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Abstract

Kernel methods have been very popular in the machine learning literature in the last ten years,
mainly in the context of Tikhonov regularization algorithms. In this paper we study a coherent
Bayesian kernel model based on an integral operator defined as the convolution of a kernel with
a signed measure. Priors on the random signed measures correspond to prior distributions on the
functions mapped by the integral operator. We study several classes of signed measures and their
image mapped by the integral operator. In particular, we identify a general class of measures whose
image is dense in the reproducing kernel Hilbert space (RKHS) induced by the kernel. A conse-
quence of this result is a function theoretic foundation for using non-parametric prior specifications
in Bayesian modeling, such as Gaussian process and Dirichlet process prior distributions. We dis-
cuss the construction of priors on spaces of signed measures using Gaussian and Lévy processes,
with the Dirichlet processes being a special case the latter. Computational issues involved with sam-
pling from the posterior distribution are outlined for a univariate regression and a high dimensional
classification problem.
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1. Introduction

Kernel methods have a long history in statistics and applied mathematics (Schoenberg, 1942; Aron-
szajn, 1950; Parzen, 1963; de Boor and Lynch, 1966; Micchelli and Wahba, 1981; Wahba, 1990)
and have had a tremendous resurgence in the machine learning literature in the last ten years (Poggio
and Girosi, 1990; Vapnik, 1998; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004).
Much of this resurgence was due to the popularization of classification algorithms such as support
vector machines (SVMs) (Cortes and Vapnik, 1995) that are particular instantiations of the method
of regularization of Tikhonov (1963). Many machine learning algorithms and statistical estimators
can be summarized by the following penalized loss functional (Evgeniou et al., 2000; Hastie et al.,
2001, Section 5.8)

f̂ = arg min
f∈H

[

L( f ,data)+λ‖ f‖2
K

]

,

where L is a loss function, H is often an infinite-dimensional reproducing kernel Hilbert space
(RKHS), ‖ f‖2

K is the norm of a function in this space, and λ is a tuning parameter chosen to balance
the trade-off between fitting errors and the smoothness of the function. The data is assumed to
be drawn independently from a distribution ρ(x,y) with x ∈ X ⊂ Rd and y ∈ Y ⊂ R. Due to the
representer theorem (Kimeldorf and Wahba, 1971) the solution of the penalized loss functional will
be a kernel

f̂ (x) =
n

∑
i=1

wi K(x,xi),

where {xi}n
i=1 are the n observed input or explanatory variables. The statistical learning community

as well as the approximation theory community has studied and characterized properties of the
RKHS for various classes of kernels (DeVore et al., 1989; Zhou, 2003).

Probabilistic versions and interpretations of kernel estimators have been of interest going back to
the work of Hájek (1961, 1962) and Kimeldorf and Wahba (1971). More recently a variety of kernel
models with a Bayesian framework applied to the finite representation from the representer theorem
have been proposed (Tipping, 2001; Sollich, 2002; Chakraborty et al., 2005). However, the direct
adoption of the finite representation is not a fully Bayesian model since it depends on the (arbitrary)
training data sample size (see remark 3 for more discussion). In addition, this prior distribution is
supported on a finite-dimensional subspace of the RKHS. Our coherent fully Bayesian approach
requires the specification of a prior distribution over the entire space H .

A continuous, positive semi-definite kernel on a compact space X is called a Mercer kernel. The
RKHS for such a kernel can be characterized (Mercer, 1909; König, 1986) as

HK =

{

f
∣

∣

∣
f (x) = ∑

j∈Λ
a jφ j(x) with ∑

j∈Λ
a j

2/λ j < ∞

}

, (1)

where {φ j} ⊂ H and {λ j} ⊂ R+ are the orthonormal eigenfunctions and the corresponding non-
increasing eigenvalues of the integral operator with kernel K on L2

(

X ,µ(du)
)

,

λ jφ j(x) =
Z

X
K(x,u)φ j(u)µ(du) (2)

and where Λ :=
{

j : λ j > 0
}

. The eigenfunctions {φ j} and the eigenvalues {λ j} depend on the
measure µ(du), but the RKHS does not. This suggests specifying a prior distribution over H by
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placing one on the parameter space

A =
{

{a j}
∣

∣

∣ ∑
j∈Λ

a j
2/λ j < ∞

}

as in Johnstone (1998) and Wasserman (2005, Section 7.2). There are serious computational and
conceptual problems with specifying a prior distribution on this infinite-dimensional set. In par-
ticular, only in special cases are the eigenfunctions {φ j} and eigenvalues {λ j} available in closed
form.

Another approach, the Bayesian kernel model, is to study the class of functions expressible as
kernel integrals

G =

{

f
∣

∣

∣
f (x) =

Z

X
K(x,u) γ(du), γ ∈ Γ

}

, (3)

for some space Γ⊆B(X ) of signed Borel measures. Any prior distribution on Γ induces one on G .
The natural question that arises in this Bayesian approach is:

For what spaces Γ of signed measures is the RKHS HK identical to the linear space
span(G) spanned by the Bayesian kernel model?

The space G is the range LK[Γ] of the integral operator LK : Γ→ G given by

LK[γ](x) :=
Z

X
K(x,u)γ(du). (4)

Informally (we will be more precise in Section 2) we can characterize Γ as the range of the inverse
operator L −1

K : HK → Γ. The requirements on Γ for the equivalence between LK[Γ] and HK is the
primary focus of this paper and in Section 2 we formalize and prove the following proposition:

Proposition 1 For Γ = B(X ), the space of all signed Borel measures, G = HK .

The proposition asserts that the Bayesian kernel model and the penalized loss model both operate
in the same function space when Γ includes all signed measures.

This result lays a theoretical foundation from a function analytic perspective for the use of
two commonly used prior specifications: Dirichlet process priors (Ferguson, 1973; West, 1992;
Escobar and West, 1995; MacEachern and Müller, 1998; Müller et al., 2004) and Lévy process
priors (Wolpert et al., 2003; Wolpert and Ickstadt, 2004).

1.1 Overview

In Section 2, we formalize and prove the above proposition. Prior distributions are placed on the
space of signed measures in Section 4 using Lévy, Dirichlet, and Gaussian processes. In Section 5
we provide two examples using slightly different process prior distributions for a univariate regres-
sion problem and a high dimensional classification problem. This illustrates the use of these process
priors for posterior inference. We close in Section 6 with a brief discussion.

Remark 2 Equation (3) is a Fredholm integral equation of the first kind (Fredholm, 1900). The
problem of estimating an unknown measure γ for a specified element f ∈HK is ill-posed (Hadamard,
1902) in the sense that small changes in f may give rise to large changes in estimates of γ. It was
precisely the study of this problem that led Tikhonov (1963) to his regularization method, in a study
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of problems in numerical analysis such as interpolation or Gauss quadrature. Bayesian methods
for interpolation and Gauss quadrature were explored by Diaconis (1988). A Bayesian method us-
ing Lévy process priors to address numerically ill-posed problems was developed by Wolpert and
Ickstadt (2004). We will return to this relation between robust statistical estimation and numerically
stable methods in the discussion.

