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Abstract

Variable selection in clustering analysis is both challenging and important. In the context of model-
based clustering analysis with a common diagonal covariance matrix, which is especially suitable
for “high dimension, low sample size” settings, we propose a penalized likelihood approach with
an L1 penalty function, automatically realizing variable selection via thresholding and delivering a
sparse solution. We derive an EM algorithm to fit our proposed model, and propose a modified BIC
as a model selection criterion to choose the number of components and the penalization parameter.
A simulation study and an application to gene function prediction with gene expression profiles
demonstrate the utility of our method.
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1. Introduction

This article concerns variable selection in model-based clustering, especially for “high dimension,
low sample size” data, where the data dimension greatly exceeds the number of observations.
Specifically, given n P-dimensional observations x j = (x j1, ...,x jP)′ for j = 1, ...,n, we aim to group
the data into a few, say K, clusters such that the observations in the same cluster are more similar to
each other than those from different clusters. In this context, some of the attributes x jp’s of x j may
not be relevant: use of such attributes only introduces noise, and may impede uncovering the clus-
tering structure of interest. In addition, removing non-informative attributes may largely enhance
interpretability. Due to lack of statistical models in many existing clustering algorithms, it is difficult
to implement principled variable selection, though some promising methods have been proposed,
based largely on heuristics (Friedman and Meulman, 2004; Mangasarian and Wild, 2004). In con-
trast, model-based clustering (McLachlan and Peel, 2002; Fraley and Raftery, 2002) assumes that
data come from a finite mixture model with each component corresponding to a cluster; with such
a statistical model, statistical inference, including variable selection, can be carried out. Because,
to our knowledge, no formal hypothesis tests are available to assess the statistical significance of an
attribute, it is unclear how to implement a sequential variable selection, such as forward additions
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and/or backward eliminations of variables, in model-based clustering; an alternative is to conduct
best subset selection, which however is unrealistic for high-dimensional data: for example, with
P = 1000, there are more than 10300 possible models to be considered, which is prohibitive given
the current standard computing power. Furthermore, even for smaller problems, as in regression,
due to its discreteness, best subset selection may be unstable and may not work well in selecting
relevant variables (Tibshirani, 1996); most importantly, unlike in regression or classification but
unique to clustering or semi-supervised learning, best subset selection may identify a correct model
which however is of no interest, as to be confirmed by our numerical example later.

With high-dimensional data, as an alternative to variable selection, one may apply dimension
reduction techniques, such as principal component analysis, prior to clustering (Ghosh and Chin-
naiyan, 2002; Liu et al., 2003). A possible drawback of this approach is the separation between
dimension reduction and subsequent clustering; for example, as pointed out by many researchers
(Chang, 1983; Yeung and Ruzzo, 2001; Raftery, 2003), using first few principal components in
clustering may destroy the clustering structure of the original data.

There has been increasing interest in variable selection for model-based clustering, mostly
within the Bayesian framework (Liu et al., 2003; Hoff, 2005, 2006; Tadesse et al., 2005; Raftery
and Dean, 2006; Kim et al., 2006). An idea is to parametrize the mean of cluster k as µk = µ + δk,
where µ is the global mean. It is clear that, if some components of δk are 0, then the corresponding
attributes are not informative to clustering, at least in terms of the means/locations. Two Bayesian
approaches have been proposed based on this idea (Liu et al., 2003; Hoff, 2005, 2006). Another
Bayesian approach, analogous to stepwise variable selection in regression, is to sequentially com-
pare two nested models to determine whether an attribute should be included in or excluded from
the current model based on a greedy search (Raftery and Dean, 2006), which may be computation-
ally too time-consuming for high-dimensional data. In contrast, to our knowledge, no frequentist
alternatives to subset selection are available for variable selection in model-based clustering. In light
of the success of penalized regression with variable selection (Tibshirani, 1996; Fan and Li, 2001),
we conjecture that penalization may be also viable to variable selection in clustering, and hence we
propose an approach through penalized model-based clustering. Specifically, cluster-specific means
µk are adaptively shrunken towards the global mean µ; with an appropriately chosen penalty func-
tion, some components of µk are estimated to be exactly the same as that of µ, effectively realizing
variable selection. We also propose a modified BIC as a model selection criterion to adaptively
determine the amount of penalization as well as the number of clusters. Note that, although there
is an extensive body of literature on penalized likelihood methods, most focus on classification and
regression; in particular, to our knowledge, we are not aware of any existing works on penalized
likelihood particularly designed for multivariate clustering.

Recent advances in high-throughput biotechnologies, such as microarrays, have generated a
large amount of high-dimensional data, and have led to routine use of clustering analyses, for exam-
ple, in gene function discovery (Eisen et al., 1998) and cancer subtype discovery (Golub et al., 1999;
Ghosh and Chinnaiyan, 2002; McLachlan et al., 2002; Yeung et al., 2001). In these applications,
one key issue is how to select variables: although expression levels of thousands or tens of thou-
sands of genes are measured on each microarray, corresponding to a high-dimensional observation,
it is known that not all the genes are related to the phenotype of interest, for example, subtypes of
a cancer; in fact, often only a small number of the genes are relevant, and identifying those genes
is one of the biologically most important goals. Hence, variable selection in clustering not only
improves the performance in identifying interesting clusters, as to be shown later, but also largely
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facilitates interpretation of results, and even directly addresses biological questions of interest, for
example, which genes are involved in the biology of a cancer or its subtypes. In this article, in addi-
tion to the promising application of cancer subtype discovery, we also apply model-based clustering
to the task of gene function discovery (Li and Hong, 2001; Ghosh and Chinnaiyan, 2002). Although
the human genome and many other genome sequencing projects have led to a discovery of many
new genes, biological functions of many genes remain unknown; many known functions also need
to be refined. It has become popular to cluster gene expression profiles to discover unknown gene
functions.

