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Abstract

We propose a method to improve approximate inference methods by correcting for the influence of
loops in the graphical model. The method is a generalization and alternative implementation of a re-
cent idea from Montanari and Rizzo (2005). It is applicable to arbitrary factor graphs, provided that
the size of the Markov blankets is not too large. It consists of two steps: (i) an approximate infer-
ence method, for example, belief propagation, is used to approximate cavity distributions for each
variable (i.e., probability distributions on the Markov blanket of a variable for a modified graphical
model in which the factors involving that variable have been removed); (ii) all cavity distributions
are improved by a message-passing algorithm that cancels out approximation errors by imposing
certain consistency constraints. This loop correction (LC) method usually gives significantly better
results than the original, uncorrected, approximate inference algorithm that is used to estimate the
effect of loops. Indeed, we often observe that the loop-corrected error is approximately the square
of the error of the uncorrected approximate inference method. In this article, we compare different
variants of the loop correction method with other approximate inference methods on a variety of
graphical models, including “real world” networks, and conclude that the LC method generally
obtains the most accurate results.

Keywords: loop corrections, approximate inference, graphical models, factor graphs, belief prop-
agation

1. Introduction

In recent years, much research has been done in the field of approximate inference on graphical
models. One of the goals is to obtain accurate approximations of marginal probabilities of complex
probability distributions defined over many variables, using limited computation time and memory.
This research has led to a large number of approximate inference methods. Apart from sampling
(“Monte Carlo”) methods, there is a large number of “deterministic” approximate inference meth-
ods, such as variational methods, for example, the mean field method (Parisi, 1988), and a family
of algorithms that are in some way related to the highly successful belief propagation (BP) algo-
rithm (Pearl, 1988). BP is also known as the “sum-product algorithm” (Kschischang et al., 2001)
and as “loopy belief propagation” and is directly related to the Bethe approximation (Bethe, 1935;
Yedidia et al., 2005) from statistical physics. It is well-known that belief propagation yields exact
results if the graphical model is a tree, or, more generally, if each connected component is a tree. If
the graphical model does contain loops, BP can still yield surprisingly accurate results using little
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computation time. However, if the influence of loops is large, the approximate marginals calculated
by BP can have large errors and the quality of the BP results may not be satisfactory.

One way to correct for the influence of short loops is to increase the cluster size of the approxi-
mation, using the cluster variation method (CVM) (Pelizzola, 2005) or other region-based approx-
imation methods (Yedidia et al., 2005). These methods are related to the Kikuchi approximation
(Kikuchi, 1951), a generalization of the Bethe approximation using larger clusters. Algorithms for
calculating the CVM and related region-based approximation methods are generalized belief prop-
agation (GBP) (Yedidia et al., 2005) and double-loop algorithms that have guaranteed convergence
(Yuille, 2002; Heskes et al., 2003). By choosing the (outer) clusters such that they subsume as many
loops as possible, the BP results can be improved. However, choosing a good set of outer clusters
is highly nontrivial, and in general this method will only work if the clusters do not have many
intersections, or in other words, if the loops do not have many intersections (see also Welling et al.,
2005).

Another method that corrects for loops to a certain extent is TreeEP (Minka and Qi, 2004),
a special case of expectation propagation (EP) (Minka, 2001). TreeEP does exact inference on
the base tree, a subgraph of the graphical model which has no loops, and approximates the other
interactions. This corrects for the loops that consist of part of the base tree and exactly one additional
factor. TreeEP yields good results if the graphical model is dominated by the base tree, which is
the case in very sparse models. However, loops that consist of two or more interactions that are
not part of the base tree are approximated in a similar way as in BP. Hence, for denser models, the
improvement of TreeEP over BP usually diminishes.

In this article we propose a method that takes into account all the loops in the graphical model
in an approximate way and therefore obtains more accurate results in many cases. Our method
is a variation on the theme introduced by Montanari and Rizzo (2005). The basic idea is to first
estimate the “cavity distributions” of all variables and subsequently improve these estimates by
cancelling out errors using certain consistency constraints. A cavity distribution of some variable
is the probability distribution on its Markov blanket (all its neighboring variables) of a modified
graphical model, in which all factors involving that variable have been removed. The removal of the
factors breaks all the loops in which that variable takes part. This allows an approximate inference
algorithm to estimate the strength of these loops in terms of effective interactions or correlations
between the variables of the Markov blanket. Then, the influence of the removed factors is taken
into account, which yields accurate approximations to the probability distributions of the original
graphical model. Even more accuracy is obtained by imposing certain consistency relations between
the cavity distributions, which results in a cancellation of errors to some extent. This error cancel-
lation is done by a message-passing algorithm which can be interpreted as a generalization of BP
in case the factor graph does not contain short loops of four nodes; indeed, assuming that the cavity
distributions factorize (which they do in case there are no loops), the BP results are obtained. On
the other hand, using better estimates of the effective interactions in the cavity distributions yields
accurate loop-corrected results.

