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Abstract
We introduce the blind subspace deconvolution (BSSD) problem, which is the extension of both the
blind source deconvolution (BSD) and the independent subspace analysis (ISA) tasks. We examine
the case of the undercomplete BSSD (uBSSD). Applying temporal concatenation we reduce this
problem to ISA. The associated ‘high dimensional’ ISA problem can be handled by a recent tech-
nique called joint f-decorrelation (JFD). Similar decorrelation methods have been used previously
for kernel independent component analysis (kernel-ICA). More precisely, the kernel canonical cor-
relation (KCCA) technique is a member of this family, and, as is shown in this paper, the kernel
generalized variance (KGV) method can also be seen as a decorrelation method in the feature space.
These kernel based algorithms will be adapted to the ISA task. In the numerical examples, we (i)
examine how efficiently the emerging higher dimensional ISA tasks can be tackled, and (ii) explore
the working and advantages of the derived kernel-ISA methods.

Keywords: undercomplete blind subspace deconvolution, independent subspace analysis, joint
decorrelation, kernel methods

1. Introduction

Independent component analysis (ICA) (Jutten and Herault, 1991; Comon, 1994) aims to recover
linearly or non-linearly mixed independent and hidden sources. There is a broad range of applica-
tions for ICA, such as blind source separation, feature extraction and denoising. Particular applica-
tions include the analysis of financial and neurobiological data, fMRI, EEG, and MEG. For recent
review concerning ICA the reader is referred to the literature (Hyvärinen et al., 2001; Cichocki and
Amari, 2002).

Traditional ICA algorithms are one-dimensional in the sense that all sources are assumed to be
independent real valued random variables. Nonetheless, applications in which only certain groups
of sources are independent may be highly relevant in practice. In this case, the independent sources
can be multidimensional. For instance, consider the generalization of the cocktail-party problem,
where independent groups of people are talking about independent topics or more than one group
of musicians is playing at the party. The separation task requires an extension of ICA, which can
be called independent subspace analysis (ISA) (Hyvärinen and Hoyer, 2000), multidimensional
independent component analysis (MICA) (Cardoso, 1998), and group ICA (Theis, 2005a). We will
use the first of these abbreviations throughout this paper.
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Strenuous efforts have been made to develop ISA algorithms (Cardoso, 1998; Akaho et al., 1999;
Hyvärinen and Hoyer, 2000; Hyvärinen and Köster, 2006; Vollgraf and Obermayer, 2001; Bach and
Jordan, 2003; Stögbauer et al., 2004; Póczos and Lőrincz, 2005b,a; Theis, 2005a,b, 2006; Szabó
and Lőrincz, 2006; Nolte et al., 2006). For the most part, ISA-related theoretical problems concern
the estimation of entropy or of mutual information. For this, the k-nearest neighbors (Póczos and
Lőrincz, 2005b) and the geodesic spanning tree methods (Póczos and Lőrincz, 2005a) can be ap-
plied. Other recent approaches seek independent subspaces via kernel methods (Bach and Jordan,
2003) and joint block diagonalization (Theis, 2005a, 2006).

Another extension of the original ICA task is the blind source deconvolution (BSD) problem.
Such a problem emerges, for example, at a cocktail-party being held in an echoic room. Several BSD
algorithms were developed in the past. See, for example, the review of Pedersen et al. (2007). Like
ICA, BSD has several applications: (i) remote sensing applications; passive radar/sonar process-
ing (MacDonald and Cain, 2005; Hedgepeth et al., 1999), (ii) image-deblurring, image restoration
(Vural and Sethares, 2006), (iii) speech enhancement using microphone arrays, acoustics (Douglas
et al., 2005; Mitianoudis and Davies, 2003; Roan et al., 2003; Araki et al., 2003), (iv) multi-antenna
wireless communications, sensor networks (Akyildiz et al., 2002; Deligianni et al., 2006), (v)
biomedical signal—EEG, ECG, MEG, fMRI—analysis (Jung et al., 2000; Glover, 1999; Dyrholm
et al., 2007), (vi) optics (Kotzer et al., 1998), (vii) seismic exploration (Karslı, 2006).

The simultaneous assumption of the two extensions, that is, ISA combined with BSD, seems
to be a more realistic model than either of the two models alone. For example, at the cocktail-
party, groups of people or groups of musicians may form independent source groups and echoes
could be present. This task will be called blind subspace deconvolution (BSSD). We treat the
undercomplete case (uBSSD) here. In terms of the cocktail-party problem, it is assumed that there
are more microphones than acoustic sources. Here we note that the complete, and in particular the
overcomplete, BSSD task is challenging and as of yet no general solution is known. We can show
that temporal concatenation turns the uBSSD task into an ISA problem. One of the most stringent
applications of BSSD could be the analysis of EEG or fMRI signals. The ICA assumptions could
be highly problematic here, because some sources may depend one another, so an ISA model seems
better. Furthermore, the passing of information from one area to another and the related delayed
and transformed activities may be modeled as echoes. Thus, one can argue that BSSD may fit this
important problem domain better than ICA or even ISA.

In principle, the ISA problem can be treated with the methods listed above. However, the
dimension of the ISA problem derived from an uBSSD task is not amenable to state-of-the-art ISA
methods. According to a recent decomposition principle, the ISA Separation Theorem (Szabó et al.,
2006b), the ISA task can be divided into two consecutive steps under certain conditions: after the
application of the ICA algorithm, the ICA elements need to be grouped.1 The importance of this
direction stems from the fact that ICA methods can deal with problems in high dimensions. The
derived ISA task will be solved with the use of the decomposition principle augmented by the joint
f-decorrelation (JFD) technique (Szabó and Lőrincz, 2006).

We show other ISA approaches beyond the JFD method: We adapted the kernel canonical cor-
relation analysis (KCCA) and the kernel generalized variance (KGV) methods (Bach and Jordan,
2002) to measure the mutual dependency of multidimensional variables. One can show that simi-

1. The possibility of such a decomposition principle was suspected by Cardoso (1998), who based his conjecture on
numerical experiments. To the best of our knowledge, a proof encompassing sufficient conditions for this intriguing
hypothesis was first published by Szabó et al. (2006a).
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larly to the JFD and the KCCA methods, the KGV technique deals with nonlinear decorrelation in
function spaces. We found that they can be more precise but are limited to smaller problems.

The paper is structured as follows: Section 2 formulates the problem domain. Section 3 shows
how to transform the uBSSD task into an ISA task. The JFD method, which we use to solve the
derived ISA task, is the subject of Section 4. This section also addresses how to tailor the KCCA and
KGV kernel-ICA methods to solve the ISA problem. Section 5 contains the numerical illustrations
and conclusions are drawn in Section 6.

2. The BSSD and the ISA Model

The BSSD task and its special case, the ISA model, are defined in Section 2.1. Section 2.2 details
the ambiguities of the ISA task. Section 2.3 introduces some possible ISA cost functions.

2.1 The BSSD Equations

Here, we define the BSSD task. Assume that we have M hidden, independent, multidimensional
components (random variables). Suppose also that only their casual FIR filtered mixture is available
for observation:2

x(t) =
L

∑
l=0

Hls(t − l), (1)

where s(t) =
[
s1(t); . . . ;sM(t)

]
∈ R

Md is a vector concatenated of components sm(t) ∈ R
d . For a

given m, sm(t) is i.i.d. (independent and identically distributed) in time t, sms are non-Gaussian, and
I(s1, . . . ,sM) = 0, where I stands for the mutual information of the arguments. The total dimension
of the components is Ds := Md, the dimension of the observation x is Dx. Matrices Hl ∈ R

Dx×Ds

(l = 0, . . . ,L) describe the mixing, these are the mixing matrices. Without any loss of generality
it may be assumed that E[s] = 0, where E denotes the expectation value. Then E[x] = 0 holds, as
well. The goal of the BSSD problem is to estimate the original source s(t) by using observations
x(t) only.

The case L = 0 corresponds to the ISA task, and if d = 1 also holds then the ICA task is
recovered. In the BSD task d = 1 and L is a non-negative integer. Dx > Ds is the undercomplete,
Dx = Ds is the complete, and Dx < Ds is the overcomplete task. Here, we treat the undercomplete
BSSD (uBSSD) problem. We will transform the uBSSD task to undercomplete ISA (uISA) or to
complete ISA. From now on they both will be called ISA.

Note 1 Mixing matrices Hl (0 ≤ l ≤ L) have a one-to-one mapping to polynomial matrix3

H[z] := ∑L
l=0 Hlz−l ∈ R[z]Dx×Ds , where z is the time-shift operation, that is (z−1u)(t) = u(t −1).