In the remaining parts of this article, we first review briefly the standard model-based clustering,
then we introduce a general framework for penalized model-based clustering. We propose a spe-
cific implementation with an L1 penalty, resulting in soft-thresholding on the mean parameters, and
thus realizing automatic variable selection. We derive an EM algorithm to compute the maximum
penalized likelihood estimates for the model; a modified BIC is used to determine the number of
components and the value of the penalization parameter in penalized model-based clustering. We
compare the proposed method with the standard method using simulated data and gene expression
data for tumor subtype discovery and gene function prediction; in particular, we illustrate problems
associated with clustering without variable selection, and those with best subset selection, conclud-
ing that penalized clustering is an effective and simple method for variable selection. We end the
article with a short discussion on some open questions.

2. Methods

We first give a brief review on model-based clustering with a finite Normal mixture model, then we
introduce our penalized model-based clustering, including an EM algorithm and a modified BIC for
model selection.

2.1 Model-based Clustering

In model-based clustering, it is assumed that each observation x is drawn from a finite mixture dis-
tribution f (x;Θ) = ∑K

k=1 πk fk(x;θk), with the mixing proportion πk, component-specific distribution
fk and its parameters θk. Denote by Θ = {(πk,θk) : k = 1, ...,K} all unknown parameters, with re-
striction that 0 ≤ πk ≤ 1 for any k and ∑K

k=1 πk = 1. Each component of the mixture distribution
corresponds to a cluster. The number of clusters, K, has to be determined in practice; see section
2.4.

Given data x j, j = 1, ...,n, the log-likelihood is

logL(Θ) =
n

∑
j=1

log[
K

∑
k=1

πk fk(x j;θk)].

Maximization of the above log-likelihood with respect to Θ is difficult, and it is common to use
the EM algorithm (Dempster et al., 1977) by casting the problem in the framework of missing
data. Define zk j as the indicator of whether x j is from component k; that is, zk j = 1 if x j is indeed
from component k, and zk j = 0 otherwise. If the missing data zk j’s could be observed, then the
log-likelihood for the complete data is:

logLc(Θ) = ∑
k

∑
j

zk j[logπk + log fk(x j;θk)].
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The EM algorithm can be applied to obtain the maximum likelihood estimator (MLE) of Θ; see
McLachlan and Peel (2002) and Fraley and Raftery (2002) for more details.

2.2 Penalized Model-based Clustering

With the same motivation as in penalized regression, we propose a penalized model-based cluster-
ing approach. The general purpose of penalization is for model regularization, which in general can
enhance the predictive power of a model, and may be even necessary in some situations. For exam-
ple, in the univariate Normal mixture model with each fk(.) = φ(.;µk,σk), it is well-known that with
σk → 0, we have a degeneracy with logL being unbounded, and thus no (unrestricted) MLE exists.
Ciuperca et al. (2003) proposed a penalized likelihood approach to dealing with the degeneracy:
by penalizing small variance components σk, one circumvents the problem. In addition, as to be
discussed in the next section, with an appropriate choice of penalty function, we can realize a sparse
solution, resulting in automatic variable selection.

Specifically, we regularize logL(Θ) to yield a penalized log-likelihood:

logLP(Θ) =
n

∑
j=1

log[
K

∑
k=1

πk fk(x j;θk)]−hλ(Θ),

where hλ() is a penalty function with penalization parameter λ. The choice of hλ() depends on the
goal of the analysis; see Fan and Li (2001) for some general theory. Correspondingly, the penalized
log-likelihood for the complete data is

logLc,P(Θ) =
K

∑
k=1

n

∑
j=1

zk j[logπk + log fk(x j;θk)]−hλ(Θ).

We propose using such penalized model-based clustering as a general way to regularize parameter
estimates. This can be useful for high-dimensional data, especially for situations of “large P, small
n”. Recently Fraley and Raftery (2005) proposed a Bayesian approach to regularizing model-based
clustering; there is a large body of literature on Bayesian mixture modeling, for example, Richard-
son and Green (1997), Jasra et al. (2005) and references therein. There is a well known connection
between penalized likelihood and Bayesian modeling (Hastie et al., 2001): it can be regarded that
minus the penalty function −hλ(Θ) is proportional to the log density of the prior distribution for
parameters Θ, and the penalized (log) likelihood is proportional to the (log) posterior density.

Note that in contrast to Ciuperca et al. (2003), where only univariate Normal mixture models
were considered, our main interest here is in multivariate clustering.

2.3 Penalizing Mean Parameters

Now we propose a specific implementation of penalized model-based clustering to realize variable
selection. Consider the common case with each component fk as Normal. We are particularly
interested in “large P, small n” often encountered in genomic studies. Hence, as in naive Bayes
classification, we adopt a working independence model for components of x j. Furthermore, to
facilitate variable selection for “large P, small n” settings, a common diagonal covariance matrix is
used across clusters; more discussions on this choice is given in Section 4. We assume throughout
this article that, prior to clustering analysis, we have standardized data so that each attribute has
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sample mean 0 and sample variance 1. Specifically, we have

fk(x;θk) =
1

(2π)P/2|V |
exp

(

−
1
2
(x−µk)

′V−1(x−µk)

)

,

where V = diag(σ1,σ2, ...,σP), and |V | = ∏P
p=1 σp. We propose using the L1 penalty:

hλ(Θ) = λ∑
k

∑
p
|µkp|,

though other penalty functions may be also suitable, as discussed in Fan and Li (2001) in the context
of regression. The main goal is to obtain a sparse solution with many small estimates of µkp’s
automatically set to 0, thus realizing variable selection.