Although the basic idea underlying our method is very similar to that described in Montanari
and Rizzo (2005), the alternative implementation that we propose here offers two advantages. Most
importantly, it is directly applicable to arbitrary factor graphs, whereas the original method has
only been formulated for the rather special case of graphical models with binary variables and
pairwise factors, which excludes, for example, many interesting Bayesian networks. Furthermore,
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our implementation appears to be more robust and also gives improved results for relatively strong
interactions, as will be shown numerically.

This article is organized as follows. First we explain the theory behind our proposed method and
discuss the differences with the original method by Montanari and Rizzo (2005). Then we report
extensive numerical experiments regarding the quality of the approximation and the computation
time, where we compare with other approximate inference methods. Finally, we discuss the results
and state conclusions.

2. Theory

In this work, we consider graphical models such as Markov random fields and Bayesian networks.
We use the general factor graph representation since it allows for formulating approximate inference
algorithms in a unified way (Kschischang et al., 2001). In the next subsection, we introduce our
notation and basic definitions.

2.1 Graphical Models and Factor Graphs

Consider N discrete random variables {xi}i∈V with V := {1, . . . ,N}. Each variable xi takes values
in a discrete domain Xi. We will use the following multi-index notation: for any subset I ⊆ V ,
we write xI := (xi1 ,xi2 , . . . ,xim) if I = {i1, i2, . . . , im} and i1 < i2 < .. . im. We consider a probability
distribution over x = (x1, . . . ,xN) that can be written as a product of factors ψI:

P(x) =
1
Z ∏

I∈F
ψI(xI), Z = ∑

x
∏
I∈F

ψI(xI). (1)

The factors (which we will also call “interactions”) are indexed by (small) subsets of V , that is,
F ⊆ P (V ) := {I : I ⊆ V }. Each factor is a nonnegative function ψI : ∏i∈I Xi → [0,∞). For a
Bayesian network, the factors are conditional probability tables. In case of Markov random fields,
the factors are often called potentials (not to be confused with statistical physics terminology, where
“potential” refers to minus the logarithm of the factor instead). Henceforth, we will refer to a triple
(V ,F ,{ψI}I∈F ) that satisfies the description above as a discrete graphical model (or network).

In general, the normalizing constant Z is not known and exact computation of Z is infeasible, due
to the fact that the number of terms to be summed is exponential in N. Similarly, computing marginal
distributions P(xJ) of P for subsets of variables J ⊆ V is intractable in general. In this article, we
focus on the task of accurately approximating single-variable marginals P(xi) = ∑xV \{i} P(x).

We can represent the structure of the probability distribution (1) using a factor graph. This is a
bipartite graph, consisting of variable nodes i ∈ V and factor nodes I ∈ F , with an edge between
i and I if and only if i ∈ I, that is, if xi participates in the factor ψI . We will represent factor nodes
visually as rectangles and variable nodes as circles. See Figure 1(a) for an example of a factor graph.
We denote the neighboring nodes of a variable node i by Ni := {I ∈ F : i ∈ I} and the neighboring
nodes of a factor node I simply by I = {i ∈V : i ∈ I}. Further, we define for each variable i ∈V the
set ∆i :=

S

Ni consisting of all variables that appear in some factor in which variable i participates,
and the set ∂i := ∆i\{i}, the Markov blanket of i.

In the following, we will often abbreviate the set theoretical notation X \Y (i.e., all elements in
X that are not in Y ) by \Y if it is obvious from the context what the set X is. Also, we will write
X \y instead of X \{y}. Further, we will use lowercase for variable indices and uppercase for factor
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(b) Cavity graph of i

Figure 1: (a) Original factor graph, corresponding to the probability distribution P(x) =
1
Z ψL(x j,xn,xo)ψI(xi,x j)ψM(x j,xk)ψK(xi,xm,xn)ψJ(xi,xk,xl)ψO(xl,xm); (b) Factor graph
corresponding to the cavity network of variable i, obtained by removing variable i and the
factor nodes that contain i (i.e., I, J and K). The Markov blanket of i is ∂i = { j,k, l,m,n}.
The cavity distribution Z\i(x∂i) is the (unnormalized) marginal on x∂i of the probability
distribution corresponding to the cavity graph (b).

indices. For convenience, we will define for any subset A ⊂ F the product of the corresponding
factors:

ΨA(xS

A) := ∏
I∈A

ψI(xI).

2.2 Cavity Networks and Loop Corrections

The notion of a cavity stems from statistical physics, where it was used originally to calculate
properties of random ensembles of certain graphical models (Mézard et al., 1987). A cavity is
obtained by removing one variable from the graphical model, together with all the factors in which
that variable participates.

