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Abstract

In classification, semi-supervised learning occurs when a large amount of unlabeled data is avail-
able with only a small number of labeled data. In such a situation, how to enhance predictability
of classification through unlabeled data is the focus. In this article, we introduce a novel large
margin semi-supervised learning methodology, using grouping information from unlabeled data,
together with the concept of margins, in a form of regularization controlling the interplay between
labeled and unlabeled data. Based on this methodology, we develop two specific machines in-
volving support vector machines and ψ-learning, denoted as SSVM and SPSI, through difference
convex programming. In addition, we estimate the generalization error using both labeled and
unlabeled data, for tuning regularizers. Finally, our theoretical and numerical analyses indicate
that the proposed methodology achieves the desired objective of delivering high performance in
generalization, particularly against some strong performers.
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1. Introduction

In many classification problems, a large amount of unlabeled data is available, while it is costly to
obtain labeled data. In text categorization, particularly web-page classification, a machine is trained
with a small number of manually labeled texts (web-pages), as well as a huge amount of unlabeled
texts (web-pages), because manually labeling is impractical; compare with Joachims (1999). In
spam detection, a small group of identified e-mails, spam or non-spam, is used, in conjunction with
a large number of unidentified e-mails, to train a filter to flag incoming spam e-mails, compare
with Amini and Gallinari (2003). In face recognition, a classifier is trained to recognize faces with
scarce identified and enormous unidentified faces, compare with Balcan et al. (2005). In a situation
as such, one research problem is how to enhance accuracy of prediction in classification by using
both unlabeled and labeled data. The problem of this sort is referred to as semi-supervised learning,
which differs from a conventional “missing data” problem in that the size of unlabeled data greatly
exceeds that of labeled data, and missing occurs only in response. The central issue that this article
addresses is how to use information from unlabeled data to enhance predictability of classification.

In semi-supervised learning, a sample {Zi = (Xi,Yi)}nl
i=1 is observed with labeling Yi ∈ {−1,1},

in addition to an independent unlabeled sample {X j}n
j=nl+1 with n = nl +nu, where Xk = (Xk1, · · · ,

Xkp); k = 1, · · · ,n is an p-dimensional input. Here the labeled sample is independently and iden-
tically distributed according to an unknown joint distribution P(x,y), and the unlabeled sample is
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independently and identically distributed from distribution P(x) that may not be the marginal distri-
bution of P(x,y).

A number of semi-supervised learning methods have been proposed through some assumptions
relating P(x) to the conditional distribution P(Y = 1|X = x). These methods include, among others,
co-training (Blum and Mitchell, 1998), the EM method (Nigam, McCallum, Thrun and Mitchell,
1998), the bootstrap method (Collins and Singer, 1999), information-based regularization (Szummer
and Jaakkola, 2002), Bayesian network (Cozman, Cohen and Cirelo, 2003), Gaussian random fields
(Zhu, Ghahramani and Lafferty, 2003), manifold regularization (Belkin, Niyogi and Sindhwani,
2004), and discriminative-generative models (Ando and Zhang, 2004). Transductive SVM (TSVM;
Vapnik, 1998) uses the concept of margins.

Despite progress, many open problems remain. Essentially all existing methods make various
assumptions about the relationship between P(Y = 1|X = x) and P(x) in a way for an improvement
to occur when unlabeled data is used. Note that an improvement of classification may not be ex-
pected when simply imputing labels of X through an estimated P(Y = 1|X = x) from labeled data,
compare with Zhang and Oles (2000). In other words, the potential gain in classification stems
from an assumption, which is usually not verifiable or satisfiable in practice. As a consequence, any
departure from such an assumption is likely to degrade the “alleged” improvement, and may yield
worse performance than classification with labeled data alone.

The primary objective of this article is to develop a large margin semi-supervised learning
methodology to deliver high performance of classification by using unlabeled data. The method-
ology is designed to adapt to a variety of situations by identifying as opposed to specifying a rela-
tionship between labeled and unlabeled data from data. It yields an improvement when unlabeled
data can reconstruct the optimal classification boundary, and yields a no worse performance than its
supervised counterpart otherwise. This is in contrast to the existing methods.

Through three key ingredients, our objective is achieved, including (1) comparing all possible
grouping boundaries from unlabeled data for classification, (2) using labeled data to determine
label assignment for classification as well as a modification of the grouping boundary, and (3)
interplay between (1) and (2) through tuning to connect grouping to classification for seeking the
best classification boundary. These ingredients are integrated in a form of regularization involving
three regularizers, each controlling classification with labeled data, grouping with unlabeled data,
and interplay between them. Moreover, we introduce a tuning method using unlabeled data for
tuning the regularizers.

Through the proposed methodology and difference convex programming, we develop two spe-
cific machines based on support vector machines (SVM; Cortes and Vapnik, 1995) and ψ-learning
(Shen, Tseng, Zhang and Wong, 2003), denoted as SSVM and SPSI. Numerical analysis indicates
that SSVM and SPSI achieve the desired objective, particularly against TSVM and a graphical
method in simulated and benchmark examples. Moreover, a novel learning theory is developed to
quantify SPSI’s generalization error as a function of complexity of the class of candidate decision
functions, the sample sizes (nl,nu), and the regularizers. To our knowledge, this is the first attempt
to relate a classifier’s generalization error to (nl,nu) and regularizers in semisupervised learning.
This theory not only explains SPSI’s performance, but also supports our aforementioned discus-
sion concerning the interplay between grouping and classification, as evident from Section 5 that
SPSI can recover the optimal classification performance at a speed in nu because of grouping from
unlabeled data.
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This article is organized in eight sections. Section 2 introduces the proposed semi-supervised
learning methodology. Section 3 treats non-convex minimization through difference convex pro-
gramming. Section 4 proposes a tuning methodology that uses both labeled and unlabeled data to
enhance of accuracy of estimation of the generalization error. Section 5 presents some numerical ex-
amples, followed by a novel statistical learning theory in Section 6. Section 7 contains a discussion,
and the appendix is devoted to technical proofs.

2. Methodology

In this section, we present our proposed margin-based semi-supervised learning method as well its
connection to other existing popular methodologies.

2.1 Proposed Methodology

We begin with our discussion in linear margin classification with labeled data (Xi,Yi)
nl
i=1 alone.

Given a class of linear decision functions of the form f (x) = w̃T
f x+w f ,0 ≡ (1,xT )w f , a cost function

C ∑nl
i=1 L(yi f (xi))+J( f ) is minimized with respect to f ∈F , a class of candidate decision functions,

to obtain the minimizer f̂ yielding a classifier Sign( f̂ ), where J( f ) = ‖w̃ f ‖2/2 is the reciprocal of
the L2 geometric margin, and L(·) is a margin loss defined by functional margins zi = yi f (xi);
i = 1, · · · ,nl .

Different learning methodologies are defined by different margin losses. Margin losses include,
among others, the hinge loss L(z) = (1− z)+ for SVM with its variants L(z) = (1− z)q

+ for q >
1; compare with Lin (2002); the ρ-hinge loss L(z) = (ρ− z)+ for nu-SVM (Schölkopf, Smola,
Williamson and Bartlett, 2000) with ρ > 0 to be optimized; the ψ-loss L(z) = ψ(z), with ψ(z) =
1−Sign(z) if z ≥ 1 or z < 0, and 2(1− z) otherwise, compare with Shen et al. (2003), the logistic
loss L(z) = log(1+e−z), compare with Zhu and Hastie (2005); the sigmoid loss L(z) = 1− tanh(cz);
compare with Mason, Baxter, Bartlett and Frean (2000). A margin loss L(z) is said to be a large
margin if L(z) is nonincreasing in z, which penalizes small margin values.

In order to extract useful information about classification from unlabeled data, we construct a
loss U(·) for a grouping decision function g(x) = (1,xT )wg ≡ w̃T

g x+wg,0, with Sign(g(x)) indicating
grouping. Towards this end, we let U(z) = min{y=±1} L(yz) by minimizing y in L(·) to remove its
dependency of y. As shown in Lemma 1, U(z) = L(|z|), which is symmetric in z and indicates that
it can only determine the grouping boundary that occurs near in an area with low value of U(z) but
provide no information regarding labeling.

While U can be used to extract the grouping boundary, it needs to yield the Bayes decision
function f ∗ = argmin f∈F EL(Y f (X)) in order for it to be useful for classification, where E is the
expectation with respect to (X ,Y ). More specifically, it needs f ∗ = argming∈F EU(g(X)). How-
ever, it does not hold generally since argming∈F EU(g(X)) can be any g ∈ F satisfying |g(x)| ≥ 1.
Generally speaking, U gives no information about labeling Y . To overcome this difficulty, we reg-
ularize U and introduce our regularized loss for semi-supervised learning to induce a relationship
between classification f and grouping g:

S( f ,g;C) = C1L(y f (x))+C2U(g(x))+
C3

2
‖w f −wg‖2 +

1
2
‖w̃g‖2, (1)

where C = (C1,C2,C3) are non-negative regularizers, and ‖w f −wg‖2 = ‖w̃ f −w̃g‖2 +(w f ,0−wg,0)
2

is the usual L2-Euclidean norm in Rp+1. Whereas L(y f (x)) regularizes the contribution from labeled
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data, U(g(x)) controls the information extracted from unlabeled data, and ‖w f −wg‖2 penalizes the
disagreement between f and g, specifying a loose relationship between f and g. The interrelation
between f and g is illustrated in Figure 3. Note that in (1) the geometric margin 2

‖w̃ f ‖2 does not enter

as it is regularized implicitly through 2
‖w f−wg‖2 and 2

‖w̃g‖2 .

In nonlinear learning, a kernel K(·, ·) that maps from S×S to R 1 is usually introduced for flex-
ible representations: f (x) = (1,K(x,x1), · · · ,K(x,xn))w f and g(x) = (1,K(x,x1), · · · ,K(x,xn))wg

with w f = (w̃ f ,w f ,0) and wg = w̃g +wg,0. Then nonlinear surfaces separate instances of two classes,
implicitly defined by K(·, ·), where the reproducing kernel Hilbert spaces (RKHS) plays an impor-
tant role; compare with Wahba (1990) and Gu (2000). The forgoing treatment for the linear case is
applicable when the Euclidean inner product 〈xi,x j〉 is replaced by K(xi,x j). In this sense, the linear
case may be regarded as a special case of nonlinear learning.

Lemma 1 says that the regularized loss (1) allows U to yield precise information about the
Bayes decision function f ∗ when after tuning. Specifically, U targets at the Bayes decision function
in classification when C1 and C3 are large, and grouping can differ from classification at other C
values.

Lemma 1 For any large margin loss L(z), U(z) = miny∈{−1,1} L(yz) = L(|z|), where y = Sign(z) =
argminy∈{−1,1} L(yz) for any given z. Additionally,

( f ∗C,g∗C) = arg inf
f ,g∈F

ES( f ,g;C) → ( f ∗, f ∗) as C1,C3 → ∞.