Next we derive an EM algorithm for the above penalized model-based clustering; in particular,
it is confirmed that the L1-penalty yields a thresholding rule with the desired sparsity property.
The derivation closely follows from that for standard model-based clustering (McLachlan and Peel,
2002) and the general methodology for penalized likelihood (Green, 1990). We use generic notation
Θ(m) to represent the parameter estimates at iteration m, and use X = (x1, ...,xn) to denote all the
observations. It is easy to verify that the E-step yields

QP(Θ;Θ(m)) = EΘ(m)(logLc,P|X) = ∑
k

∑
j

τ(m)
k j [logπk + log fk(x j;θk)]−λ∑

k
∑
p
|µkp|,

where

τ(m)
k j =

π(m)
k fk(x j;θ(m)

k )

f (x j;Θ(m))
=

π(m)
k fk(x j;θ(m)

k )

∑K
k=1 π(m)

k fk(x j;θ(m)
k )

(1)

is the estimated posterior probability of x j’s coming from component k.
The M-step maximizes the above QP to update the parameter estimates. It is easy to show that

∂QP

∂πk
= ∑

j

(τ(m)
k j /πk − τ(m)

K j /πK),

for any k = 1,2, ...,K−1, and

∂QP

∂σ2
p

= ∑
k

∑
j

τ(m)
k j

[

−
1

2σ2
p
+

(x jp −µkp)
2

2σ4
p

]

,

for any p = 1, ...,P. Hence

π̂(m+1)
k =

n

∑
j=1

τ(m)
k j /n, and σ̂2,(m+1)

p =
K

∑
k=1

n

∑
j=1

τ(m)
k j (x jp −µ(m)

kp )2/n. (2)

Now for the mean parameters,

∂QP

∂µk
= ∑

j

τ(m)
k j V−1(x j −µk)−λsign(µk).
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Some algebraic manipulations yield

µ̂(m+1)
k = sign(µ̃(m+1)

k )



|µ̃(m+1)
k |−

λ

∑ j τ(m+1)
k j

V (m+1)1





+

, (3)

where µ̃(m+1)
k = ∑ j τ(m+1)

k j x j/∑ j τ(m+1)
k j is the usual update for µk if no penalty is imposed; for any

f , f+ = f if f > 0, and f+ = 0 otherwise; 1 is a vector with all elements 1’s. Note that all
the operations in (3), including sign() and ()+, are component-wise. It is evident that, if λ >

|∑n
j=1 τ(m+1)

k j x jp/σ2,(m+1)
p |, then µ̂(m+1)

kp = 0; otherwise, µ̂(m+1)
kp is obtained by shrinking µ̃(m+1)

kp to-

wards 0 by an amount λσ2,(m+1)
p /∑n

j=1 τ(m+1)
k j .

The above iteration is repeated until convergence, resulting in the maximum penalized likeli-
hood estimate (MPLE) Θ̂. Then we use (1) to calculate the posterior probability of any observation
x’s belonging to each cluster, and assign the observation to the cluster with the highest probability.
Because of possible existence of multiple local maxima, we run the algorithm multiple times, and
each time we use the result from a randomly started K-means algorithm as starting values for the
EM. We fit a series of models with various values of K and λ, then use a model selection criterion
to choose their appropriate values, as to be discussed in the next section.

It can be seen that, if µ̂kp = 0 for all k, then the p-th attribute does not contribute to clustering:
it will be cancelled out from the numerator and the denominator of (1). In contrast, in the standard
method, all attributes contribute to the posterior probability calculation.

Note that in (3), if we use µ̃(m+1)
k , instead of µ̂(m+1)

k , we obtain the standard model-based cluster-

ing, which is equivalent to using λ = 0. In our numerical examples, to reduce bias, we used µ̃(m)
kp in

(2) to estimate σ2
p, though we did not find much difference in several simulations if µ̂(m)

kp was indeed

used. In addition, if we replace µ̂(m+1)
k by

µ̂(m+1)
k,H = µ̃(m+1)

k I(λ > |
n

∑
j=1

τ(m+1)
k j V−1,(m)x j|),

we obtain so-called hard-thresholding, which is in contrast to soft-thresholding in (3). In our nu-
merical examples, we found that hard-thresholding gave results similar to those of soft-thresholding,
and we will skip its further discussion.

2.4 Model Selection

In practice, we need to determine the number of components, K. This is realized by first fitting a
series of models with various numbers of components, and then using a model selection criterion to
choose the best one. For standard model-based clustering, it is common to use Bayesian information
criterion (BIC) (Schwarz, 1978) defined as

BIC = −2logL(Θ̃)+ log(n)d,

where Θ̃ is the MLE, and d = dim(Θ) is the total number of unknown parameters (Fraley and
Raftery, 1998). In our proposed model, we have d = K +P+KP−1, because we have three sets of
parameters, πk’s, σp’s and µkp’s, under the constraint ∑K

k=1 πk = 1.
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For penalized model-based clustering, in addition to K, we also have to choose an appropriate
value of penalization parameter λ; a model selection criterion has to account for the adaptive choice
of λ. One difficulty in using the above BIC criterion is that it is not always clear what is d in a pe-
nalized model. Although other resampling-based model selection methods, such as cross-validation
or generalized degrees of freedom (Shen and Ye, 2002) can be employed, they are computationally
more demanding, and even prohibitive for large and/or high-dimensional data as considered here.
Following a conjecture of Efron et al. (2004) and a result of Zou et al. (2004) for L1-penalized re-
gression, we treat d as the number of non-zero parameter estimates, modifying BIC for penalized
model-based clustering as

BIC = −2logL(Θ̂)+ log(n)de,

where Θ̂ is the MPLE, and de = K + P + KP− 1− q is the effective number of parameters; we
set q as the number of the MPLE mean components that equal to 0. Hence, as expected, due to
thresholding, de < d with a large penalization parameter λ.

3. Results

We first present results for simulated data, then consider clustering samples and clustering genes for
two microarray data.

3.1 Simulated Data

We consider first high-dimensional data, then, to facilitate comparisons with best subset selection,
we also consider low-dimensional data.

3.1.1 LARGE P

We first considered simulated data as described in Hoff (2004) and Hoff (2005). In each simulated
data set, there were two clusters based on the first 150 attributes, while only one cluster based on
the remaining 850 attributes; in other words, there were a total of P = 1000 variables with the first
150 effective while the other 850 as noise variables in forming two clusters. Specifically, there
were n = 100 observations with 85 in one cluster and 15 in the other: the first 150 variables were
iid from N(0,1) for the first cluster, whereas they were iid from N(1.5,1) for the second cluster;
the remaining 850 variables were all iid from N(0,1) for either cluster. Hence, there were 150
informative attributes and 850 noise ones.