Remark 3 Due to the relation between regularization and Bayes estimators the finite representation
is a MAP (maximal a posterior) estimator (Wahba, 1999; Poggio and Girosi, 1990). However,
functions in the RKHS having a posterior probability very close to that of the MAP estimator need
not have a finite representation so building a prior only on the finite representation is problematic
if one wants to estimate the full posterior on the entire RKHS. Thus the prior used to derive the
MAP estimate is essentially the same as those used in Sollich (2002). This will lead to serious
computational and conceptual difficulties when the full posterior must be simulated.

2. Characterizing the Function Space of the Kernel Model

In this section we formalize the relationship between the RKHS and the function space induced by
the Bayesian kernel model.

2.1 Properties of the RKHS

Let X ⊂ Rd be compact and K : X ×X → R a continuous, positive semi-definite (Mercer) kernel.
Consider the space of functions

H =

{

f
∣

∣

∣
f (x) =

n

∑
j=1

a jK(x,x j) : n ∈ N, {x j} ⊂ X , {a j} ⊂ R

}

with an inner product 〈· , ·〉K extending

〈

K(·,xi), K(·,x j)
〉

K := K(xi,x j).

The Hilbert space closure HK of H in this inner-product is the RKHS associated with the kernel K
(Aronszajn, 1950). The kernel is “reproducing” in the sense that each f ∈HK satisfies

f (x) = 〈 f ,Kx〉K

for all x ∈ X , where Kx(·) := K(·,x).
A well-known alternate representation of the RKHS is given by an orthonormal expansion

(Aronszajn 1950, extended to arbitrary measures by König 1986; see Cucker and Smale 2001). Let
{λ j} and {φ j} be the non-increasing eigenvalues and corresponding complete orthonormal set of
eigenvectors of the operator LK of Equation (4), restricted to the Hilbert space L2

(

X , du
)

of mea-
sures γ(du) = γ(u)du with square-integrable density functions γ ∈ L2

(

X , du
)

. Mercer’s theorem
(Mercer, 1909) asserts the uniform and absolute convergence of the series

K(u,v) =
∞

∑
j=1

λ j φ j(u)φ j(v), (5)
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whereupon with Λ :=
{

j : λ j > 0
}

we have

HK =

{

f = ∑
j∈Λ

a jφ j

∣

∣

∣ ∑
j∈Λ

λ j
−1 a j

2 < ∞

}

.

2.2 Bayesian Kernel Models and Integral Operators

Recall the Bayesian kernel model was defined by

G =

{

LK[γ](x) :=
Z

X
K(x,u) γ(du), γ ∈ Γ

}

,

where Γ is a space of signed Borel measures on X . We wish to characterize the space L
−1

K (HK) of
Borel measures mapped into the RKHS HK of Equation (1). A precise characterization is difficult
and instead we will find a subclass Γ ⊂L

−1
K (HK) which will be large enough in practice, in the

sense that LK(Γ) is dense in HK .
First we study the image under LK of four classes of measures: (1) those with square integrable

(Lebesgue) density functions; (2) all finite measures with Lebesgue density functions; (3) the set of
discrete measures; and (4) linear combinations of all of these. Then we will extend these results to
the general case of Borel measures (see Appendix A for proofs).

We first examine the class L2(X ,du), viewed as the space of finite measures on X with square-
integrable density functions with respect to Lebesgue measure; in a slight abuse of notation we write
γ(du) = γ(u)du, using the same letter γ for the measure and its density function. Since X is compact
and K bounded, LK is a positive compact operator on L2(X ,du) with a complete ortho-normal sys-
tem (CONS) {φ j} of eigenfunctions with non-increasing eigenvalues {λ j} ⊂ R+ satisfying Equa-
tion (5). Each γ ∈ L2(X ,du) admits a unique expansion γ = ∑ j a jφ j, with ‖γ‖2

2 = ∑ j a2
j < ∞. The

image under LK of the measure γ(du) := γ(u)du with Lebesgue density function γ may be expressed
as the L2-convergent sum

LK [γ](x) = ∑
j

λ j a jφ j(x).

Proposition 4 For every γ ∈ L2(X ,du), LK [γ] ∈HK and

‖LK [γ]‖2
K = 〈LK [γ],γ〉2.

Consequently, L2(X ,du)⊂L
−1

K (HK).

The following corollary illustrates that the space L2(X ,du) is too small for our purpose—that
is, that important functions f ∈L

−1
K (HK) fail to lie in L2(X ,du).

Corollary 5 If the set Λ :=
{

j : λ j > 0
}

is finite, then LK(L2(X ,du)) = HK; otherwise
LK(L2(X ,du)) $ HK . The latter occurs whenever K is strictly positive definite and the RKHS
is infinite-dimensional.

Thus only for finite dimensional RKHS’s is the space of square integrable functions sufficient to
span the RKHS. In almost all interesting non-parametric statistics problems, the RKHS is infinite-
dimensional.

Next we examine the space of integrable functions L1(X ,du), a larger space than L2(X ,du)
when X is compact.
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Proposition 6 For every γ ∈ L1(X ,du), LK [γ] ∈HK . Consequently, L1(X ,du)⊂L
−1

K (HK).

Another class of functions to be considered is the space of finite discrete measures,

MD =

{

µ = ∑
j

c jδx j : {c j} ⊂ R, {x j} ⊂ X , ∑
j

|c j|< ∞

}

,

where δx is the Dirac measure supported at x ∈ X (the sum may be finite or infinite). This class will
arise naturally when we examine Lévy and Dirichlet processes in Section 4.3.

Proposition 7 For every µ ∈MD, LK [µ] ∈HK . Consequently, MD ⊂L
−1

K (HK).

By Proposition 6 and 7 the space M spanned by L1(X ,du)∪MD is a subset of L
−1

K (HK). The
range of LK on just the elements of MD with finite support is precisely H , linear combinations of
the
{

Kx j

}

x j∈X ; thus

Proposition 8 LK(M ) is dense in HK with respect to the RKHS norm.

Let B+(X ) denote the cone of all finite nonnegative Borel measures on X and B(X ) the set
of signed Borel measures. Clearly every µ ∈B(X ) can be written uniquely as µ = µ+− µ− with
µ+,µ− ∈B+(X ). The set B\M contains those Borel measures that are singular with respect to
the Lebesgue measure. In this context, the set M = MD ∪L1(X ,du) contains the Borel measures
that can be used in practice. The above results, Propositions 6 and 4, also hold if we replace the
Lebesgue measure with a Borel measure. It is natural to compare B(X ) with L

−1
K (HK).

Proposition 9 B(X )⊂L
−1

K (HK).

We close this section by showing that even B(X ) need not exactly characterize the class
L
−1

K (HK). The proof of Proposition 6 implies that

‖LK [γ]‖2
K =

ZZ

X×X
K(x,u)γ(x)γ(u)dxdu. (6)

¿From the above it is apparent that LK [γ] ∈HK holds only if LK [γ] is well defined and the quantity
on the right hand side of (6) is finite. If the kernel is smooth and vanishes at certain x,u∈X , then (6)
can be finite even if γ /∈ L1(X ,du). For example in the case of polynomial kernels δ′x, the functional
derivatives of the Dirac measure δx, are mapped into HK .