In the case that ( f ∗C,g∗C) is not unique, we choose it as any minimizer of ES( f ,g;C).
Through (1), we propose our cost function for semi-supervised learning:

s( f ,g) = C1

nl

∑
i=1

L(yi f (xi))+C2

n

∑
j=nl+1

U(g(x j))+
C3

2
‖ f −g‖2 +

1
2
‖g‖2

−, (2)

where in the linear case, ‖g‖− = ‖w̃g‖ and ‖ f − g‖ = ‖w f −wg‖; in the nonlinear case ‖g‖2
− =

w̃T
g Kw̃g, ‖ f −g‖2 = (w̃ f −w̃g)

T K(w̃ f −w̃g)+(w̃ f ,0−w̃g,0)
2 is the RKHS norm, with an n×n matrix

K whose i jth element is K(xi,x j). Minimization of (2) with respect to ( f ,g) yields an estimated
decision function f̂ thus classifier Sign( f̂ ). The constrained version of (2), after introducing slack
variables {ξk ≥ 0;k = 1, · · · ,n}, becomes

C1

nl

∑
i=1

ξi +C2

n

∑
j=nl+1

ξ j +
C3

2
‖ f −g‖2 +

1
2
‖g‖2

−, (3)

subject to ξi −L(yi f (xi)) ≥ 0; i = 1, · · · ,nl; ξ j −U(g(x j)) ≥ 0; j = nl + 1, · · · ,n. Minimization of
(2) with respect to ( f ,g), equivalently, minimization of (3) with respect to ( f ,g,ξk;k = 1, · · · ,n)
subject to the constraints gives our estimated decision function ( f̂ , ĝ), where f̂ is for classification.

Two specific machines SSVM and SPSI will be further developed in what follows. In (2), SSVM
uses L(z) = (1− z)+ and U(z) = (1−|z|)+, and SPSI uses L(z) = ψ(z) and U(z) = 2(1−|z|)+.

2.2 Connection Between SSVM and TSVM

To better understand the proposed methodology, we now explore the connection between SSVM
and TSVM. In specific, TSVM uses a cost function in the form of

C1

nl

∑
i=1

(1− yi f (xi))+ +C2

n

∑
j=nl+1

(1− y j f (x j))+ +
1
2
‖ f‖2

−,
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where minimization with respect to (y j : j = nl +1, · · · ,n; f ) yields the estimated decision function
f̂ . It can be thought of as the limiting case of SSVM as C3 → ∞ forcing f = g in (2).

SSVM in (3) stems from grouping and interplay between grouping and classification, whereas
TSVM focuses on classification. Placing TSVM in the framework of SSVM, we see that SSVM
relaxes TSVM in that it allows grouping (g) and classification (f) to differ, whereas f ≡ g for TSVM.
Such a relaxation yields that |e( f̂ , f ∗)| = |GE( f̂ )−GE( f ∗)| is bounded by |e( f̂ , ĝ)|+ |e(ĝ,g∗C)|+
|e(g∗C, f ∗)|, with |e( f̂ , ĝ)| controlled by C3, the estimation error |e(ĝ,g∗C)| controlled by C2n−1

u and
the approximation error |e(g∗C, f ∗)| controlled by C1 and C3. As a result, all these error terms can be
reduced simultaneously with a suitable choice of (C1,C2,C3), thus delivering better generalization.
This aspect will be demonstrated by our theory in Section 6 and numerical analysis in Section 5. In
contrast, TSVM is unable to do so, and needs to increase the size of one error in order to reduce
the other error, and vice versa, compare with Wang, Shen and Pan (2007). This aspect will be also
confirmed by our numerical results.

The forgoing discussion concerning SSVM is applicable to (2) with a different large margin loss
L as well.

3. Non-convex Minimization Through Difference Convex Programming

Optimization in (2) involves non-convex minimization, because of non-convex U(z) and/or possi-
bly L(z) in z. On the basis of recent advances in global optimization, particularly difference convex
(DC) programming, we develop our minimization technique. Key to DC programming is decompo-
sition of our cost function into a difference of two convex functions, based on which iterative upper
approximations can be constructed to yield a sequence of solutions converging to a stationary point,
possibly an ε-global minimizer. This technique is called DC algorithms (DCA; An and Tao, 1997),
permitting a treatment of large-scale non-convex minimization.

To use DCA for SVM and ψ-learning in (2), we construct DC decompositions of the cost func-
tions of SPSI and SSVM sψ and sSV M in (2):

sψ = sψ
1 − sψ

2 ; sSV M = sSV M
1 − sSV M

2 ,

where L(z) = ψ(z) and U(z) = 2(1−|z|)+ for SPSI,

sψ
1 = C1 ∑nl

i=1 ψ1(yi f (xi))+C2 ∑n
j=nl+1 2U1(g(x j))+ C3

2 ‖ f −g‖2 + 1
2‖g‖2

−,

sψ
2 = C1 ∑nl

i=1 ψ2(yi f (xi))+C2 ∑n
j=nl+1 2U2(g(x j));

and L(z) = (1− z)+ and U(z) = (1−|z|)+ for SSVM,

sSV M
1 = C1 ∑nl

i=1(1− yi f (xi))+ +C2 ∑n
j=nl+1U1(g(x j))+ C3

2 ‖ f −g‖2 + 1
2‖g‖2

−,

sSV M
2 = C2 ∑n

j=nl+1U2(g(x j)).

These DC decompositions are obtained through DC decompositions of (1−|z|)+ = U1(z)−U2(z)
and ψ(z) = ψ1(z)−ψ2(z), where U1 = (|z|−1)+, U2 = |z|−1, ψ1 = 2(1− z)+, and ψ2 = 2(−z)+.
The decompositions are displayed in Figure 1.

With these decompositions, we treat the nonconvex minimization in (2) by solving a sequence
of quadratic programming (QP) problems. Algorithm 1 solves (2) for SPSI and SSVM.
Algorithm 1: (Sequential QP)
Step 1. (Initialization) Set initial values f (0) = g(0) as the solution of SVM with labeled data alone,
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Figure 1: The left panel is a plot of U , U1 and U2, for the DC decomposition of U = U1−U2. Solid,
dotted and dashed lines represent U , U1 and U2, respectively. The right panel is a plot of
ψ, ψ1 and ψ2, for the DC decomposition of ψ = ψ1 −ψ2. Solid, dotted and dashed lines
represent ψ, ψ1 and ψ2, respectively.

and an precision tolerance level ε > 0.
Step 2. (Iteration) At iteration k + 1, compute ( f (k+1),g(k+1)) by solving the corresponding dual
problems given in (4).
Step 3. (Stopping rule) Terminate when |s( f (k+1),g(k+1))− s( f (k),g(k))| ≤ ε.
Then the estimate ( f̂ , ĝ) is the best solution among ( f (l),g(l))k+1

l=1 .
At iteration k + 1, after omitting constants that are independent of (4), the primal problems are

required to solve

min
w f ,wg

sψ
1 ( f ,g)−〈( f ,g),∇sψ

2 ( f (k),g(k))〉,

min
w f ,wg

sSV M
1 ( f ,g)−〈( f ,g),∇sSVM

2 ( f (k),g(k))〉. (4)

Here ∇sSV M
2 = (∇SV M

1 f ,∇SV M
2 f ,∇SVM

1g ,∇SV M
2g ) is the gradient vector of sSV M

2 with respect to ( f ,g),

with ∇SV M
1g = C2 ∑n

j=nl+1 ∇U2(g(x j))x j, ∇SV M
2g = C2 ∑n

j=nl+1 ∇U2(g(x j)), ∇SV M
1 f = 0p, and ∇SV M

2 f = 0,

where ∇U2(z) = 1 if z > 0, and ∇U2(z) = −1 otherwise. Similarly, ∇sψ
2 = (∇ψ

1 f ,∇
ψ
2 f ,∇

ψ
1g,∇

ψ
2g)

is the gradient vector of sψ
2 with respect to (w f ,wg), with ∇ψ

1 f = C1 ∑nl
i=1 ∇ψ2(yi f (xi))yixi, ∇ψ

2 f =

C1 ∑nl
i=1 ∇ψ2(yi f (xi))yi, ∇ψ

1g = 2∇SV M
1g , and ∇ψ

2g = 2∇SV M
2g , where ∇ψ2(z) = 0 if z > 0 and ∇ψ2(z) =

−2 otherwise. By Karush-Kuhn-Tucker(KKT)’s condition, the primal problems in (4) are equivalent
to their dual forms, which are generally easier to work with and given in the Appendix C.

By Theorem 3 of Liu, Shen and Wong (2005), lim
k→∞

‖ f (k+1) − f (∞)‖ = 0 for some f (∞), and con-

vergence of Algorithm 1 is superlinear in that lim
k→∞

‖ f (k+1) − f (∞)‖/‖ f (k) − f (∞)‖ = 0 and

lim
k→∞

‖g(k+1) − g(∞)‖/‖g(k) − g(∞)‖ = 0, if there does not exist an instance x̃ such that f (∞)(x̃) =

g(∞)(x̃) = 0 with f (∞)(x) = (1,K(x,x1), · · · ,K(x,xn))w
(∞)
f and g(∞)(x) = (1,K(x,x1), · · · ,

K(x,xn))w
(∞)
g . Therefore, the number of iterations required for Algorithm 1 is o(log(1/ε)) to

achieve the precision ε > 0.
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4. Tuning Involving Unlabeled Data

This section proposes a novel tuning method based on the concept of generalized degrees of freedom
(GDF) and the technique of data perturbation (Shen and Huang, 2006; Wang and Shen, 2006),
through both labeled and unlabeled data. This permits tuning of three regularizers C = (C1,C2,C3)
in (2) to achieve the optimal performance.

The generalization error (GE) of a classification function f is defined as GE( f ) = P(Y f (X) <
0) = EI(Y 6= Sign( f (X))), where I(·) is the indicator function. The GE( f ) usually depends on the
unknown truth, and needs to be estimated. Minimization of the estimated GE( f ) with respect to the
range of the regularizers gives the optimal regularization parameters.

For tuning, write f̂ as f̂C, and write (X l,Y l) = (Xi,Yi)
nl
i=1 and Xu = {X j}n

j=nl+1. By Theorem 1

of Wang and Shen (2006), the optimal estimated GE( f̂C), after ignoring the terms independent of
f̂C, has the form of

EGE( f̂C)+
1

2nl

nl

∑
i=1

Cov(Yi,Sign( f̂C(Xi))|X l)+
1
4

D1(X
l, f̂C). (5)

Here, EGE( f̂C) = 1
2nl

∑nl
i=1(1−Yi Sign( f̂C(Xi))) is the training error, and D1(X l, f̂C) = E

(
E(4(X))−

1
nl

∑nl
i=14(Xi)|X l

)
with 4(X) = (E(Y |X)− Sign( f̂C(X)))2, where E(·|X) and E(·|X l) are condi-

tional expectations with respect to Y and Y l respectively. As illustrated in Wang and Shen (2006),
the estimated (5) based on GDF is optimal in the sense that it performs no worse than the method
of cross-validation and other tuning methods; see Efron (2004).