In our context, we define cavity networks as follows (see also Figure 1):

Definition 2.1 Given a graphical model (V ,F ,{ψI}I∈F ) and a variable i ∈V , the cavity network
of variable i is the graphical model (V \ i,F \Ni,{ψI}I∈F \Ni

).

The probability distribution corresponding to the cavity network of variable i is thus proportional
to:

Ψ\Ni
(x\i) = ∏

I∈F
i6∈I

ψI(xI).

Summing out all the variables, except for the neighbors ∂i of i, gives what we will call the cavity
distribution:
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Definition 2.2 Given a graphical model (V ,F ,{ψI}I∈F ) and a variable i ∈ V , the cavity distri-
bution of i is

Z\i(x∂i) := ∑
x\∆i

Ψ\Ni
(x\i). (2)

Thus the cavity distribution of i is proportional to the marginal of the cavity network of i on the
Markov blanket ∂i. The cavity distribution describes the effective interactions (or correlations) in-
duced by the cavity network on the neighbors ∂i of variable i. Indeed, from Equations (1) and (2)
and the trivial observation that ΨF = ΨNiΨ\Ni

we conclude:

P(x∆i) ∝ Z\i(x∂i)ΨNi(x∆i). (3)

Thus, given the cavity distribution Z\i(x∂i), one can calculate the marginal distribution of the original
graphical model P on x∆i, provided that the cardinality of X∆i is not too large.

In practice, exact cavity distributions are not known, and the only way to proceed is to use
approximate cavity distributions. Given some approximate inference method (e.g., BP), there are
two ways to calculate P(x∆i): either use the method to approximate P(x∆i) directly, or use the
method to approximate Z\i(x∂i) and use Equation (3) to obtain an approximation to P(x∆i). The
latter approach generally gives more accurate results, since the complexity of the cavity network is
less than that of the original network. In particular, the cavity network of variable i contains no loops
involving that variable, since all factors in which i participates have been removed (e.g., the loop
i− J− l−O−m−K− i in the original network, Figure 1(a), is not present in the cavity network,
Figure 1(b)). Thus the latter approach to calculating P(x∆i) takes into account loops involving
variable i, although in an approximate way. It does not, however, take into account the other loops in
the original graphical model. The basic idea of the loop correction approach of Montanari and Rizzo
(2005) is to use the latter approach for all variables in the network, but to adjust the approximate
cavity distributions in order to cancel out approximation errors before (3) is used to obtain the final
approximate marginals. This approach takes into account all the loops in the original network, in
an approximate way.

This basic idea can be implemented in several ways. Here we propose an implementation which
we will show to have certain advantages over the original implementation proposed in Montanari
and Rizzo (2005). In particular, it is directly applicable to arbitrary factor graphs with variables
taking an arbitrary (discrete) number of values and factors that may contain zeroes and consist of
an arbitrary number of variables. In the remaining subsections, we will first discuss our proposed
implementation in detail. In Section 2.6 we will discuss differences with the original approach.

2.3 Combining Approximate Cavity Distributions to Cancel Out Errors

Suppose that we have obtained an initial approximation ζ\i0 (x∂i) of the (exact) cavity distribution
Z\i(x∂i), for each i ∈ V . Let i ∈ V and consider the approximation error of the cavity distribution
of i, that is, the exact cavity distribution of i divided by its approximation:

Z\i(x∂i)

ζ\i0 (x∂i)
.
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In general, this is an arbitrary function of the variables x∂i. However, for our purposes, we approxi-
mate the error as a product of factors defined on small subsets of ∂i in the following way:

Z\i(x∂i)

ζ\i0 (x∂i)
≈ ∏

I∈Ni

φ\iI (xI\i).

Thus we assume that the approximation error lies near a submanifold parameterized by the error
factors {φ\iI (xI\i)}I∈Ni . If we were able to calculate these error factors, we could improve our initial

approximation ζ\i0 (x∂i) by replacing it with the product

ζ\i(x∂i) := ζ\i0 (x∂i) ∏
I∈Ni

φ\iI (xI\i)≈ Z\i(x∂i). (4)

Using (3), this would then yield an improved approximation of P(x∆i).
It turns out that the error factors can indeed be calculated by exploiting the redundancy of the in-

formation in the initial cavity approximations {ζ\i0 }i∈V . The fact that all ζ\i provide approximations
to marginals of the same probability distribution P(x) via (3) can be used to obtain consistency con-
straints. The number of constraints obtained in this way is usually enough to solve for the unknown
error factors {φ\iI (xI\i)}i∈V ,I∈Ni

.
Here we propose the following consistency constraints. Let Y ∈ F , i ∈ Y and j ∈ Y with i 6= j

(see also Figure 2). Consider the graphical model (V ,F \Y,{ψI}I∈F \Y ) that is obtained from the
original graphical model by removing factor ψY . The product of all factors (except ψY ) obviously
satisfies:

Ψ\Y = ΨNi\Y Ψ\Ni
= ΨN j\Y Ψ\N j

.