H[z] may be regarded as an operation that maps Ds-dimensional series to Dx-dimensional series.
Equation (1) can be written as x = H[z]s.

Note 2 It can be shown (Rajagopal and Potter, 2003) that in the uBSSD task H[z] has a polynomial
matrix left inverse W[z] ∈ R[z]Dx×Ds with probability 1, under mild conditions. In other words, for
these polynomial matrices W[z] and H[z], W[z]H[z] is the identity mapping. The mild condition is as
follows: Coefficients of polynomial matrix H[z], that is, random matrix [H0; . . . ;HL] is drawn from

2. Causal: l ≥ 0 in ∑l . FIR: the number of terms in the sum is finite.
3. H[z] is also known as channel matrix or transfer function in the literature.
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a continuous distribution. Under this condition, hidden source s(t) can be estimated by a suitable
causal FIR filtered form of observation x(t).

For the uBSSD task it is assumed that H[z] has a polynomial matrix left inverse. For the uISA
and ISA tasks it is supposed that mixing matrix H0 ∈ R

Dx×Ds has full column rank, that is its rank is
Ds.

2.2 Ambiguities of the ISA Model

Because the uBSSD task will be reduced to ISA, it is important to see the ambiguities of the ISA
task. First, the complete ISA problem (L = 0,Dx = Ds) is presented, the undercomplete ISA will be
treated later.

The identification of the ISA model is ambiguous. However, the ambiguities are simple (Theis,
2004): hidden multidimensional components can be determined up to permutation and up to in-
vertible transformation within the subspaces. Ambiguities within the subspaces can be weakened.
Namely, because of the invertibility of mixing matrix H[z] = H0 ∈ R

Ds×Ds , it can be assumed with-
out any loss of generality that both the sources and the observation are white, that is,

E[s] = 0,cov [s] = IDs ,

E[x] = 0,cov [x] = IDx ,

where IDs is the Ds-dimensional identity matrix and cov is the covariance matrix. It then follows
that the mixing matrix H0 and thus the demixing matrix W = H−1

0 are orthogonal:

IDs = cov[x] = E [xx∗] = H0E [ss∗]H∗
0 = H0IDsH

∗
0 = H0H∗

0,

where ∗ denotes transposition. In sum, H0,W ∈ ODs , where ODs denotes the set of Ds-dimensional
orthogonal matrices. Now, sm sources are determined up to permutation and orthogonal transforma-
tion.

In order to transform the undercomplete ISA task into a complete ISA task with white observa-
tions let C := cov[x] = E[xx∗] = H0H∗

0 ∈ R
Dx×Dx denote the covariance matrix of the observation.

Rank of C is Ds, since the rank of matrix H0 is Ds according to our assumptions. Matrix C is
symmetric (C = C∗), thus it can be decomposed as follows: C = UDU∗, where U ∈ R

Dx×Ds , and
the columns of matrix U are orthogonal, that is, U∗U = IDs . Furthermore, the rank of diagonal
matrix D ∈ R

Ds×Ds is Ds. The principal component analysis can provide a decomposition in the
desired form. Let Q := D−1/2U∗ ∈ R

Ds×Dx . Then the original observation x can be modified to
x′ := Qx = QH0s ∈ R

Ds . The resulting x′ is white and can be regarded as the observation of a
complete ISA task having mixing matrix QH0 ∈ ODs .

2.3 ISA Cost Functions

After the whitening procedure (Section 2.2), the ISA task can be viewed as the minimization of the
mutual information between the estimated components on the orthogonal group:

JI(W) := I
(
y1, . . . ,yM) , (2)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ R

d , and W ∈ OD. This formulation of the ISA task serves
us in Section 4.1, where we estimate the dependencies of the multidimensional variables.
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The ISA task can be rewritten into the minimization of the sum of Shannon’s multidimensional
differential entropies (Póczos and Lőrincz, 2005b):

JH(W) :=
M

∑
m=1

H (ym) , (3)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ R

d , W ∈ OD.

Note 3 Until now, we formulated the ISA task by means of the entropy or the mutual information of
multidimensional random variables, see Equations (2) and (3). However, any algorithm that treats
mutual information between 1-dimensional random variables can also be sufficient. This statement
is based on the considerations below. Well-known identities of mutual information and entropy
expressions (Cover and Thomas, 1991) show that the minimization of cost function

JH,I(W) :=
M

∑
m=1

d

∑
i=1

H(ym
i )−

M

∑
m=1

I(ym
1 , . . . ,ym

d ),

or that of

JI,I(W) := I
(
y1

1, . . . ,y
M
d

)
−

M

∑
m=1

I (ym
1 , . . . ,ym

d )

can also solve the ISA task. Here, y = Wx is the estimated ISA source, where x ∈ R
D is the

whitened observation in the ISA model. W ∈ OD is the estimated ISA demixing matrix, and in
y =

[
y1; . . . ;yM

]
∈ R

D the ym ∈ R
d , m = 1, . . . ,M, represent the estimated components with coordi-

nates ym
i ∈ R. The first term of both cost functions JH,I and JI,I is an ICA cost function. Thus, these

first terms can be fixed by means of ICA preprocessing.4 In this case, if the Separation Theorem
holds (for details see Section 3.2), then term ∑M

m=1 I(ym
1 , . . . ,ym

d ) implies that the maximization of
the sum of mutual information between 1-dimensional random variables within the subspaces is
sufficient for solving the ISA task.

3. Reduction Steps

Here we show that the direct search for inverse FIR filter can be circumvented (Note 2). Namely,
temporal concatenation reduces the uBSSD task to an (u)ISA problem (Section 3.1). Our earlier
results will allow further simplifications. We will reduce the ISA task to an ICA task plus a search
for optimal permutation of the ICA coordinates. This decomposition principle will be elaborated in
Section 3.2 by means of the Separation Theorem.

3.1 Reduction of uBSSD to (u)ISA

We reduce the uBSSD task to an ISA problem. The BSD literature provides the basis for our
reduction; Févotte and Doncarli (2003) use temporal concatenation in their work. This method can
be extended to multidimensional sm components in a natural fashion:

Let L′ be such that
DxL′ ≥ Ds(L+L′) (4)

4. From the algorithmic point of view, any ICA algorithm that minimizes cost function I(y1
1, . . . ,y

M
d ) suits the ICA

preprocessing step.
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is fulfilled. Such L′ exists due to the undercomplete assumption Dx > Ds:

L′ ≥

⌈
DsL

Dx −Ds

⌉
. (5)

This choice of L′ guarantees that the reduction gives rise to an (under)complete ISA task: let xm(t)
denote the mth coordinate of observation x(t) and let the matrix Hl ∈ R

Dx×Md be decomposed into
1× d sized blocks. That is, Hl = [Hi j

l ]i=1..Dx, j=1..M (Hi j
l ∈ R

1×d), where i and j denote row and
column indices, respectively. Using notations

Sm(t) := [sm(t);sm(t −1); . . . ;sm(t − (L+L′)+1)] ∈ R
d(L+L′),

Xm(t) := [xm(t);xm(t −1); . . . ;xm(t −L′ +1)] ∈ R
L′
,

S(t) := [S1(t); . . . ;SM(t)] ∈ R
Md(L+L′)=Ds(L+L′),

X(t) := [X1(t); . . . ;XDx(t)] ∈ R
DxL′

,

Ai j :=




Hi j
0 . . . Hi j

L 0 . . . 0
. . . . . .

. . . . . .

0 . . . 0 Hi j
0 . . . Hi j

L



∈ R

L′×d(L+L′),

A := [Ai j]i=1..Dx, j=1..M ∈ R
DxL′×Md(L+L′)=DxL′×Ds(L+L′),

model
X(t) = AS(t) (6)

can be obtained. Here, sm(t)s are i.i.d. in time t, they are independent for different m values, and
Equation (4) holds for L′. Thus, (6) is either an undercomplete or a complete ISA task, depending
on the relation of the l.h.s and the r.h.s of (4): the task is complete if the two sides are equal. The
number of the components and the dimension of the components in task (6) are M(L+L′) and d,
respectively.

If we end up with an undercomplete ISA problem in (6) then it can be reduced to a complete
one, as was shown in Section 2.2. Thus, choosing the minimal value for L′ in (5), the dimension of
the obtained ISA task is

DISA := Ds(L+L′) = Ds

(
L+

⌈
DsL

Dx −Ds

⌉)
. (7)

Taking into account the ambiguities of the ISA task (Section 2.2), the original sm components will
occur L + L

′
times and up to orthogonal transformations. As a result, in the ideal case, our estima-

tions are as follows
ŝm

k := Fm
k sm ∈ R

d ,

where k = 1, . . . ,L+L′, Fm
k ∈ Od .