In (5), Cov(Yi,Sign( f̂C(Xi))|X l); i = 1 · · · ,nl and D1(X l, f̂C) need to be estimated. It appears
that Cov(Yi,Sign( f̂C(Xi))|X l) is estimated only through labeled data, for which we apply the data
perturbation technique of Wang and Shen (2006). On the other hand, D1(X l, f̂C) is estimated directly
through (X l,Y l) and Xu jointly.

Our method proceeds as follows. First generate pseudo data Y ∗
i by perturbing Yi:

Y ∗
i =

{
Yi with probability 1− τ,
Ỹi with probability τ,

(6)

where 0 < τ < 1 is the size of perturbation, and (Ỹi + 1)/2 is sampled from a Bernoulli distribu-
tion with p̂(xi), an rough probability estimate of p(xi) = P(Y = 1|X = xi), which may be obtained
through the same classification method that defines f̂C or through logistic regression when it doesn’t
yield an estimated p(x), such as SVM and ψ-learning. The estimated covariance is proposed to be

Ĉov(Yi,Sign( f̂C(Xi))|X l) =
1

k(Yi, p̂(Xi))
Cov∗(Y ∗

i ,Sign( f̂ ∗C(Xi))|X l); i = 1, · · · ,nl, (7)

where k(Yi, p̂(Xi)) = τ + τ(1− τ) ((Yi+1)/2−p̂(Xi))
2

p̂(Xi)(1−p̂(Xi))
, and f ∗C is an estimated decision function through

the same classification method trained through (Xi,Y ∗
i )nl

i=1.

To estimate D1, we express it as a difference between the true model error E(E(Y |X)−
Sign( f̂C(X)))2 and its empirical version n−1

l ∑nl
i=1(E(Yi|Xi)−Sign( f̂C(Xi)))

2, where the former can
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be estimated through (X l,Y l) and Xu. The estimated D1 becomes

D̂1(X
l, f̂C) = E∗

(
1
nu

n

∑
j=nl+1

((2p̂(X j)−1)−Sign( f̂ ∗C(X j)))
2−

1
nl

nl

∑
i=1

((2p̂(Xi)−1)−Sign( f̂ ∗C(Xi)))
2

∣∣∣∣∣X
l

)
,

(8)

Generally, Ĉov in (7) and D̂1 in (8) can be always computed using a Monte Carlo (MC) ap-
proximation of Cov∗, E∗, when it is difficult to obtain their analytic forms. Specifically, when Y l is
perturbed D times, a MC approximation of Ĉov and D̂1 can be derived:

Ĉov(Yi,Sign( f̂C(Xi))|X l) ≈ 1
D−1

D

∑
d=1

1
k(Yi, p̂(Xi))

Sign( f̂ ∗d
C (Xi))(Y

∗d
i −Y

∗
i ), (9)

D̂1(X
l, f̂C) ≈ 1

D−1

D

∑
d=1

(
1
nu

n

∑
j=nl+1

((2p̂(X j)−1)−Sign( f̂ ∗d
C (X j)))

2−

1
nl

nl

∑
i=1

((2p̂(Xi)−1)−Sign( f̂ ∗d
C (Xi)))

2

)
,

where Y ∗d
i ;d = 1, · · · ,D are perturbed samples according to (6), Y

∗
i = 1

D ∑d Y ∗d
i , and f̂ ∗d

C is trained

through (Xi,Y ∗d
i )nl

i=1. Our proposed estimate ĜE becomes

ĜE( f̂C) = EGE( f̂C)+
1

2nl

nl

∑
i=1

Ĉov(Yi,Sign( f̂C(Xi))|X l)+
1
4

D̂1(X
l, f̂C), (10)

By the law of large numbers, ĜE converges to (5) as D → ∞. In practice, we recommend D to be
at least nl to ensure the precision of MC approximation and τ to be 0.5. In contrast to the estimated
GE with labeled data alone, the ĜE( f̂C) in (10) requires no perturbation of X when X u is available.
This permits more robust and computationally efficient estimation.

Minimization of (10) with respect to C yields the minimizer Ĉ, which is optimal in terms of GE
as suggested by Theorem 2, under similar technical assumptions as in Wang and Shen (2006).

(C.1): (Loss and risk) limnl→∞ supC |GE( f̂C)/E(GE( f̂C))−1| = 0 in probability.
(C.2): (Consistency of initial estimates) For almost all x, p̂i(x)→ pi(x), as nl → ∞; i = 1, · · · ,nl .
(C.3): (Positivity) Assume that inf

C
E(GE( f̂C)) > 0.

Theorem 2 Under Conditions C.1-C.3, lim
nl ,nu→∞

(
lim

τ→0+
GE( f̂Ĉ)/ inf

C
GE( f̂C)

)
= 1.

Theorem 2 says the ideal optimal performance infC GE( f̂C) can be realized by GE( f̂Ĉ) when
τ → 0+ and nl ,nu → ∞ against any other tuning method.

1874



LARGE MARGIN SEMI-SUPERVISED LEARNING

5. Numerical Examples

This section examines effectiveness of SSVM and SPSI and compare them against SVM with la-
beled data alone, TSVM and a graphical method of Zhu, Ghahramani and Lafferty (2003), in both
simulated and benchmark examples. A test error, averaged over 100 independent replications, is
used to measure their performances.

For simulation comparison, we define the amount of improvement of a method over SVM with
labeled data alone as the percent of improvement in terms of the Bayesian regret,

(T (SV M)−T (Bayes))− (T (·)−T (Bayes))
T (SV M)−T (Bayes)

, (11)

where T (·) and T (Bayes) are the test error of any method and the Bayes error. This metric seems
to be sensible, which is against the baseline—the Bayes error T (Bayes), which is approximated by
the test error over a test sample of large size, say 105.

For benchmark comparison, we define the amount of improvement over SVM as

T (SV M)−T (·)
T (SV M)

, (12)

which underestimates the amount of improvement in absence of the Bayes rule.
Numerical analyses are performed in R2.1.1. For TSVM, SVMlight (Joachims, 1999) is used.

For the graphical method, a MATLAB code provided in Zhu, Ghahramani and Lafferty (2003) is

employed. In the linear case, K(s, t) = 〈s, t〉; in the Gaussian kernel case, K(s, t) = exp
(
− ‖s−t‖2

σ2

)
,

where σ2 is set to be p, a default value in the “svm” routine of R, to reduce computational cost for
tuning σ2.

5.1 Simulations and Benchmarks

Two simulated and three benchmark examples are examined. In each example, we perform a grid
search to minimize the test error of each classifier with respect to tuning parameters, in order to
eliminate the dependency of the classifier on these parameters. Specifically, one regularizer for
SVM and one tuning parameter σ in the Gaussian weight matrix for the graphical method, two
regularization regularizers for TSVM, and three regularizers for SSVM and SPSI are optimized
over [10−2,103]. For SSVM and SPSI, C is searched through a set of unbalanced grid points,
based on our small study of the relative importance among (C1,C2,C3). As suggested by Figure
2, C3 appears to be most crucial to ĜE( f̂C), whereas C2 is less important than (C1,C3), and C1

is only useful when its value is not too large. This leads to our unbalanced search over C, that
is, C1 ∈ {10−2,10−1,1,10,102}, C2 ∈ {10−2,1,102}, and C3 ∈ {10m/4;m = −8,−7, · · · ,12}. This
strategy seems reasonable as suggested by our simulation. Clearly, a more refined search is expected
to yield better performance for SSVM and SPSI.

Example 1: A random sample {(Xi1,Xi2,Yi); i = 1, · · · ,1000} is generated as follows. First,
1000 independent instances (Yi,Xi1,Xi2) are sampled according to (Yi +1)/2∼Bernoulli(0.5), Xi1 ∼
Normal(Yi,1), and Xi2 ∼ Normal(0,1). Second, 200 instances are randomly selected for training,
and the remaining 800 instances are retained for testing. Next, 190 unlabeled instances (Xi1,Xi2)
are obtained by removing labels from a randomly chosen subset of the training sample, whereas the
remaining 10 instances are treated as labeled data. The Bayes error is 0.162.
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Figure 2: Plot of ĜE( f̂C) as a function of (C1,C2,C3) for one random selected sample of the
WBC example. The top left, the top right and the bottom left are plots of ĜE( f̂C)
versus (C1,C2), (C2,C3) and (C3,C1), respectively. Here (C1,C2,C3) take values in set
{10−2+m/4;m = 0,1, · · · ,20}.

Example 2: A random sample {(Xi1,Xi2,Yi); i = 1, · · · ,1000} is generated. First, a random sam-
ple (Xi1,Xi2) of size 1000 is generated: Xi1 ∼ Normal(3cos(kiπ/2 + π/8),1), Xi2 ∼
Normal(3sin(kiπ/2 + π/8),4), with ki sampled uniformly from {1, · · · ,4}. Second, their labels
Yi; i = 1, · · · ,1000 are assigned: Yi = 1 if ki ∈ {1,4}, and −1 if ki ∈ {2,3}. As in Example 1, we
obtain 200 (10 labeled and 190 unlabeled) instances for training as well as 800 instances for testing.
The Bayes error is 0.089.

Benchmarks: Three benchmark examples are examined, including Wisconsin Breast Cancer
(WBC), Mushroom and Spam email, each available in the UCI Machine Learning Repository (Blake
and Merz, 1998). The WBC example concerns discrimination of a benign breast tissue from a
malignant tissue through 9 clinic diagnostic characteristics; the Mushroom example separates an
edible mushroom from a poisonous one through 22 biological records; the Spam email example
discriminates texts to identify spam emails through 57 frequency attributes such as frequencies of
particular words and characters. All these benchmarks are suited for linear and Gaussian kernel
semi-supervised learning (Blake and Merz, 1998).

Instances in the WBC and Mushroom examples are randomly divided into halves with 10 labeled
and 190 unlabeled instances for training, and the remaining instances for testing. Instances in the
Spam email example are randomly divided into halves with 20 labeled and 580 unlabeled instances
for training, and the remaining instances for testing.

In each example, the smallest averaged test errors of SVM with labeled data alone, TSVM, the
graphical method and our proposed methods are reported in Tables 1 and 2.