Proposition 10 B(X ) $ L
−1

K (HK(X )).

Proof
We construct an infinite signed measure γ satisfying LK [γ] ∈HK . As in Example 1 below, let

K(x,u) := x∧u− xu

be the covariance kernel for the Brownian bridge on the unit interval X = [0,1] (as usual, “x∧ u”
denotes the minimum of two real numbers x,u). Consider the improper Be(0,0) distribution

γ(du) =
du

u(1−u)
,
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with image under the integral operator

f (x) := LK [γ](x) =−x log(x)− (1− x) log(1− x).

The function f (x) satisfies f (0) = 0 = f (1) and has finite RKHS norm

‖ f‖2
K =−2

Z 1

0

log(x)
1− x

dx =
π2

3
,

so f (x) is in the the RKHS (see Example 1). Thus the infinite signed measure γ(ds) is in L
−1

K [HK ]
but not in B(X ), so L

−1
K [HK ] is larger than the space of finite signed measures.

3. Two Concrete Examples

In this section we construct two explicit examples to help illustrate the ideas of Section 2.

Example 1 (Brownian bridge) On the space X = [0,1] consider the kernel

K(x,u) := (x∧u)− xu,

which is jointly continuous and the covariance function for the Brownian bridge (Rogers and
Williams, 1987, §IV.40) and hence a Mercer kernel. The eigenfunctions and eigenvalues of Equa-
tion (2) for Lebesgue measure µ(du) = du are

λ j =
1

j2π2 φ j(x) =
√

2 sin( jπx).

The associate integral operator of Equation (4) is

LK[γ](x) :=
Z

X
K(x,u)γ(du)

= (1− x)
Z

[0,x)
uγ(du)+ x

Z

[x,1]
(1−u)γ(du),

mapping any γ(du) = γ(u)du with γ ∈ L1(X ,du) to a function f (x) = LK[γ](x) that satisfies the
boundary conditions f (0) = 0 = f (1) and, for almost every x ∈ X ,

f (x) = (1− x)
Z x

0
uγ(u)du+ x

Z 1

x
(1−u)γ(u)du,

f ′(x) =
Z 1

x
γ(u)du−

Z 1

0
uγ(u)du,

f ′′(x) = −γ(x)
and hence, by Equation (6) and integration by parts,

‖ f‖2
K =

Z 1

0
f (x)γ(x)dx

=
Z 1

0
− f (x) f ′′(x)dx

=
Z 1

0
f ′(x)2 dx.
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Evidently the RKHS is just

HK =

{

f (x) =
∞

∑
j=1

a j

√
2sin( jπx)

∣

∣

∣

∞

∑
j=1

π2 j2 a j
2 < ∞

}

=
{

f in L2(X ,du)
∣

∣ f (0) = 0 = f (1) and f ′ ∈ L2(X ,du)
}

,

the subspace of the Sobolev space H+1(X ) satisfying Dirichlet boundary conditions (Mazja, 1985,
Section 1.1.4), and

L
−1

K

(

HK
)

=

{

γ(x) =
∞

∑
j=1

a j

√
2sin( jπx)

∣

∣

∣

∞

∑
j=1

a j
2

π2 j2 < ∞

}

=
{

γ = f ′′
∣

∣ f , f ′ ∈ L2(X ,du), f (0) = 0 = f (1)
}

,

a subspace of H−1(X ).

Example 2 (Splines on a circle) The kernel function for first order splines on the real line is

K(x,u) := |x−u| x,u ∈ R

and the corresponding RKHS norm is

‖ f‖2
K =

Z ∞

−∞
f ′(x)2 dx.

However, since the domain is not compact the spectrum of the associated integral operator on
L2(R,du) is continuous rather than discrete, the approach of Section 2 does not apply.

Instead we consider the case of splines with periodic boundary conditions. On the space X =
[0,1] we consider the kernel function

K(x,u) =
∞

∑
j=1

1
2π2 j2 cos(2π j|u− x|)

=
1
2

(

|x−u|− 1
2

)2
− 1

24
0 < x,u < 1

The eigenfunctions and eigenvalues of Equation (2) for Lebesgue measure µ(du) = du are

φ2 j−1(x) :=
√

2 sin(2π jx), λ2 j−1 = 1
4π2 j2 ,

φ2 j(x) :=
√

2 cos(2π jx) , λ2 j = 1
4π2 j2 ,

j ∈ N.

The RKHS norm for this kernel is

‖ f‖2
K =

Z 1

0
f ′(x)2 dx

and the RKHS is

HK =

{

f (x) =
∞

∑
j=1

√
2
[

a j sin(2π jx)+b j cos(2π jx)
]

∣

∣

∣

∞

∑
j=1

4π2 j2 (a2
j +b2

j) < ∞

}
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the subspace of the Sobolev space H+1(X ) satisfying periodic boundary conditions and orthogonal
to the constants (Wahba, 1990, Section 2.1) and

L
−1

K

(

HK
)

=

{

γ(x) =
∞

∑
j=1

√
2
[

a j sin(π jx)+b j cos(π jx)
]

∣

∣

∣

∞

∑
j=1

a2
j +b2

j

4 j2π2 < ∞

}

,

a subspace of H−1(X ).

Elements in either RKHS given in the above two examples with a finite representation

f (x) =
m

∑
i=1

ciK(x,xi), m < ∞

are splines. For the first example these functions are linear splines that vanish at {0,1}. In the
second example if the coefficients sum to zero (∑m

i=1 ci = 0), then these functions are linear splines
with periodic boundary conditions. If the coefficients do not sum to zero then they are quadratic
splines with periodic boundary conditions.

4. Bayesian Kernel Models

Our goal from Section 1 is to present a coherent Bayesian framework for non-parametric function
estimation in a RKHS. Suppose we observe data (with noise), {(xi,yi)} ⊂ X ×R from the linear
regression model

yi = f (xi)+ εi (7)

where we assume {εi} are independent No(0,σ2) random variables with unknown variance σ2, and
f (·) is an unknown function we wish to estimate. For a fixed kernel we assume f ∈ HK . Recall
that the integral operator LK maps M (X ) into HK and in particular LK(M (X )) is dense in HK .
Therefore, we assume that

f (x) =
Z

X
K(x,u)Z(du) (8)

where Z(du) ∈M (X ) is a signed measure on X . If we put a prior on M (X ), we are in essence
putting a prior on the functions f ∈ G .

Our measurement error model (7) gives us the following likelihood for the data D := {(xi,yi)}n
i=1

L(D|Z) ∝
n

∏
i=1

exp

[

− 1
2σ2 (yi− f (xi))

2
]

. (9)

With a prior distribution on Z, π(Z), we can obtain the posterior density function given data

π(Z|D) ∝ L(D|Z) π(Z), (10)

which implies a posterior distribution for f via the integral operator (8).
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4.1 Priors on M

A random signed measure Z(du) on X can be viewed as a stochastic process on X . Therefore the
practice of specifying a prior on M (X ) via a stochastic process is ubiquitous in non-parametric
Bayesian analysis. Gaussian processes and Dirichlet processes are two commonly used stochastic
processes to generate random measures.