Using (2) and summing over all xk for k 6∈ Y \ i, we obtain the following equation, which holds for
the exact cavity distributions Z\i and Z\ j:

∑
xi

∑
x∆i\Y

ΨNi\Y Z\i = ∑
xi

∑
x∆ j\Y

ΨN j\Y Z\ j.

Substituting our basic assumption (4) on both sides and pulling the factor φ\iY (xY\i) in the l.h.s.
through the summation, we obtain:

φ\iY ∑
xi

∑
x∆i\Y

ΨNi\Y ζ\i0 ∏
I∈Ni\Y

φ\iI = ∑
xi

∑
x∆ j\Y

ΨN j\Y ζ\ j
0 ∏

J∈N j

φ\ j
J .

Since this should hold for each j ∈ Y \ i, we can take the geometric mean of the r.h.s. over all
j ∈ Y \ i. After rearranging, this yields:

φ\iY =

(

∏
j∈Y\i

∑
xi

∑
x∆ j\Y

ΨN j\Y ζ\ j
0 ∏

J∈N j

φ\ j
J

)1/|Y\i|

∑
xi

∑
x∆i\Y

ΨNi\Y ζ\i0 ∏
I∈Ni\Y

φ\iI

for all i ∈ V , Y ∈ Ni. (5)

Note that the numerator is an approximation of the joint marginal P\Y (xY\i) of the modified graphi-
cal model (V ,F \Y,{ψI}I∈F \Y ) on the variables Y \ i.
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Figure 2: Part of the factor graph, illustrating the derivation of (5). The two gray variable nodes
correspond to Y \ i = { j,k}.

Solving the consistency Equations (5) simultaneously for the error factors {φ\iI }i∈V ,I∈Ni
can be

done using a simple fixed point iteration algorithm, for example, Algorithm 1. The input consists
of the initial approximations {ζ\i0 }i∈V to the cavity distributions. It calculates the error factors that
satisfy (5) by fixed point iteration and from the fixed point, it calculates improved approximations
of the cavity distributions {ζ\i}i∈V using Equation (4).1 From the improved cavity distributions, the
loop-corrected approximations to the single-variable marginals of the original probability distribu-
tion (1) can be calculated as follows:

Pi(xi)≈ bi(xi) ∝ ∑
x∂i

ΨNi(x∆i)ζ\i(x∂i), (6)

where the factor ψY is now included. Algorithm 1 uses a sequential update scheme, but other update
schemes are possible (e.g., random sequential or parallel). In practice, the fixed sequential update
scheme often converges without the need for damping.

Alternatively, one can formulate Algorithm 1 in terms of the “beliefs”

Qi(x∆i) ∝ ΨNi(x∆i)ζ
\i
0 (x∂i) ∏

I∈Ni

φ\iI (xI\i) = ΨNi(x∆i)ζ\i(x∂i). (7)

As one easily verifies, the update equation

Qi← Qi

∏
j∈Y\i

(

∑
x∆ j\(Y\i)

Q j ψ−1
Y

)1/|Y\i|

∑
x∆i\(Y\i)

Qi ψ−1
Y

1. Alternatively, one could formulate the updates directly in terms of the cavity distributions {ζ\i}.
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Algorithm 1 Loop Correction Algorithm

Input: initial approximate cavity distributions {ζ\i0 }i∈V
Output: improved approximate cavity distributions {ζ\i}i∈V

1: repeat
2: for all i ∈ V do
3: for all Y ∈ Ni do

4: φ\iY (xY\i)←

(

∏
j∈Y\i

∑
xi

∑
x∆ j\Y

ΨN j\Y ζ\ j
0 ∏

J∈N j

φ\ j
J

)1/|Y\i|

∑
xi

∑
x∆i\Y

ΨNi\Y ζ\i0 ∏
I∈Ni\Y

φ\iI

5: end for
6: end for
7: until convergence
8: for all i ∈ V do
9: ζ\i(x∂i)← ζ\i0 (x∂i)∏I∈Ni

φ\iI (xI\i)
10: end for

is equivalent to line 1 of Algorithm 1. Intuitively, the update improves the approximate distribution
Qi on ∆i by replacing its marginal on Y \ i (in the absence of Y ) by a more accurate approximation of
this marginal, namely the numerator. Written in this form, the algorithm is reminiscent of iterative
proportional fitting (IPF). However, contrary to IPF, the desired marginals are also updated at each
iteration. Note that after convergence, the large beliefs Qi(x∆i) need not be consistent, that is, in
general ∑x∆i\J Qi 6= ∑x∆ j\J Q j for i, j ∈ V , J ⊆ ∆i∩∆ j.