As indicated in Tables 1-2, SPSI and SSVM outperform both SVM and TSVM in all cases,
and the graphical method in all examples except the Mushroom example. The amount of improve-
ment, however, varies over examples and types of classifiers. Specifically, we make the following
observations.
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Data Method SVMl TSVM Graph SSVM SPSI SVMc

n×dim Improv. Improv. Improv. Improv.
Example 1 Linear .344(.0104) .249(.0134) .188(.0084) .184(.0084) .164(.0084)
1000×2 52.2% .232(.0108) 85.7% 87.9%

Gaussian .385(.0099) .267(.0132) 61.5% .201(.0072) .200(.0069) .196(.0015)
52.9% 82.5% 83.0%

Example 2 Linear .333(.0129) .222(.0128) .129(.0031) .128(.0031) .115(.0032)
1000×2 45.5% .213(.0114) 83.6% 84.0%

Gaussian .347(.0119) .258(.0157) 49.2% .175(.0092) .175(.0098) .151(.0021)
34.5% 66.7% 66.7%

Table 1: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI, over 100 pairs of
training and testing samples, in the simulated examples. Here Graph, SVMl and SVMc

denote performances of the graphical method, SVM with labeled data alone, and SVM
with complete data without missing. The amount of improvement is defined in (11), where
the Bayes error serves as a baseline for comparison.

Data Method SVMl TSVM Graph SSVM SPSI SVMc

n×dim Improv. Improv. Improv.
WBC Linear .053(.0071) .077(.0113) .032(.0025) .029(.0022) .027(.0020)
682×9 -45.3% .080(.0235) 39.6% 45.3%

Gaussian .047(.0038) .037(.0015) -70.2% .030(.0005) .030(.0005) .030(.0004)
21.3% 36.2% 36.2%

Mushroom Linear .232(.0135) .204(.0113) .186(.0095) .184(.0095) .041(.0018)
8124×22 12.1% .126(.0090) 19.8% 20.7%

Gaussian .217(.0135) .217(.0117) 41.9% .173(.0126) .164(.0123) .021(.0014)
0.0% 20.3% 24.4%

Email Linear .216(.0097) .227(.0120) .191(.0114) .189(.0107) .095(.0022)
4601×57 -5.09% .232(.0101) 11.6% 12.5%

Gaussian .226(.0108) .275(.0158) -7.41% .189(.0120) .189(.112) .099(.0018)
-21.7% 16.4% 16.4%

Table 2: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI, over 100 pairs of
training and testing samples, in the benchmark examples. The amount of improvement
is defined in (12), where the performance of SVM with labeled data alone serves as a
baseline for comparison in absence of the Bayes error.

• In the simulated examples, the improvements of SPSI and SSVM are from 66.9% to 87.9%
over SVM, while the improvements of TSVM and the graphical method are from 34.5% to
52.9% and 49.2% to 61.5%, over SVM.

• In the benchmark examples, the improvements of SPSI, SSVM, TSVM, and the graphical
method, over SVM, range from 19.8% to 45.3%, from -45.3% to 21.3%, and from -70.2% to
41.9%.

• It appears that the ψ-loss performs slightly better than the SVM hinge loss in almost all
examples.
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• SPSI and SSVM nearly reconstruct all relevant information about labeling in the two simu-
lated examples and the WBC example, when they are compared with SVM with full label
data. This suggests that room for further improvement in these cases is small.

To understand how SPSI and SSVM perform, we examine one randomly chosen realization in
Example 1 for SPSI. As displayed in Figure 3, SVM fails to provide an accurate estimate of the true
decision boundaries, because of the small size of labeled data. In contrast, the grouping boundaries
estimated by unlabeled covariates, almost recover the true decision boundaries for classification.
This, together with the information obtained from the labeled data regarding the sign of labeling,
results in much better estimated classification boundaries.
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Figure 3: Illustration of SPSI in one randomly selected replication of Example 1. The solid, dashed,
dotted and dotted-dashed (vertical) lines represent our ψ-learning-based decision func-
tion, the SVM decision function with labeled data alone, the partition decision func-
tion defined by unlabeled data, and the true decision boundary for classification. Here
C1 = 0.1, C2 = 0.01 and C3 = 0.5.

5.2 Performance After Tuning

This section compares the performances of the six methods in Section 5.1 when tuning is done
using our proposed method in Section 4 and the training sample only. Particularly, SVM is tuned
using the method of Wang and Shen (2006) with labeled data alone, and SPSI, SSVM , TSVM
and the graphical method are tuned by minimizing the ĜE( f̂C) in (10) involving both labeled and
unlabeled data over a set of grid points in the same fashion as in Section 5.1. Performances of all
the methods are evaluated by a test error on an independent test sample. The averaged test errors of
these methods are summarized in Table 3.

As expected, SPSI and SSVM outperform both SVM with labeled data alone and TSVM in
all cases, and the graphical method in all examples except Mushroom, with improvements ranging
from 2.15% to 77.5% over SVM.
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Data Method SVMl TSVM Graph SSVM SPSI SVMc

Improv. Improve. Improv. Improv.
Example 1 Linear .350(.0107) .281(.0153) .234(.0106) .233(.0106) .167(.0085)

36.7% .244(.0112) 61.7% 62.2%
Gaussian .395(.0101) .331(.0211) 56.4% .280(.0176) .273(.0177) .258(.0102)

27.5% 49.4% 52.4%
Example 2 Linear .338(.0146) .252(.0144) .148(.0104) .145(.0111) .118(.0084)

34.5% .227(.0129) 76.3% 77.5%
Gaussian .375(.0153) .303(.0196) 44.6% .248(.0167) .233(.175) .201(.0123)

25.2% 44.4% 49.7%
WBC Linear .060(.0081) .094(.0131) .045(.0044) .042(.0035) .037(.0027)

-56.7% .087(.0247) 25.0% 30.0%
Gaussian .051(.0039) .044(.0047) -70.6% .039(.0016) .039(.0018) .038(.0005)

13.7% 21.6% 21.6%
Mushroom Linear .241(.0141) .211(.0120) .209(.0108) .209(.0111) .053(.0037)

12.4% .137(.0101) 13.3% 13.3%
Gaussian .230(.0148) .232(.0140) 40.4% .219(.0156) .210(.0131) .036(.0045)

-0.87% 4.78% 8.69%
Email Linear .236(.0109) .241(.0128) .228(.0130) .224(.0125) .099(.0024)

-2.12% .240(.0117) 3.39% 5.08%
Gaussian .233(.0107) .296(.0136) -1.69% .227(.0130) .228(.0131) .123(.0056)

-27.0% 2.58% 2.15%

Table 3: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI after tuning, over 100
pairs of training and testing samples, for the simulated and benchmark examples.

In conclusion, our proposed methodology achieves the desired objective of delivering high per-
formance and is highly competitive against the top performers in the literature, where the loss U(·)
plays a critical role in estimating decision boundaries for classification. It is also interesting to note
that TSVM obtained from SVMlight performs even worse than SVM with labeled data alone in the
WBC example for linear learning, and the Spam email example for both linear and Gaussian ker-
nel learning. One possible explanation is that SVMlight may not have some difficulty in reaching
good minimizers for TSVM. Moreover, the graphical method compares favorably against SVM and
TSVM, but its performance does not seem to be robust in different examples. This may be due to
the required Gaussian assumption.

6. Statistical Learning Theory

This section derives a finite-sample probability upper bound measuring the performance of SPSI
in terms of complexity of the class of candidate decision functions F , sample sizes (nl,nu) and
tuning parameter C. Specifically, the generalization performance of the SPSI decision function f̂C
is measured by the Bayesian regret e( f , f ∗) = GE( f )−GE( f ∗) ≥ 0 that is the difference between
the actual performance of f and the ideal performance defined by the Bayes rule f ∗. This yields
SPSI’s performance infC |e( f̂C, f ∗)| after tuning.
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6.1 Assumptions and Theorems

Our statistical learning theory involves risk minimization and the empirical process theory. The
reader may consult Shen and Wang (2006) for a discussion about a learning theory of this kind.

First we introduce some notations. Let ( f ∗C,g∗C) = arg inf f ,g∈F ES( f ,g;C) is a minimizer for
surrogate risk ES( f ,g;C), as defined in Lemma 1. Let e f = e( f , f ∗) be the Bayesian regret for f
and eg = e(g,g∗C) be the corresponding version for g relative to g∗

C. Denote by V f (X) = L(Y f (X))−
L(Y f ∗(X)) and Vg(X) = Ũ(g(X))− Ũ(g∗C(X)) be the differences between f and f ∗, and g and g∗C
with respect to surrogate loss L and regularized surrogate loss Ũ(g) = U(g)+ C3

2nuC2
‖g− f ∗C‖2.

To quantify complexity of F , we define the L2-metric entropy with bracketing. Given any ε > 0,
denote {( f l

m, f u
m)}M

m=1 as an ε-bracketing function set of F if for any f ∈ F , there exists an m such
that f l

m ≤ f ≤ f u
m and ‖ f l

m − f u
m‖2 ≤ ε;m = 1, · · · ,M, where ‖ · ‖2 is the usual L2 norm. Then the

L2-metric entropy with bracketing H(ε,F ) is defined as the logarithm of the cardinality of smallest
ε-bracketing function set of F .

Three technical assumptions are formulated based upon local smoothness of L, complexity of
F as measured by the metric entropy, and a norm relationship.

Assumption A. (Local smoothness: Mean and variance relationship) For some some constants
0 < αh < ∞, 0 ≤ βh < 2, a j > 0; j = 1,2,

sup
{h∈F : E(Vh(X))≤δ}

|eh| ≤ a1δαh , (13)

sup
{h∈F : E(Vh(X))≤δ}

Var(Vh(X)) ≤ a2δβh , (14)

for any small δ > 0 and h = f ,g.
Assumption A describes the local behavior of mean (eh)-and-variance (Var(Vh(X))) relationship.

In (13), Taylor’s expansion usually leads to αh = 1 when f and g can be parameterized. In (14), the
worst case is βh = 0 because max(|L(y f )|, |U(g)|) ≤ 2. In practice, values for αh and βh depend on
the distribution of (X ,Y ).

Let J0 = max(J(g∗C),1) with J(g) = 1
2‖g‖2

− the regularizer. Let Fl(k) = {L(y f )−L(y f ∗) : f ∈
F ,J( f )≤ k} and Fu(k) = {U(g)−U(g∗C) : g ∈ F ,J(g)≤ kJ0} be the regularized decision function
spaces for f ’s and g’s.

Assumption B. (Complexity) For some constants ai > 0; i = 3, · · · ,5 and εnv with v = l or u,

sup
k≥2

φv(εnv ,k) ≤ a5n1/2
v , (15)

where φu(ε,k) =
R a1/2

3 T
βg/2

u

a4Tu
H1/2(w,Fu(k))dw/Tu with Tu = Tu(ε,C,k) = min(1,ε2/βg/2+

(nuC2)
−1(k/2 − 1)J0), and φl(ε,k) =

R a1/2
3 T

β f /2

l
a4Tl

H1/2(w,Fl(k))dw/Tl with Tl = Tl(ε,C,k) =

min(1,ε2/β f /2+(nlC1)
−1(k/2−1)max(J( f ∗),1)).