We first apply the results of Section 2 to Gaussian process priors (Rasmussen and Williams,
2006, Section 6) and then to Lévy process priors (Wolpert et al., 2003; Tu et al., 2006). We also
remark that Dirichlet processes can be constructed from Lévy process priors.

4.2 Gaussian Processes

Gaussian processes are canonical examples of stochastic processes used for generating random
measures. They have been used extensively in the machine learning and statistics community with
promising results in practice and theory (Kimeldorf and Wahba, 1971; Chakraborty et al., 2005;
Rasmussen and Williams, 2006; Ghosal and Roy, 2006).

We consider two modeling approaches using Gaussian process priors:

i. Model I: Placing a prior directly on the space of functions f (x) by sampling from paths of the
Gaussian process with its covariance structure defined via a kernel K;

ii. Model II: Placing a prior on the random signed measures Z(du) on X by using a Gaussian
process prior for Z(du) which implies a prior on the function space defined by the kernel
model in Equation (8).

For both approaches we can characterize the function space spanned by the kernel model. The
first approach is the more standard approach for non-parametric Bayesian inference using Gaussian
processes while the later is an example of our Bayesian kernel model. However, as pointed out
by (Wahba, 1990, Section 1.4) the random functions from the first approach will be almost surely
outside the RKHS induced by the kernel. However these functions will be contained in a larger
RKHS, as we show in the next section.

We first state some classical results on the sample paths of Gaussian processes. We then use
these properties and the results of Section 2 to characterize the function spaces of the two models.

4.2.1 SAMPLE PATHS OF GAUSSIAN PROCESSES

Consider a Gaussian process {Zu, u ∈ X } on a probability space {Ω,A ,P} having covariance func-
tions determined by a kernel function K. Let HK be the corresponding RKHS and let the mean m
be contained in the RKHS, m ∈HK . Then the following zero-one law holds:

Theorem 11 (Kallianpur 1970, Theorem 5.1) If Z• ≡ {Zu,u ∈ X } is a Gaussian process with co-
variance K and mean m ∈HK , and HK is infinite dimensional, then

P(Z• ∈HK) = 0.

The probability measure is assumed to be complete.

Thus the sample paths of the Gaussian process are almost surely outside HK . However, there exists
a RKHS HR that is bigger than HK that contains the sample paths almost surely. To construct such
an RKHS we first need to define nuclear dominance.
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Definition 12 Given two kernel functions R and K, R dominates K (written as R� K) if HK ⊆HR.

Given the above definition of dominance the following operator can be defined:

Theorem 13 (Lukić and Beder, 2001) Let R� K. Then

‖g‖R ≤ ‖g‖K , ∀g ∈HK .

There exists a unique linear operator L : HR→HR whose range is contained in HK such that

〈 f ,g〉R = 〈L f ,g〉K, ∀ f ∈HR, ∀g ∈HK .

In particular

LRu = Ku, ∀u ∈ X .

As an operator into HR, L is bounded, symmetric, and positive.
Conversely, let L : HR→HR be a positive, continuous, self-adjoint operator then

K(s, t) = 〈LRs,Rt〉R, s, t ∈ X

defines a reproducing kernel on X such that K ≤ R.

L is the dominance operator of HR over HK and this dominance is called nuclear if L is a
nuclear or trace class operator (a compact operator for which a trace may be defined that is finite
and independent of the choice of basis). We denote nuclear dominance as R��K.

4.2.2 IMPLICATIONS FOR THE FUNCTION SPACES OF THE MODELS

Model I placed a prior directly on the space of functions using sample paths from the Gaussian
process with covariance structure defined by the kernel K. Theorem 11 states that sample paths
from this Gaussian process are not contained in HK . However, there exists another RKHS HR with
kernel R which does contain the sample path if R has nuclear dominance over K.

Theorem 14 (Lukić and Beder, 2001) Let K and R be two reproducing kernels. Assume that the
RKHS HR is separable. A necessary and sufficient condition for the existence of a Gaussian process
with covariance K and mean m ∈HR and with trajectories in HR with probability 1 is that R��K.

The implication of this theorem is that we can find a function space HR that contains functions
generated by the Gaussian process defined by covariance function K.

Model II places a prior on random signed measures Z(du) on X by using a Gaussian process
prior for Z(du). This implies a prior of the space of functions spanned by the kernel model in
Equation (8). This space G is contained in HK by our results in Section 2. This is due to the fact that
any sample path from a continuous Gaussian process on a compact domain X is in L1 and therefore
the corresponding function from the integral (8) is still in HK .
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4.3 Lévy Processes

Lévy processes offer an alternative to Gaussian processes in non-parametric Bayesian modeling.
Dirichlet processes and Gaussian processes with a particular covariance structure can be formulated
from the framework of Lévy processes. For the sake of simplicity in exposition, we will use the
univariate setting X = [0,1] to illustrate the construction of random signed measures using Lévy
processes. The extension to the multivariate setting is straightforward and outlined in Appendix B.

A stochastic process Z := {Zu ∈ R : u ∈ X } is called a Lévy process if it satisfies the following
conditions:

1. Z0 = 0 almost surely.

2. For any integer m∈N and any 0 = u0 < u1 < ... < um, the random variables {Zu j−Zu j−1}, 1≤
j ≤ m are independent. (Independent increments property)

3. The distribution of Zs+u − Zs does not depend on s (Temporal homogeneity or stationary
increments property).

4. The sample paths of Z are almost surely right continuous and have left limits, that is, are
“càdlàg”.

Familiar examples of Lévy processes include Brownian motion, Poisson processes, and gamma
processes. The following celebrated theorem characterizes Lévy processes.

Theorem 15 (Lévy-Khintchine) Z is a Lévy process if and only if the characteristic function of
Zu : u≥ 0 has the following form:

E[eiλZu ] = exp

{

u

[

iλa− 1
2

σ2λ2 +
Z

R\0
[eiλw−1− iλw1{w:|w|<1}(w)]ν(dw)

]}

, (11)

where a ∈ R, σ2 ≥ 0 and ν is a nonnegative measure on R\0 with

Z

R\0
(1∧|w|2)ν(dw) < ∞. (12)

Note that (11) can be written as a product of two components,

exp

{

iauλ− uσ2

2
λ2
}

× exp

{

u
Z

R\0

[

eiλw−1− iλw1{w:|w|<1}(w)
]

ν(dw)

}

,

the characteristic functions of a Gaussian process and of a partially compensated Poisson process,
respectively. This observation is the essence of the Lévy-Itô theorem (Applebaum, 2004, Theorem
2.4.16), which asserts that every Lévy process can be decomposed into the sum of two independent
components: a “continuous process” (Brownian motion with drift) and a (possibly compensated)
“pure jump” process. The three parameters (a,σ2,ν) in (11) uniquely determine a Lévy process
where a denotes the drift term, σ2 denotes the variance (diffusion coefficient) of the Brownian
motion, and ν(dw) denotes the intensity of the jump process. The so-called “Lévy measure” ν need
not be finite, but (12) implies that ν[(−ε,ε)c] < ∞ for each ε > 0 and so ν is at least sigma-finite.
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4.3.1 PURE JUMP LÉVY PROCESSES

Pure jump Lévy processes are used extensively in non-parametric Bayesian statistics due to their
computationally amenability. In this section we first state an interpretation of these processes using
Poisson random fields. We then describe Dirichlet and symmetric α-stable processes.