2.4 A Special Case: Factorized Cavity Distributions

In the previous subsection we have discussed how to improve approximations of cavity distribu-
tions. We now discuss what happens when we use the simplest possible initial approximations
{ζ\i0 }i∈V , namely constant functions, in Algorithm 1. This amounts to the assumption that no loops
are present. We will show that if the factor graph does not contain short loops consisting of four
nodes, fixed points of the standard BP algorithm are also fixed points of Algorithm 1. In this sense,
Algorithm 1 can be considered to be a generalization of the BP algorithm. In fact, this holds even if
the initial approximations factorize in a certain way, as will be shown below.

If all factors involve at most two variables, one can easily arrange for the factor graph to have
no loops of four nodes. See Figure 1(a) for an example of a factor graph which has no loops of four
nodes. The factor graph depicted in Figure 2 does have a loop of four nodes: k−Y − j− J2− k.

Theorem 2.1 If the factor graph corresponding to (1) has no loops of exactly four nodes, and all
initial approximate cavity distributions factorize in the following way:

ζ\i0 (x∂i) = ∏
I∈Ni

ξ\iI (xI\i) ∀i ∈ V , (8)

then fixed points of the BP algorithm can be mapped to fixed points of Algorithm 1. Furthermore,
the corresponding variable and factor marginals obtained from (7) are identical to the BP beliefs.
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Proof Note that replacing the initial cavity approximations by

ζ\i0 (x∂i) 7→ ζ\i0 (x∂i) ∏
I∈Ni

ε\iI (xI\i)

for arbitrary positive functions ε\iI (xI\i) does not change the beliefs (7) corresponding to the fixed

points of (5). Thus, without loss of generality, we can assume ζ\i0 (x∂i) = 1 for all i ∈ V . The BP
update equations are (Kschischang et al., 2001):

µ j→I(x j) ∝ ∏
J∈N j\I

µJ→ j(x j) j ∈ V , I ∈ N j,

µI→i(xi) ∝ ∑
xI\i

ψI(xI) ∏
j∈I\i

µ j→I(x j) I ∈ F , i ∈ I
(9)

in terms of messages {µJ→ j(x j)} j∈V ,J∈N j
and {µ j→J(x j)} j∈V ,J∈N j

. Assume that the messages µ are
a fixed point of (9) and take the Ansatz

φ\iI (xI\i) = ∏
k∈I\i

µk→I(xk) for i ∈ V , I ∈ Ni.

Then, for i ∈ V , Y ∈ Ni, j ∈ Y \ i, we can write out part of the numerator of (5) as follows:

∑
xi

∑
x∆ j\Y

ΨN j\Y ζ\ j
0 ∏

J∈N j

φ\ j
J = ∑

xi

∑
x∆ j\Y

φ\ j
Y ∏

J∈N j\Y
ψJφ\ j

J

= ∑
xi

(

∏
k∈Y\ j

µk→Y

)

∏
J∈N j\Y

∑
xJ\ j

ψJ ∏
k∈J\ j

µk→J

= ∑
xi

(

∏
k∈Y\ j

µk→Y

)

µ j→Y = ∑
xi

∏
k∈Y

µk→Y ∝ ∏
k∈Y\i

µk→Y

= φ\iY ,

where we used the BP update Equations (9) and rearranged the summations and products using the
assumption that the factor graph has no loops of four nodes. Thus, the numerator of the r.h.s. of (5)
is simply φ\iY . Using a similar calculation, one can derive that the denominator of the r.h.s. of (5) is
constant, and hence (5) is valid (up to an irrelevant constant).

For Y ∈ F , i ∈ Y , the marginal on xY of the belief (7) can be written in a similar way:

∑
x∆i\Y

Qi ∝ ∑
x∆i\Y

ΨNi ∏
I∈Ni

φ\iI = ∑
x∆i\Y

∏
I∈Ni

ψI ∏
k∈I\i

µk→I

= ψY

(

∏
k∈Y\i

µk→Y

)

∏
I∈Ni\Y

∑
xI\i

ψI ∏
k∈I\i

µk→I

= ψY

(

∏
k∈Y\i

µk→Y

)

∏
I∈Ni\Y

µI→i = ψY

(

∏
k∈Y\i

µk→Y

)

µi→Y

= ψY ∏
k∈Y

µk→Y ,
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which is proportional to the BP belief bY (xY ) on xY . Hence, also the single-variable marginal bi de-
fined in (6) corresponds to the BP single-variable belief, since both are marginals of bY for Y ∈Ni.