Although Assumption B is always satisfied by some εnv , the smallest possible εnv from (15)
yields the best possible error rate, for given Fv and sample size nv. This is to say that the rate is
indeed governed by the complexity of Fv(k). An equation of this type, originated from the empirical
process theory, has been widely used in quantifying the error rates in function estimation, see, for
example, Shen and Wong (1994).
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Assumption C. (Norm relationship) For some constant a6 > 0, ‖ f‖1 ≤ a6‖ f‖ for any f ∈ F ,
where ‖ · ‖1 is the usual L1-norm.

Assumption C specifies a norm relationship between norm ‖ · ‖ defined by a RKHS and ‖ · ‖1.
This is usually met when F is a RKHS, defined, for instance, by Gaussian and Sigmoid kernels,
compare with Adams (1975).

Theorem 3 (Finite-sample probability bound for SPSI) In addition to Assumptions A-C, assume
that nl ≤ nu. For the SPSI classifier Sign( f̂C), there exist constants a j > 0; j = 1,6,7,10,11, and
Jl > 0, Ju > 0 and B ≥ 1 defined as in Lemma 5, such that

P
(

inf
C

|e( f̂C, f ∗)| ≥ a1sn
)
≤ 3.5exp(−a7nu((nuC∗

2)
−1J0)

max(1,2−βg))+

6.5exp(−a10nl((nlC
∗
1)

−1 min(Jl,J( f ∗)))max(1,2−β f ))+

6.5exp(−a11nu((nuC∗
2)

−1Ju)
max(1,2−βg)),

where sn = min
(
δ2α f

nl ,max(δ2αg
nu , infC∈C |e(g∗C, f ∗)|)

)
, δnv = min(εnv ,1) with v = l,u, C∗ =

(C∗
1 ,C

∗
2 ,C

∗
3) = arg infC∈C |e(g∗C, f ∗)|), and C = {C : nlC1 ≥ 2δ−2

nl
max(Jl,J( f ∗),1),nuC2 ≥

2δ−2
nu

max(J0,2C3(2B+ J( f ∗C)+ J(g∗C))),C3 ≥ a2
6Bδ−4

nu
}.

Corollary 4 Under the assumptions of Theorem 3, as nu ≥ nl → ∞,

inf
C

|e( f̂C, f ∗)| = Op(sn), sn = min
(
δ2α f

nl ,max(δ2αg
nu , inf

C∈C
|e(g∗C, f ∗)|)

)
.

Theorem 3 provides a probability bound for the upper tail of |e( f̂C, f ∗)| for any finite (nl,nu).
Furthermore, Corollary 4 says that the Bayesian regret infC∈C |e(g∗C, f ∗)| for the SPSI classifier
Sign( f̂C) after tuning is of order of no larger than sn, when nu ≥ nl → ∞. Asymptotically, SPSI per-

forms no worse than its supervised counterpart in that infC |e( f̂C, f ∗)| = Op(δ
2α f
nl ). Moreover, SPSI

can outperform its supervised counterpart in the sense that infC |e( f̂C, f ∗)| = Op(min(δ2αg
nu ,δ2α f

nl )) =

Op(δ
2αg
nu ), when {g∗C : C ∈ C} provides a good approximation to the Bayes rule f ∗.

Remark: Theorem 3 and Corollary 4 continue to hold when the “global” entropy in (15) is
replaced by a “local” entropy, compare with Van De Geer (1993). Let Fl,ξ(k) = {L(y f )−L(y f ∗) :
f ∈ F ,J( f ) ≤ k, |e( f , f ∗)| ≤ ξ} and Fu,ξ(k) = {U(g)−U(g∗C) : g ∈ F ,J(g) ≤ k, |e(g,g∗C)| ≤ ξ}
be the “local” entropy of Fl(k) and Fu(k). The proof requires only a slight modification. The local
entropy avoids a loss of lognu factor in the linear case, although it may not be useful in the nonlinear
case.

6.2 Theoretical Examples

We now apply the learning theory to one linear and one kernel learning examples to obtain the
generalization error rates for SPSI, as measured by the Bayesian regret. We will demonstrate that
the error in the linear case can be arbitrarily fast while that in the nonlinear case is fast. In either
case, SPSI’s performance is better than that of its supervised counterpart.

Linear learning: Consider linear classification where X = (X(1),X(2)) is sampled independently
according to the same probability density q(z) = 1

2(θ + 1)|z|θ for z ∈ [−1,1] with θ ≥ 1. Given X ,
assign label Y to 1 if X(1) > 0 and −1 otherwise; then Y is chosen randomly to flip with constant
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probability τ for 0 < τ < 1
2 . Here the true decision function ft(x) = x(1) yielding the vertical line as

the classification boundary.
In this case, the degree of smoothness of this problem is characterized by exponent θ > 0 in the

density q(z), which describes the level of difficulty of linear classification but may not be so in the
nonlinear case.

For classification, we minimize (2) over F , consisting of linear decision functions of form
f (x) = (1,x)T w for w ∈ R 3 and x = (x(1),x(2)) ∈ R 2. To apply Corollary 4, we verify Assump-
tions A-C with detailed verification given in Appendix B. In fact, Assumption A follows from the
smoothness of E(Vh(X)) and Var(Vh(X)) with respect to h, where a local Taylor expansion yields
the degree of smoothness exponents α and β. Assumption B is automatically met, and the entropy
Equation (15) is solved for the smallest possible εnv satisfying it. Assumption C is always true

for RKHS. It then follows from Corollary 4 that infC |e( f̂C, f ∗)| = Op(n
−(θ+1)/2
u (lognu)

(θ+1)/2) as
nu ≥ nl → ∞. This says that the optimal ideal performance of the Bayes rule is recovered by SPSI
at speed of n−(θ+1)/2

u (lognu)
(θ+1)/2 as nu ≥ nl → ∞. This rate is arbitrarily fast as θ → ∞.

Kernel learning: Consider, in the preceding case, kernel learning with a different candidate
decision function class defined by the Gaussian kernel. To specify F , we may embed a finite-
dimensional Gaussian kernel representation into an infinite-dimensional space F = {x∈R 2 : f (x) =
wT

f φ(x) = ∑∞
k=0 w f ,kφk(x) : w f = (w f ,0, · · ·)T ∈ R ∞} by the representation theorem of RKHS, com-

pare with Wahba (1990). Here 〈φ(x),φ(z)〉 = K(x,z) = exp(− ‖x−z‖2

2σ2 ).
To apply Corollary 4, we verify Assumptions A-C as before, with detailed verification given

in Appendix B. The function space F generated by the Gaussian kernel is rich enough to well
approximate the ideal performer Sign(E(Y |X)) (Steinwart, 2001), and yields the exponents α and
β in Assumption A with smoothness and Soblev’s inequality (Adams, 1975). Similarly, it follows
from Corollary 4 that infC |e( f̂C, f ∗)|= Op(min(n−1

l (lognlJl)
3,n−1/2

u (lognuJu)
3/2)) as nu ≥ nl → ∞.

Therefore, the optimal ideal performance of the Bayes rule is recovered by SPSI at fast speed of
min(n−1

l (lognlJl)
3,n−1/2

u (lognuJu)
3/2) as nu ≥ nl → ∞.

7. Discussion

This article proposed a novel large margin semi-supervised learning methodology that is applicable
to a class of large margin classifiers. In contrast to most semi-supervised learning methods assuming
various dependencies between the marginal and conditional distributions, the proposed methodol-
ogy integrates labeled and unlabeled data through regularization to identify such dependencies for
enhancing classification. The theoretical and numerical results show that our methodology outper-
forms SVM and TSVM in situations when unlabeled data provides useful information, and performs
no worse when unlabeled data does not so. For tuning, further investigation of regularization paths
of our proposed methodology is useful as in Hastie, Rosset, Tibshirani and Zhu (2004), to reduce
computational cost.
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Appendix A. Technical Proofs

Proof of Theorem 2: The proof is similar to that of Theorem 2 of Wang and Shen (2006), and thus
is omitted.
Proof of Theorem 3: The proof uses a large deviation empirical technique for risk minimization.
Such a technique has been previously developed in function estimation as in Shen and Wong (1994).
The proof proceeds in three steps. In Step 1, the tail probability of {eŨ(ĝC,g∗C) ≥ δ2

nu
} is bounded

through a large deviation probability inequality of Shen and Wong (1994). In Step 2, a tail prob-
ability bound of {|e( f̂C, f ∗)| ≥ δ2

nu
} is induced from Step 1 using a conversion formula between

eŨ(ĝC,g∗C) and |e( f̂C, f ∗)|. In Step 3, a probability upper bound for {|e( f̂C, f ∗)| ≥ δ2
nl
} is obtained

using the same treatment as above. The desired bound is obtained based on the bounds in Step 2
and Step 3.

Step 1: It follows from Lemma 5 that max(‖ f̂C‖2,‖ĝC‖2) ≤ B for a constant B ≥ 1, where
( f̂C, ĝC) is the minimizer of (2). Furthermore, ĝC defined in (2) can be written as ĝC =
argmin

g∈F

{
C2 ∑n

j=nl+1Ũ(g(x j))+ J(g)+ C3
2 (‖ f̂C −g‖2 −‖ f ∗C −g‖2)

}
.

By the definition of ĝC, P(eŨ(ĝC,g∗C) ≥ δ2
nu

) is upper bounded by

P(J(ĝC) ≥ B)+P∗
(

sup
g∈N

n−1
u

n

∑
j=nl+1

(Ũ(g∗C(x j))−Ũ(g(x j)))+λ(J(g∗C)− J(g))

+
λC3

2
(‖ f̂C −g∗C‖2 −‖ f ∗C −g∗C‖2 −‖ f̂C −g‖2 +‖ f ∗C −g‖2) ≥ 0

)

≤ P(J(ĝC) ≥ B)+P∗
(

sup
g∈N

n−1
u

n

∑
j=nl+1

(Ũ(g∗C(x j))−Ũ(g(x j)))+λ(J(g∗C)− J(g))

+λC3(2B+ J( f ∗C)+ J(g∗C)) ≥ 0
)
≡ P(J(ĝC) ≥ B)+ I,

where λ = (nuC2)
−1, N = {g ∈ F ,J(g) ≤ B,eŨ(g,g∗C) ≥ δ2

nu
}, and P∗ denotes the outer probability.

By Lemma , there exists constants a10,a11 > 0 such that P(J(ĝC)≥ B)≤ 6.5exp(−a10nl(nlC1)
−1Jl)

+6.5exp(−a11nu(nuC2)
−1Ju), where Jl and Ju are defined in Lemma 5.