4.3.2 POISSON RANDOM FIELDS INTERPRETATION

Any pure jump Lévy process Z has a nice representation via a Poisson random field. Set ∆Zu :=
Zu− lims↑u Zs, the jump size at the location u. Set Γ = R×X , the Cartesian product of R with X .
For any sets A⊂ R\0 bounded away from zero and B⊂ X we can define the counting measure

N(A×B) := ∑
s∈B

1A
(

∆Zs
)

. (13)

The measure N defined above turns out to be a Poisson random measure on Γ, with mean measure
ν(dw)du where du is the uniform reference measure on X (for instance the Lebesgue measure
when X = [0,1]). For any E ⊂ Γ with µ =

R

E ν(dw)du < ∞ the random variable N(E) has a Poisson
distribution with intensity µ.

When ν is a finite measure, the total number of jumps J ∈ N of the process follows a Poisson
distribution with finite intensity µ(Γ). When Z has a density with respect to the Lévy random field
M with Lévy measure m, Zu has finite total variation and determines a finite measure Z(du) = dZu.
In this case, any realization of Z(du) can be formulated as

Z(du) =
J

∑
j=1

w jδu j , (14)

where (w j,u j) ∈ Γ are i.i.d. draws from ν(dw)du representing the jump size and the jump location,
respectively. Given a realization of Z(du) = {u j,w j}J

j=1, Equation (8) reduces to

Z

X
K(x,u)Z(du) =

Z

Γ
K(x,u)N(dwdu) =

J

∑
j=1

w jK(x,u j),

where N(dwdu) is a Poisson random measure as defined by (13). Then the likelihood for the data
D := {(xi,yi)}n

i=1 is given by

L(D|Z) ∝
n

∏
i=1

exp
[

− 1
2σ2

(

yi−
J

∑
j=1

w jK(xi,u j)
)2]

.

If the measure ν(dw)du has a density function ν(w,u) with respect to some finite reference measure
m(dwdu), then the prior density function for Z with respect to a Lévy(m) process is

π(Z) =
[ J

∏
j=1

ν(w j,u j)
]

em(Γ)−ν(Γ). (15)

Using Bayes’ theorem, we can calculate the posterior distribution for Z via (10).
When ν is an infinite measure the number of jumps in the unit interval is countably infinite

almost surely. However, if the Lévy measure satisfies
Z

R

(1∧|w|)ν(dw) < ∞, (16)
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then the sequence {w j} is almost surely absolutely summable (i.e, ∑∞
j=1 |w j| < ∞ a.s.) and we can

still represent the process Z via the summation (14). Note that condition (16) is stronger than the
integrability condition (12) in the Lévy-Khintchine theorem. This allows for the existence of Lévy
processes with jumps that are not absolutely summable.

4.3.3 DIRICHLET PROCESS

The Dirichlet process is commonly used in non-parametric Bayesian analysis (Ferguson, 1973,
1974) mainly due to its analytical tractability. When passing from prior to posterior computations,
it has been shown that the Dirichlet process is the only conjugate member of the whole class of
normalized random measures with independent increments (James et al., 2005) so the posterior can
be efficiently computed. Recently it has received much attention in the machine learning literature
(Blei and Jordan, 2006; Xing et al., 2004, 2006). Though Dirichlet processes are often defined
via Dirichlet distributions, they can also be defined as a normalized Gamma process as noted by
Ferguson (1973). A Gamma process is a pure jump Lévy process, which has the Lévy measure

ν(dw) = aw−1 exp{−bw}dw, w > 0,

so at each location u Zu ∼ Gamma(au,b). Suppose Zu is a Gamma(a,1) process defined on X =
[0,1], then

Z̃u = Zu/Z1

is the DP(adu) Dirichlet process. Since the Dirichlet process is a random measure on probability
distribution functions, it can be used when the target function f (x) is a probability density function.
Dirichlet processes can also be used to model a general smooth function f (x) in combination with
other random processes. For example, Liang et al. (2007) and Liang et al. (2006) consider a variation
of the integral (8)

f (x) =
Z

X
K(x,u)Z(du) =

Z

X
w(u)K(x,u)F(du), (17)

where the random signed measure Z(du) is modeled by a random probability distribution function
F(du) and random coefficients w(u). A Dirichlet process prior is specified for F and a Gaussian
prior distribution is specified for w.

4.3.4 SYMMETRIC α-STABLE PROCESS

Symmetric α-stable processes are another class of Lévy processes, arising from symmetric α-stable
distributions. The symmetric α-stable distribution has the following characteristic function:

ϕ(η) = exp(−γ|η|α),

γ is the dispersion parameter, and α ∈ (0,2] is the characteristic exponent. The case, when γ = 1 is
called the standard symmetric α-stable (SαS) distribution. It has the following Lévy measure

ν(dw) =
Γ(α+1)

π
sin
(πα

2

)

|w|−1−αdw α ∈ (0,2].

Two important cases of SαS distributions are the Gaussian when α = 2 and the Cauchy when α = 1.
Thus SαS processes allow us to model heavy or light tail processes by varying α. One can verify
that the Lévy measure is infinite for 0 < α ≤ 2 since ν(R) =

R

R
ν(dw) = 2

R

(0,∞] αw−1−α dw = ∞.
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Hence the process has an infinite number of jumps in any finite time interval. However by a limiting
argument, we can ignore the jumps of negligible size (say < ε). Hence our space reduces to

Γε = (−ε,ε)c× [0,1].

Given the jumps sizes {w j}, jump locations {u j}, and the number of jumps J, the prior probability
density function (15) is

π(Z) =
[

ΠJ
j=1|w j|

]1−α
e2(ε−1−ε−α)αJ, |w j| ≥ ε (18)

with respect to a Cauchy random field.
Using this prior is essentially the same as using a penalty term in a regularization approach. For

the SαS process, we have

logπ(Z) ∝ J logα+(1−α)
(

∑
j

log |u j|1|u j|>ε

)

+ constant.

The first term is an AIC like penalty for the number of knots J and the second term is a LASSO-type
penalty in log-scale. There is also a hidden penalty which shrinks all the coefficients with magnitude
less than ε to zero.

4.4 Computational and Modeling Considerations

The computational and modeling issues involved in choosing process priors, especially in high
dimensional settings, are at the heart of non-parametric Bayesian modeling. In this section we
discuss these issues for the models discussed in the previous section.

