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Abstract
We consider semi-supervised classification when part of the available data is unlabeled. These
unlabeled data can be useful for the classification problem when we make an assumption relating
the behavior of the regression function to that of the marginal distribution. Seeger (2000) proposed
the well-known cluster assumption as a reasonable one. We propose a mathematical formulation
of this assumption and a method based on density level sets estimation that takes advantage of it
to achieve fast rates of convergence both in the number of unlabeled examples and the number of
labeled examples.
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1. Introduction

Semi-supervised classification has been of growing interest over the past few years and many meth-
ods have been proposed. The methods try to give an answer to the question: “How to improve
classification accuracy using unlabeled data together with the labeled data?”. Unlabeled data can
be used in different ways depending on the assumptions on the model. There are mainly two ap-
proaches to solve this problem. The first one consists in using the unlabeled data to reduce the
complexity of the problem in a broad sense. For instance, assume that we have a set of potential
classifiers and we want to aggregate them. In that case, unlabeled data is used to measure the com-
patibility between the classifiers and reduces the complexity of the set of candidate classifiers (see,
for example, Balcan and Blum, 2005; Blum and Mitchell, 1998). Unlabeled data can also be used
to reduce the dimension of the problem, which is another way to reduce complexity. For exam-
ple, in Belkin and Niyogi (2004), it is assumed that the data actually live on a submanifold of low
dimension.

The second approach is the one that we use here. It assumes that the data contains clusters that
have homogeneous labels and the unlabeled observations are used to identify these clusters. This
is the so-called cluster assumption. This idea can be put in practice in several ways giving rise
to various methods. The simplest is the one presented here: estimate the clusters, then label each
cluster uniformly. Most of these methods use Hartigan’s (1975) definition of clusters, namely the
connected components of the density level sets. However, they use a parametric—usually mixture—
model to estimate the underlying density which can be far from reality. Moreover, no generalization
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error bounds are available for such methods. In the same spirit, Tipping (1999) and Rattray (2000)
propose methods that learn a distance using unlabeled data in order to have intra-cluster distances
smaller than inter-clusters distances. The whole family of graph-based methods aims also at using
unlabeled data to learn the distances between points. The edges of the graphs reflect the proximity
between points. For a detailed survey on graph methods we refer to Zhu (2005). Finally, we
mention kernel methods, where unlabeled data are used to build the kernel. Recalling that the
kernel measures proximity between points, such methods can also be viewed as learning a distance
using unlabeled data (see Bousquet et al., 2004; Chapelle and Zien, 2005; Chapelle et al., 2006).

The cluster assumption can be interpreted in another way, that is, as the requirement that the
decision boundary has to lie in low density regions. This interpretation has been widely used in
learning since it can be used in the design of standard algorithms such as Boosting (d’Alché Buc
et al., 2001; Hertz et al., 2004) or SVM (Bousquet et al., 2004; Chapelle and Zien, 2005), which are
closely related to kernel methods mentioned above. In these algorithms, a greater penalization is
given to decision boundaries that cross a cluster. For more details, see, for example, Seeger (2000),
Zhu (2005), and Chapelle et al. (2006). Although most methods make, sometimes implicitly, the
cluster assumption, no formulation in probabilistic terms has been provided so far. The formulation
that we propose in this paper remains very close to its original text formulation and allows to derive
generalization error bounds. We also discuss what can and cannot be done using unlabeled data.
One of the conclusions is that considering the whole excess-risk is too ambitious and we need to
concentrate on a smaller part of it to observe the improvement of semi-supervised classification over
supervised classification.

1.1 Outline of the Paper

After describing the model, we formulate the cluster assumption and discuss why and how it can
improve classification performance in Section 2. The main result of this section is Proposition 2.1
which essentially states that the effect of unlabeled data on the rates of convergence cannot be ob-
served on the whole excess-risk. We therefore introduce the cluster excess-risk which corresponds
to a part of the excess-risk that is interesting for this problem. In Section 3, we study the population
case where the clusters are perfectly known, to get an idea of our target. Indeed, such a population
case corresponds in some way to the case where the amount of unlabeled data is infinite. Section 4
contains the main result: after having defined the clusters in terms of density level sets, we propose
an algorithm for which we derive rates of convergence for the cluster excess-risk as a measure of
performance. An example of consistent density level set estimators is given in Section 5. Sec-
tion 6 is devoted to a discussion on the choice of the level as well as possible implementations and
improvements. Proofs of the results are gathered in Section A.

1.2 Notation

Throughout the paper, we denote positive constants by c j. We write Γc for the complement of the
set Γ. For two sequences (up)p and (vp)p (in that paper, p will be m or n), we write up = O(vp) if
there exists a constant C > 0 such that up ≤Cvp and we write up = Õ(vp) if up ≤C(log p)αvp for
some constants α > 0,C > 0. Moreover, we write up = o(vp), if there exists a non negative sequence
(εp)p that tends to 0 when p tends to infinity and such that |up| ≤ εp|vp|. Thus, if up = Õ(vp), we
have up = o(vp pβ), for any β > 0.
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2. The Model

Let (X ,Y ) be a random couple with joint distribution P, where X ∈ X ⊂ IRd is a vector of d features
and Y ∈ {0,1} is a label indicating the class to which X belongs. The distribution P of the random
couple (X ,Y ) is completely determined by the pair (PX ,η) where PX is the marginal distribution
of X and η is the regression function of Y on X , that is, η(x) , P(Y = 1|X = x). The goal of
classification is to predict the label Y given the value of X , that is, to construct a measurable function
g : X → {0,1} called a classifier. The performance of g is measured by the average classification
error

R(g) , P(g(X) 6= Y ) .

A minimizer of the risk R(g) over all classifiers is given by the Bayes classifier g?(x) = 1I{η(x)≥1/2},
where 1I{·} denotes the indicator function. Assume that we have a sample of n observations (X1,Y1),
. . . ,(Xn,Yn) that are independent copies of (X ,Y ). An empirical classifier is a random function
ĝn : X → {0,1} constructed on the basis of the sample (X1,Y1), . . . ,(Xn,Yn). Since g? is the best
possible classifier, we measure the performance of an empirical classifier ĝn by its excess-risk

E(ĝn) = IEnR(ĝn)−R(g?) ,

where IEn denotes the expectation with respect to the joint distribution of the sample (X1,Y1), . . . ,
(Xn,Yn). We denote hereafter by IPn the corresponding probability.

In many applications, a large amount of unlabeled data is available together with a small set
of labeled data (X1,Y1), . . . ,(Xn,Yn) and the goal of semi-supervised classification is to use unla-
beled data to improve the performance of classifiers. Thus, we observe two independent sam-
ples Xl = {(X1,Y1), . . . ,(Xn,Yn)} and Xu = {Xn+1, . . . ,Xn+m}, where n is rather small and typically
m� n. Most existing theoretical studies of supervised classification use empirical processes theory
(Devroye et al., 1996; Vapnik, 1998; van de Geer, 2000; Boucheron et al., 2005) to obtain rates
of convergence for the excess-risk that are polynomial in n. Typically these rates are of the order
O(1/

√
n) and can be as small as Õ(1/n) under some low noise assumptions (cf. Tsybakov, 2004;

Audibert and Tsybakov, 2007). However, simulations indicate that much faster rates should be at-
tainable when unlabeled data is used to identify homogeneous clusters. Of course, it is well known
that in order to make use of the additional unlabeled observations, we have to make an assump-
tion on the dependence between the marginal distribution of X and the joint distribution of (X ,Y )
(see, for example, Zhang and Oles, 2000). Seeger (2000) formulated the rather intuitive cluster
assumption as follows1

Two points x,x′ ∈ X should have the same label y if there is a path between them which
passes only through regions of relatively high PX .