To bound I, we introduce some notations. Define the scaled empirical process as Eu(Ũ(g∗C)−
Ũ(g)) = n−1

u ∑n
j=nl+1

(
Ũ(g∗C(x j)) − Ũ(g(x j)) + λ(J(g∗C) − J(g))

)
− E(Ũ(g∗C(X j)) − Ũ(g(X j))+

λ(J(g∗C)− J(g))) = Eu(U(g∗C)−U(g)). Thus

I = P∗
(

sup
g∈N

Eu(U(g∗C)−U(g)) ≥

inf
g∈N

E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g))−λC3(2B+ J( f ∗C)+ J(g∗C))

)
.

Let As,t = {g ∈ F : 2s−1δ2
nu
≤ eŨ(g,g∗C) < 2sδ2

nu
,2t−1J0 ≤ J(g) < 2tJ0}, and let As,0 = {g ∈ F :

2s−1δ2
nu
≤ eŨ(g,g∗C) < 2sδ2

nu
,J(g) < J0}; s, t = 1,2, · · · . Without loss of generality, we assume that

εnu < 1. Then it suffices to bound the corresponding probability over As,t ; s, t = 1,2, · · · . Toward
this end, we control the first and second moment of Ũ(g∗C(X))−Ũ(g(X)) over f ∈ As,t .

For the first moment, by assumption δ2
nu
≥ 2λmax(J0,2C3(2B+ J( f ∗C)+ J(g∗C))),

inf
As,t

E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g)) ≥ 2s−1δ2
nu

+λ(2t−1 −1)J0;s, t = 1,2, · · · ,
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inf
As,0

E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g)) ≥ (2s−1 −1/2)δ2
nu
≥ 2s−2δ2

nu
;s = 1,2, · · · .

Therefore, infAs,t E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)−J(g))−λC3(2B+J( f ∗C)+J(g∗C))≥M(s, t) =

2s−2δ2
nu

+λ(2t−1−1)J0, and infAs,0 E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)−J(g))−λC3(2B+J( f ∗C)+
J(g∗C)) ≥ M(s,0) = 2s−3δ2

nu
, for all s, t = 1,2, · · · .

For the second moment, by Assumptions A,

sup
As,t

Var(Ũ(g(X))−Ũ(g∗C(X))) ≤ sup
As,t

a2(eŨ(g,g∗C))βg ≤ a2(2
sδ2

nu
+(2t −1)λJ0)

βg

≤ a223βg(2s−2δ2
nu

+(2t−1 −1)λJ0)
βg ≤ a3M(s, t)βg = v2(s, t),

for and s, t = 1,2, · · · and some constant a3 > 0.
Now I ≤ I1 + I2 with I1 = ∑∞

s,t=1 P∗(sup
As,t

Eu(U(g∗C)

−U(g)) ≥ M(s, t)); I2 = ∑∞
s=1 P∗(sup

As,0

Eu(U(g∗C)−U(g)) ≥ M(s,0)). Next we bound I1 and I2

separately using Theorem 3 of Shen and Wong (1994). We now verify conditions (4.5)-(4.7)
there. To compute the metric entropy of {U(g)−U(g∗

C) : g ∈ As,t} in (4.7) there, we note that
R v(s,t)

aM(s,t) H1/2(w,Fu(2t))dw/M(s, t) is nonincreasing in s and M(s, t) and hence that

Z v(s,t)

aM(s,t)
H1/2(w,Fu(2

t))dw/M(s, t) ≤
Z a1/2

3 M(1,t)βg/2

aM(1,t)
H1/2(w,Fu(2

t))dw/M(1, t)

≤ φ(εnu ,2
t),

with a = 2a4ε. Assumption B implies (4.7) there with ε = 1/2 and some ai > 0; i = 3,4. Further-
more, M(s, t)/v2(s, t) ≤ 1/8 and T = 1 imply (4.6), and (4.7) implies (4.5). By Theorem 3 of Shen
and Wong (1994), for some constant 0 < ζ < 1,

I1 ≤
∞

∑
s,t=1

3exp

(
− (1−ζ)nuM2(s, t)

2(4v2(s, t)+M(s, t)/3)

)
≤

∞

∑
s,t=1

3exp(−a7nu(M(s, t))max(1,2−βg))

≤
∞

∑
s,t=1

3exp(−a7nu(2
s−1δ2

nu
+λ(2t−1 −1)J0)

max(1,2−βg))

≤ 3exp(−a7nu(λJ0)
max(1,2−βg))/(1− exp(−a7nu(λJ0)

max(1,2−βg)))2.

Similarly, I2 ≤ 3exp(−a7nu(λJ0)
max(1,2−βg))/(1−exp(−a7nu(λJ0)

max(1,2−βg)))2. Thus I ≤ I1 + I2 ≤
6exp(−a7nu((nuC2)

−1J0)
max(1,2−βg))/(1−exp(−a7nu((nuC2)

−1J0)
max(1,2−βg)))2, and I1/2 ≤ (2.5+

I1/2) exp(−a7nu((nuC2)
−1J0)

max(1,2−βg)). Thus P(eŨ(ĝC,g∗C) ≥ δ2
nu

) ≤ 3.5exp(−a7nu

((nuC2)
−1J0)

max(1,2−βg)) + 6.5exp(−a10nl((nlC1)
−1Jl)

max(1,2−β f ))+
6.5exp(− a11nu((nuC2)

−1Ju)
max(1,2−β f )).

Step 2: By Lemma 5 and Assumption C, |eŨ( f̂C, ĝC)| ≤ E| f̂C(X)− ĝC(X)| ≤ a6‖ f̂C − ĝC‖ ≤
a6
√

B/C3 ≤ δ2
nu

when C3 ≥ a2
6Bδ−4

nu
. By Assumption A and the triangle inequality, |e( f̂C,g∗C)| ≤

a1(eŨ( f̂C,g∗C))αg ≤ a1(eŨ(ĝC,g∗C) + |eŨ( f̂C, ĝC)|)αg ≤ a1(eŨ(ĝC,g∗C) + δ2
nu

, implying that
P
(
|e( f̂C,g∗C)| ≥ a1(2δ2

nu
)αg
)
≤P(eŨ(ĝC,g∗C)≥ δ2

nu
), ∀C ∈ C . Then P

(
infC |e( f̂C, f ∗)| ≥ a1(2δ2

nu
)αg +

infC∈C |e(g∗C, f ∗)|
)

≤ P(eŨ(ĝC∗ ,g∗C∗) ≥ δ2
nu

) ≤ 3.5exp(− a7nu((nuC∗
2)

−1J0)
max(1,2−βg)) +
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6.5exp(−a10nl((nlC∗
1)

−1Jl)
max(1,2−β f )) + 6.5exp(−a11nu ((nuC∗

2)
−1Ju)

max(1,2−βg)), where C∗ =
arg infC∈C |e(g∗C, f ∗)|.

Step 3: Note that f̂C = argmax f∈F {C1 ∑nl
i=1 L(yi f (xi)) + 1

2‖ f‖2
−} when C2 = 0 and C3 = ∞.

An application of the same treatment yields that P(infC e( f̂C, f ∗) ≥ a1δ2
nl
) ≤ P(infC eL( f̂C, f ∗) ≥

a1δ2
nl
) ≤ 3.5exp(−a10nl((nlC∗

1)
−1J( f ∗))max(1,2−β f )) when nlC∗

1 ≥ 2δ−2
nl

max(J( f ∗),1). The desired
result follows.

Lemma 5 Under the assumptions of Theorem 3, for ( f̂C, ĝC) as the minimizer of (2), there exists
constants B > 0, depending only on C1, such that

max(E(C3‖ f̂C − ĝC‖2 +‖ĝC‖2),E‖ f̂C‖2,2C1) ≤ B.

Proof: It suffices to show E(C3‖ f̂C− ĝC‖2+‖ĝC‖2)≤B. Let W̃ ( f ,g) = 1
C1

s( f ,g) = ∑nl
i=1W̃l(yi f (xi))

+C2
C1

∑n
j=nl+1W̃u(g(x j)), where W̃l( f (xi)) = L(yi f (xi))+

C3
4nlC1

‖ f −g‖2, and W̃u(g(x j)) =U(g(x j))+
1

2nuC2
‖g‖2 + C3

4nuC2
‖ f −g‖2. For convenience, write Jl( f ,g) = C3

4 ‖ f −g‖2, Ju( f ,g) = C3
4 ‖ f −g‖2 +

1
2‖g‖2

−, λl = (C1nl)
−1, and λu = (C2nu)

−1. We then define a new empirical process El,u(W̃ ( f ,g)−
W̃ ( f ∗C,g∗C)) = El(W̃l( f )−W̃l( f ∗C))+ C2nu

C1nl
Eu(W̃u(g)−W̃u(g∗C)) as

1
nl

nl

∑
i=1

(
W̃l( f (xi))−W̃l( f ∗C(xi))−E(W̃l( f (Xi))−W̃l( f ∗C(Xi)))

)
+

C2nu

C1nl

1
nu

n

∑
i=nl+1

(
W̃u(g(x j))−W̃u(g

∗
C(xi))−E(W̃u(g(X j))−W̃u(g

∗
C(Xi)))

)
.

An application of the same argument as in the proof of Theorem 3 yields that for constants a8,a9 > 0,
P(eW ( f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2

w) is upper bounded by

3.5exp(−a8nl((nlC1)
−1Jl)

max(1,2−β f ))+3.5exp(−a9nu((nuC2)
−1Ju)

max(1,2−βg)),

provided that 2Jl ≤ nlC1δ̃2
nl

and 2Ju ≤ nuC2δ̃2
nu

, where eW ( f ,g; f ∗C,g∗C) = eL( f , f ∗C) + C2
C1

eU(g,g∗C),

δ̃2
w = δ̃2

nl
+ C2nu

C1nl
δ̃2

nu
, Jl = max(Jl( f ∗C,g∗C),1) and Ju = max(Ju( f ∗C,g∗C),1).

Without loss of generality, assume min(Jl( f ∗C,g∗C),Ju( f ∗C,g∗C)) ≥ 1. Let J( f ,g) = Jl( f ,g) +
Ju( f ,g) and At = { f ,g∈F : eW ( f ,g; f ∗C,g∗C)≤ δ̃2

w,2t−1J( f ∗C,g∗C)≤ J( f ,g) < 2tJ( f ∗C,g∗C)}; t = 1, · · · .
Then, P

(
J( f̂C, ĝC) ≥ J( f ∗C,g∗C)

)
is upper bounded by

P(eW ( f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2
w)+

∞

∑
t=1

P∗
(

sup
At

El,u(W̃ ( f ∗C,g∗C)−W̃ ( f ,g)) ≥ E(W̃ ( f ,g)−W̃ ( f ∗C,g∗C))

)

≤ P(eW ( f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2
w)+

∞

∑
t=1

P∗
(

sup
At

El,u(W̃ ( f ∗C,g∗C)−W̃ ( f ,g)) ≥ (2t−1 −1)λlJ( f ∗C,g∗C)+ δ̃2
w

)

≤ P(eW ( f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2
w)+

∞

∑
t=1

P∗
(

sup
At

El(W̃l( f ∗C)−W̃l( f )) ≥ (2t−1 −1)λlJl + δ̃2
nl

)
+

∞

∑
t=1

P∗
(

sup
At

Eu(W̃u(g
∗
C)−W̃u(g)) ≥ (2t−1 −1)λuJu + δ̃2

nu

)
.
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An application of the same argument in the proof of Theorem 3 yields that for some constants
0 < a10 ≤ a8 and 0 < a11 ≤ a9 that P

(
J( f̂C, ĝC) ≥ J( f ∗C,g∗C)

)
is upper bounded by

P(eW ( f ,g; f ∗C,g∗C) ≥ δ̃2
w)+

∞

∑
t=1

(
3exp(−a11nl((nlC1)

−1Jl( f ∗C,g∗C)2t−1)max(1,2−β f ))+

3exp(−a12nu((nuC2)
−1Ju( f ∗C,g∗C)2t−1)max(1,2−βg))

)

≤ 6.5exp(−a10nl((nlC1)
−1Jl)

max(1,2−β f ))+6.5exp(−a11nu((nuC2)
−1Ju)

max(1,2−βg)).