For each of 100 simulated data sets, we fitted a series of models with the number of components
K = 1, 2, 3 and various values of penalization parameter λ = 0, 1, 1.5, 2, 5, 7.5, 10, 12.5, 15, 17.5,
20, 25 and 30.

Table 1 summarizes the means and standard errors of BIC for the standard clustering using all
1000 attributes, and those of BIC and penalization parameter λ of the selected models in penalized
clustering. Table 2 gives the frequencies of the selected K for both the methods. Twenty out of a
hundred times, standard model-based clustering incorrectly selected K = 1, failing to discover the
existence of the two clusters of interest. In some sense, the result was reasonable and unsurprising:
indeed, there were two clusters based on the first 150 attributes in the data; however, based on any
of the other 850 attributes, there was only one cluster. Because standard clustering used all the
attributes, noting that 850 was much larger than 150, as expected it might choose K = 1. In contrast,
with an appropriate variable selection, penalized clustering more frequently chose the model with
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Standard Penalized
K BIC BIC λ
1 92923 (2) 88393 (0) 1.00 (0.00)
2 92834 (12) 85738 (65) 9.60 (0.22)
3 96282 (13) 86778 (32) 9.60 (0.12)

Table 1: Mean BIC (with standard errors in parentheses) with various numbers (K) of clusters in
the standard and penalized clustering for 100 simulated data sets. λ is the value of the
penalization parameter minimizing BIC for the given K.

Standard Penalized
K Freq BIC Freq BIC λ #Zero1 #Zero0
1 20 92923 0 - - - -

(5)
2 80 92791 94 85679 9.57 1.1 832.5

(10) (64) (0.22) (0.2) (1.7)
3 0 - 6 86348 7.50 0.0 626.5

(43) (0.00) (0.0) (5.6)

Table 2: Frequencies of the selected numbers (K) of clusters in the standard and penalized cluster-
ing from 100 simulated data sets with P = 1000. The corresponding means (with standard
errors in parentheses) of BIC, λ, the number of the first 150 informative attributes ex-
cluded (#Zero1), and the number of the last 850 noise attributes excluded (#Zero0) are
also included.
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Standard Penalized
K Freq Freq #(1 and 2) #(1 or 2, not both) #Zero1 #Zero0
1 100 6 0 0 2 8

(0) (0)
2 0 38 30 6 0.26 5.08

(0.09) (0.26)
3 0 56 42 12 0.29 2.45

(0.07) (0.19)

Table 3: Frequencies of the selected numbers (K) of clusters in the standard and penalized clus-
tering from 100 simulated data sets with P = 10. The frequencies of the corresponding
models including both the two informative attributes (#(1 and 2)), or only one of the two
(#(1 or 2, not both)), and the means (with standard errors in parentheses) of the number
of the two informative attributes excluded (#Zero1), and the number of the other 8 noise
attributes excluded (#Zero0) are also included.

K = 2, uncovering the interesting structure in the data. Importantly, the penalized approach can
automatically select attributes: out of the total 850 noise attributes, on average, 833 attributes were
correctly identified and not used in the final clustering; on the other hand, only one out of 150
informative attributes was not used.

Penalized clustering gave perfect assignments for K = 2: the 15 and 85 observations from two
distributions/classes were correctly assigned to clusters 1 and 2 respectively. More interestingly,
even when K = 3 was selected, the assignments were also correct; the clustering results for the 6
simulated data sets with K = 3 were the following: i) for two data sets, the 15 observations from
class 1 were assigned to cluster 1, and 45 and 40 observations from class 2 were assigned to clusters
2 and 3 respectively, denoted as {(15,0,0),(0,45,40)}; ii) for two data sets: {(15,0,0),(0,49,36)};
iii) for the other two, {(15,0,0),(0,48,37)} and {(15,0,0),(0,46,39)} respectively.

It would be interesting to compare our method with best subset selection, which however was
computationally prohibitive: with 1000 attributes, there were 21000 ≈ 10300 possible subsets/models!
Note that, because there is no formal significance test for each individual attribute in model-based
clustering, the commonly used sequential variable selection in regression is not applicable here.
Below, we considered a problem with a much smaller P so that a comparison with best subset
selection was possible.

3.1.2 SMALL P

We considered simulated data similar to those in the previous section, but with much fewer at-
tributes. There were only P = 10 attributes, among which the first two were informative while
the other eight were noise attributes; all other aspects remained the same. In best subset selection,
first, each of the 1023 (non-null) candidate models containing all possible combinations of the 10
attributes was fitted using Mclust() in R with K ranging from 1 to 3 (and a common diagonal co-
variance matrix); for each model, the value of K was selected to give the minimum BIC; finally, we
chose the final model from the 1023 fitted models as the one with the smallest BIC.
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Any attributes ≥ 2 attributes
K Freq #(1 and 2) #(1 or 2, not both) Freq #(1 and 2) #(1 or 2, not both)
1 79 0 0 56 11 6
2 19 0 7 41 21 11
3 2 0 1 3 2 0

Table 4: Frequencies of the selected numbers (K) of clusters by best subset selection from 100
simulated data sets with P = 10. The frequencies of the corresponding models including
both the two informative attributes (#(1 and 2)), or only one of the two (#(1 or 2, not
both)). Two searches were conducted: all possible models including any combinations of
the attributes, and only models including at least two attributes.