If the factor graph does contain loops of four nodes, we usually observe that the fixed point of
Algorithm 1 coincides with the solution of the “minimal” CVM approximation when using factor-
ized initial cavity approximations as in (8). The minimal CVM approximation uses all maximal
factors as outer clusters (a maximal factor is a factor defined on a domain which is not a strict subset
of the domain of another factor). In that case, the factor beliefs found by Algorithm 1 are consis-
tent, that is, ∑x∆i\Y Qi = ∑x∆ j\Y Q j for i, j ∈ Y , and are identical to the minimal CVM factor beliefs.

In particular, this holds for all the graphical models used in Section 3.2

2.5 Obtaining Initial Approximate Cavity Distributions

There is no principled way to obtain the initial cavity approximations ζ\i0 (x∂i). In the previous
subsection, we investigated the results of applying the LC algorithm on factorizing initial cavity
approximations. More sophisticated approximations that do take into account the effect of loops can
significantly enhance the accuracy of the final result. Here, we will describe one method, which uses
BP on clamped cavity networks. This method captures all interactions in the cavity distribution of i
in an approximate way and can lead to very accurate results. Instead of BP, any other approximate
inference method that gives an approximation of the normalizing constant Z in (1) can be used,
such as mean field, TreeEP (Minka and Qi, 2004), a double-loop version of BP (Heskes et al., 2003)
which has guaranteed convergence towards a minimum of the Bethe free energy, or some variant of
GBP (Yedidia et al., 2005). One could also choose the method for each cavity separately, trading
accuracy versus computation time. We focus on BP because it is a very fast and often relatively
accurate algorithm.

Let i ∈ V and consider the cavity network of i. For each possible state of x∂i, run BP on the
cavity network clamped to that state x∂i and calculate the corresponding Bethe free energy F \iBethe(x∂i)
(Yedidia et al., 2005). Then, take the following initial approximate cavity distribution:

ζ\i0 (x∂i) ∝ e−F\iBethe(x∂i).

This procedure is exponential in the size of ∂i: it uses ∏ j∈∂i

∣

∣X j
∣

∣ BP runs. However, many networks
encountered in applications are relatively sparse and have limited cavity size and the computational
cost may be acceptable.

This particular way of obtaining initial cavity distributions has the following interesting prop-
erty: in case the factor graph contains only a single loop and assuming that the fixed point is unique,
the final beliefs (7) resulting from Algorithm 1 are exact. This can be shown using an argument
similar to that given in Montanari and Rizzo (2005). Suppose that the graphical model contains
exactly one loop and let i ∈ V . First, consider the case that i is part of the loop; removing i will
break the loop and the remaining cavity network will be singly connected. The cavity distribution
approximated by BP will thus be exact. Now if i is not part of the loop, removing i will divide the

2. In a draft version of this work (Mooij and Kappen, 2006), we conjectured that the result of Algorithm 1, when ini-
tialized with factorizing initial cavity approximations, would always coincide with the minimal CVM approximation.
This conjecture no longer stands because we have found a counter example.
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network into several connected components, one for each neighbor of i. This implies that the cav-
ity distribution calculated by BP contains no higher-order interactions, that is, ζ\i0 is exact modulo

single-variable interactions. Because the final beliefs (7) are invariant under perturbation of the ζ\i0
by single-variable interactions, the final beliefs calculated by Algorithm 1 are exact if the fixed point
is unique.

If all interactions are pairwise and each variable is binary and has exactly |∂i|= d neighbors, the
time complexity of the resulting “loop-corrected BP” (LCBP) algorithm is given by O(N2dEIBP +
Nd2d+1ILC), where E is the number of edges in the factor graph, IBP is the average number of
iterations of BP on a clamped cavity network and ILC is the number of iterations needed to obtain
convergence in Algorithm 1.

2.6 Differences with the Original Implementation

As mentioned before, the idea of estimating the cavity distributions and imposing certain consis-
tency relations amongst them has been first presented in Montanari and Rizzo (2005). In its simplest
form (i.e., the so-called first-order correction), the implementation of that basic idea as proposed by
Montanari and Rizzo (2005) differs from our proposed implementation in the following aspects.

First, the original method described by Montanari and Rizzo (2005) is only formulated for
the rather special case of binary variables and pairwise interactions. In contrast, our method is
formulated in a general way that makes it applicable to factor graphs with variables having more than
two possible values and factors consisting of more than two variables. Also, factors may contain
zeroes. The generality that our implementation offers is important for many practical applications.
In the rest of this section, we will assume that the graphical model (1) belongs to the special class
of models with binary variables with pairwise interactions, allowing further comparison of both
implementations.