This assumption, in its raw formulation cannot be exploited in the probabilistic model since (i) the
labels are random variables Y,Y ′ so that the expression “should have the same label” is meaningless
unless η takes values in {0,1} and (ii) it is not clear what “regions of relatively high PX ” are. To
match the probabilistic framework, we propose the following modifications.

(i) Assume P[Y = Y ′|X ,X ′ ∈C]≥ P[Y 6= Y ′|X ,X ′ ∈C], where C is a cluster.

(ii) Define “regions of relatively high PX ” in terms of density level sets.

1. The notation is adapted to the present framework.
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Assume for the moment that we know what the clusters are, so that we do not have to define them
in terms of density level sets. This will be done in Section 4. Let T1,T2, . . . , be a countable family
of subsets of X . We now make the assumption that the T j’s are clusters of homogeneous data.

Cluster Assumption (CA) Let T1,T2, . . . , be a collection of measurable sets (clusters) such that
Tj ⊂ X , j = 1,2, . . . Then the function x ∈ X 7→ 1I{η(x)≥ 1/2} takes a constant value on each
of the Tj, j = 1,2, . . ..

It is not hard to see that the cluster assumption (CA) is equivalent to the following assumption.

Let Tj, j = 1,2, . . . , be a collection of measurable sets such that T j ⊂ X , j = 1,2, . . .
Then, for any j = 1,2, . . ., we have

P[Y = Y ′|X ,X ′ ∈ Tj]≥ P[Y 6= Y ′|X ,X ′ ∈ Tj] .

A question remains: what happens outside of the clusters? Define the union of the clusters,

C =
[

j≥1

Tj (1)

and assume that we are in the problematic case, PX(C c) > 0 such that the question makes sense.
Since the cluster assumption (CA) says nothing about what happens outside of the set C , we can
only perform supervised classification on C c. Consider a classifier ĝn,m built from labeled and
unlabeled samples (Xl ,Xu) pooled together. The excess-risk of ĝn,m can be written (see Devroye
et al., 1996),

E(ĝn,m) = IEn,m

Z

X
|2η(x)−1|1I{ĝn,m(x)6=g?(x)}dPX(x) ,

where IEn,m denotes the expectation with respect to the pooled sample (Xl,Xu). We denote hereafter
by IPn,m the corresponding probability. Since, the unlabeled sample is of no help to classify points
in C c, any reasonable classifier should be based on the sample Xl so that ĝn,m(x) = ĝn(x), ∀x ∈ C c,
and we have

E(ĝn,m)≥ IEn

Z

C c
|2η(x)−1|1I{ĝn(x)6=g?(x)}dPX(x) . (2)

Since we assumed PX(C c) 6= 0, the RHS of (2) is bounded from below by the optimal rates of
convergence that appear in supervised classification.

The previous heuristics can be stated more formally as follows. Recall that the distribution P of
the random couple (X ,Y ) is completely characterized by the couple (PX ,η) where PX is the marginal
distribution of X and η is the regression function of Y on X . In the following proposition, we are
interested in a class of distributions with cylinder form, that is, a class D that can be decomposed
as D = M ×Ξ where M is a fixed class of marginal distributions on X and Ξ is a fixed class of
regression functions on X with values in [0,1].

Proposition 2.1 Fix n,m≥ 1 and let C be a measurable subset of X . Let M be a class of marginal
distributions on X and let Ξ be a class of regression functions. Define the class of distributions D
as D = M ×Ξ. Then, for any marginal distribution P0

X ∈M , we have

inf
Tn

sup
η∈Ξ

IEn

Z

C c
|2η−1|1I{Tn 6=g?}dP0

X ≤ inf
Tn,m

sup
P∈D

IEn,m

Z

C c
|2η−1|1I{Tn,m 6=g?}dPX , (3)

where infTn,m denotes the infimum over all classifiers based on the pooled sample (Xl,Xu) and infTn

denotes the infimum over all classifiers based only on the labeled sample Xl .
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The main consequence of Proposition 2.1 is that even when the cluster assumption (CA) is valid the
unlabeled data are useless to improve the rates of convergence. If the class M is reasonably large
and satisfies P0

X(C c) > 0, the left hand side in (3) can be bounded from below by the minimax rate
of convergence with respect to n, over the class D . Indeed a careful check of the proofs of minimax
lower bounds reveals that they are constructed using a single marginal P0

X that is well chosen. These
rates are typically of the order n−α,0 < α ≤ 1 (see, for example, Mammen and Tsybakov 1999,
Tsybakov 2004, and Audibert and Tsybakov 2007 and Boucheron et al. 2005 for a comprehensive
survey).

Thus, unlabeled data do not improve the rate of convergence of this part of the excess-risk. To
observe the effect of unlabeled data on the rates of convergence, we have to consider the cluster
excess-risk of a classifier ĝn,m defined by

EC (ĝn,m) , IEn,m

Z

C
|2η(x)−1|1I{ĝn,m(x)6=g?(x)}dPX(x) .

We will therefore focus on this measure of performance. The cluster excess-risk can also be
expressed in terms of an excess-risk. To observe it, define the set GC of all classifiers restricted
to C :

GC =
{

g : C →{0,1}, g measurable
}

.

The performance of a classifier g ∈ GC is measured by the average classification error on C :

R(g) = P
(
g(X) 6= Y

)
= P

(
g(X) 6= Y,X ∈ C

)
.

A minimizer of R(·) over GC is given g?
|C (x) = 1I{η(x)≥1/2}, x∈ C , that is, the restriction of the Bayes

classifier to C . Now it can be easily shown that for any classifier g ∈ GC we have,

R(g)−R(g?
|C ) =

Z

C
|2η(x)−1|1I{g(x)6=g?

|C (x)}dPX(x) . (4)

Taking expectations on both sides of (4) with g = ĝn,m, it follows that

IEn,mR(ĝn,m)−R(g?
|C ) = EC (ĝn,m) .

Therefore, cluster excess-risk equals the excess-risk of classifiers in GC . In the sequel, we only
consider classifiers ĝn,m ∈ GC , that is, classifiers that are defined on C .

We now propose a method to obtain good upper bounds on the cluster excess-risk, taking advan-
tage of the cluster assumption (CA). The idea is to estimate the regions where the sign of (η−1/2)
is constant and make a majority vote on each region.

3. Results for Known Clusters

Consider the ideal situation where the family T1,T2, . . ., is known and we observe only the labeled
sample Xl = {(X1,Y1), . . . ,(Xn,Yn)}. Define

C =
[

j≥1

Tj .

Under the cluster assumption (CA), the function x 7→ η(x)−1/2 has constant sign on each T j. Thus
a simple and intuitive method for classification is to perform a majority vote on each T j.
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For any j ≥ 1, define δ j ≥ 0, δ j ≤ 1 by

δ j =
Z

Tj

|2η(x)−1|PX(dx) .

We now define our classifier based on the sample Xl . For any j≥ 1, define the random variable

Z j
n =

n

∑
i=1

(2Yi−1)1I{Xi∈Tj} ,

and denote by ĝ j
n the function ĝ j

n(x) = 1I{Z j
n>0} , for all x ∈ Tj . Consider the classifier defined on C

by
ĝn(x) = ∑

j≥1

ĝ j
n(x)1I{x∈Tj} , x ∈ C .

The following theorem gives rates of convergence for the cluster excess-risk of the classifier ĝn

under (CA) that can be exponential in n under a mild additional assumption.

Theorem 3.1 Let Tj, j ≥ 1 be a family of measurable sets that satisfy Assumption (CA). Then, the
classifier ĝn defined above satisfies

EC (ĝn)≤ 2 ∑
j≥1

δ je
−nδ2

j/2 .

Moreover, if there exists δ > 0 such that δ = inf j{δ j : δ j > 0}, we obtain an exponential rate of
convergence:

EC (ĝn)≤ 2e−nδ2/2 .