3.2 Reduction of ISA to ICA

The Separation Theorem (Szabó et al., 2006b) conjectured by Cardoso (1998) allows one to de-
compose the solution of the ISA problem, under certain conditions, into 2 steps: In the first step,
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ICA estimation is executed by minimizing I(y1
1, . . . ,y

M
d ). In the second step, the ICA elements are

grouped by finding an optimal permutation. This principle will be formalized in Section 3.2.1.
Section 3.2.2 provides sufficient conditions for the theorem.

3.2.1 THE ISA SEPARATION THEOREM

We state the ISA Separation Theorem for components having possibly different dm dimensions:

Theorem 1 (Separation Theorem for ISA) Let y = [y1; . . . ;yD] = Wx ∈ R
D, where W ∈ OD, x ∈

R
D is the whitened observation of the ISA model, and D = ∑M

m=1 dm. Let Sdm denote the surface of
the dm-dimensional unit sphere, that is Sdm := {w ∈ R

dm : ∑dm
i=1 w2

i = 1}.
Presume that the u := sm ∈ R

dm sources (m = 1, . . . ,M) of the ISA model satisfy condition

H

(
dm

∑
i=1

wiui

)
≥

dm

∑
i=1

w2
i H (ui) ,∀w ∈ Sdm , (8)

and that the ICA cost function JICA(W) = ∑D
i=1 H(yi) has minimum over the orthogonal matrices in

WICA. Then it is sufficient to search for the solution to the ISA task as a permutation of the solution
of the ICA task. Using the concept of demixing matrices, it is sufficient to explore forms

WISA = PWICA,

where P ∈ R
D×D is a permutation matrix to be determined and WISA is the ISA demixing matrix.

The proof of the theorem is presented in Appendix A. It is intriguing that if (8) is satisfied then the
simple decomposition principle provides the global minimum of (2). In the literature on joint block
diagonalization (JBD) Abed-Meraim and Belouchrani (2004) have put forth a similar conjecture
recently. According to this conjecture, for quadratic cost function, if Jacobi optimization is applied,
the block-diagonalization of the matrices can be found by the optimization of permutations follow-
ing the joint diagonalization of the matrices. ISA solutions formulated within the JBD framework
(Theis, 2005a,b, 2006; Szabó and Lőrincz, 2006) make efficient use of this idea in practice. Theis
(2006) could justify this approach for local minimum points.

3.2.2 SUFFICIENT CONDITIONS OF THE ISA SEPARATION THEOREM

The question of which types of sources satisfy the Separation Theorem is open. Equation (8) pro-
vides only a sufficient condition. Below, we list sources sm that satisfy (8). Details and the extension
of the Separation Theorem for complex variables can be found in a technical report of Szabó et al.
(2006b).

1. Assume that variables u = sm satisfy the so-called w-EPI condition (EPI is shorthand for the
entropy power inequality, Cover and Thomas, 1991), that is,

e2H(∑d
i=1 wiui) ≥

d

∑
i=1

e2H(wiui),∀w ∈ Sd . (9)

Then inequality (8) holds for these variables too. The proof can be found in Lemma 1 of
Appendix A.
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2. The (9) w-EPI condition is valid

(a) for spherically symmetric or shortly spherical variables (Fang et al., 1990). The dis-
tribution of such variables is invariant for orthogonal transformations.5 Sketch of the
proof (u = sm): the w-EPI condition concerns projections to unit vectors. For spherical
variables, the distribution and thus the entropy of these projections are independent of
w ∈ Sd . Because e2H(wiui) = e2H(ui)w2

i and w ∈ Sd , the w-EPI is satisfied with equality
∀w ∈ Sd . �

(b) for 2-dimensional variables invariant to 90◦ rotation. Under this condition, density func-
tion h of component sm is subject to the following invariance

h(u1,u2) = h(−u2,u1) = h(−u1,−u2) = h(u2,−u1)
(
∀u ∈ R

2) .

Sketch of the proof (u = sm): Assume that function f : S2 3 w 7→ H
(
∑d

i=1 wiui
)

has
global minimum on set S2 ∩{w ≥ 0}.6 Let this minimum be at wm ∈ R

2. Then, the 90◦

invariance warrants that function f take its global minimum also on w⊥
m ∈ R

2, which
is perpendicular to wm. Let (Cm)∗ = [wm,w⊥

m ] ∈ O2. Now, we can estimate variables
Cmsm. This is sufficient because the ISA solution is ambiguous up to orthogonal trans-
formations within each subspace. �

A special case of this requirement is invariance to permutation and sign changes

h(±u1,±u2) = h(±u2,±u1).

In other words, there exists a function g : R
2 → R, which is symmetric in its variables

and

h(u) = g(|u1|, |u2|).

Special cases within this family are distributions

h(u) = g

(
∑

i

|ui|
p

)
(p > 0),

which are constant over the spheres of Lp-space. They are called Lp spherical variables
which, for p = 2, corresponds to spherical variables.

(c) for certain weakly dependent variables: Takano (1995) has determined sufficient condi-
tions when EPI holds.7 If the EPI property is satisfied on unit sphere Sd , then the ISA
Separation Theorem holds (Lemma 1).

These results are summarized schematically in Table 1.

5. In the ISA task the non-degenerate affine transformations of spherical variables, the so called elliptical variables, do
not provide valuable generalizations due to the ambiguities of the ISA task.

6. Relation w ≥ 0 concerns each coordinate.
7. The constraint of d = 2 may be generalized to higher dimensions. We are not aware of such generalizations.
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invariance to 90◦ rotation (d = 2)

��

specially
S

S

S

S

S

))S

S

S

S

S

invariance to sign and permutation

specially
��

Lp spherical (p > 0)

Takano’s dependency
(d = 2)

+3 w-EPI

��

spherical symmetryks

generalization for d = 2

OO

Equation (8): sufficient
for the ISA Separation Theorem

Table 1: Sufficient conditions for the ISA Separation Theorem.

4. ISA Methods

We showed how to convert the uBSSD task to an ISA task in Section 3.1. In the following we
will present methods that can solve the ISA task. In Section 4.1 we treat estimations of the mutual
information of the ISA cost functions in Section 2.3. Methods that can optimize these cost functions
are elaborated in Section 4.2. We also present here the pseudocode of the procedures studied.
In Section 4.3 we review methods that can treat non-equal or unknown component dimensions.
In what follows, and in accordance with (1), let x ∈ R

D denote the whitened observation, while
y = [y1; . . . ;yM] = Wx ∈ R

D (W ∈ OD) and ym ∈ R
d (m = 1, . . . ,M) stand for the estimated source

and its components in the ISA task, respectively.

4.1 Dependency Estimations

Here we introduce two dependency estimators. First, in Section 4.1.1 we describe a decorrelation
method that uses a set of functions jointly. This method is called joint f-decorrelation (JFD) method
(Szabó and Lőrincz, 2006). Our second technique (Section 4.1.2) generalizes earlier kernel-ICA
methods for the ISA task. The motivation for this latter method is the efficiency and precision of
kernel-ICA methods in finding independent components (Bach and Jordan, 2002). Our experiences
are similar with kernel-ISA methods, see Section 5.3. We found that kernel-ISA methods need more
computations, but can provide more precise solutions than the JFD technique.

4.1.1 THE JFD METHOD

The JFD method estimates the hidden sm components through the decorrelation over a function set
F(3 f) (Szabó and Lőrincz, 2006). Formally, let the empirical f-covariance matrix of y(t) and ym(t)
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for function f = [f1; . . . ; fM] ∈ F over t = 1, . . . ,T be denoted by

Σ(f,T,W) = ĉov [f(y) , f(y)] =

=
1
T

T

∑
t=1

{
f[y(t)]−

1
T

T

∑
k=1

f[y(k)]

}{
f[y(t)]−

1
T

T

∑
k=1

f[y(k)]

}∗

,

Σi, j(f,T,W) = ĉov
[
fi (yi) , f j (y j)]=

=
1
T

T

∑
t=1

{
fi[yi(t)]−

1
T

T

∑
k=1

fi[yi(k)]

}{
f j[y j(t)]−

1
T

T

∑
k=1

f j[y j(k)]

}∗

.