Note that J( f̂C, ĝC) ≤ s( f̂ , ĝ) ≤ s(1,1) ≤ 2C1nl . There exists a constant B1 > 0 such that

E(C3‖ f̂C − ĝC‖2 +‖ĝC‖2
−) ≤ J( f ∗C,g∗C)+B1 ≤ 2C1 +B1, (16)

since J( f ∗C,g∗C) ≤ ES( f ∗C,g∗C) ≤ ES(1,1) ≤ 2C1. It follows from the KKT condition and (16) that
E|wĝC,0| is bounded by a constant B2, depending only on C1. The desired result follows with a
choice of B = 2C1 +B1 +B2

2.

Lemma 6 (Metric entropy in Example 6.2.1) Under the assumptions there, for v = l or u,

H(ε,Fv,ξ(k)) ≤ O(log(ξ1/(θ+1)/ε)).

Proof: We first show the inequality for Fu,ξ(k). Suppose lines g(x) = 0 and g∗C(x) = 0 inter-
sect lines x(2) = ±1 with two points (ug,1),(vg,−1) and (ug∗C ,1),(vg∗C ,−1), respectively. Note

that e(g,g∗C) ≤ ξ implies P(∆(g,g∗C)) ≤ ξ
1−2τ with ∆(g,g∗C) = {Sign(g(x)) 6= Sign(g∗C(x))}. Direct

calculation yields that P(∆(g,g∗C)) ≥ 1
2 max(|ug − ug∗C |, |vg − vg∗C |)

θ+1, max(|ug − ug∗C |, |vg − vg∗C |) ≤
a
′ξ1/(θ+1) for a constant a

′
> 0. We then cover all possible (ug,1) and (vg,−1) with intervals

of length ε∗. The covering number for these possible points is no more than (2a′ξ1/(θ+1)/ε∗)2.
After these points are covered, we then connect the endpoints of the covering intervals to form
bracket planes l(x) = 0 and u(x) = 0 such that l ≤ g ≤ u, and ‖u − l‖2 ≤ ‖u − l‖∞ ≤ ε∗. Let
U l(g) = 2− 2max(|l±1|, |u±1|) and Uu(g) = 2− 2I(l(x)u(x) > 0)min(|l±1|, |u±1|), then U l(g) ≤
U(g)≤Uu(g) and ‖Uu(g)−U l(g)‖∞ ≤ 2‖|u− l‖∞ ≤ 2ε∗. With ε = 2ε∗, {(U l(g),Uu(g))} forms an
ε-bracketing set of U(g). Therefore, the ε-covering number for Fu,ξ(k) is at most (4a′ξ1/(θ+1)/ε)2,

implying H(ε,Fu,ξ(k)) is upper bounded by O(log(ξ
1

θ+1 /ε)). Furthermore, it is similar to show
the inequality for Fl,ξ(k) since

(
2min(1,1−max(yl(x),yu(x))+),2min(1,1−min(yl(x),yu(x))+)

)

forms a bracket for L(y f (x)) when l ≤ f ≤ u.

Lemma 7 (Metric entropy in Example 6.2.2) Under the assumptions there, for v = l or u,

H(ε,Fv(k)) ≤ O((log(k/ε))3).

Proof: We first show the inequality for Fu(k). Suppose there exist ε-brackets (gl
m,gu

m)M
m=1 for some

M such that for any g ∈ F (k) = {g ∈ F : J(g)≤ k}, gl
m ≤ g ≤ gu

m and ‖gu
m−gl

m‖∞ ≤ ε for some 1 ≤
m≤M. Let U l(g) = 2−2max(|gl

m,±1|, |gu
m,±1|) and Uu(g) = 2−2I(gl

mgu
m > 0)min(|gl

m,±1|, |gu
m,±1|),

then U l(g) ≤ U(g) ≤ Uu(g) and ‖Uu(g)−U l(g)‖∞ ≤ 2‖gu
m − gl

m‖∞ ≤ 2ε. Therefore, (U l(g)−
U(g∗C),Uu(g)−U(g∗C)) forms a bracket of length 2ε for U(g)−U(g∗

C). The desired inequality then
follows from the Example 4 in Zhou (2002) that H∞(ε,F (k))≤ O(log(k/ε)3) under the L∞−metric:
‖g‖∞ = supx∈R 2 |g(x)|. Furthermore, it is similar to show the inequality for Fl(k) as in Lemma 6.
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Lemma 8 For any functions f , g and any constant ρ > 0,

E|Sign( f (X))−Sign(g(X))|I(| f (X)| ≥ ρ) ≤ 2ρ−1E| f (X)−g(X)|.

Proof: The left hand side is 2P(| f (X)| ≥ ρ,Sign( f (X)) 6= Sign(g(X))) ≤ 2P(| f (x)−g(x)| ≥ ρ) ≤
2ρ−1E| f (X)−g(X)| by Chebyshev’s inequality.

Appendix B. Verification of Assumptions A-C in the Theoretical Examples

Linear learning: Since (X(1),Y ) is independent of X(2), ES( f ,g;C) = E(E(S( f ,g;C)|X(2))) ≥
ES( f̃ ∗C, g̃∗C;C) for any f ,g ∈ F , and ( f̃ ∗C, g̃∗C) = argmin f̃ ,g̃∈F1

ES( f̃ , g̃;C) with F1 = {x(1) ∈ R :
f̃ (x) = (1,x(1))

T w : w ∈ R 2} ⊂ F . It then suffices to verify Assumptions A-C over F1 rather
than F . By Lemma 1, the approximation error infC∈C e(g̃∗C, f ∗) = 0. For (13), note that f ∗ mini-
mizes EL(Y f (X)) and g̃∗C minimizes EŨ(g̃) given f̃ ∗C . Direct computation, together with Taylor’s
expansion yields that E(Vh̃(X)) = (e0,e1)Γh̃(e0,e1)

T for any function h̃ = (1,x(1))
T wh̃ ∈ F1 with

wh̃ = wh̃∗ +(e0,e1)
T , where h̃∗ = f ∗ or g̃∗C and Γh̃ is a positive definite matrix. Thus E(Vh̃(X)) ≥

λ1(e2
0 + e2

1) for constant λ1 > 0. Moreover, straightforward calculation yields that |eh̃| ≤ 1
2(1−

2τ)min(|wh̃∗,1|, |wh̃∗,1 + e1|)−(θ+1)|e0|θ+1 ≤ λ2(e2
0 + e2

1)
(θ+1)/2 for some constant λ2 > 0, where

wh̃∗ = (wh̃∗,0,wh̃∗,1). A combination of these two inequalities leads to (13) with αh̃ = (θ + 1)/2.
For (14), note that Var(Vh̃(X)) ≤ ‖h̃− h̃∗‖2

2 = e2
0 + e2

1EX2
(1) ≤ max(1,EX2

(1))(e
2
0 + e2

1). This implies

(14) with βh̃ = 1. For Assumption B, by Lemma 6, H(ε,Fv,ε(k)) ≤ O(log(ε1/(θ+1))/ε) for any

given k, thus φv(ε,k) = a3(log(T−θ/2(θ+1)
v ))1/2/T 1/2

v with Tv = Tv(ε,C,k). Hence supk≥2 φv(ε,k) ≤
O
(
(log(ε−θ/(θ+1)))1/2/ε

)
in (15). Solving (15), we obtain εnl = ( lognl

nl
)1/2 when C1 ∼

J( f ∗)δ−2
nl

n−1
l ∼ lognl and εnu = ( lognu

nu
)1/2 when C2 ∼ J0δ−2

nu
n−1

u ∼ lognu. Assumption C is fulfilled

because E(X2) < ∞. In conclusion, we obtain, by Corollary 4, that infC |e( f̂C, f ∗)| =
Op((n−1

u lognu)
(θ+1)/2). Surprisingly, this rate is arbitrarily fast as θ → ∞.

Kernel learning: Similarly, we restrict our attention to F1 = {x ∈ R : f (x) = wT
f φ̃(x) =

∑∞
k=0 w f ,kφ̃k(x) : w f ∈ R ∞}, where 〈φ̃(x), φ̃(z)〉 = exp(− (x−z)2

2σ2 ).
For (13), note that F is rich for sufficiently large nl in that for any continuous function f , there

exists a f̃ ∈ F such that ‖ f − f̃‖∞ ≤ ε2
nl

, compare with Steinwart (2001). Then f ∗ = argmin f∈F
EL(Y f ) implies ‖ f ∗ − Sign(E(Y |X))‖∞ ≤ ε2

nl
and |EL(Y f ∗)− GE( f ∗)| ≤ 2ε2

nl
. Consequently,

|e( f , f ∗)| ≤ E(V f (X)) + 2ε2
nl

and α f = 1. On the other hand, E(Vg(X)) ≥ −E|g− f ∗C| −E|g∗C −
f ∗C|+ C3

2nuC2
‖g− f ∗C‖2 − C3

2 ‖g∗C − f ∗C‖2. Using the fact that ( f ∗C,g∗C) is the minimizer of ES( f ,g;C),

we have C3
2 ‖g∗C − f ∗C‖2 ≤ ES( f ∗C,g∗C) ≤ ES(1,1) ≤ 2C1. By Sobolev’s inequality (Adams, 1975),

E|g∗C − f ∗C| ≤ λ3‖g∗C − f ∗C‖ ≤ λ3(4C1/C3)
1/2 and E|g− f ∗C| ≤ λ3‖g− f ∗C‖, for some constant λ3 > 0.