In a different framework, Castelli and Cover (1995, 1996) have proved that exponential rates of
convergence were attainable for semi-supervised classification. A rapid overview of the proof shows
that the rate of convergence e−nδ2/2 cannot be improved without further assumption. It will be our
target in semi-supervised classification. However, we need estimators of the clusters T j, j = 1,2, . . ..
In the next section we provide the main result on semi-supervised learning, that is when the clusters
are unknown but we can estimate them using the unlabeled sample Xu.

4. Main Result

We now deal with a more realistic case where the clusters T1,T2, . . . , are unknown and we have to
estimate them using the unlabeled sample Xu = {X1, . . . ,Xm}. We begin by giving a definition of
the clusters in terms of density level sets. In this section, we assume that X has finite Lebesgue
measure.

4.1 Definition of the Clusters

Following Hartigan (1975), we propose a definition of clusters that is also compatible with the
expression “regions of relatively high PX ” proposed by Seeger (2000).

Assume that PX admits a density p with respect to the Lebesgue measure on IRd denoted here-
after by Lebd . For a fixed λ > 0, the λ-level set of the density p is defined by

Γ(λ) = {x ∈ X : p(x)≥ λ} .
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On these sets, the density is relatively high. The cluster assumption involves also a notion of con-
nectedness of a set. For any C⊂ X , define the binary relation R on any set C as follows: two points
x,y ∈C satisfy xR y if and only if there exists a continuous map f : [0,1]→C, such that f (0) = x
and f (1) = y. If xR y, we say that x and y are pathwise connected. It can be easily show that R is
an equivalence relation and its classes of equivalence are called connected components of C. At this
point, in view of the formulation of the cluster assumption, it is very tempting to define the clusters
as the connected components of C. However, this definition suffers from two major flaws:

1. a connected set cannot be defined up to a set of null Lebesgue measure. Indeed, consider
for example the case d = 1 and C = [0,1]. This set is obviously connected (take the map
f equal to the identity on [0,1]) but the set C̃ = C \ {1/2} is not connected anymore even
though C and C̃ only differ by a set of null Lebesgue measure. In our setup we want to
impose connectedness on certain subsets of the λ-level set of the density p which is actually
defined up to a set of null Lebesgue measure. Figure 1 (left) is an illustration of a set with one
connected component whereas it is desirable to have two clusters.

2. There is no scale consideration in this definition of clusters. When two clusters are too close
to each other in a certain sense, we wish identify them as a single cluster. In Figure 1 (right),
the displayed set has two connected components whereas we wish to identify only one cluster.

To fix the first flaw, we introduce the following notions. Let B(z,r) be the d-dimensional closed
ball of center z ∈ IRd and radius r > 0, defined by

B(z,r) =
{

x ∈ IRd : ‖z− x‖ ≤ r
}

,

where ‖ · ‖ denotes the Euclidean norm in IRd .

Definition 4.1 Fix r0 ≥ 0 and let d be an integer such that d ≥ d. We say that a measurable set
C ⊂ X is r0-standard if for any z ∈C and any 0≤ r ≤ r0, we have

Lebd
(
B(z,r)∩C

)
≥ c0rd . (5)

We now comment upon this definition.

Remark 4.1 The definition of a standard set has been introduced by Cuevas and Fraiman (1997).
This definition ensures that the set C has no “flat” parts which allows to exclude pathological cases
such as the one presented on the left hand side of Figure 1.

Remark 4.2 The constant c0 may depend on r0 and this avoids large-scale shape considerations.
Indeed, if the set C is bounded, then for any z∈C, Lebd

(
B(z,r)∩C

)
= Lebd

(
C

)
for r≥ r0 where r0

is the diameter of C. Thus for C to be r0-standard, we have to impose at least that c0 ≤ Lebd
(
C

)
r−d

0 .

Remark 4.3 The case d > d allows us to include a wide variety of shapes in this definition. Con-
sider the following example where d = 2:

Cδ =
{
(x,y) : −1≤ x≤ 1, 0≤ y≤ |x|δ

}
, δ > 0.
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Fix r ≤
√

2 and consider the point z = (0,0). It holds

Lebd
(
B(z,r)∩Cδ

)
≥

Z r′

−r′
min(|x|δ,r′)dx , where r′ =

r√
2

.

For any |x| ≤ r′ ≤ 1, we have |x|δ ≥ |x|(δ∨1) and |x|(δ∨1) ≤ |r′|(δ∨1) ≤ r′. Thus

Lebd
(
B(z,r)∩Cδ

)
≥

Z r′

−r′
|x|(δ∨1)dx = 2(r′)(δ∨1)+1 .

We conclude that (5) is satisfied at z = (0,0) for d = (δ∨1)+1. However, notice that

Lebd
(
B(z,r)∩Cδ

)
≤

Z r

−r
|x|δdx = 2r(δ+1) .

Thus (5) is not satisfied at z = (0,0) when d = d, if δ > 1.

To overcome the scale problem described in the second flaw, we introduce the notion of s0-
separated sets.

Define the pseudo-distance distance d∞, between two sets C1 and C2 by

d∞(C1,C2) = inf
x∈C1
y∈C2

‖x− y‖.

We say that two sets C1,C2, are s0-separated if d∞(C1,C2) > s0, for some s0≥ 0. More generally, we
say that the sets C1,C2, . . . are mutually s0-separated if for any j 6= j′, C j and C j′ are s0-separated.
On the right hand side of Figure 1, we show an example of two sets that are not s0-separated for
a reasonable s0. In that particular example, if s0 is sufficiently small, we would like to identify a
single cluster.

We now define s0-connectedness which is a weaker version of connectedness in the form of a
binary relation

Definition 4.2 Fix s > 0 and let
s←→
C

be the binary relation defined on C⊂ X as follows: two points

x,y ∈C satisfy x
s←→
C

y if and only if there exists a piecewise constant map f : [0,1]→C such that

f (0) = x and f (1) = y and such that f has a finite number of jumps that satisfy ‖ f (t+)− f (t−)‖ ≤ s
for any t ∈ [0,1], where

f (t+) = lim
θ→t
θ>t

f (θ) and f (t−) = lim
θ→t
θ<t

f (θ) .

If x
s←→
C

y, we say that x and y are s-connected.

Note that x and y are s-connected if and only if there exists z1, . . . ,zn ∈C such that ‖x− z1‖ ≤ s,
‖y−zn‖≤ s and ‖zi−zi+1‖≤ s for any j = 1, . . . ,n−1. In other words, there exists a finite sequence
of points in C that links x to y and such that two consecutive points in this sequence have distance
smaller that s.
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Lemma 4.1 Fix s > 0, then the binary relation
s←→
C

is an equivalence relation and C can be par-

titioned into its classes of equivalence. The classes of equivalence of
s←→
C

are called s-connected

components of C.

In the next proposition we prove that given a certain scale s > 0, it is possible split a r0-standard
and closed set C into a unique partition that is a coarser than the partition defined by the connected
components of C and that this partition is finite for such sets.

Proposition 4.1 Fix r0 > 0,s > 0 and assume that C is a r0-standard and closed set. Then there
exists a unique partition C1, . . .CJ , J ≥ 1, of C such that

• for any j = 1, . . . ,J and any x,y ∈C j, we have x
s←→
C

y,

• the sets C1, . . . ,CJ are mutually s-separated.

Remark 4.4 In what follows we assume that the scale s = s0 is fixed by the statistician. It should
be fixed depending on a priori considerations about the scale of the problem. Actually, in the proof
of Proposition 4.3, we could even assume that s0 = 1/(3logm), which means that we can have the
scale depend on the number of observations. This is consistent with the fact that the finite number of
unlabeled observations allows us to have only a blurred vision of the clusters. In this case, we are
not able to differentiate between two clusters that are too close to each other but our vision becomes
clearer and clearer as m tends to infinity.