Table 3 gives the results for standard and penalized clustering. Again, in presence of the eight
noise attributes, standard clustering always chose K = 1; in contrast, penalized clustering with
automatic variable selection tended to chose K > 1, and the two informative attributes were most
often retained. However, penalized clustering did not work as well as in the previous set-up with
P = 1000: it chose K = 3 most often while keeping most of the noise attributes; the reason could
be that with fewer informative attributes, this was a more difficult problem than that of the previous
section. Nevertheless, compared with best subset selection (Table 4), it still worked much better.
In best subset selection, if we considered all possible non-null models (i.e., all possible non-null
combinations of attributes), it most often selected K = 1; in all cases, only one noise attribute was
included in the selected model. Because there was indeed only one cluster according to any noise
attribute, the choice of K = 1 based on any noise attribute was correct; in other words, the selected
model was correct, though of no interest. This highlights a unique point that in variable selection
for clustering, unlike in regression, a correct model for the data based on a subset of attributes (e.g.,
noise attributes here) may be of no interest!

In addition, we considered only the models containing at least two attributes in best subset
selection (Table 4). It turned out that all the selected models included only two attributes; it was
still more likely to choose K = 1, most often with two noise attributes, which was again caused by
the the complication of having so many correct models of no interest: there was indeed only one
cluster based on any two of the noise attributes. In summary, we concluded that subset selection
was not suitable at all for variable selection in clustering, whereas penalized clustering was much
more effective.

3.2 Tumor Subtype Discovery Using Gene Expression Profiles

Golub et al. (1999) studied discovering two subtypes of human acute leukemia, acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL), using microarray gene expression data.
Distinguishing the two subtypes is clinically important because, for example, the same chemother-
apy applied to ALL patients may not be suitable for AML patients. They used Affymetrix microar-
rays, each containing 7129 genes. We applied model-based clustering to their data with 38 patients,
among which 21 were ALL while the other 11 were AML patients; each patient was treated as an
observation while the genes were treated as attributes. Because most of the 7129 genes were not
believed to be informative to discriminating between ALL and AML, and in fact, many of the genes
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Standard Penalized
K BIC BIC λ
1 76966 69691 > 0
2 73802 68504 5
3 71104 66630 3
4 72232 65378 3
5 - 64034 2
6 - 62912 2
7 - 61950 2
8 - 63626 3

Table 5: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Golub’ gene expression data.

Standard Penalized
Samples/clusters 1 2 3 1 2 3 4 5 6 7

ALL 4 0 23 0 1 1 1 7 8 9
AML 0 4 7 6 0 0 0 4 1 0

Table 6: Clustering results for Golub’s data.

were not even expressed in any sample, we filtered out most genes: we ranked the genes based on
their sample variances across all 38 samples, and used only the top 2000 ones. For each method,
we started from g = 1 and increased g until a minimum BIC was reached. The standard clustering
chose K = 3 while the penalized one selected K = 7 (Table 5).

The clustering results are detailed in Table 6. The penalized method performed better than the
standard clustering: the former incorrectly assigned five while the latter misclassified seven AML
samples into the clusters with the ALL samples as the majority. In penalized clustering, although
35% of the mean parameter estimates were 0’s, only eight genes had their cluster-specific mean
estimates as 0’s across all seven clusters, and hence were regarded as non-informative; previous
studies demonstrated that there were indeed a large number of the genes differentially expressed
between ALL and AML samples (Thomas et al., 2001; Pan, 2002).

3.3 Gene Function Discovery Using Gene Expression Profiles

Because many genes still have unknown functions, a biologically important subject is to computa-
tionally predict gene functions using, for example, gene expression profiles (Brown et al., 2000).
The premise is that co-expressed genes are likely to share the same biological function. Due to
incomplete knowledge, it is equally important to discover new gene functions; there is functional
heterogeneity within most of functional categories, and there are probably many more uncharacter-
ized gene functions. Clustering gene expression profiles has become a popular approach for both
gene function prediction and discovery (Eisen et al., 1998; Wu et al., 2002; Zhou et al., 2002; Xiao
and Pan, 2005). We stress that gene function discovery is more of a clustering or unsupervised
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learning problem, as opposed to supervised learning: first, we do not restrict the genes of the same
function to be in the same cluster/class; each of the multiple clusters of the genes coming from the
same functional category may suggest some novel subcategory, a refinement of the original func-
tional category. Second, we allow the existence of some unknown and novel classes: some genes
of unknown function do not have to be predicted to have any one of the known functions because
they may have some unknown new functions. Here, we considered gene function discovery using
gene expression data for yeast S cerevisiae. Specifically, we used a gene expression data set con-
taining 300 microarray experiments with gene deletions and drug treatments (Hughes et al., 2000).
Variable selection was highly relevant here: first, as shown in simulation, incorrectly using noise
attributes might degrade the performance of clustering, obscuring some interesting clustering struc-
tures; second, it was also biologically important to identify which microarray experiments (i.e.,
attributes) were informative in clustering, linking putative functions of gene clusters to biological
perturbations underlying the microarray experiments.

One difficulty in evaluating the performance of a clustering algorithm for real data is how to
choose an appropriate criterion. Although our interest was in clustering for gene function discov-
ery, for the purpose of evaluations, we treated the problem as supervised learning: each gene had its
response variable as its known function; gene functions were downloaded from the MIPS database
(Mewes et al., 2004). For illustration, we only considered two gene functions, cytoplasm and mito-
chondrion, with 100 genes in each class as training data; we used other 406 and 212 genes in the
two functional classes as test data.

We first used the training data without their class labels: we clustered the 200 gene expression
profiles into, say K, clusters. Then, for each cluster, based on the class labels of the training obser-
vations assigned to the cluster, we assigned a class label or class probability to the cluster. There
were two ways to do so, namely, hard classification and soft classification. For hard classification,
we assign each cluster a class label that was possessed by the majority of the observations in the
cluster. For a test observation that was assigned to a cluster, we predicted its class label as that of
the cluster. For soft classification, for each cluster, we first calculated the proportion of the training
observations in each class. Suppose Pc

k was such a proportion for class c in cluster k. For a test
observation, if it was assigned to cluster k with posterior probability τk, it was classified to class c
with probability ∑K

k=1 Pc
k τk; summing these probabilities all over, we obtained an expected number

of test observations assigned to each class.