Then, the joint decorrelation on F can be formulated as the minimization of cost function

JJFD(W) := ∑
f∈F

‖N◦Σ(f,T,W)‖2
F . (10)

Here: (i) W ∈ OD, (ii) F denotes a set of R
D → R

D functions, and each function acts on each coor-
dinate separately, (iii) ◦ denotes the point-wise multiplication, called the Hadamard-product, (iv) N
masks according to the subspaces, N := ED−IM ⊗Ed , where all elements of matrix ED ∈ R

D×D and
Ed ∈ R

d×d are equal to 1, ⊗ is the Kronecker-product, (v) ‖·‖2
F denotes the square of the Frobenius

norm, that is, the sum of the squares of the elements.
Cost function (10) can be interpreted as follows: for any function fm : R

d → R
d that acts on

independent variables ym (m = 1, . . . ,M) the variables fm(ym) remain independent. Thus, covari-
ance matrix Σ(f,T,W) of variable f(y) =

[
f1
(
y1
)

; . . . ; fM
(
yM
)]

is block-diagonal. Independence
of estimated sources ym is gauged by the uncorrelatedness on the function set F. Thus, the non-
block-diagonal portions (Σi, j(f,T,W), i 6= j) of covariance matrices Σ(f,T,W) are punished. This
principle is expressed by the term ‖N◦Σ(f,T,W)‖2

F .

4.1.2 KERNEL-ISA METHODS

Two alternatives for the ISA cost function of (10) are presented. They estimate the mutual informa-
tion based ISA cost defined in (2) via kernels: the KCCA and KGV kernel-ICA methods of Bach
and Jordan (2002) are extended to the ISA task. The original methods estimate pair-wise indepen-
dence between 1-dimensional random variables.8 The extension to the multidimensional case is
straightforward, the arguments of the kernels can be modified to multidimensional variables and
the derivation of Bach and Jordan (2002) can be followed. The main steps are provided below for
the sake of completeness. The resulting expressions can be used for the estimation of dependence
between multidimensional random variables. The performance of these simple extensions on the
related ISA applications is shown in Section 5.3.2.

The KCCA Method First, the 2-variable-case is treated and then it will be generalized to many
variables.

2-variable-case Assume that the mutual dependence of two random variables u∈R
d1 and v∈R

d2

has to be measured. Let positive semi-definite kernels ku(·, ·) : R
d1 ×R

d1 → R, and kv(·, ·) : R
d2 ×

8. We note that if our observations are generated by an ISA model then—unlike in the ICA task when d = 1—pairwise
independence is not equivalent to mutual independence (Comon, 1994; Póczos and Lőrincz, 2005a). Nonetheless,
according to our numerical experiences it is an efficient approximation in many situations.
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R
d2 → R be chosen in the respective spaces. Let Fu and Fv denote the reproducing kernel Hilbert

spaces (RKHS) (Aronszajn, 1950; Wahba, 1999; Schölkopf et al., 1999) associated with the kernels.
Here, Fu and Fv are function spaces having elements that perform mappings R

d1 →R and R
d2 →R,

respectively. Then the mutual dependence between u and v can be measured, for instance, by the
following expression:

J∗KCCA(u,v,Fu,Fv) := sup
g∈Fu,h∈Fv

corr[g(u),h(v)],

where corr denotes correlation.
The value of J∗KCCA can be estimated empirically: assume that we have T samples both from

u and from v. These samples are u1, . . . ,uT ∈ R
d1 and v1, . . . ,vT ∈ R

d2 . Then, using notations

ḡ := 1
T

T
∑

k=1
g(uk), h̄ := 1

T

T
∑

k=1
g(vk), the empirical estimation of J∗KCCA could be the following:

J∗,emp
KCCA(u,v,Fu,Fv) := sup

g∈Fu,h∈Fv

1
T ∑T

t=1[g(ut)− ḡ][h(vt)− h̄]√
1
T ∑T

t=1[g(ut)− ḡ]2
√

1
T ∑T

t=1[h(vt)− h̄]2
.

However, it is worth including some regularization for J∗
KCCA (Fukumizu et al., 2007), therefore

J∗KCCA is modified to

JKCCA(u,v,Fu,Fv) := sup
g∈Fu,h∈Fv

cov[g(u),h(v)]√
var [g(u)]+κ‖g‖2

Fu

√
var [h(v)]+κ‖h‖2

Fv

, (11)

where expression ‘var’ stands for variance, κ > 0 is the regularization parameter, ‖.‖2
Fu and ‖.‖2

Fv

denote the RKHS norm of their arguments in Fu and Fv, respectively. Now, expanding the denom-
inator up to second order in κ, setting the expectation value of the samples to zero in the respective
RKHSs, and using the notation κ2 := κT

2 (Bach and Jordan, 2002), the empirical estimation of (11)
is

Ĵemp
KCCA(u,v,Fu,Fv) = sup

c1∈RT ,c2∈RT

c∗1K̃uK̃vc2√
c∗1
(

K̃u +κ2IT

)2
c1

√
c∗2
(

K̃v +κ2IT

)2
c2

, (12)

where K̃u, K̃v ∈ R
T×T are the so-called centered kernel matrices: These matrices are derived from

kernel matrices Ku = [k(ui,u j)]i, j=1,...,T ,Kv = [k(vi,v j)]i, j=1,...,T ∈R
T×T , as is described below. Let

1T ∈ R
T denote a vector whose all elements are equal to 1 and let H := IT − 1

T 1T 1∗T ∈ R
T×T denote

the so-called T -dimensional centering matrix. Then K̃u := HKuH, K̃v := HKvH.

Computing the stationary points of Ĵ emp
KCCA in (12), that is, setting 0 =

∂Ĵ emp
KCCA
∂c , the resulting task

is to solve a generalized eigenvalue problem of the form Cξ = µDξ:
(

(K̃u +κ2IT )2 K̃uK̃v

K̃vK̃u (K̃v +κ2IT )2

)(
c1

c2

)
= (1+ γ)

(
(K̃u +κ2IT )2 0

0 (K̃v +κ2IT )2

)(
c1

c2

)
,

where the objective is to maximize γ := c∗1K̃uK̃vc2. Our task is to estimate Ĵ emp
KCCA, the maximum of

γ.
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Generalization for many variables The KCCA method can be generalized for more than two
random variables and can be used to measure pair-wise dependence: Let us introduce the fol-
lowing notations: Let y1 ∈ R

d1 , . . . ,yM ∈ R
dM be random variables. We want to measure the

dependence between these variables. Let positive semi-definite kernels km(·, ·) : R
dm ×R

dm → R

(m = 1, . . . ,M) be chosen in the respective spaces. Let Fm denote the RKHS associated with ker-
nel km(·, ·). Having T samples ym

1 , . . . ,ym
T for all random variables ym (m = 1, . . . ,M), matrices

Km := [km(ym
i ,ym

j )]i, j=1,...,T ∈ R
T×T and K̃m := HKmH ∈ R

T×T can be created. Let the regular-
ization parameter be chosen as κ > 0 and let κ2 denote the auxiliary variable κ2 := κT

2 . It can be
proven that the computation of Ĵ emp

KCCA involves the solution of the following generalized eigenvalue
problem:




(K̃1 +κ2IT )2 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 (K̃2 +κ2IT )2 · · · K̃2K̃M

...
...

...
K̃MK̃1 K̃MK̃2 · · · (K̃M +κ2IT )2







c1

c2
...

cM


= (13)

= λ




(K̃1 +κ2IT )2 0 · · · 0
0 (K̃2 +κ2I)2 · · · 0
...

...
...

0 0 · · · (K̃M +κ2I)2







c1

c2
...

cM


 .

Analogously to the two-variable-case, the largest eigenvalue of this task is a measure of the value
of the pair-wise dependence of the random variables.

The KGV Method Equation (2) in Section 2.3 indicates that the ISA task can be seen as the
minimization of the mutual information. The basic idea of the KGV technique is that—even for
non-Gaussian variables—it estimates the mutual information by the Gaussian approximation (Bach
and Jordan, 2002). Namely, let y = [y1; . . . ,yM] be multidimensional normal random variable with
covariance matrix C. Let Ci, j ∈ R

dm×dm denote the cross-covariance between components of ym ∈
R

dm . The mutual information between components y1, . . . ,yM is (Cover and Thomas, 1991):

I(y1, . . . ,yM) = −
1
2

log

(
detC

∏M
m=1 detCm,m

)
.

The quotient detC
∏M

m=1 detCm,m is called the generalized variance. If y is not normal—this is the typical

situation in the ISA task—then let us transform the individual components ym using feature mapping
ϕ associated with the reproducing kernel and assume that the image is a normal variable. Thus, the
cost function

JKGV(W) := −
1
2

log

[
det(K )

∏M
m=1 det(K m,m)

]
(14)

is associated with the ISA task. In Equation (14) φ(y) := [ϕ(y1); . . . ;ϕ(yM)], K := cov[φ(y)],
and the sub-matrices are K i, j = cov[ϕ(yi),ϕ(y j)]. Expression det(K )

∏M
m=1 det(K m,m)

is called the kernel

generalized variance (KGV).
The next theorem shows that the KGV technique can be interpreted as a decorrelation based

method:
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Theorem 2 Let Σ ∈ R
D×D be a positive semi-definite matrix, let Σm,m ∈ R

dm×dm denote the mth

block in the diagonal of matrix Σ, and let D = ∑M
m=1 dm. Then the function

0 ≤ Q(Σ) := −
1
2

log

[
det(Σ)

∏M
m=1 det(Σm,m)

]

is 0 iff Σ = blockdiag(Σ1,1, . . . ,ΣM,M).