PSfrag replacements

r0

PSfrag replacements

s0

Figure 1: A set that is not r0-standard for any r0 (left). A set that has two connected components
but only one s0-connected components (right).

We now formulate the cluster assumption when the clusters are defined in terms of density level
sets. In the rest of the section, fix λ > 0 and let Γ denote the λ-level set of the density p. We also
assume in what follows that Γ is closed which is the case if the density p is continuous for example.
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Strong Cluster Assumption (SCA) Fix s0 > 0 and r0 > 0 and assume that Γ admits a version that
is r0-standard and closed. Denote by T1, . . . ,TJ the s0-connected components of this version of
Γ. Then the function x ∈ X 7→ 1I{η(x)≥1/2} takes a constant value on each of the Tj, j = 1, . . .J.

4.2 Estimation of the Clusters

Assume that p is uniformly bounded by a constant L(p) and that X is bounded. Denote by IPm and
IEm respectively the probability and the expectation w.r.t the sample Xu of size m. Assume that we
use the sample Xu to construct an estimator Ĝm of Γ satisfying

IEm
[
Lebd(Ĝm4Γ)

]
→ 0, m→+∞ ,

where 4 is the sign for the symmetric difference. We call such estimators consistent estimators of
Γ. Recall that we are interested in identifying the s0-connected components T1, . . . ,TJ of Γ. That
is, we seek a partition of Ĝm, denoted here by Ĥ1, . . . , ĤJ′ such that for any j = 1, . . . ,J, Ĥ j is a
consistent estimator of Tj and IEm

[
Lebd(Ĥ j)

]
→ 0 for j > J. From Proposition 4.1, we know that

for any 1≤ j, j′ ≤ J, j 6= j′, we have d∞(Tj,Tj′) > s0. Let s > s0 be defined by

s = min
j 6= j′

d∞(Tj,Tj′) . (6)

To define the partition Ĥ1, . . . , ĤJ′ , it is therefore natural to use a suitable reordering of the (s0 +
um)-connected components of Ĝm, where um is a positive sequence that tends to 0 as m tends to
infinity. Since the measure of performance IEm

[
Lebd(Ĝm4Γ)

]
is defined up to a set of null Lebesgue

measure it may be the case that even an estimator Ĝm that satisfies IEm
[
Lebd(Ĝm 4Γ)

]
= 0 has

only one (s0 + um)-connected components whereas Γ has several s0-connected components. This
happens for example in the case where Ĝm = Γ∪ R where R is a set of thin ribbons with null
Lebesgue measure that link the s0-connected components of Γ to each other (see Figure 1, left). If
Ĝm were r0-standard, such configurations would not occur. To have Ĝm more “standard”, we apply
the following clipping transformation: define the set

Clip(Ĝm) =
{

x ∈ Ĝm : Lebd
(
Ĝm∩B(x,(logm)−1)

)
≤ (logm)−d

mα

}
.

In the sequel, we will only consider the clipped version of Ĝm defined by G̃m = Ĝm \Clip(Ĝm). For
any x ∈ G̃m, we have

Lebd
(
Ĝm∩B(x,(logm)−1)

)
>

(logm)−d

mα .

However, this is not enough to ensure that the union of several s0-connected components of Γ is
not estimated by a single (s0 + um)-connected component of G̃m due to the magnitude of random
fluctuations of G̃m around Γ.

To ensure componentwise consistency, we make assumptions on the estimator Ĝm. Note that
the performance of a density level set estimator Ĝm is measured by the quantity

IEm
[
Lebd(Ĝm4Γ)

]
= IEm

[
Lebd(Ĝ

c
m∩Γ)

]
+ IEm

[
Lebd(Ĝm∩Γc)

]
. (7)

For some estimators, such as the offset plug-in density level sets estimators presented in Section 5,
we can prove that the dominant term in the RHS of (7) is IEm

[
Lebd(Ĝc

m ∩Γ)
]
. It yields that the

probability of having Γ included in the consistent estimator Ĝm is negligible. We now give a precise
definition of such estimators.
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Definition 4.3 Let Ĝm be an estimator of Γ and fix α > 0. We say that the estimator Ĝm is consistent
from inside at rate m−α if it satisfies

IEm
[
Lebd(Ĝm4Γ)

]
= Õ(m−α) ,

and
IEm

[
Lebd(Ĝm∩Γc)

]
= Õ(m−2α) .

The following proposition ensures that the clipped version of an estimator that is consistent from
inside is also consistent from inside at the same rate.

Proposition 4.2 Fix α > 0,s0 > 0 and let (um) be a positive sequence. Assume that X is bounded
and let Ĝm be an estimator of Γ that is consistent from inside at rate m−α. Then, the clipped
estimator G̃m = Ĝm \Clip(Ĝm) is also consistent from inside a rate m−α and has a finite number
K̃m ≤ Lebd(X )mα of (s0 + um)-connected components that have Lebesgue measure greater than
or equal to m−α. Moreover, the (s0 + um)-connected components of G̃m are mutually (s0 + θum)-
separated for any θ ∈ (0,1).

We are now in position to define the estimators of the s0-connected components of Γ. Define sm =
s0 +(3logm)−1 and denote by H̃1, . . . , H̃K̃m

the sm-connected components of G̃m that have Lebesgue
measure greater than or equal to m−α. The number K̃m depends on Xu and is therefore random but
bounded from above by the deterministic quantity Lebd(X )mα.

Let J be a subset of {1, . . . ,J}. Define κ( j) = {k = 1, . . . , K̃m : H̃k∩Tj 6= /0} and let D(J ) be the
event on which the sets κ( j), j ∈ J are reduced to singletons {k( j)} that are disjoint, that is,

D(J ) =
{

κ( j) = {k( j)},k( j) 6= k( j′), ∀ j, j′ ∈ J , j 6= j′
}

=
{

κ( j) = {k( j)}, (Tj ∪ H̃k( j))∩ (Tj′ ∪ H̃k( j′)) = /0, ∀ j, j′ ∈ J , j 6= j′
}

.
(8)

In other words, on the event D(J ), there is a one-to-one correspondence between the collection
{Tj} j∈J and the collection

{
{H̃k}k∈κ( j)

}
j∈J . Componentwise convergence of G̃m to Γ, is ensured

when D({1, . . . ,J}) has asymptotically overwhelming probability. The following proposition en-
sures that D(J ) has large enough probability.

Proposition 4.3 Fix r0 > 0 and s0 ≥ (3logm)−1. Assume that there exists a version of Γ that is
r0-standard and closed. Then, denoting by J the number of s0-connected components if Γ, for any
J ⊂ {1, . . . ,J}, we have

IPm
(
Dc(J )) = Õ

(
m−α)

,

where D(J ) is defined in (8).

4.3 Labeling the Clusters

From the strong cluster assumption (SCA) the clusters are homogeneous regions. To estimate the
clusters, we apply the method described above that consists in estimating the sm-connected compo-
nents of the clipped estimator G̃m and keep only those that have Lebesgue measure greater than or
equal to m−α. Then we make a majority vote on each homogeneous region. It yields the following
procedure.
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THREE-STEP PROCEDURE

1. Use the unlabeled data Xu to construct an estimator Ĝm of Γ that is consistent from
inside at rate m−α.

2. Define homogeneous regions as the sm-connected components of G̃m = Ĝm \
Clip(Ĝm) (clipping step) that have Lebesgue measure greater than or equal to m−α.