3.3.1 USING THE ORIGINAL DATA

Both standard clustering and penalized clustering selected K = 7 by BIC (Table 7), with their predic-
tive performances for the test data given in Table 8. The results were close. For penalized clustering,
some MPLEs of the cluster-specific mean parameters were exactly zero; their numbers ranged from
36 to 126 in the seven clusters. However, there was no single attribute for which the mean parameter
MPLEs were all zero in the seven clusters, hence all the 300 attributes were used in final clustering.
This example showed that our penalized clustering performed as well as the standard clustering
method for data with none or few non-informative attributes.

As a comparison, we applied the nearest shrunken centroids (NSC) (Tibshirani et al., 2003),
random forests (RF) (Breiman, 2001), and support vector machines (SVM) (Vapnik, 1998), and thus
treating the problem as supervised learning; the NSC was specifically developed for classification
with gene expression data, while the RF and SVM are two state-of-the-art machine learning tools.
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Standard Penalized
K BIC BIC λ
1 51420 49830 > 0
2 46993 46409 5
3 44252 44170 2
4 42674 42352 5
5 41944 41382 5
6 41891 40716 2
7 41797 38368 5
8 42138 39448 5

Table 7: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Hughes’ gene expression data.

Hard classification Soft classification
Standard Penalized Standard Penalized

Truth Pred=1 Pred=2 1 2 1 2 1 2
1 375 31 377 29 265.5 140.5 271.9 134.1
2 111 101 107 105 83.5 128.5 81.4 130.6

Accuracy 0.770 0.780 0.638 0.651

Table 8: Predictions of standard clustering and penalized clustering over a separate test data set for
Hughes’ gene expression data. BIC selected K = 7 for both the methods.
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NC (P = 300) NSC (P = 6) RF SVM
Truth Pred=1 Pred=2 1 2 1 2 1 2

1 313 93 304 102 316 90 362 44
2 61 151 68 144 48 164 81 131

Accuracy 0.751 0.725 0.777 0.798

Table 9: Predictions over a separate test data set based on the nearest shrunken centroid without
shrinkage (called NC) and with shrinkage (NSC), random forests (RF) and support vector
machine (SVM) for Hughes’ gene expression data.

Note that it is in general unfair to compare the predictive performance of a clustering method against
that of a classification or supervised learning method; our purpose here was to use the modern
classifiers as benchmarks. We used the default setting of R function randomForest() for the RF,
and used pamr() and svm() for the NSC and SVM respectively; for the latter two, a 5-fold cross-
validation was used to choose tuning parameters, such as the shrinkage parameter ∆ in the NSC.

For the NSC, with the selected ∆, only six attributes remained in the final model; however,
using all the attributes gave a slightly higher accuracy (Table 9). It was interesting to note that
the NSC failed to perform better than either clustering with hard classification. There was some
similarity between these two: if we regarded each cluster as a single class, then clustering with
hard classification worked in a similar manner as the NSC. Nevertheless, a difference between
the two was that, the NSC assumed only one cluster for each class, whereas clustering with hard
classification allowed observations of the same class to go to different clusters. Unsurprisingly, the
random forests and SVM also performed well for the data.

3.3.2 USING THE DATA WITH ADDED NOISE

It seemed that there were none or few non-informative attributes in the gene expression data for
gene function prediction. To mimic other real applications, where a large number of microarray
experiments were available, of which however only a fraction are informative, we added 700 noise
attributes to the gene expression data. Each noise variable was generated from a standard Normal
distribution independent of each other.

Table 10 summarizes the results of model fitting. By BIC, standard clustering selected K = 2
whereas penalized clustering chose K = 6. With K = 2, standard clustering gave quite bad results
for the test data with an accuracy only at about 50% (Table 11), while it performed much better with
K = 6 (results not shown); in contrast, penalized clustering gave much higher accuracy rates. Note
that with many noise attributes, in agreement with that in the previous simulation study, standard
clustering probably under-estimated the true number of the clusters of interest at K = 2. In addition,
a distinct advantage of penalized clustering was that it could correctly identify most non-informative
attributes: among the added 700 noise attributes, penalized clustering correctly identified 508 such
attributes; in total, 521 attributes whose cluster-specific means were estimated to be 0 for all the
clusters in penalized clustering.

By comparison, the NSC performed poorly (Table 12). By 5-fold cross-validation, the method
selected a model with only one attribute. Using all attributes (or some subsets of the attributes) in
the NSC did not help either. In contrast, both the RF and SVM performed well. It was not clear
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Standard Penalized
K BIC BIC λ
1 173221 167960 > 0
2 172209 164909 20
3 173663 163148 15
4 175812 161830 15
5 177712 160906 15
6 181799 159805 10
7 185537 159917 15

Table 10: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Hughes’ gene expression data with added noise.

Hard classification Soft classification
Standard Penalized Standard Penalized

Truth Pred=1 Pred=2 1 2 1 2 1 2
1 263 143 307 99 203.0 203.0 265.4 140.6
2 149 63 73 139 106.0 106.0 82.2 129.8

Accuracy 0.527 0.722 0.500 0.639

Table 11: Predictions of standard clustering and penalized clustering over a separate test data set
for Hughes’ gene expression data with added noise.

NC (P = 1000) NSC (P = 1) LDA RF SVM
Truth Pred=1 Pred=2 1 2 1 2 1 2 1 2

1 213 193 200 206 275 131 312 94 322 84
2 105 107 111 101 65 147 50 162 57 155

Accuracy 0.518 0.487 0.683 0.767 0.772

Table 12: Predictions for a separate test data set based on several classifiers for Hughes’ gene ex-
pression data with added noise.
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why the NSC did not work in this example. One possible explanation was that there were multiple
centroids for each class, contrary to the assumption of the NSC that there was only a single one for
each class. Hence, we applied linear discriminant analysis (LDA), which imposed an assumption
similar to that of the NSC. Although there was a warning message from the R function lda() (due
to P > n), the LDA performed much better than the NSC.