An important difference is that Montanari and Rizzo (2005) suggest to deform the initial ap-
proximate cavity distributions by altering certain cumulants (also called “connected correlations”),
instead of altering certain interactions. In general, for a set A of ±1-valued random variables
{xi}i∈A , one can define for any subset B ⊆ A the moment

MB := ∑
xA

P(xA) ∏
j∈B

x j.

The moments {MB}B⊆A are a parameterization of the probability distribution P(xA). An alternative
parameterization is given in terms of the cumulants. The (joint) cumulants {CE}E⊆A are certain
polynomials of the moments, defined implicitly by the following equations:

MB = ∑
C∈Part(B)

∏
E∈C

CE

where Part(B) is the set of partitions of B .3 In particular, Ci = Mi and Ci j = Mi j−MiM j for all
i, j ∈ A with i 6= j. Montanari and Rizzo (2005) propose to approximate the cavity distributions by
estimating the pair cumulants and assuming higher-order cumulants to be zero. Then, the singleton
cumulants (i.e., the single-variable marginals) are altered, keeping higher-order cumulants fixed, in

3. For a set X , a partition of X is a nonempty set Y such that each Z ∈ Y is a nonempty subset of X and
S

Y = X .
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such a way as to impose consistency of the single-variable marginals, in the absence of interac-
tions shared by two neighboring cavities. We refer the reader to Appendix A for a more detailed
description of the implementation in terms of cumulants suggested by Montanari and Rizzo (2005).

The assumption suggested in Montanari and Rizzo (2005) that higher-order cumulants are zero
is the most important difference with our method, which instead takes into account effective in-
teractions in the cavity distribution of all orders. In principle, the cumulant parameterization also
allows for taking into account higher-order cumulants, but this would not be very efficient due to
the combinatorics needed for handling the partitions.

A minor difference lies in the method to obtain initial approximations to the cavity distributions.
Montanari and Rizzo (2005) propose to use BP in combination with linear response theory to obtain
the initial pairwise cumulants. This difference is not very important, since one could also use BP on
clamped cavity networks instead, which turns out to give almost identical results.

As we will show in Section 3, our method of altering interactions appears to be more robust and
still works in regimes with strong interactions, whereas the cumulant implementation suffers from
convergence problems for strong interactions.

Montanari and Rizzo (2005) also derive a linearized version of their cumulant-based scheme (by
expanding up to first order in terms of the pairwise cumulants, see Appendix A) which is quadratic
in the size of the cavity. This linearized, cumulant-based version is currently the only one that can
be applied to networks with large Markov blankets (cavities), that is, where the maximum number
of states maxi∈V |X∆i| is large, provided that all variables are binary and interactions are pairwise.

3. Numerical Experiments

We have performed various numerical experiments to compare the quality of the results and the
computation time of the following approximate inference methods:

MF Mean field, with a random sequential update scheme and no damping.

BP Belief propagation. We have used the recently proposed update scheme (Elidan et al., 2006),
which converges also for difficult problems without the need for damping.

TreeEP TreeEP (Minka and Qi, 2004), without damping. We generalized the method of choosing
the base tree described in Minka and Qi (2004) to multiple variable factors as follows: when
estimating the mutual information between xi and x j, we take the product of the marginals on
{i, j} of all the factors that involve xi and/or x j. Other generalizations of TreeEP to higher-
order factors are possible (e.g., by clustering variables), but it is not clear how to do this in
general in an optimal way.

LCBP (“Loop-corrected belief propagation”) Algorithm 1, where the approximate cavities are ini-
tialized according to the description in Section 2.5.

LCBP-Cum The original cumulant-based loop correction scheme by Montanari and Rizzo (2005),
using response propagation (also known as linear response) to approximate the initial pairwise
cavity cumulants. The full update Equations (14) are used and higher-order cumulants are
assumed to vanish. For strong interactions, the update Equations (14) often yield values for
the M \i

j outside of the valid interval [−1,1]. In this case, we project these values back into the
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valid interval in the hope that the method will converge to a valid result, which it sometimes
does.

LCBP-Cum-Lin Similar to LCBP-Cum, but instead of the full update Equations (14), the lin-
earized update Equations (15) are used.

CVM-Min A double-loop implementation (Heskes et al., 2003) of the minimal CVM approxima-
tion, which uses (maximal) factors as outer clusters.

CVM-∆ A double-loop implementation of CVM using the sets {∆i}i∈V as outer clusters. These are
the same sets of variables as used by LCBP (c.f. (7)) and therefore it is interesting to compare
both algorithms.

CVM-Loopk A double-loop implementation of CVM, using as outer clusters all (maximal) factors
together with all loops in the factor graph that consist of up to k different variables (for k =
3,4,5,6,8).