3. Assign a single label to each estimated homogeneous region by a majority vote on
labeled data.

This method translates into two distinct error terms, one term in m and another term in n. We
apply our three-step procedure to build a classifier g̃n,m based on the pooled sample (Xl,Xu). Fix
α > 0 and let Ĝm be an estimator of the density level set Γ, that is consistent from inside at rate m−α.
For any 1≤ k ≤ K̃m, define the random variable

Zk
n,m =

n

∑
i=1

(2Yi−1)1I{Xi∈H̃k} ,

where H̃k is obtained by Step 2 of the three-step procedure. Denote by g̃k
n,m the function g̃k

n,m(x) =
1I{Zk

n,m>0} for all x ∈ H̃k and consider the classifier defined on X by

g̃n,m(x) =
K̃m

∑
k=1

g̃k
n,m(x)1I{x∈H̃k} , x ∈ X . (9)

Note that the classifier g̃n,m assigns label 0 to any x outside of G̃m. This is a notational convention
and we can assign any value to x on this set since we are only interested in the cluster excess-risk.
Nevertheless, it is more appropriate to assign a label referring to a rejection, for example, the values
“2”or “R” (or any other value different from {0,1}). The rejection meaning that this point should be
classified using labeled data only. However, when the amount of labeled data is too small, it might
be more reasonable not to classify this point at all. This modification is of particular interest in the
context of classification with a rejection option when the cost of rejection is smaller than the cost of
misclassification (see, for example, Herbei and Wegkamp, 2006). Remark that when there is only a
finite number of clusters, there exists δ > 0 such that

δ = min
j=1,...,J

{
δ j : δ j > 0

}
. (10)

Theorem 4.1 Fix α > 0 and assume that (SCA) holds. Consider an estimator Ĝm of Γ, based on
Xu that is consistent from inside at rate m−α. Then, the classifier g̃n,m defined in (9) satisfies

EΓ (g̃n,m)≤ Õ

(
m−α

1−θ

)
+

J

∑
j=1

δ je
−n(θδ j)

2/2 ≤ Õ

(
m−α

1−θ

)
+ e−n(θδ)2/2 , (11)

for any 0 < θ < 1 and where δ > 0 is defined in (10).

Note that, since we often have m� n, the first term in the RHS of (11) can be considered negligible
so that we achieve an exponential rate of convergence in n which is almost the same (up to the
constant θ in the exponent) as in the case where the clusters are completely known. The constant θ
seems to be natural since it balances the two terms.
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5. Plug-in Rules for Density Level Sets Estimation

Fix λ > 0 and recall that our goal is to use the unlabeled sample Xu of size m to construct an
estimator Ĝm of Γ = Γ(λ) = {x ∈ X : p(x)≥ λ}, that is consistent from inside at rate m−α for some
α > 0 that should be as large as possible. A simple and intuitive way to achieve this goal is to use
plug-in estimators of Γ defined by

Γ̂ = Γ̂(λ) = {x ∈ X : p̂m(x)≥ λ} ,

where p̂m is some estimator of p. A straightforward generalization are the offset plug-in estimators
of Γ(λ), defined by

Γ̃` = Γ̃`(λ) = {x ∈ X : p̂m(x)≥ λ+ `} ,

where ` > 0 is an offset. Clearly, we have Γ̃` ⊂ Γ̂. Keeping in mind that we want estimators that are
consistent from inside we are going to consider sufficiently large offset ` = `(m).

Plug-in rules is not the only choice for density level set estimation. Direct methods such as
empirical excess mass maximization (see, for example, Polonik, 1995; Tsybakov, 1997; Steinwart
et al., 2005) are also popular. One advantage of plug-in rules over direct methods is that once we
have an estimator p̂m, we can compute the whole collection {Γ̃`(λ),λ > 0}, which might be of
interest for the user who wants to try several values of λ. Note also that a wide range of density
estimators is available in usual software. A density estimator can be parametric, typically based on
a mixture model, or nonparametric such as histograms or kernel density estimators. In Section 6, we
briefly describe a possible implementation based on existing software that makes use of kernel or
nearest neighbors density estimators. To conclude this discussion, remark that the greater flexibility
of plug-in rules may result in a poorer learning performance and even though we do not discuss
any implementation based on direct methods, it may well be the case that the latter perform better
in practice. However, it is not our intent to propose here the best clustering algorithm or the best
density level set estimator and we present a simple proof of convergence for offset plug-in rules
only for the sake of completeness.

The next assumption has been introduced in Polonik (1995). It is an analog of the margin
assumption formulated in Mammen and Tsybakov (1999) and Tsybakov (2004) but for arbitrary
level λ in place of 1/2.

Definition 5.1 For any λ,γ≥ 0, a function f : X → IR is said to have γ-exponent at level λ if there
exists a constant c? > 0 such that, for all ε > 0,

Lebd {x ∈ X : | f (x)−λ| ≤ ε} ≤ c?εγ .

When γ > 0 it ensures that the function f has no flat part at level λ.
The next theorem gives fast rates of convergence for offset plug-in rules when p̂m satisfies an

exponential inequality and p has γ-exponent at level λ. Moreover, it ensures that when the offset `
is suitably chosen, the plug-in estimator is consistent from inside.

Theorem 5.1 Fix λ > 0,γ > 0 and ∆ > 0. Let p̂m be an estimator of the density p based on the
sample Xu of size m ≥ 1 and let P be a class of densities on X . Assume that there exist positive
constants c1,c2 and a≤ 1, such that for PX -almost all x ∈ X , we have

sup
p∈P

IPm (|p̂m(x)− p(x)| ≥ δ)≤ c1e−c2maδ2
, m−a/2 < δ < ∆ . (12)
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Assume further that p has γ-exponent at level λ for any p ∈ P and that the offset ` is chosen as

` = `(m) = m−
a
2 logm . (13)

Then the plug-in estimator Γ̃` is consistent from inside at rate m−
γa
2 for any p ∈ P .

Consider a kernel density estimator p̂K
m based on the sample Xu defined by

p̂K
m(x) =

1
mhd

n+m

∑
i=n+1

K

(
Xi− x

h

)
, x ∈ X ,

where h > 0 is the bandwidth parameter and K : IRd→ IR is a kernel. If p is assumed to have Hölder
smoothness parameter β > 0 and if K and h are suitably chosen, it is a standard exercise to prove
inequality of type (12) with a = 2β/(2β + d). In that case, it can be shown that the rate m−

γa
2 is

optimal in a minimax sense (see Rigollet and Vert, 2006).

6. Discussion

We proposed a formulation of the cluster assumption in probabilistic terms. This formulation re-
lies on Hartigan’s (1975) definition of clusters but it can be modified to match other definitions of
clusters.

We also proved that there is no hope to improve the classification performance outside of these
clusters. Based on these remarks, we defined the cluster excess-risk on which we observe the
effect of unlabeled data. Finally we proved that when we have consistent estimators of the clusters,
it is possible to achieve exponential rates of convergence for the cluster excess-risk. The theory
developed here can be extended to any definition of clusters as long as they can be consistently
estimated.

Note that our definition of clusters is parametrized by λ which is left to the user, depending
on his trust in the cluster assumption. Indeed, density level sets have the monotonicity property:
λ ≥ λ′, implies Γ(λ) ⊂ Γ(λ′). In terms of the cluster assumption, it means that when λ decreases
to 0, the assumption (SCA) concerns bigger and bigger sets Γ(λ) and in that sense, it becomes
more and more restrictive. As a result, the parameter λ can be considered as a level of confidence
characterizing to which extent the cluster assumption is valid for the distribution P.

The choice of λ can be made by fixing PX(C ), where C is defined in (1), the probability of the
rejection region. We refer to Cuevas et al. (2001) for more details. Note that data-driven choices
of λ could be easily derived if we impose a condition on the purity of the clusters, that is, if we are
given the δ in (10). Such a choice could be made by decreasing λ until the level of purity is attained.
However, any data-driven choice of λ has to be made using the labeled data. It would therefore yield
much worse bounds when n� m.