Plugging these into the previous inequality, we have eŨ(g,g∗C) ≥ C3
2nuC2

‖g− f ∗C‖2 − λ3‖g− f ∗C‖−
2C1
nuC2

− λ3(4C1/C3)
1/2. By choosing suitable C, we obtain 1

2‖g− f ∗C‖2 − eŨ(g,g∗C)1/2‖g− f ∗C‖−
eŨ(g,g∗C) ≤ 0. Solving this inequality yields ‖g− f ∗C‖ ≤ (1 +

√
5)eŨ(g,g∗C)1/2. Furthermore, by

Lemma 8 and Sobolev’s inequality, for sufficient small λ4 > 0, e(g,g∗C) ≤ E2λ−1
4 | f ∗C(X)−g(X)|+

2P(| f ∗C(X)| ≤ λ4)+ e( f ∗C,g∗C) ≤ 2λ−1
4 (1 +

√
5)E(Vg(X))1/2 + 2P(| f ∗C(X)| ≤ λ4)+ e( f ∗C,g∗C). How-

ever, by Lemma 1, e( f ∗C,g∗C) → 0, and P(| f ∗C(X)| ≤ λ4) ≤ P(| f ∗(X)| − | f ∗(X)− f ∗C(X)| ≤ λ4) =
P(| f ∗(X)| ≤ | f ∗(X)− f ∗C(X)|+ λ4) → 0, as C1,C2,C3 → ∞, because of linearity of f ∗. This yields
(13) with αg = 1/2. For (14), Var(L(Y f (X))− L(Y f ∗(X))) ≤ 2E(L(Y f (X))− L(Y f ∗(X)))2 =
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(w f − w f ∗)
T Γ2(w f − w f ∗) where Γ2 is a positive definite matrix, and similar to Example 6.2.1,

E(Vf (X)) = (w f −w f ∗)Γh̃(w f −w f ∗)
T since f ∗ minimizes E(L(Y f (X))). Therefore, there exists

a constant λ5 > 0 such that Var(L(Y f (X))− L(Y f ∗(X))) ≤ λ5E(Vf (X)). Also, Var(U(g(X))−
U(g∗C(X))) ≤ ‖g−g∗C‖2

2 ≤ 2(‖g− f ∗C‖2 +‖g∗C − f ∗C‖2) ≤ 2((1+
√

3)2eŨ(g,g∗C)+ 4C1
C3

) ≤ (8+2(1+√
3)2)E(Vg(X))), implying (14) with β f = βg = 1. For Assumption B, by Lemma 7, H(ε,Fv(k)) ≤

O((log(kJv/ε))3) for any given k. Similarly, we have εnl = (n−1
l (lognlJl)

3)1/2 when C1 ∼
J( f ∗)δ−2

nl
n−1

l ∼ (lognlJl)
−3 and εnu = (n−1

u (lognuJu)
3)1/2 when C2 ∼ J0δ−2

nu
n−1

u ∼ (lognuJu)
−3. As-

sumption C is fulfilled with the Gaussian kernel.

Appendix C. The Dual Form of (5)

Let ∇ψ(k) = (∇ψ(k)
1 ,∇ψ(k)

2 )T , ∇ψ(k)
1 = C1(∇ψ2(y1 f (k)(x1))y1, · · · ,∇ψ2(ynl f (k)(xnl ))ynl ) and ∇ψ(k)

2 =
2C2(∇U2(g(k)(xnl+1)), · · · ,∇U2(g(k)(xn))). Further, let α = (α1, · · · ,αnl )

T , β = (βnl+1, · · · ,βn)
T ,

γ = (γnl+1, · · · ,γn)
T , yα = (y1α1, · · · ,ynl αnl )

T , and

Theorem 9 (ψ-learning) The dual problem of (4) with respect to (α,β,γ) is

max
α,β,γ

{
−
(

yα
β− γ

)T (
(1+ 1

C3
)Kll +

1
C3

Il Klu

Kul Kuu

)(
yα

β− γ

)
+

(α− (β+ γ))T 1n − (yα − (β− γ))T

(
K∇ψ(k) +

(
∇ψ(k)

1
0nu

))}
,

(17)

subject to

(
2

(
yα

γ−β

)
+∇ψ(k)

)T

1n = 0, 0n ≤ α ≤C11n, 0n ≤ β, 0n ≤ γ, and 0n ≤ β+ γ ≤C21n.

Proof of Theorem 9: For simplicity, we only prove the linear case as the nonlinear case is es-
sentially the same. The kth primal problem in (4), after introducing slack variable ξ, is equivalent
to min(w f ,wg,ξi,ξ j)C1 ∑nl

i=1 ξi +C2 ∑n
j=nl+1 ξ j +

C3
2 ‖w f −wg‖2 + 1

2‖w̃g‖2 −〈w,∇sψ
2 ( f (k),g(k))〉 subject

to constraints 2(1 − yi(〈w f ,xi〉)) ≤ ξi, xi ≥ 0; i = 1, · · · ,nl , and 2(|〈wg,x j〉| − 1) ≤ ξ j, ξ j ≥ 0;
j = nl +1, · · · ,n.

To solve this minimization problem, the Lagrangian multipliers are employed to yield

L(w f ,wg,ξi,ξ j)

= C1

nl

∑
i=1

ξi +C2

n

∑
j=nl+1

ξ j +
C3

2
‖w f −wg‖2 +

1
2
‖w̃g‖2 −〈w,∇sψ

2 (w(k)
f ,w(k)

g )〉+

2
nl

∑
i=1

αi(1− yi(〈w f ,xi〉)−
ξi

2
)+2

n

∑
j=nl+1

β j(〈wg,x j〉−1− ξ j

2
)−

2
n

∑
j=nl+1

γ j(〈wg,x j〉+1+
ξ j

2
)−

nl

∑
i=1

γiξi −
n

∑
j=nl+1

η jξ j, (18)

where αi ≥ 0; i = 1, · · · ,nl , β j ≥ 0, γ j ≥ 0, j = nl + 1, · · · ,n. Differentiate L with respect to
(w f ,wg,ξi,ξ j) and let the partial derivatives be zero, we obtain that ∂L

∂w̃ f
=C3(w̃ f −w̃g)−2∑nl

i=1 αiyixi

−∇ψ(k)
1 f = 0, ∂L

∂w̃g
= w̃g −C3(w̃ f − w̃g)−2∑n

j=nl+1(γ j −β j)x j −∇ψ(k)
1g = 0, ∂L

∂w f ,0
= C3(w f ,0 −wg,0)−
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2∑nl
i=1 αiyi = 0, ∂L

∂wg,0
= −C3(w f ,0 −wg,0)− 2∑n

j=nl+1(γ j −β j)−∇ψ(k)
2g = 0, ∂L

∂ξi
= C1 −αi − γi = 0,

and ∂L
∂ξ j

= C2 −β j − γ j −η j = 0. Solving these equations yields that w̃∗
f = 2(1+C−1

3 )∑nl
i=1 αiyixi +

∑n
j=nl+1(γ j − β j)x j + (1 + C−1

3 )∇ψ(k)
1 f + ∇ψ(k)

1g , w̃∗
g = 2∑nl

i=1 αiyixi + ∑n
j=nl+1(γ j − β j)x j + ∇ψ(k)

1 f +

∇ψ(k)
1g , 2∑nl

i=1 αiyi + 2∑n
j=nl+1(γ j − β j) + ∇ψ(k)

2 f + ∇ψ(k)
2g = 0, αi + γi = C1; i = 1, · · · ,nl , and β j +

γ j + η j = 0; j = nl + 1, · · · ,n. Substituting w̃∗
f , w̃∗

g and these identities into (18), we obtain (17)
after ignoring all constant terms. To derive the corresponding constraints, note that C1−αi−γi = 0,
γi ≥ 0 and αi ≥ 0 implies 0 ≤ αi ≤ C1, η j ≥ 0 and C2 − β j − γ j −η j = 0 implies β j + γ j ≤ C2.
Furthermore, KKT’s condition requires that αi(1 − yi(〈w f ,xi〉)− ξi) = 0, β j(〈wg,x j〉 − 1 − ξ j),
γ j(〈wg,x j〉+1+ξ j) = 0, γiξi = 0, and η jξ j = 0. That is, ξi 6= 0 implies γi = 0 and αi =C1, and ξ j 6= 0
implies η j = 0 and β j + γ j = C2. Therefore, if 0 < αi < C1, then ξi = 0 and 1− yi(〈w f ,xi〉) = 0, if
0 < β j + γ j < C2, then ξ j = 0 and 〈wg,x j〉+1 = 0 or 〈wg,x j〉−1 = 0.

Write the solution of (17) as (α(k+1),β(k+1),γ(k+1)), which yields the solution of (4): w̃(k+1)
f =

2XT

(
(1+ 1

C3
)yα

β− γ

)
+ ∇ψ(k)

(
(1+ 1

C3
)1nl

1nu

)
, and w̃(k+1)

g = 2XT

(
yα

β− γ

)
+ ∇ψ(k)1n, and

(w(k+1)
f ,0 ,w(k+1)

g,0 ) satisfies KKT’s condition in that yi0(K(w̃(k+1)
f ,xi0) + w(k+1)

f ,0 ) = 1 for any i0 with

0 < αi0 < C1, and for any j0 with 0 < β j0 + γ j0 < C2, K(w̃(k+1)
g ,x j0) + w(k+1)

g,0 = 1 if β j0 > 0 or

K(w̃(k+1)
g ,x j0) + w(k+1)

g,0 = −1 if γ j0 > 0. Here K(w̃(k+1)
f ,xi0) = (1 + 1

C3
)∑nl

i=1(2α(k+1)
i yi+

C1∇ψ2( f (k)(xi)))K(xi,xi0) + 2∑n
j=nl+1(γ

(k+1)
j − β(k+1)

j )K(x j,xi0) + 2C2 ∑n
j=nl+1 ∇U2(g(k)(x j))

K(x j,xi0), and K(w̃(k+1)
g ,x j0) = ∑nl

i=1 2α(k+1)
i yiK(xi,x j0) + ∑nl

i=1C1∇ψ2( f (k)(xi))K(xi,x j0)+

2∑n
j=nl+1(γ

(k+1)
j − β(k+1)

j +C2∇U2(g(k)(x j)))K(x j,x j0). When KKT’s condition is not applicable

to determine (w(k+1)
f ,0 ,w(k+1)

g,0 ), that is, there does not exist an i such that 0 < αi < C1 or an j such that

0 < β j + γ j < C2, we may compute (w(k+1)
f ,0 ,w(k+1)

g,0 ) through quadratic programming by substituting

(w̃(k)
f , w̃(k)

g ) into (4).

Theorem 10 (SVM) The dual problem of (4) for SVM with respect to (α,β,γ) is the same as (17)
with (α,β,γ,yα) replaced by 1

2(α,β,γ,yα), and ∇ψ(k) replaced by ∇S(k) = (0, · · · ,0,

C2∇U2(g(k)(xnl+1)), · · · , C2∇U2(g(k)(xn)))
T . Here KKT’s condition remains the same.

Proof of Theorem 10: The proof is similar to that of Theorem 9, and thus is omitted.
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