This theorem can be proven for dm ≥ 1, as in the case of dm = 1 (Cover and Thomas, 1991), see
the work of Szabó and Lőrincz (2006). The theorem implies the following:

Corollary Setting Σ := K , the KGV technique is a decorrelation technique according to feature
mapping ϕ. The KGV technique aims at minimizing of cross-covariances K i, j = cov[ϕ(yi),ϕ(y j)]
to 0.

We note that the kernel covariance (KC) ICA method (Gretton et al., 2005)—similarly to the
KCCA method—can be extended to measure the mutual dependence of multidimensional random
variables and thus to solve the ISA task. Again, the computation of the cost function can be con-
verted to the solution of a generalized eigenvalue problem. This eigenvalue problem is provided in
Appendix B for the sake of completeness.

Note 4 The KCCA, KGV and KC methods can estimate only pair-wise dependence. Nonetheless,
the joint mutual information can be estimated by recursive methods computing pair-wise mutual
information: for the mutual information of random variables ym ∈ R

dm (m = 1, . . . ,M) it can be
shown that the recursive relation

I(y1, . . . ,yM) =
M

∑
m=1

I
(
ym,
[
ym+1, . . . ,yM]) (15)

holds (Cover and Thomas, 1991). Thus, for example, the KCCA eigenvalue problem of (13) can be
replaced by pair-wise estimation of mutual information. We note that the tree-dependent component
analysis model (Bach and Jordan, 2003) estimates the joint mutual information from the pair-wise
mutual information.

4.2 Optimization of ISA Costs

There are several possibilities to optimize ISA cost functions:

1. Without ICA preprocessing, optimization problems concern either the Stiefel manifold (Edel-
man et al., 1998; Lippert, 1998; Plumbley, 2004; Quinquis et al., 2006) or the flag manifold
(Nishimori et al., 2006). According to our experiences, these gradient based optimization
methods may be stuck in poor local minima.

2. According to the ISA Separation Theorem, it may be sufficient to search for optimal permuta-
tion of the ICA components provided by ICA preprocessing. We applied greedy permutation
search: two coordinates of different subspaces are exchanged provided that this change de-
creases cost function J. Here, J denotes, for example, JJFD, JKCCA, or JKGV depending on the
ISA technique applied. The variable of J is the permutation matrix P using the parametriza-
tion WISA = PWICA. Pseudocode is provided in Table 2. Our experiences show that greedy
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Input of the algorithm
ISA observation: {x(t)}t=1,...,T

Optimization9

ICA: on the whitened observation x ⇒ ŝICA estimation
Permutation search

P := ID

repeat
sequentially for ∀p ∈ Gm1 ,q ∈ Gm2(m1 6= m2) :

if J(PpqP) < J(P)
P := PpqP

end
until J(·) decreases in the sweep above

Estimation
ŝISA = PŝICA

Table 2: Pseudocode of the ISA Algorithm. Cost J stands for the ISA cost function of JFD, KCCA,
or KGV methods. The permutation matrix of the ISA Separation Theorem is the variable of J.

permutation search is often sufficient for the estimation of the ISA subspaces. However, it
is easy to generate examples in which this is not true (Póczos and Lőrincz, 2005a). In such
cases, global permutation search method of higher computational burden may become neces-
sary (Szabó et al., 2006a).

4.3 Different and Unknown Component Dimensions

Here we give a quick overview how one can handle situations when the dimensions of the subspaces
are unequal, unknown, or both. Note that the introduced uBSSD-ISA reduction, the ISA ambiguities
(Theis, 2006) and the Separation Theorem remain the same for subspaces of different dimensions,
and thus it is sufficient to consider the ISA problem.

1. If the dimensions of the subspaces are different but known, the ISA task can be solved

(a) the mask N of the JFD method should be modified (see Equation 10).

(b) the kernel-ISA methods include this situation; they were introduced for different sub-
space dimensions.

2. If the dimension of the hidden source s is known, but the individual dimensions of compo-
nents sm are not, then clustering can exploit the dependencies between the coordinates of the
estimated sources. For example:

(a) If we assume that the hidden s source has block diagonal AR dynamics of the form
s(t + 1) = Fs(t) + e(t)—F = blockdiag

(
F1, . . . ,FM

)
—then connectivity of the esti-

mated matrix F̂ may help (Póczos and Lőrincz, 2006). One may assume that the i and
the j coordinates are ‘F̂-connected’ if value max{|F̂i j|, |F̂ji|} is above a certain threshold.

9. Let G1, . . . ,GM denote the indices of the 1st , . . . ,Mth subspaces, that is, Gm := {(m−1)d +1, . . . ,md}, and permuta-
tion matrix Ppq exchanges coordinates p and q.
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(b) Similar considerations can be applied in the ISA problem, for example, by using cumu-
lant based matrices (Theis, 2006).

(c) Weaknesses of the threshold based method include (i) the uncertainty in choosing the
threshold, and (ii) the fact that the methods are sensitive to the threshold. More ro-
bust solutions can be designed if the dependencies, for example, the mutual information
amongst the coordinates, are used to construct an adjacency matrix and apply a cluster-
ing method for this matrix. One might use, for example, hierarchical (Stögbauer et al.,
2004) or tree-structured clustering methods (Bach and Jordan, 2003).

5. Illustrations

The efficiency of the algorithms of Section 4 are illustrated. Test cases are introduced in Section 5.1.
The quality of the solutions will be measured by the normalized Amari-error, the Amari-index
(Section 5.2). Numerical results are presented in Section 5.3.

5.1 Databases

We define five databases to study our identification algorithms. We do not know whether they satisfy
(8) or not. According to our experiences, the ISA Separation Theorem works on these examples.

5.1.1 THE 3D-GEOM, THE CELEBRITIES AND THE ABC DATABASE

The first 3 databases are illustrated in Figure 1. In the 3D-geom test sms were random variables
uniformly distributed on 3-dimensional geometric forms (d = 3). We chose 6 different components
(M = 6) and, as a result, the dimension of the hidden source s is Ds = 18. The celebrities test
has 2-dimensional source components generated from cartoons of celebrities (d = 2).10 Sources sm

were generated by sampling 2-dimensional coordinates proportional to the corresponding pixel in-
tensities. In other words, 2-dimensional images of celebrities were considered as density functions.
M = 10 was chosen. In the ABC database, hidden sources sm were uniform distributions defined
by 2-dimensional images (d = 2) of the English alphabet. The number of components varied as
M = 2,5,10,15, and thus the dimension of the source Ds was 4,10,20,30, respectively.

5.1.2 THE ALL-K-INDEPENDENT DATABASE

The d-dimensional hidden components u := sm were created as follows: coordinates ui(t) (i =
1, . . . ,k) were uniform random variables on the set {0,. . . ,k-1}, whereas uk+1 was set to mod(u1 +
. . .+ uk,k). In this construction, every k-element subset of {u1, . . . ,uk+1} is made of independent
variables. This database is called the all-k-independent problem (Póczos and Lőrincz, 2005a; Szabó
et al., 2006a). In our simulations d = k + 1 was set to 3 or 4 and we used 2 components (M = 2).
Thus, source dimension Ds was either 6 or 8.

5.1.3 THE BEATLES DATABASE

Our Beatles test is a non-i.i.d. example. Here, hidden sources are stereo Beatles songs.11 8 kHz
sampled portions of two songs (A Hard Day’s Night, Can’t Buy Me Love) made the hidden sms.

10. See http://www.smileyworld.com.
11. See http://rock.mididb.com/beatles/.
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(a) (c)

(b)

Figure 1: Illustration of the 3D-geom, celebrities and ABC databases. (a): database 3D-geom, 6
3-dimensional components (M = 6, d = 3). Hidden sources are uniformly distributed variables on
3-dimensional geometric objects. (b): database celebrities. Density functions of the hidden sources
are proportional to the pixel intensities of the 2-dimensional images (d = 2). Number of hidden
components: M = 10. (c): database ABC. Here, the hidden sources sm are uniformly distributed on
images (d = 2) of letters. Number of components M varies between 2 (A and B) and 15 (A-O).

Thus, the dimension of the components d was 2, the number of the components M was 2, and the
dimension of the problem Ds was 4.