A possible implementation of the ideas presented in this paper can be designed using existing
clustering software such as DBSCAN (Ester et al., 1996) (and its algorithmic improvement called
OPTICS Ankerst et al., 1999) or runt pruning (Stuetzle, 2003). These three algorithms implement
clustering using a definition of clusters that involves density level sets and a certain notion of con-
nectedness. The idea is to use these algorithms on the pooled sample of instances (X1, . . . ,Xn+m,X),
where X is the new instance to be classified. As a result every instance will be affected to a cluster
by the chosen algorithm. The label for X is then predicted using a majority vote on the labeled
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instances that are affected to the same cluster as X . Observe that unlike the method described in
the paper, the clusters depend on the labeled instances (X1, . . . ,Xn). Proceeding so allows us to
use directly existing clustering algorithms without any modification. Since all three algorithms are
distance based, we could run them only on unlabeled instance and then affect each labeled instance
and the new instance to the same cluster as its nearest neighbor. However, if we assume that m� n,
incorporating labeled instances will not significantly affect the resulting clusters.

We now describe more precisely why these algorithms produce estimated clusters that are re-
lated to the sm-connected components of a plug-in estimator of the density level set. Each algorithm
has instances (X1, . . . ,Xm) and several parameters described below as inputs. Note that these clus-
tering algorithms will affect every instance to a cluster. This can be transformed into our framework
by removing clusters that contain only one instance.

• DBSCAN has two input parameters: a real number ε > 0 and and integer M ≥ 1. The basic
version of this algorithm proceeds as follows. For a given instance Xi, let Jε(i) ⊂ {1, . . . ,m}
be the set of indexes j 6= i such that ‖X j −Xi‖ ≤ ε. If card(Jε(i)) ≥ M then all instances
X j, j ∈ Jε(i) are affected to the same cluster as Xi and the procedure is repeated with each
X j, j ∈ Jε(i). Otherwise a new cluster is defined and the procedure is repeated with another
instance.

Observe first that the instances X j that satisfy ‖X j −Xi‖ ≤ ε are ε-connected to Xi. Also,
define the kernel density estimator p̂m by:

p̂m(x) =
1

mεd

m

∑
j=1

K
(x−Xi

ε
)
,

where K : IRd → IR is defined by K(x) = 1I{‖x‖≤1} for any x ∈ IRd . Then card(Jε(i)) ≥M is
equivalent to p̂m(Xi)≥ M+1

mεd . Thus, if we chose s0 = ε− (3logm)−1 and λ+ `(m) = M+1
mεd , we

see that DBSCAN implements our method. Conversely, for given λ and s0, we can derive the
parameters ε and M such that DBSCAN implements our method.

• OPTICS is a modification of DBSCAN that allows the user to compute in an efficient fashion
all cluster partitions for different ε ≤ ε0 for some user specified ε0 > 0. The user still has to
input the chosen value for ε so that from our point of view, the two algorithms are the same.

• Both of the previous algorithms suffer from a major drawback that is inherent to our definition
of cluster based on a global level when determining the density level sets. Indeed, in many
real data sets, some clusters can only be identified using several density levels. Stuetzle
(2003) recently described an algorithm called runt pruning that is free from this drawback.
Since, it does not implement our method, we do not describe the algorithm in detail but
mention it because it implements a more suitable definition of clusters that is also based on
connectedness and density level sets. In particular it resolves the problem of choosing λ. It
uses a nearest neighbor density estimator as a running horse and uses a single input parameter
that corresponds to the scale s0.

This paper is an attempt to give a proper mathematical framework for the cluster assumption
proposed in Seeger (2000). As mentioned above, the definition of clusters that we use here is one
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among several available and it could be interesting to modify the formulation of the cluster assump-
tion to match other definitions of cluster. In particular, the definition of cluster as s0-connected
components of the λ-level set of the density leaves the problem of choosing λ correctly.
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Appendix A. Proofs

This section contains proofs of the results presented in the paper.

A.1 Proof of Proposition 2.1

Since the distribution of the unlabeled sample Xu does not depend on η, we have for any marginal
distribution PX ,

sup
η∈Ξ

IEn,m

Z

C c
|2η−1|1I{Tn,m 6=g?}dPX = sup

η∈Ξ
IEmIEn

[Z

C c
|2η−1|1I{Tn,m 6=g?}dPX

∣∣Xu

]

= IEm sup
η∈Ξ

IEn

[Z

C c
|2η−1|1I{Tn,m 6=g?}dPX

∣∣Xu

]

≥ inf
Tn

sup
η∈Ξ

IEn

Z

C c
|2η−1|1I{Tn 6=g?}dPX ,

where in the last inequality, we used the fact that conditionally on Xu, the classifier Tn,m only depends
on Xl and can therefore be written Tn.

A.2 Proof of Theorem 3.1

We can decompose EC (ĝn) into

EC (ĝn) = IEn ∑
j≥1

Z

Tj

|2η(x)−1|1I{ĝ j
n(x)6=g?(x)}p(x)dx .

Fix j ∈ {1,2, . . .} and assume w.l.o.g. that η≥ 1/2 on T j. It yields g?(x) = 1, ∀x ∈ Tj, and since ĝn

is also constant on Tj, we get
Z

Tj

|2η(x)−1|1I{ĝ j
n(x)6=g?(x)}p(x)dx = 1I{Z j

n≤0}

Z

Tj

(2η(x)−1)p(x)dx

≤ δ j1I{|δ j− Z
j
n
n |≥δ j

} .
(14)

Taking expectation IEn on both sides of (14) we get

IEn

Z

Tj

|2η(x)−1|1I{ĝ j
n(x)6=g?(x)}p(x)dx≤ δ jIPn

[∣∣δ j−
Z j

n

n

∣∣≥ δ j

]

≤ 2δ je
−nδ2

j/2 ,
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where we used Hoeffding’s inequality to get the last bound. Summing now over j yields the theo-
rem.

A.3 Proof of Lemma 4.1

The binary relation
s←→
C

is an equivalence relation if it satisfies reflexivity, symmetry and transitivity.

To prove reflexivity, consider the trivial constant path f (t) = x for all t ∈ [0,1]. We immediately
obtain that x

s←→
C

x.

To prove symmetry, fix x,y ∈C such that x
s←→
C

y and denote by f1 the piecewise constant map

with n1 jumps that satisfies f1(0) = x, f1(1) = y and ‖ f1(t+)− f1(t−)‖ ≤ s. It is not difficult to see
that the map f̃1 defined by f̃1(t) = f1(1− t) for any t ∈ [0,1] is piecewise constant with n1 jumps,
satisfies f̃1(0) = y, f̃1(1) = x and ‖ f̃1(t+)− f̃1(t−)‖ ≤ s for any t ∈ [0,1], so that y

s←→
C

x.

To prove transitivity, let z ∈C be such that y
s←→
C

z and let f2 be a piecewise constant map with

n2 jumps that satisfies f2(0) = y, f2(1) = z and ‖ f2(t+)− f2(t−)‖ < s for any t ∈ [0,1]. Let now
f : [0,1]→ X be the map defined by:

f (t) =

{
f1(2t) if t ∈ [0,1/2]
f2(2t−1) if t ∈ [1/2,1] .

This map is obviously piecewise constant with n1 +n2 jumps and satisfies f (0) = x, f (1) = z. More-
over, for any t ∈ [0,1], f satisfies ‖ f̃ (t+)− f̃ (t−)‖ ≤ s.

Thus
s←→
C

is an equivalence relation and C can be partitioned into its classes of equivalence.