A main challenge with Gaussian process models is that a finite dimensional representation of the
sample path is required for computation. For low dimensional problems (say d ≤ 3), a reasonable
approach is to place a grid on X . Then we can approximate a continuous process Z by its values on
the finitely many points {u j}m

j=1 on the grid. Using this approximation, our kernel model (8) can be
written as

f (x) =
m

∑
j=1

w jK(x,u j),

and the implied prior distribution on (w1, . . . ,wm) is a multivariate normal with mean and covariance
structure as defined by the kernel K evaluated at points {u j}. For low-dimensional data a grid can
be placed on the input space. However, this approach is not practical in higher dimensions. This
issue is addressed in Gaussian process regression models by evaluating the function at the training
and future test data points. This corresponds to a fixed design setting. It is important to note
however, that the prior being sampled in this model is not over X but the restriction of X to the data.
Both the direct model and the kernel model will face this computational consideration and thus the
computational cost will not differ significantly between models.

For pure jump processes discretization is not the bottleneck. The nature of the pure jump process
ensures that the kernel model will have discrete knots. The key issue in using a pure jump processes
to model multivariate data is that the knots of the model should be representative of samples drawn
from the marginal distribution of the data ρX . This is a serious computational as well as modeling
challenge, it is obvious that independently sampling each dimension will typically not be a good
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idea either in terms of computational time or modeling accuracy. In Section 5.2 we provide a kernel
model that addresses this issue.

A theoretical and empirical comparison of the accuracy of the various process priors on a variety
of function classes and data sets would be of interest, but is beyond the scope of this paper. Due to
the extensive literature on Gaussian process models from theoretical as well as practical perspectives
(Rasmussen and Williams, 2006; Ghosal and Roy, 2006) our simulations will focus on two pure
jump process models.

5. Posterior Inference

For the case of regression our model is

yi = f (xi)+ εi for xi ∈ X

with {εi} as normal independent random variables and the unknown regression function f (which
is assumed to be in HK) is modeled as

f (x) =
Z

X
K(x,u)Z(du).

In the case of binary regression we can use a probit model

P(yi = 1|xi) = Φ[ f (xi)],

where Φ[·] is the cumulative distribution function of the standard normal distribution.
In Section 4, we discussed specifying a prior on HK via the random measure Z(du). The ob-

served data add to our knowledge of both the “true function” f (·) and the distribution of Z(du).
This information is used to update the prior and obtain the posterior density π(Z|D). For pure jump
measures Z(du) and most non-parametric models this update is computationally difficult because
there is no closed-form expression for the posterior distribution. However, Markov chain Monte
Carlo (MCMC) methods can be used to simulate the posterior distribution.

We will apply a Dirichlet process model to a high-dimensional binary regression problem and
illustrate the use of Lévy process models on a univariate regression problem.

5.1 Lévy Process Model

Posterior inference for Lévy random measures have been less explored than Dirichlet and Gaussian
processes. Wolpert et al. (2003) is a recent comprehensive reference on this topic. We use the
methodology developed in this work for our model.

The random measure Z(du) is given by

Z(du)∼ Lévy(ν(dw)du)

where

ν(dw) =
Γ(α+1)

π
sin
(πα

2

)

|w|−1−α 1{w:|w|>ε} dw α ∈ (0,2]

is the Lévy measure (truncated) for the SαS process. As explained in Section 4.3.4, since ν(dw) is
not a finite measure on R, we ignore jumps of size smaller than ε. Any realization of the random
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measure Z(du) is an element of the parameter space Θ

Θ :=
∞

[

J=0

(

(−ε,ε)c× [0,1]
)J

with the prior probability density function given by Equation(18), with respect to a Cauchy random
field.

5.1.1 TRANSITION PROBABILITY PROPOSAL

In this section, we describe an MCMC algorithm to simulate from Θ according to the posterior dis-
tribution. We construct an irreducible transition probability distribution Q(dθ∗|θ) on the parameter
space Θ such that the stationary distribution of the chain will be the posterior distribution.

Two different realizations from the parameter space Θ may not have the same number of jumps.
Hence the number of jumps J is modeled a birth-death process. At any iteration step t the parameter
space consists of J jump locations {u j} of size {w j}, θt = {w j,u j}J

j=1. The (weighted) transition
probability algorithm, Algorithm 1, computes the weighted transition probability to a new state θ∗
given the current state θ.

Algorithm 1: Weighted transition probability algorithm Q (θ).

input : 0 < pb, pd < 1, τ > 0, current state θ ∈Θ

return: proposed new state θ∗ and its weighted transition probability Q(θ∗|θ)π(θ)

Draw t ∼U [0,1];
if t < 1− pb then

draw uniformly j ∈ {1, ...,J}; draw γ1,γ2 ∼ No(0,τ2);
w∗← w j + γ1; u∗← u j + γ2;
if (|w∗|< ε or t < pd) then

J← J−1; delete (w j,u j);

Q(θ∗|θ)π(θ)← (J+1)pb

2ε−α
(

(1−pb−pd)
[

Φ(
w j+ε

τ )−Φ(
w j−ε

τ )
]

+pd

) ;

else

Q(θ∗|θ)π(θ)←
∣

∣

∣

w∗
w j

∣

∣

∣
; w j← w∗; u j← u∗;

else
J← J +1; uJ ∼U [X ]; wJ ∼ Birth;

Q(θ∗|θ)π(θ)←
2ε−α

(

(1−pd−pb)
[

Φ(
wJ +ε

τ )−Φ(
wJ−ε

τ )
]

+pd

)

pbJ ;

In the above algorithm, No(0,τ2) denotes the normal distribution with mean 0 and variance τ2 and
Φ(·) denotes the distribution function of the standard normal distribution. The variables (pb, pd)
stand for probability of birth step and death step respectively. There is an implicit update step,
where a chosen point(u j) is ‘updated’ with another point(u∗) with probability 1− pb− pd . In the
birth step, a new point is sampled according to the density

α|w|−1−α

2ε−α ε > 0.
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5.1.2 THE MCMC ALGORITHM

The MCMC algorithm, Algorithm 2, simulates draws from the posterior distribution. This is done
by Metropolis-Hastings sampling using the weighted transition probability algorithm above to gen-
erate a Markov chain whose equilibrium density is the posterior density.

Algorithm 2: MCMC algorithm

input : data D, number of iterations T , weighted transition probability algorithm Q (θ)

return: parameters drawn from the posterior {θi}T
i=1

J ∼ Po(2ε−α); // initialize J
for j← 1 to J do

// initialize θ(0)
u j ∼U [X ]; w j ∼ Birth;

for t← 1 to T do
// t-th iteration of the Markov chain
{θ∗,Q(θ∗|θt)π(θt)}← Q (θ(t)); // call the weighted transition probability

algorithm

logπ(θ∗|D)− logπ(θt |D) = log L(D|θ∗)
L(D|θt)

+ log π(θ∗)
π(θt)

;

ζ∗← logπ(θ∗|D)+ logQ(θt |θ∗)− logπ(θt |D)− logQ(θ∗|θt); // the
Metropolis-Hastings log acceptance probability

e∼ Ex(1);
if e+ζt+1 > 0 then θt+1← θ∗ else θt+1← θt ;

The MCMC algorithm will provide us with T realizations of the jump parameters {θt}T
t=1. We

assume that the chain reaches its stationary distribution after b iterations (b� T ). For each of the
T −b realizations, we have a corresponding function

f̂t(x) =
Jt

∑
i=1

witK(x,uit),

where for the t-th realization Jt is the number of jumps, wit is the magnitude of the i-th jump, and uit

is the position of the i-th jump. Point estimates can be made by averaging f̂ and credible intervals
can be computed from the distribution of f̂ to provide an estimate of uncertainty.