4. Discussion

Penalized likelihood has been widely used in model regularization, particularly for variable selec-
tion. A general theory has been laid out, see, for example, Fan and Li (2001), but mainly in the
context of regression and classification. We are not aware of any other penalized likelihood ap-
proaches to multivariate model-based clustering, which we have studied in this article. In particular,
it is confirmed that with the chosen L1 penalty function, it yields a simple thresholding, enabling
automatic variable selection. Our numerical examples demonstrate the usefulness of our proposal,
especially for “high dimension, low sample size” settings. In particular, our numerical studies
suggest the following two points. First, clustering without variable selection may fail to uncover
interesting structures underlying the data. Second, best subset selection not only is computationally
infeasible for clustering high-dimensional data, but also may fail in small problems. In addition
to high computational demand, a key issue with best subset selection is the lack of an appropriate
model selection criterion: if a conventional criterion is adopted based on the correctness of a model,
because of the existence of many correct models, the criterion will not be useful; for example, any
model containing one cluster based on any noise variable or their combinations is correct, but of no
interest, in clustering analysis.

The basic idea proposed here is generalizable to semi-supervised learning where some, but not
all, observations have class labels. An approach to semi-supervised learning is to conduct clus-
tering analysis (i.e., class discovery) simultaneously with supervised learning (i.e., classification)
with a mixture model (McLachlan and Peel, 2002). Alexandridis et al. (2004) proposed such a
semi-supervised learning approach with an application to tumor classification and class discov-
ery. A drawback of their approach was that variable selection had to be taken prior to cluster-
ing/classification: they conducted variable selection using either supervised learning or other heuris-
tics, then used the selected variables in the subsequent clustering/classification. Pan et al. (2006) ex-
tended the penalized likelihood approach discussed here to semi-supervised learning so that variable
selection is accomplished simultaneously along with model fitting (i.e., clustering/classification). In
particular, their simulation results clearly demonstrated the advantage of simultaneous variable se-
lection and model fitting over that of separating variable selection from model fitting.

We have used a common diagonal covariance matrix for all clusters. There are several practical
reasons. First, in “high dimension, low sample size” settings, which are of particular interest here,
an unrestricted covariance matrix is infeasible for P > n; some modeling is necessary. Second, in
the context of linear discriminant analysis with “high dimension, low sample size” data, it has been
found, both empirically and theoretically, that a diagonal covariance matrix may work better than
non-diagonal ones (Tibshirani et al., 2003; Bickel and Levina, 2004); in fact, naive Bayes classifiers
are well known to work well in these settings. These results suggest a possible advantage of using
a diagonal covariance matrix in clustering. Finally, a careful examination reveals that other more
flexible choices of the within-cluster/class covariance matrix, for example, allowing different diag-
onal covariance matrices for different clusters/classes, destroy the mechanism of variable selection

1160



PENALIZED MODEL-BASED CLUSTERING

in model-based clustering, as the use of a common diagonal covariance matrix in the NSC for the
same purpose of variable selection for classification. For example, consider an attribute xp with dis-
tribution N(0,1) or N(0,2) for the two clusters respectively: although its means are equal, because
of its different variances in the two clusters, it is still informative to discriminating between the two
clusters. It is unclear how to realize automatic variable selection for other more general covariance
matrices in penalized model-based clustering. Nevertheless, we acknowledge that it may be desir-
able to use more flexible covariance structures, for example, a non-diagonal covariance matrix, in
some applications (McLachlan et al., 2003), and more work is needed to explore how to realize
variable selection with such a choice in penalized model-based clustering.

In penalized/regularized methods, an important issue is the choice of the penalization param-
eter. Although cross-validation and other data-resampling methods can be adopted, due to their
high computational cost and possibly sub-optimal performance (Efron, 2004), we have proposed a
modified BIC as a model selection criterion. Based on the new results on degrees of freedom in
the context of L1-penalized regression (Efron et al., 2004; Zou et al., 2004), we propose counting
only non-zero components of the maximum penalized likelihood estimate when calculating the ef-
fective number of parameters in BIC. Although it seemed to work well in our numerical examples,
theoretical justifications and further evaluations are needed.

Acknowledgments

WP was supported by NIH grant HL65462 and a UM AHC Development grant, XS by NSF grants
IIS-0328802 and DMS-0604394. WP thanks Benhuai Xie, Guanghua Xiao and Peng Wei for assis-
tance with the gene expression data. The authors thank the two reviewers and the Action Editor for
many helpful and constructive comments.

References

R. Alexandridis, S. Lin, and M. Irwin. Class discovery and classification of tumor samples using
mixture modeling of gene expression data. Bioinformatics, 20:2546-2552, 2004.

P. J. Bickel, and E. Levina. Some theory for Fisher’s linear discriminant function, “naive Bayes”,
and some alternatives when there are many more variables than observations. Bernoulli, 10:989-
1010, 2004.

L. Breiman. Random forests. Machine Learning 45:5-32, 2001.

M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, and D.
Haussle. Knowledge-based analysis of microarray gene expression data using support vector ma-
chines. Proc Natl Acad Sci USA, 97:262-267, 2000.

W. C. Chang. On using principal components before separating a mixture of two multivariate normal
distributions. Applied Statistics, 32:267-275, 1983.

G. Ciuperca, A. Ridolfi, and J. Idier. Penalized maximum likelihood estimator for normal mixtures.
Scandinavian Journal of Statistics, 30:45-59, 2003.

1161



PAN AND SHEN

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm (with discussion). JRSS-B, 39:1-38, 1977.

B. Efron. The estimation of prediction error: covariance penalties and cross-validation. JASA,
99:619-632, 2004.

B. Efron, T. Hastie T, I. Johnstone I, and R. Tibshirani. Least angle regression. Annals of Statistics,
32:407-499, 2004.

M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of genome-wide
expression patterns. PNAS, 95:14863-14868, 1998.

J. Fan, and R. Li. Variable selection via nonconcave penalized likelihood and its Oracle properties.
JASA, 96:1348-1360, 2001.