5.2 Normalized Amari-error, the Amari-index

We have shown in Section 3.1 that the uBSSD task can be reduced to an ISA task. Consequently,
we use ISA performance measure to evaluate our algorithms. Assume that there are M pieces
of d-dimensional hidden components in the ISA task, A is the mixing matrix, and W is the esti-
mated demixing matrix. Then optimal estimation provides matrix G := WA, a block-permutation
matrix made of d × d sized blocks. Let matrix G ∈ R

D×D be decomposed into d × d blocks:
G =

[
Gi j
]

i, j=1,...,M . Let gi, j denote the sum of the absolute values of the elements of matrix

Gi, j ∈ R
d×d . We used the normalized version (Szabó et al., 2006a) of the Amari-error (Amari

et al., 1996) adapted to the ISA task (Theis, 2005a,b) defined as:

r(G) :=
1

2M(M−1)

[
M

∑
i=1

(
∑M

j=1 gi j

max j gi j −1

)
+

M

∑
j=1

(
∑M

i=1 gi j

maxi gi j −1

)]
.

We refer to the normalized Amari-error as the Amari-index. One can see that 0 ≤ r(G) ≤ 1 for any
matrix G, and r(G) = 0 if and only if G is a block-permutation matrix with d × d sized blocks.
Normalization is advantageous; we can compare the precision of ISA procedures and procedures,
which are reduced to ISA tasks.

5.3 Simulations

Results on databases 3D-geom, celebrities, ABC, all-k-independent and Beatles are provided here.
These experimental studies have two main parts:

1. The efficiency of the JFD method on the uBSSD task is demonstrated in Section 5.3.1.
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2. The derived KCCA, KGV kernel-ISA methods were tested on ISA tasks. We show examples
in which these methods are favorable over the JFD method in Section 5.3.2.

In both cases the tasks are either ISA tasks or can be reduced to ISA (Section 3.1). Thus, we used
the Amari-index (Section 5.2) to measure and compare the performance of the different methods.
For each individual parameter, 50 random runs were averaged. Our parameters are: T , the sample
number of observations x(t), L, the parameter of the length of the convolution (the length of the
convolution is L + 1), M, the number of the components, and d, the dimension of the components,
depending on the test. Random run means random choice of quantities H[z] and s.

5.3.1 JFD ON UBSSD

Our results concerning the uBSSD task are delineated. As we showed in Section 3.1, the temporal
concatenation can turn the uBSSD task into an ISA problem. These ISA tasks associated with sim-
ple uBSSD problems can easily become more than 100-dimensional. Earlier ISA methods cannot
deal with such ‘high dimensional’ problems. This is why we resorted to the recent JFD method
(Section 4.1.1), which seemed to be efficient in solving such large problems under the following
circumstances: Equation (7) implies that the dimension DISA of the derived ISA task with fixed L
and Ds decreases provided that the difference Dx −Ds ≥ 1 increases. This coincides with our expe-
riences: the higher this difference is, the smaller number of samples can reach the same precision.
Below, studies for Dx −Ds = Ds (Dx = 2Ds) are presented. This choice was amenable to the JFD
method.12 In this case the dimension of the ISA task in (7) simplifies to the form

DISA = 2DsL.

The JFD technique works with the pseudocode given in Table 2: it reduces the uBSSD task
to the ISA task, where the fastICA algorithm (Hyvärinen and Oja, 1997) was chosen to perform
the ICA computation. In the JFD cost, we chose manifold F as F := {u → cos(u),u → cos(2u)},
where the functions operated on the coordinates separately (Szabó and Lőrincz, 2006). For the
‘observations’, the elements of mixing matrices Hl in Equation (1) were generated independently
from standard normal distributions.13

L = 1 L = 2 L = 3 L = 4 L = 5

3D-geom 0.25% (±0.01) 0.27% (±0.03) 0.28% (±0.02) 0.29% (±0.03) 0.29% (±0.01)

celebrities 0.37% (±0.01) 0.38% (±0.01) 0.39% (±0.01) 0.39% (±0.01) 0.40% (±0.01)

Table 3: The Amari-index of the JFD method for database 3D-geom and celebrities, for different
convolution lengths: average ± deviation. Number of samples: T = 100,000. For other sample
numbers between 1,000 ≤ T < 100,000 see Figure 2.

We studied the dependence of the precision versus the sample number on databases 3D-geom
and celebrities. The dimension and the number of the components were d = 3 and M = 6 for
the 3D-geom database and d = 2 and M = 10 for the celebrities database, respectively. In both
cases the sample number T varied between 1,000 and 100,000. The parameter of the length of the

12. We note that the hardest Dx −Ds = 1 task is also feasible. However, the sample number necessary to find the solution
grows considerably, as can be expected from (5).

13. Uniform distribution on [0.1], instead of normal distribution, showed similar performance.
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Figure 2: Estimation error of the JFD method on the 3D-geom and celebrities databases: Amari-
index as a function of sample number on log-log scale for different convolution lengths. (a): 3D-
geom, (b): celebrities database. Dimension of the ISA task: DISA. For further information, see
Table 3.
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Figure 3: Number of sweeps in permutation search needed for the JFD method as a function of the
convolution length. (a): 3D-geom, (b): celebrities database. Black: minimum, gray: average, light
gray: maximum.

convolution took L = 1, . . . ,5 values. Thus, the length of the convolution changed between 2 and 6.
Our results are summarized in Figure 2. The values of the errors are given in Table 3. The number of
sweeps needed to optimize the permutations after performing ICA is provided in Figure 3. Figures 4
and 5 illustrate the estimations of the JFD technique on the 3D-geom and the celebrities databases,
respectively.

Figure 2 demonstrates that the JFD algorithm was able to uncover the hidden components with
high precision. The precision of the estimations shows similar characteristics on the 3D-geom and
the celebrities databases. The Amari-index is approximately constant for small sample numbers.
For each curve, above a certain threshold the Amari-index decreases suddenly and after the sudden
decrease the precision follows a power law r(T ) ∝ T−c (c > 0). The power law decline is manifested
by straight line on log-log scale. The slopes of these straight lines are very close to one another.
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(a) (b) (c)

Figure 4: Illustration of the JFD method on the uBSSD task for the 3D-geom database. Sample
number T = 100,000, convolution length L = 1, Amari-index: 0.25%. (a): observed convolved
signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the derived ISA task and
the estimated demixing matrix (= approximately block-permutation matrix with 3×3 blocks). (c):
estimated components. Note: hidden components are recovered L+L′ = 2 times, up to permutation
and orthogonal transformation.

(a) (b) (c)

Figure 5: Illustration of the JFD method on the uBSSD task for the celebrities database. Sample
number T = 100,000, convolution length L = 1, Amari-index: 0.37%. (a): observed convolved
signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the derived ISA task and
the estimated demixing matrix (= approximately block-permutation matrix with 2×2 blocks). (c):
estimated components. Note: hidden components are recovered L+L′ = 2 times, up to permutation
and orthogonal transformation.

The number of sweeps was between 2 and 11 (2 and 8) for the 3D-geom (celebrities) tests over all
sample numbers, for 1 ≤ L ≤ 5 and for 50 random initializations. According to Table 3, the Amari-
index for sample number T = 100,000 is below 1% (0.25−0.40%) with small standard deviations
(0.01−0.03).
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Figure 6: (a): Amari-index of the JFD method on the ABC database as a function of sample number
and for different convolution lengths on log-log scale. (b): Number of sweeps of permutation
optimization on the derived ISA task as a function of convolution length. Dimension of the ISA
task: DISA. Black: minimum, gray: average, light gray: maximum. For further information, see
Table 4.

In another test the ABC database was used. The number and the dimensions of the components
were minimal (d = 2, M = 2) and the dependence on the convolution length was tested. Parameter L
took values on 1,2,5,10,20,30. The number of observations varied between 1,000 ≤ T ≤ 75,000.
The Amari-index and the sweep number of the optimization are illustrated in Figure 6. Precise
values of the Amari-index are provided in Table 4.

L = 1 L = 2 L = 5 L = 10 L = 20 L = 30

0.41% (±0.06) 0.44% (±0.05) 0.46% (±0.05) 0.47% (±0.03) 0.66% (±0.13) 0.70% (±0.11)

Table 4: Amari-index of the JFD method for ABC database for different convolution lengths:
average ± deviation. Number of samples: T = 75,000. For other sample numbers between
1,000 ≤ T < 75,000 see Figure 6(a).

According to Figure 6, the JFD method found the hidden components. The ‘power law’ decline
of the Amari-index, which was apparent in the 3D-geom and the celebrities databases, appears for
the ABC test, too. The figure indicates that for 75,000 samples and for L = 30 (convolution length
is 31) the problem is still amenable to the JFD technique. The number of sweeps required for the
optimization of the permutations was between 1 and 8 for all sample numbers 1,000 ≤ T ≤ 75,000,
parameters 1 ≤ L ≤ 30 and for all 50 random initializations. According to Table 4, for sample
number T = 75,000 the Amari-index stays below 1% on average (0.41− 0.7%) and has a small
(0.03−0.11) standard deviation.