A.4 Proof of Proposition 4.1

From Lemma 4.1, we know that
s←→
C

is an equivalence relation and C can be partitioned into its

classes of equivalence denoted by C1,C2, . . .. The classes of equivalences C1,C2, . . . obviously sat-
isfy the first point of Proposition 4.1 from the very definition of a class of equivalence.

To check the second point, remark first that since C is a closed set, each C j, j≥ 1 is also a closed
set. Indeed, fix some j≥ 1 and let (xn,n≥ 1) be a sequence of points in C j that converges to x. Since
C is closed, we have x ∈C so there exists j′ ≥ 1 such that x ∈C j′ . If j 6= j′, then ‖xn− x‖ > s for
any n≥ 1 which contradicts the fact that xn converges to x. Therefore, x ∈C j and C j is closed. Then
let C j and C j′ , be two classes of equivalence such that d∞(C j,C j′) ≤ s. Using the fact that C j and
C j′ are closed sets, we conclude that there exist x ∈C j and x′ ∈C j′ such that ‖x− x′‖ ≤ s and hence
that x

s←→
C

x′. Thus C j = C j′ and we conclude that for any C j,C j′ , j 6= j′, we have d∞(C j,C j′) > s

and the C j are mutually s-separated.
We now prove that the decomposition is finite. Since the C j are mutually s-separated, for any

1 ≤ j ≤ k, for any x j ∈ C j, the Euclidean balls B(x j,s/3) are disjoint. Using the facts that X is
bounded and that C is r0-standard we obtain,

∞ > Lebd(X )≥
k

∑
j=1

Lebd
[
B(x j,s/3)∩X

]
≥

k

∑
j=1

Lebd
[
B(x j,s/3)∩C

]
≥ ck ,
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for a positive constant c. Thus we proved the existence of a finite partition

C =
J

[

j=1

C j .

It remains to prove that this partition is unique. To this end, we make use of the fundamental
theorem of equivalence relations (see, for example, Dummit and Foote, 1991, Prop. 2, page 3) which
states that any partition of C corresponds to the classes of equivalences of a unique equivalence
relation. Let P ′ = {C′1, . . . ,C′J′} be a partition of C that satisfies the two points of Proposition 4.1

and denote by R ′ the corresponding equivalence relation. We now prove that
s←→
C
≡ R ′. From

the first point of Proposition 4.1, we easily conclude that if xR ′y then x
s←→
C

y. Now if we choose

x,y ∈ C such that xR ′y does not hold, then there exist j 6= j′ such that x ∈ C′j and y ∈ C′j′ . If we

had x
s←→
C

y, it would hold d∞(C′j,C
′
j′)≤ s which contradicts the second point of Proposition 4.1 so

x
s←→
C

y does not hold. As a consequence we have proved that for any x,y ∈ C, xR y if and only

if x
s←→
C

y and the two relations are the same so as their classes of equivalence. This allows us to

conclude that P ′ = P .

A.5 Proof of Proposition 4.2

Consider a regular grid G on IRd with step size 1/ log(m) and observe that the Euclidean balls of
centers in G̃ = G ∩Clip(Ĝm) and radius

√
d/ log(m) cover the set Clip(Ĝm). Since X is bounded,

there exists a constant c1 > 0 such that card{G̃}= c1(logm)d . Therefore

Lebd(Clip(Ĝm))≤ ∑
x∈G̃

Lebd
(
B(x,
√

d/ log(m))∩ Ĝm
)
≤ c2(logm)d−d

mα ,

for some positive constant c2. Therefore, the rate of convergence G̃m is the same as that of Ĝm.
Observe also that G̃m ⊂ Ĝm, so that G̃m is also consistent from inside.

Assume that G̃m can be decomposed in at least a number k of (s0 +um)-connected components,
H̃1, . . . , H̃k with Lebesgue measure greater than or equal to m−α. It holds

∞ > Lebd(X )≥
k

∑
j=1

Lebd(T̃j)≥ km−α ,

Therefore, the number of (s0 + um)-connected components of G̃m with Lebesgue measure greater
than or equal to m−α is at most Lebd(X )mα.

To prove that the (s0 +um)-connected components of G̃m are mutually s0-separated, let T̃1 6= T̃2

be two (s0 +um)-connected components of G̃m and fix x1 ∈ T̃1, x2 ∈ T̃2. We have ‖x1−x2‖> s0 +um,
otherwise T̃1 = T̃2. Thus d∞(T̃1, T̃2) ≥ s0 + um > s0 + θum for any um > 0,θ ∈ (0,1). Thus two
(s0 +um)-connected components of G̃m are (s0 +θum)-separated for any θ ∈ (0,1).
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A.6 Proof of Proposition 4.3

Define m0 = e
1

3(r0∧s0) and denote D(J ) by D. Remark that

Dc =
J

[

j=1

A1( j)∪A2( j)∪A3( j) ,

where

A1( j) = {card[κ( j)] = 0},
A2( j) = {card[κ( j)]≥ 2},
A3( j) =

[

j′ 6= j

{κ( j)∩κ( j′) 6= /0} .

In words, A1( j) is the event on which Tj is estimated by none of the (H̃k)k, A2( j) is the event on
which Tj is estimated by at least two different elements of the collection (H̃k)k and A3( j) is the event
on which Tj is estimated by an element of the collection (H̃k)k that also estimates another Tj′ from
the collection (Tj) j.

For any j = 1, . . . ,J, we have

A1( j) = {card[κ( j)] = 0} ⊂ {Tj ⊂ G̃m4Γ} ⊂ {B(x,r)∩Tj ⊂ G̃m4Γ} ,

for any x ∈ Tj and r > 0. Remark that from Proposition 4.1, the T j are mutually s0-separated so we
have B(x,r)∩Tj = B(x,r)∩Γ for any r ≤ s0. Thus, for any m≥ m0, it holds (3logm)−1 ≤ s0∧ r0

and

A1( j)⊂ {Lebd [B(x,(3logm)−1)∩Tj]≤ Lebd [G̃m4Γ]} ⊂ {Lebd [G̃m4Γ]≥ c0(3logm)−d} ,

where in the last inclusion we used the fact that Γ is r0-standard.
We now treat A2( j). Assume without loss of generality that {1,2} ⊂ κ( j). On A2( j), there exist

x1 ∈ Tj∩ H̃1, xn ∈ Tj∩ H̃2 and a sequence x2, . . . ,xn−1 ∈ Tj such that ‖x j−x j+1‖ ≤ s0. Observe now
that from Proposition 4.2, we have ‖x1− xn‖> s0 ≥ (3logm)−1 for m≥ m0. Therefore the integer

j? = min
{

j : 2≤ j ≤ n, ∃z ∈ H̃1 s.t.‖x j− z‖> (3logm)−1} ,

is well defined. Moreover, there exists z0 ∈ H̃1 such that ‖x j?−1− z0‖ ≤ (3logm)−1. Now, if there
exists z ∈ H̃k, for some k ∈ {2, . . . , K̃m}, such that ‖x j?− z‖ ≤ (3logm)−1, then

d∞(H̃1, H̃k)≤ ‖z0− x j?−1‖+‖x j?−1− x j?‖+‖x j?− z‖ ≤ s0 +2(3logm)−1 .

This contradicts the conclusion of Proposition 4.2 which states that d∞(H̃1, H̃k) > s0 + θ(logm)−1

for any k = 2, . . . , K̃m in particular when θ = 2/3. Therefore we obtain that on A2( j) there exists
x j? ∈ Tj such that

B(x j? ,(3logm)−1)∩ G̃m = /0 .

It yields

A2( j)⊂
{

B(x j? ,(3logm)−1)∩Tj ⊂ G̃m4Γ
}

⊂
{

Lebd
[
G̃m4Γ

]
> c0(3logm)−d} ,
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where in the second inclusion used the fact that B(x j? ,r)∩Tj = B(x j? ,r)∩Γ for any r≤ s0 and that
Γ is r0-standard.