C. Fraley, and A. E. Raftery. How many clusters? Which clustering methods? - Answers via model-
based cluster analysis. The Computer Journal, 41:578-588, 1998.

C. Fraley, and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation.
Journal of the American Statistical Association, 97:611-631, 2002.

C. Fraley, and A. E. Raftery. Bayesian regularization for normal mixture estimation and model-
based clustering. Technical report 486, Dept. of Statistics, University of Washington, 2005.

J. H. Friedman, and J. J. Meulman. Clustering objects on subsets of attributes (with discussion). J.
R. Stat. Soc. Ser. B, 66:815-849, 2004.

D. Ghosh D, and A. M. Chinnaiyan. (2002). Mixture modeling of gene expression data from mi-
croarray experiments. Bioinformatics, 18:275-286, 2002.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L.
Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification
of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-
537, 1999.

P. J. Green. On use of the EM for penalized likelihood estimation. J. R. Stat. Soc. Ser. B, 52:443-452,
1990.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Infer-
ence, and Prediction. Springer, 2001.

P. D. Hoff. Discussion of ‘Clustering objects on subsets of attributes’ by Friedman and Meulman. J.
R. Stat. Soc. Ser. B, 66:845-846, 2004.

P. D. Hoff. Subset clustering of binary sequences, with an application to genomic abnormality data.
Biometrics, 61:1027-1036, 2005.

P. D. Hoff. Model-based subspace clustering. Bayesian Analysis, 1:321-344, 2006.

1162



PENALIZED MODEL-BASED CLUSTERING

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett,
E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B.
Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend.
Functional Discovery via a Compendium of Expression Profiles. Cell, 102:109-126, 2000.

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 20:50-67, 2005.

S. Kim, M. G. Tadesse, and M. Vannucci. Variable selection in clustering via Dirichlet process
mixture models. Biometrika, 93:877-893, 2006.

H. Li, and F. Hong. Cluster-Rasch models for microarray gene expression data. Genome Biology, 2:
research0031.1-0031.13, 2001.

J. S. Liu, J. L. Zhang, M. J. Palumbo, C. E. Lawrence. Bayesian clustering with variable and trans-
formation selection (with discussion). Bayesian Statistics, 7:249-275, 2003.

O. L. Mangasarian, and E. W. Wild. Feature selection in k-median clustering. Proceedings of SIAM
International Conference on Data Mining, Workshop on Clustering High Dimensional Data and
its Applications, April 24, 2004, La Buena Vista, FL, pages 23-28.

G. J. McLachlan, R. W. Bean, and D. Peel. A mixture model-based approach to the clustering of
microarray expression data. Bioinformatics, 18:413-422, 2002.

G. J. McLachlan, and D. Peel. Finite Mixture Model. New York, John Wiley & Sons, Inc, 2002.

G. J. McLachlan, D. Peel, and R. W. Bean. Modeling high-dimensional data by mixtures of factor
analyzers. Computational Statistics and Data Analysis, 41:379-388, 2003.

H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt, M. Munsterkotter, P.
Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp. MIPS: analysis and annotation of
proteins from whole genomes. Nucleic Acids Res., 32:D41-D44, 2004.

W. Pan. A comparative review of statistical methods for discovering differentially expressed genes
in replicated microarray experiments. Bioinformatics, 12:546-554, 2002.

W. Pan, X. Shen, A. Jiang, and R. P. Hebbel. Semi-supervised learning via penalized mixture model
with application to microarray sample classification. Bioinformatics, 22:2388-2395, 2006.

A. E. Raftery. Discussion of “Bayesian clustering with variable and transformation selection” by
Liu et al. Bayesian Statistics, 7:266-271, 2003.

A. E. Raftery, and N. Dean. Variable selection for model-based clustering. Journal of the American
Statistical Association, 101:168-178, 2006.

S. Richardson, and P. J. Green. On Bayesian analysis of mixtures with an unknown number of
components. JRSS-B, 59:731-758, 1997.

G. Schwarz. Estimating the dimensions of a model. Annals of Statistics, 6:461-464, 1978.

1163



PAN AND SHEN

X. Shen, and J. Ye. Adaptive model selection. Journal of the American Statistical Association,
97:210-221, 2002.

M. G. Tadesse, N. Sha, and M. Vannucci. Bayesian variable selection in clustering high-dimensional
data. Journal of the American Statistical Association, 100:602-617, 2005.

J. G. Thomas, J. M. Olson, S. J. Tapscott, and L. P. Zhao. An efficient and robust statistical modeling
approach to discover differentially expressed genes using genomic expression profiles. Genome
Research, 11:1227-1236, 2001.

R. Tibshirani. Regression shrinkage and selection via the Lasso. JRSS-B, 58:267-288, 1996.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by nearest shrunken centroids,
with application to DNA microarrays. Statistical Science, 18:104-117, 2003.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

L. F. Wu, T. R. Hughes, A. P. Davierwala, M. D. Robinson, R. Stoughton, and S. J. Altschuler.
Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcrip-
tional clusters. Nature Genetics, 31:255-265, 2002.

G. Xiao, and W. Pan. Gene function prediction by a combined analysis of gene expression data and
protein-protein interaction data. Journal of Bioinformatics and Computational Biology, 3:1371-
1389, 2005.

K. Y. Yeung, and W. L. Ruzzo. Principal component analysis for clustering gene expression data.
Bioinformatics, 17:763-774, 2001.

K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo. Model-based clustering and data
transformations for gene expression data. Bioinformatics, 17:977-987, 2001.

X. Zhou, M. C. Kao, and W. H. Wong. Transitive functional annotation by shortest-path analysis of
gene expression data. Proc Natl Acad Sci USA, 99:12783-12788, 2002.

H. Zou, T. Hastie, and R. Tibshirani. On the “Degrees of Freedom” of the Lasso.
Technical report, Dept. of Statistics, Stanford University, 2004. Available at
http://stat.stanford.edu/∼hastie/pub.htm.

1164