In the case of Beatles database, test parameters were similar to those of the ABC database: the
number and the dimensions of the components were minimal (d = 2, M = 2) and the dependence
on the convolution length was tested. Parameter L took values on 1,2,5,10,20,30. The number of
observations varied between 1,000 ≤ T ≤ 75,000. The Amari-index and the sweep number of the
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Figure 7: (a): Amari-index of the JFD method on the Beatles database as a function of sample num-
ber and for different convolution lengths on log-log scale. (b): Number of sweeps of permutation
optimization on the derived ISA task as a function of convolution length. Dimension of the ISA
task: DISA. Black: minimum, gray: average, light gray: maximum. For further information, see
Table 5.

optimization are illustrated in Figure 7. Precise values of the Amari-index are provided in Table 5.
The Hinton-diagrams are in Figure 8.

The Beatles songs are non-i.i.d sources and subsequent samples sm(t) and sm(t −1) have depen-
dencies. Thus, in S(t) the components of the (6) model that belong to the same song can not be
distinguished. In the ideal case, however, the songs can be separated, that is, the separation of the
2 pieces of (DISA/2)-dimensional song-subspaces is possible. We measure the appearance of the 2
of (DISA/2)-dimensional blocks for the Beatles songs by means of the Amari-index. The results,
which demonstrate the success of our method, are shown in Figure 7. It can be seen that the JFD
method found the hidden components, for 50 and 75 thousand samples for L = 30 (convolution
length is 31) too. The number of sweeps required for the optimization of the permutations was
between 1 and 6 for all sample numbers 1,000 ≤ T ≤ 75,000, parameters 1 ≤ L ≤ 30 and for all
50 random initializations. According to Table 5, for sample number T = 75,000 the Amari-index is
between 1.07% (L = 1) and 4.43% (L = 30) on the average and has a small (0.04−0.09) standard
deviation. Separation of the 2 of DISA/2 dimensional subspaces are illustrated in Figure 8 through
the Hinton-diagrams.

L = 1 L = 2 L = 5 L = 10 L = 20 L = 30

1.07% (±0.04) 1.43% (±0.09) 2.29% (±0.07) 3.31% (±0.06) 4.03% (±0.06) 4.43% (±0.04)

Table 5: Amari-index of the JFD method for Beatles database for different convolution lengths:
average ± deviation. Number of samples: T = 75,000. For other sample numbers between 1,000 ≤
T < 75,000 see Figure 7(a).
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(a) (b) (c)

Figure 8: Hinton-diagrams of the JFD methods on the Beatles database for different convolution
parameters. (a): L = 1 (DISA = 8), (b): L = 2 (DISA = 16), (c): L = 5 (DISA = 40). In the ideal
case, 2 pieces of DISA/2-dimensional blocks are formed by multiplying the mixing matrix of the
derived ISA task and the estimated demixing matrix.

5.3.2 KERNEL-ISA TECHNIQUES

We study the efficiency of the KCCA and KGV kernel-ISA methods of Section 4.1.2. The kernel-
ISA techniques was found to have a higher computational burden, but they also have advantages
compared with the JFD technique for ISA tasks.

For the KCCA and KGV methods we also applied the pseudocode of Table 2. ICA was executed

by the fastICA algorithm (Hyvärinen and Oja, 1997). The Gaussian kernel k(u,v) ∝ exp
(
−‖u−v‖2

2σ2

)

was chosen for both the KCCA and KGV methods and parameter σ was set to 5. In the KCCA
method, regularization parameter κ = 10−4 was applied. In the experiments, parameters (σ,κ) were
proved to be reasonably robust. Mixing matrix A was generated randomly from the orthogonal
group and the sample number was chosen from the interval 100 ≤ T ≤ 5,000.

Our first ISA example concerns the ABC database. The dimension of a component was d = 2
and the number of the components M took different values (M = 2,5,10,15). Precision of the
estimations is shown in Figure 9, where the precision of the JFD method on the same database is
also depicted. The number of sweeps required for the optimization of the permutations is shown in
Figure 10 for different sample numbers and for different component numbers. The data are averaged
over 50 random estimations. Figure 11 depicts the KCCA estimation for the ABC database.

Figure 9 shows that the KCCA and KGV kernel-ISA methods give rise to high precision esti-
mations on the ABC database even for small sample numbers. The KGV method was more precise
for all M values studied than the JFD method. The ratio of precisions could be as high as 4 (see
sample number 500). The KCCA method is somewhat weaker. For smaller tasks (M = 2 and 5)
and for small sample numbers it also exceeds the precision of the JFD method. Precision of the
method become about the same for higher sample numbers and larger tasks. Sweep numbers of the
KCCA (KGV) method were between 2 and 8 (2 and 6) (Figure 10). Note that one sweep is always
necessary for our procedure (Table 2). A single sweep may be satisfactory if—by chance—the ICA
provides the correct permutation.

The other illustration concerns the all-k-independent database. This test can be difficult for
ISA methods (Szabó et al., 2006a). Number of components M was 2. For k = 2,3, when the
dimension of the components d = 3 and 4, respectively, the KCCA and KGV kernel-ISA methods
efficiently estimated the hidden components. The precision of the KCCA and KGV estimations
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Figure 9: (a) and (b): Amari-index of the KCCA and KGV methods, respectively, for the ABC
database as a function of sample number and for different numbers of components M. (c) and (d):
Amari-index of the JFD method is divided by the Amari-index of the KCCA method and the KGV
technique, respectively. For values larger (smaller) than 1 the kernel-ISA method is better (worse)
than the JFD method.

M = 2 M = 5 M = 10 M = 15

KCCA 1.33% (±0.48) 1.20% (±0.17) 2.76% (±2.86) 3.00% (±2.21)

KGV 1.26% (±0.54) 1.18% (±0.17) 1.51% (±0.31) 1.54% (±0.34)

Table 6: Amari-index for the KCCA and the KGV methods for database ABC, for different compo-
nent number M: average ± deviation. Number of samples: T = 5,000. For other sample numbers
between 100 ≤ T < 5,000, see Figure 9.

as well as the comparison with the JFD method are shown in Figure 12. The average number of
sweeps required for the optimization of the permutations for different k values and for 50 randomly
initialized computations is provided in Figure 13. The values of the Amari-indices are shown in
Table 7.
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Figure 10: Number of sweeps for the KCCA and the KGV methods needed for the optimization of
permutations as a function of component number M on the ABC database. (a): KCCA method, (b):
KGV method. Black: minimum, gray: mean, light gray: maximum.

(a) (b) (c)

Figure 11: Illustration of the KCCA method for the ABC database. Sample number: T = 5,000.
(a): observed mixed signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the
derived ISA task and the estimated demixing matrix (= approximately block-permutation matrix).
(c): estimated components. Hidden components are recovered up to permutation and orthogonal
transformation.

According to Figure 12 the two kernel-based methods exhibit similar precision. Both were
superior to the JFD technique. The ratio of the Amari-indices for sample number 5,000 and for
k = 2 is more than 15,000, for k = 3 it is more than 500. For details concerning the Amari-indices,
see Table 7. These indices are close to each other for the KCCA and the KGV methods: 0.0017% for
k = 2, 0.16% for k = 3 on average. Both kernel-ISA methods used 2−3 sweeps for the optimization
of the permutations (Figure 13).

6. Conclusions

We have introduced a new model, the blind subspace deconvolution (BSSD) for data analysis. This
model deals with the casual convolutive mixture of multidimensional independent sources. The
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Figure 12: (a) and (b): Amari-indices of the KCCA and KGV methods, respectively, as a function
of the sample number and for k = 2 and 3 on the all-k-independent database. For more details, see
Table 7. (c): ratio of Amari-indices of JFD and KCCA methods, (d): ratio of Amari-indices of JFD
and KGV methods.
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Figure 13: Number of sweeps of permutation optimization for the KCCA (a) and KGV (b) methods
for the all-k-independent database and for different k values. Black: minimum, gray: mean, light
gray: maximum.
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k = 2 k = 3

KCCA/KGV 0.0017% (±0.0014) 0.16% (±0.04)

Table 7: The Amari-index of the KCCA and KGV methods for database all-k-independent for
different k values: average ± deviation. Number of samples: T = 5,000. For other sample numbers
between 100 ≤ T < 5,000, see Figure 12.

undercomplete version (uBSSD) of the task has been presented, and it has been shown how to derive
an independent subspace analysis (ISA) task from the uBSSD problem. Recent developments of the
ISA techniques enabled us to handle the emerging high dimensional problems. Our earlier results,
namely the ISA Separation Theorem (Szabó et al., 2006b) motivated us to reduce the ISA task to
the search for the optimal permutation of the ICA components. The components were grouped with
a novel joint decorrelation technique, the joint f-decorrelation (JFD) method (Szabó and Lőrincz,
2006).