5.1.3 ILLUSTRATION ON SIMULATED DATA

Data is generated from a noisy sinusoid

f (xi) = sin(2πxi)+ εi for x ∈ [0,1], (19)

with εi
iid∼ No(0, .01), {xi}100

i=1 points equally spaced in [0,1], and {yi}100
i=1 are computed by Equa-

tion (19). We applied the SαS model with α = 1.5 and a Gaussian kernel K(x,u) = exp{(x− u)2}
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to this data. We set ε = 0.01 and (pb, pu, pd) = (0.4,0.2,0.4), in algorithms 1 and 2. In Figure 1a-d
we plot the target sinusoid, the function realized at an iteration t of the Markov chain, and the jump
locations and magnitudes of the random measure. In Figure 1e,f we provide a plot of the target
function, realization of the data, and the 95% point-wise credible band—the 95% credible interval
at each point xi.
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Figure 1: Plots of the target sinusoid (solid line), the function realized at an iteration t of the Markov
chain (dashed line), and the jump locations and magnitudes of the measure (spikes) for (a)
t = 1, (b) t = 10, (c) t = 5×103, and (d) t = 104. (e) A realization of the simulated data
(circles) and the underlying target sinusoid (solid line). (f) The 95% point-wise credible
band for the data and the target sinusoid.
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5.2 Classification of Gene Expression Data

For Dirichlet processes there is extensive literature on exact posterior inference using MCMC meth-
ods (West, 1992; Escobar and West, 1995; MacEachern and Müller, 1998; Müller et al., 2004) as
well as work on approximate inference using variational methods (Blei and Jordan, 2006). Recently
Dirichlet process priors have been applied to a Bayesian kernel model for high dimensional data.
For example in Liang et al. (2006) and Liang et al. (2007) the Bayesian kernel model was used to
classify gene expression data as well as digits, the MNIST database. We apply this model to gene
expression data consisting of microarray gene expression profiles from 190 cancer samples and 90
normal samples (Ramaswamy et al., 2001; Mukherjee et al., 2003), over 16,000 genes.

The model is based upon the integral operator given in Equation (17)

f (x) =
Z

X
K(x,u)Z(du) =

Z

X
w(u)K(x,u)F(du),

where the random signed measure Z(du) is modeled by a random probability distribution function
F(du) and a random weight function w(u). We assume that the support of Z(du) and w(u)F(du)
are equal. A key point in our model will be that if our estimate of F is discrete and puts masses wi

at support points (or “knots”) ui, then the expression for f (·) is simply

f (x) = ∑
i

w(ui)K(x,ui).

The above model, in which basis functions are placed at random locations and a joint distribution is
specified for the coefficients, has been considered previously in the literature (see Neal, R. M. 1996
and Liang et al. 2007). In Liang et al. (2007) uncertainty about F is expressed using a Dirichlet
process prior, Dir(α,F0). The posterior after marginalization is also a Dirichlet distribution and
given data (x1, . . . ,xn) the posterior will have the following representation (Liang et al., 2007, 2006)

f̂ (x) =
α

α+n

Z

w(u)K(x,u)F0(du)+
1

α+n

n

∑
i=1

w(xi)K(x,xi),

which can be approximated by the following discrete summation

f̂ (x)≈
n

∑
i=1

wiK(x,xi) (20)

when α
n is small and wi =

w(xi)
α+n . We specify a mixture-normal prior on the coefficients wi as in Liang

et al. (2007) and use the same MCMC algorithm to simulate the posterior.
Note that although Equation (20) has the same form as the representer theorem, it is derived

from a very different formulation. In fact, when there is unlabeled data available—(xn+1, . . . ,xn+m)
drawn from the margin ρX —our model has the following discrete representation

f̂ (x) =
n

∑
i=1

wiK(x,xi)+
m

∑
i=1

wi+nK(x,xi+n),

where w` = w(x`)
α+m+n . The above form is identical to the one obtained via the manifold regularization

framework (Belkin and Niyogi, 2004; Belkin et al., 2006). The two derivations are from different

1788



CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

perspectives. This simple incorporation of unlabeled data into the model further illustrates the
advantage of placing the prior over random measures in the Bayesian kernel model.

In our experiments we first applied a standard variation filter to reduce the number of genes to
p = 2800. We then randomly assigned 20% of the samples from the cancer and normal groups to
training data and use the remaining 80% as test data. We used a linear kernel in the model and we
used the classification model detailed in Liang et al. (2007).

We performed two analyses on this data:

Analysis I—The training data were used in the model and the posterior probability was sim-
ulated for each point in the test set. A linear kernel was used.

Analysis II—The training and unlabeled test data were used in the model and the posterior
probability was simulated for each point in the test set. A linear kernel was used.

The classification accuracy for Analyses I and II were 73% and 85%, respectively. The accuracy
of the predictive models in Analysis I is comparable to that obtained for support vector machines in
Mukherjee et al. (2003). Figure 2 displays boxplots of the posterior mean of the 72 the normal and
152 cancer samples for the two analyses.

Analysis I Analysis II

0
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0.4

0.6

0.8

1
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Analysis I Analysis II

0

0.2

0.4

0.6

0.8
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Figure 2: Boxplots of the posterior mean for normal and cancer samples with just the training data
(Analysis I) and the training and unlabeled test data (Analysis II). (In the above boxplots,
the box ranges from the first quartile (F.Q.) to the third quartile (T.Q.) of the data, while
the line shows the median. The dots denote the outliers, which are points which lie beyond
1.5*(T.Q. - F.Q.) on either side of the box.)
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6. Discussion

The modeling objective underlying this paper is to formulate a coherent Bayesian perspective for
regression using a RHKS model. This requires a firm theoretical foundation characterizing the
function space that the Bayesian kernel model spans and the relation of this space to the RKHS. Our
results in Section 2 are interesting in their own right, in addition to providing this foundation.

We examined the function class defined by the Bayesian kernel model, the integral of a kernel
with respect to a signed Borel measure

G =

{

f
∣

∣

∣
f (x) =

Z

X
K(x,u) γ(du), γ ∈ Γ

}

,

where Γ ⊆B(X ). We stated an equivalence under certain conditions of the function class G and
the RKHS induced by the kernel. This implies: (a) a theoretical foundation for the use of Gaus-
sian processes, Dirichlet processes, and other jump processes for non-parametric Bayesian kernel
models, (b) an equivalence between regularization approaches and the Bayesian kernel approach,
and (c) an illustration of why placing a prior on the distribution is natural approach in Bayesian
non-parametric modelling.