We now consider the event A3( j). Assume without loss of generality that j = 1 and let k be such
that k ∈ κ(1)∩κ( j′) for some j′ ∈ {2, . . . ,J}. On A3(1), there exist y1 ∈ T1∩ H̃k, yn ∈ Tj′ ∩ H̃k and
a sequence y2, . . . ,yn−1 ∈ H̃k such that ‖y j− y j+1‖ ≤ sm.

Observe now that from Proposition 4.1, we have ‖y1 − yn‖ > s0 ≥ (3logm)−1 for m ≥ m0.
Therefore the integer

j] = min
{

j : 2≤ j ≤ n, ∃z ∈ T1 s.t.‖y j− z‖> (3logm)−1} ,

is well defined. Moreover, there exists z1 ∈ T1 such that ‖y j]−1− z1‖ ≤ (3logm)−1. Now, if there
exists z ∈ Tj′ for some j′ ∈ {2, . . . ,J} such that ‖y j]− z‖ ≤ (3logm)−1, then

d∞(T1,Tj′)≤ ‖y j]−1− z1‖+‖y j]−1− y j]‖+(3logm)−1 ≤ s0 +(logm)−1 < s ,

for sufficiently large m and where s is defined in (6). This contradicts the definition of s which
implies that d∞(T1,Tj′) ≥ s for any j ∈ {2, . . . ,J}. Therefore we obtain that on A3(1) there exists
y j] ∈ H̃k such that B(y j] ,(3logm)−1)⊂ Γc. It yields

A3(1)⊂
{

Lebd(G̃m∩Γc)≥ Lebd(G̃m∩B(y j] ,(3logm)−1))
}

.

Since y j] ∈ G̃m ⊂ Ĝm, we have Lebd(Ĝm ∩B(y j] ,(3logm)−1)) ≥ m−α(3logm)−d . On the other
hand, we have

Lebd(G̃m∩B(y j] ,(3logm)−1)) = Lebd(Ĝm∩B(y j] ,(3logm)−1))

−Lebd(Clip(Ĝm)∩B(y j] ,(3logm)−1))

≥ m−α(3logm)−d−Lebd(Ĝm∩Γc)

≥ m−α(3logm)−d− c3m−1.1α

≥ c4m−α(logm)−d ,

where we used the fact that Ĝm is consistent from inside at rate m−α . Hence,

A3( j) =
[

j′ 6= j

{κ( j)∩κ( j′) 6= /0} ⊂
{

Lebd(G̃m∩Γc)≥ c5m−α(logm)−d} .

Combining the results for A1( j), A2( j) and A3( j), we have

IPm(Dc)≤ IPm
{

Lebd
[
G̃m4Γ

]
> c0(3logm)−d}+ IPm

{
Lebd(G̃m∩Γc)≥ c5m−α(logm)−d} .

Using the Markov inequality for both terms we obtain

IPm
{

Lebd
[
G̃m4Γ

]
> c0(3logm)−d} = Õ

(
m−α)

,

and
IPm

{
Lebd(G̃m∩Γc)≥ c5m−α(logm)−d} = Õ

(
m−α)

,

where we used the fact that G̃m is consistent from inside with rate m−α. It yields the statement of
the proposition.
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A.7 Proof of Theorem 4.1

The cluster excess-risk EΓ(g̃n,m) can be decomposed w.r.t the event D and its complement. It yields

EΓ(g̃n,m)≤ IEm

[
1IDIEn

(Z

Γ
|2η(x)−1|1I{g̃n,m(x)6=g?(x)}p(x)dx

∣∣∣Xu

)]
+ IPm (Dc) .

We now treat the first term of the RHS of the above inequality, that is, on the event D. Fix j ∈
{1, . . . ,J} and assume w.l.o.g. that η ≥ 1/2 on Tj. Simply write Zk for Zk

m,n. By definition of D,
there is a one-to-one correspondence between the collection {T j} j and the collection {H̃k}k. We
denote by H̃ j the unique element of {H̃k}k such that H̃ j ∩Tj 6= /0. On D, for any j = 1, . . . ,J, we
have,

IEn

(Z

Tj

|2η(x)−1|1I{g̃ j
n,m(x)6=g?(x)}p(x)dx

∣∣∣Xu

)

≤
Z

Tj\G̃m

(2η−1)dPX + IEn

(
1I{Z j≤0}

Z

Tj∩H̃ j

(2η−1)dPX

∣∣∣Xu

)

≤ L(p)Lebd(Tj \ G̃m)+δ jIPn
(
Z j ≤ 0|Xu) .

On the event D, for any 0 < θ < 1, it holds

IPn
(
Z j ≤ 0|Xu) = IPn

(Z

Tj

(2η−1)dPX −Z j ≥ δ j|Xu
)

≤ IPn
(∣∣Z j−

Z

H̃ j

(2η−1)dPX
∣∣≥ θδ j|Xu

)

+1I{
PX

[
Tj4H̃ j

]
≥(1−θ)δ j

} .

Using Hoeffding’s inequality to control the first term, we get

IPn
(
Z j ≤ 0|Xu)≤ 2e−n(θδ j)

2/2 +1I{
PX

[
Tj4H̃ j

]
≥(1−θ)δ j

} .

Taking expectations, and summing over j, the cluster excess-risk is upper bounded by

EΓ(g̃n,m)≤ 2L(p)

1−θ
IEm

[
Lebd(Γ4 G̃m)

]
+2

J

∑
j=1

δ je
−n(θδ j)

2/2 + IPm (Dc) ,

where we used the fact that on D,

J

∑
j=1

Lebd
[
Tj4 H̃ j

]
≤ Lebd

[
Γ4 G̃m

]
.

From Proposition 4.3, we have IPm (Dc) = Õ(m−α) and IEm

[
Lebd(Γ4 G̃m)

]
= Õ(m−α) and the

theorem is proved.
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A.8 Proof of Theorem 5.1

Recall that
Γ̃`4Γ =

(
Γ̃`∩Γc)∪

(
Γ̃c

` ∩Γ
)

.

We begin by the first term. We have

Γ̃`∩Γc =
{

x ∈ X : p̂m(x)≥ λ+ `, p(x) < λ
}
⊂

{
x ∈ X : |p̂m(x)− p(x)| ≥ `

}
.

The Fubini theorem yields

IEm
[
Lebd(Γ̃`∩Γc)

]
≤ Lebd(X )sup

x∈X
IPm [|p̂m(x)− p(x)| ≥ `]≤ c6e−c2ma`2

,

where the last inequality is obtained using (12) and c6 = c1Lebd(X ) > 0. Taking ` as in (13) yields
for m≥ exp(γa/c2),

IEm
[
Lebd(Γ̃`∩Γc)

]
≤ c6m−γa. (15)

We now prove that IEm
[
Lebd(Γ̃`∩Γc)

]
= Õ

(
m−

γa
2
)
. Consider the following decomposition where

we drop the dependence in x for notational convenience,

Γ̃c
` ∩Γ = B1∪B2,

where
B1 =

{
p̂m < λ+ `, p≥ λ+2`

}
⊂

{
|p̂m− p| ≥ `

}

and
B2 =

{
p̂m < λ+ `,λ≤ p(x) < λ+2`

}
⊂

{
|p−λ| ≤ `

}
.

Using (12) and (13) in the same fashion as above we get IEm
[
Lebd(B1)

]
= Õ

(
m−γa

)
. The term

corresponding to B2 is controlled using the γ-exponent of density p at level λ. Indeed, we have

Lebd(B2)≤ c?`γ = c?(logm)γm−
γa
2 = Õ

(
m−

γa
2
)
.

The previous upper bounds for Lebd(B1) and Lebd(B2) together with (15) yield the consistency
from inside.
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