Also, we adapted other ICA techniques, such as the KCCA and KGV methods to the ISA task
and studied their efficiency. Simulations indicated that although the KCCA and KGV methods
give rise to serious computational burden relative to the JFD method, they can be advantageous for
smaller ISA tasks and for ISA tasks when the number of samples is small.

Finally, we note that we achieved small errors in these high dimensional computations. These
small errors indicate that the Separation Theorem is robust and might be extended to a larger class
of noise sources.
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Appendix A. Proof of the ISA Separation Theorem

We shall rely on entropy inequalities (Section A.1). In Section A.2 connection to the ICA cost
function is derived (Lemma 2). The ISA Separation Theorem then follows.

A.1 EPI-type Relations

First, consider the so-called entropy power inequality (EPI)

e2H(∑L
i=1 ui) ≥

L

∑
i=1

e2H(ui),

where u1, . . . ,uL ∈ R denote continuous random variables. This inequality holds, for example, for
independent continuous variables (Cover and Thomas, 1991).

If EPI is satisfied on the surface of the L-dimensional unit sphere SL, then a further inequality
holds:
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Lemma 1 Suppose that continuous random variables u1, . . . ,uL ∈R satisfy the following inequality

e2H(∑L
i=1 wiui) ≥

L

∑
i=1

e2H(wiui),∀w ∈ SL. (16)

This inequality will be called the w-EPI condition. Then Equation (8) holds, too.

Proof Assume that w ∈ SL. Applying ln on condition (16), and using the monotonicity of the ln
function, we can see that the first inequality is valid in the following inequality chain

2H

(
L

∑
i=1

wiui

)
≥ ln

(
L

∑
i=1

e2H(wiui)

)
= ln

(
L

∑
i=1

e2H(ui)w2
i

)

≥
L

∑
i=1

w2
i ln
(

e2H(ui)
)

= 2
L

∑
i=1

w2
i H(ui).

Here,

1. we used the relation
H(wiui) = H(ui)+ ln(|wi|)

for the entropy of the transformed variable (Cover and Thomas, 1991). Hence

e2H(wiui) = e2H(ui)+2ln(|wi|) = e2H(ui)e2ln(|wi|) = e2H(ui)w2
i .

2. In the second inequality, the concavity of ln was exploited. �

Note 5 w-EPI holds, for example, for independent variables ui, because independence is not af-
fected by multiplication with a constant.

A.2 Connection to the Cost Function of the ICA Task

The ISA Separation Theorem will be a corollary of the following claim:

Lemma 2 Let y =
[
y1; . . . ;yM

]
= y(W) = Ws ∈ R

D, where W ∈ OD (D = ∑M
m=1 dm), ym ∈ R

dm is
the estimation of the mth component of the ISA task. Let ym

i ∈ R be the ith coordinate of the mth

component (i = 1, . . . ,dm). Similarly, let sm
i ∈ R stand for the ith coordinate of the mth source. Let

us assume that the u := sm ∈ R
dm sources satisfy the condition (8). Then

M

∑
m=1

dm

∑
i=1

H (ym
i ) ≥

M

∑
m=1

dm

∑
i=1

H (sm
i ) . (17)

Proof Let us denote the (i, j)th element of matrix W by Wi, j. Coordinates of y and s will be denoted
by yi and si, respectively. Further, let Gm denote the indices of the mth subspace (m = 1, . . . ,M), that
is, Gm := {1 + ∑m−1

i=1 di, . . . ,∑m
i=1 di} (d0 := 0). Now, writing the elements of the ith row of matrix

multiplication y = Ws, we have

yi = ∑
j∈G1

Wi, js j + . . .+ ∑
j∈GM

Wi, js j (18)
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and thus,

H (yi) = H

(
M

∑
m=1

∑
j∈Gm

Wi, js j

)
(19)

= H




M

∑
m=1



(

∑
l∈Gm

W 2
i,l

) 1
2 ∑ j∈Gm Wi, js j
(

∑l∈Gm W 2
i,l

) 1
2





 (20)

≥
M

∑
m=1



(

∑
l∈Gm

W 2
i,l

)
H




∑ j∈Gm Wi, js j
(

∑l∈Gm W 2
i,l

) 1
2





 (21)

=
M

∑
m=1



(

∑
l∈Gm

W 2
i,l

)
H


 ∑

j∈Gm

Wi, j
(

∑l∈Gm W 2
i,l

) 1
2

s j





 (22)

≥
M

∑
m=1



(

∑
l∈Gm

W 2
i,l

)
∑

j∈Gm




Wi, j
(

∑l∈Gm W 2
i,l

) 1
2




2

H (s j)


 (23)

= ∑
j∈G1

W 2
i, jH (s j)+ . . .+ ∑

j∈GM

W 2
i, jH (s j) . (24)

The above steps can be justified as follows:

1. (19): Equation (18) was inserted into the argument of H.

2. (20): New terms were added for Lemma 1.

3. (21): Sources sm are independent of one another and this independence is preserved upon
mixing within the subspaces, and we could also use Lemma 1, because W is an orthogonal
matrix.

4. (22): Nominators were transferred into the ∑ j terms.

5. (23): Variables sm satisfy condition (8) according to our assumptions.

6. (24): We simplified the expression after squaring.

Using this inequality, summing it for i, exchanging the order of the sums, and making use of the
orthogonality of matrix W, we have

D

∑
i=1

H(yi) ≥
D

∑
i=1

(
∑

j∈G1

W 2
i, jH (s j)+ . . .+ ∑

j∈GM

W 2
i, jH (s j)

)

= ∑
j∈G1

(
D

∑
i=1

W 2
i, j

)
H (s j)+ . . .+ ∑

j∈GM

(
D

∑
i=1

W 2
i, j

)
H (s j)

=
D

∑
j=1

H(s j). �
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Corollary (ISA Separation Theorem) ICA minimizes the l.h.s. of Equation (17), that is, it mini-
mizes ∑M

m=1 ∑dm
i=1 H (ym

i ). The set of minima is invariant to permutations and to changes of the signs.
Also, according to Proposition 2, {sm

i }, that is, the coordinates of the sm components of the ISA task
belong to the set of the minima. �

Appendix B. Kernel Covariance Technique for the ISA Task

For the sake of completeness, the extension of the KC method (Gretton et al., 2005) for the ISA task
is detailed below. The extension is similar to the extensions presented in Section 4.1.2, and we use
the notations of that section.

First, we would like to measure the dependence of two 2 random variables u ∈ R
d1 and v ∈ R

d2 .
The KC technique defines their dependence as their maximal covariance on the unit spheres Su, Sv

of function spaces Fu, Fv:

JKC(u,v,Fu,Fv) := sup
g∈Su,h∈Sv

|E{[g(u)−Eg(u)][h(v)−Eh(v)]}|.

This function JKC can be estimated empirically from T -element samples u1, . . . ,uT ∈R
d1 , v1, . . . ,vT ∈

R
d2 :

J emp
KC (u,v,Fu,Fv) := sup

g∈Su,h∈Sv

∣∣∣∣∣
1
T

T

∑
t=1

[g(ut)− ḡ][h(vt)− h̄]

∣∣∣∣∣ .

The estimation can be reduced to the following conditional maximization problem:

J emp
KC (u,v,Fu,Fv) = sup

c∗1K̃uc1≤1,c∗2K̃vc2≤1

c∗1K̃uK̃vc2. (25)

After the adaptation of the Lagrange multiplier technique and the computation of the stationary
points of (25) it can be realized that the values of [c1;c2] and J emp

KC can be computed as the solutions
of the generalized eigenvalue problem

(
K̃u K̃uK̃v

K̃vK̃u K̃v

)(
c1

c2

)
= λ

(
K̃u 0
0 K̃v

)(
c1

c2

)
. (26)

If the task is to measure the dependence between more than two random variables y1 ∈ R
d1 , . . . ,

yM ∈ R
dM then (26) is to be replaced with the following generalized eigenvalue problem:




K̃1 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 K̃2 · · · K̃2K̃M

...
...

...
K̃MK̃1 K̃MK̃2 · · · K̃M







c1

c2
...

cM


= λ




K̃1 0 · · · 0
0 K̃2 · · · 0
...

...
...

0 0 · · · K̃M







c1

c2
...

cM


 .

Using the maximal eigenvalue of this problem, JKC can be estimated.
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