 2006a,b).

• Fast algorithms for processing the predictor. Since the predictor (115) or (117) is ex-
pressed as a linear combination of the kernel, when the kernel is refinable we can use the
(Mallat-type) decomposition and reconstruction algorithms developed in Section 4 to process
the predictor.
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Finally, we close this paper with the conclusion: Motivated by efficient mathematical learning,
we introduce the notion of refinable kernels and characterize various types of refinable kernels.
Examples of refinable kernels are presented. A special learning example illustrates that refinable
kernels should provide computational advantages for solving various learning problems. Important
examples of refinable kernels and their applications deserve further investigation.
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