Coherent non-parametric methods have been of great interest in the Bayesian community, how-
ever function analytic issues have not been considered. Conversely theoretical studies of RKHS
have not approached the approximation and estimation problems from a Bayesian perspective (the
exception to both of these are the works of Wahba 1990 and Diaconis 1988). It is our view that the
interface of these perspectives is a promising area of research for statisticians, computer scientists,
and mathematicians and has both theoretical and practical implications.

A better understanding of this interface may lead to a better understanding of the following
research problems:

1. Posterior consistency: It is natural to expect the posterior distribution to concentrate around
the true function since the posterior distribution is a probability measure on the RKHS. A
natural idea is to use the equivalence between the RKHS and our Bayesian model to exploit
the well understood theory of RKHS in proving posterior consistency of the Bayesian ker-
nel model. Tools such as concentration inequalities, uniform Glivenko-Cantelli classes, and
uniform central limit theorems may be helpful.

2. Priors on function spaces: In this paper we discuss general function classes without concern
for more subtle smoothness properties. An obvious question is can we use the same ideas
to relate priors on measures and the kernel to specific classes of functions, such as Sobolev
spaces. A study of the relation between integral operators and priors could lead to interesting
and useful results for putting priors over specific function classes using the kernel model.

3. Comparison of process priors for modeling: A theoretical and empirical comparison of the
accuracy of the various process priors on a variety of function classes and data sets would be
of great practical importance and interest, especially for high dimensional problems.

4. Numerical stability and robust estimation: The original motivation for regularization methods
was to provide numerical stability in solving Fredholm integral equation of the first kind.
Our interest is that of providing robust non-parametric statistical estimates. A link between
stability of operators and the generalization or predictive ability of regression estimates is
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known (Bousquet and Elisseeff, 2002; Poggio et al., 2004). Further developing this relation
is a very interesting area of research and may be of importance for the posterior consistency
of the Bayesian kernel model.
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Appendix A. Proofs of Propositions

In this appendix we provide proofs for the propositions in Section 2.

A.1 Proof for Proposition 4

It holds that

‖LK [γ]‖2
K‖= ‖∑

j∈Λ
λ ja jφ j‖2

K = ∑
j∈Λ

(λ ja j)
2

λ j
= ∑

j∈Λ
λ ja

2
j

which is upper bounded by λ1 ∑ j a2
j < ∞. Hence LK [γ] ∈HK . By direct computation, we have

〈LK [γ],γ〉2 =
〈

∑λ jakφ j,∑a jφ j
〉

2 = ∑λka2
j = ‖LK [γ]‖2

K .

A.2 Proof for Corollary 5

The first claim is obvious since both LK [L2(X ,du)] and HK are the same finite dimensional space
spanned by

{

φ j
}

j∈Λ.

The second claim follows from the existence of the sequence (c j) j∈Λ such that

∑
j∈Λ

c2
j

λ j
< ∞ and ∑

j∈Λ

c2
j

λ2
j

= ∞.

For any such sequence, the function f = ∑ j∈Λ c jφ j lies in HK . But by Proposition 4, one cannot
find a γ ∈ L2(X ,du) such that LK [γ] = f . A simple example is (c j) j∈Λ = (λ j) j∈Λ.

If K is strictly positive definite, then all its eigenvalues are positive. So the last claim holds.

A.3 Proof for Proposition 6

Since K(u,v) is continuous on the compact set X ×X , it has a finite maximum κ2 := supu,v K(u,v) <

∞. Since L2(X ,du) is dense in L1(X ,du), for every γ ∈ L1(X ,du), there exists a Cauchy sequence
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{γn}n≥1 ⊂ L2(X ,du) which converges to γ in L1(X ,du). It follows from Proposition 4 that LK [γn]∈
HK and

‖LK [γn]‖2
K =

Z

X

Z

X
K(u,v)γn(u)duγn(v)dv≤ κ2

Z

X
|γn(u)|du

Z

X
|γn(v)|dv = κ2‖γn‖2

1 < ∞.

Therefore we have {LK [γn]}n≥1 ⊂HK and

lim
n→∞

sup
m>n
‖LK [γn]−LK [γm]‖K ≤ lim

n→∞
sup
m>n

κ‖γn− γm‖1 = 0,

so {LK [γn]}n≥1 is a Cauchy sequence in HK . By completeness it converges to some f ∈ HK . The
proof will be finished if we show LK [γ] = f .

By the reproducing property of HK convergence in the RKHS norm implies point-wise conver-
gence for x ∈ X , so LK [γn](x)→ f (x) for every x.

In addition, for every x ∈ X , we have

lim
n→∞
|LK [γn](x)−LK[γ](x)| ≤

Z

X
|K(x,u)(γn(u)− γ(u))|du≤ κ2‖γn− γ‖1 = 0,

which implies that LK [γn](x) also converges to LK [γ](x). Hence LK [γ] = f ∈HK .

A.4 Proof for Proposition 7

Let γ = ∑ciδxi ∈MD. Then LK [γ] = ∑ciKxi and

‖LK [γ]‖2
K = ∑

i, j

ciK(xi,x j)c j ≤ κ2

(

∑
i

|ci|
)2

< ∞.

Therefore, our conclusion holds.

A.5 Proof for Proposition 9

The arguments for Lebesgue measure hold if we replace the Lebesgue measure with any finite Borel
measure. We denote the corresponding integral operator as LK,µ and function space of integrable
and square integrable functions as L1

µ(X ) and L2
µ(X ) respectively. Then

L2
µ(X )⊂ L1

µ(X )⊂ L−1
K,µ(HK).

Since the function 1X (x) = 1 lies in L1
µ(X ) we obtain

LK(µ) = LK,µ(1X ) =
Z

X
K(·,u)dµ(u) ∈HK .

This implies B+(X ) lies in L−1
K (HK) and so does B(X ).

Appendix B. Multivariate Version of Lévy-Khintchine Formula

Here we give the statement of the multivariate version of the Lévy-Khintchine formula (Applebaum,
2004, Corollary 2.4.20).
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Theorem 16 (Lévy-Khintchine) Let X be a d-dimensional Lévy process with characteristic func-
tion φt(u) := E(ei〈u,Xt〉),u ∈ Rd . Then there exists a unique vector a ∈ Rd , a d× d semi-positive
definite matrix σ, and ν a positive measure on Rd\0 with

R

Rd (1∧|u|2)ν(du) < ∞ such that,

φt(u) = exp

{

t

[

i〈u,a〉− 1
2
〈u,σu〉+

Z

Rd\0
[ei〈u,s〉−1− i〈u,s〉1{s:|s|<1}(s)]ν(ds)

]}

where 〈·, ·〉 denotes the standard inner product in Rd .

The results we have presented extend to the multivariate case without complication. The sim-
plest multivariate extension is to assume independence of the dimensions, however for small sample
sizes and many dimensions this is not practical. This issue can be addressed by carefully inducing
covariance structure in the model (Liang et al., 2007, 2006).
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