We have used a double-loop implementation of CVM instead of GBP because the former is
guaranteed to converge to a local minimum of the Kikuchi free energy (Heskes et al., 2003) without
damping, whereas the latter often only converges with strong damping. The difficulty with damping
is that the optimal damping constant is not known a priori, which necessitates multiple trial runs
with different damping constants, until a suitable one is found. Using too much damping slows
down convergence, whereas a certain amount of damping is required to obtain convergence in the
first place. Therefore, in general we expect that (damped) GBP is not much faster than a double-loop
implementation because of the computational cost of finding the optimal damping constant.

To be able to assess the errors of the various approximate methods, we have only considered
problems for which exact inference (using a standard JunctionTree method) was still feasible.

For each approximate inference method, we report the maximum `∞ error of the approximate
single-variable marginals bi, calculated as follows:

Error := max
i∈V

max
xi∈Xi

|bi(xi)−P(xi)|

where P(xi) is the exact marginal calculated using the JunctionTree method.
The computation time was measured as CPU time in seconds on a 2.4 GHz AMD Opteron 64bits

processor with 4 GB memory. The timings should be seen as indicative because we have not spent
equal amounts of effort optimizing each method.4

We consider an iterative method to be “converged” after T time steps if for each variable i ∈V ,
the `∞ distance between the approximate probability distributions of that variable at time step T and
T +1 is less than ε = 10−9.

We have studied four different model classes: (i) random graphs of uniform degree with pair-
wise interactions and binary variables; (ii) random factor graphs with binary variables and factor
nodes of uniform degree k = 3; (iii) the ALARM network, which has variables taking on more than
two possible values and factors consisting of more than two variables; (iv) PROMEDAS networks,
which have binary variables but factors consisting of more than two variables. For more extensive
experiments, see Mooij and Kappen (2006).

4. Our C++ implementation of various approximate inference algorithms is free/open source software and can be down-
loaded from http://www.mbfys.ru.nl/˜jorism/libDAI.
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3.1 Random Regular Graphs with Binary Variables

We have compared various approximate inference methods on random graphs, consisting of N bi-
nary (±1-valued) variables, having only pairwise interactions, where each variable has the same
degree |∂i|= d. In this case, the probability distribution (1) can be written in the following way:

P(x) =
1
Z

exp

(

∑
i∈V

θixi +
1
2 ∑

i∈V
∑
j∈∂i

Ji jxix j

)

.

The parameters {θi}i∈V are called the local fields and the parameters {Ji j = J ji}i∈V , j∈∂i are called
the couplings. The graph structure and the parameters θ and J were drawn randomly for each in-
stance. The local fields {θi} were drawn independently from a N (0,βΘ) distribution (i.e., a normal
distribution with mean 0 and standard deviation βΘ). For the couplings {Ji j}, we took mixed (“spin-

glass”) couplings, drawn independently from a normal distribution Ji j ∼ N
(

0,β tanh−1 1√
d−1

)

.

The constant β (called “inverse temperature” in statistical physics) controls the overall interaction
strength and thereby the difficulty of the inference problem, larger β corresponding usually to more
difficult problems. The constant Θ controls the relative strength of the local fields, where larger
Θ result in easier inference problems. The particular d-dependent scaling of the couplings is used
in order to obtain roughly d-independent behavior. For Θ = 0 and for β ≈ 1, a phase transition
occurs in the limit of N→ ∞, going from an easy “paramagnetic” phase for β < 1 to a complicated
“spin-glass” phase for β > 1.5

We have also done experiments with positive (“attractive” or “ferromagnetic”) couplings, but the
conclusions from these experiments did not differ significantly from those using mixed couplings
(Mooij and Kappen, 2006). Therefore we do not report those experiments here.

3.1.1 N = 100, d = 3, STRONG LOCAL FIELDS (Θ = 2)

We have studied various approximate inference methods on regular random graphs of low degree
d = 3, consisting of N = 100 variables, with relatively strong local fields of strength Θ = 2. We
have considered various overall interaction strengths β between 0.01 and 10. For each value of β,
we have used 16 random instances. On each instance, we have run various approximate inference
algorithms.

Figure 3 shows results for MF, BP and TreeEP, and their loop-corrected versions, LCMF, LCBP
and LCTreeEP. The loop-corrected versions are the result of Algorithm 1, initialized with approx-
imate cavity distributions obtained by the procedure described in Section 2.5 (using MF, BP, and
TreeEP in the role of BP). Note that the loop correction method significantly reduces the error in
each case. In fact, on average the loop-corrected error is approximately given by the square of the
uncorrected error, as is apparent from the scatter plots in Figure 4. BP is the fastest of the uncor-
rected methods and TreeEP is the most accurate but also the slowest uncorrected method. MF is
both slower and less accurate than BP. Unsurprisingly, the loop-corrected methods show similar
relative performance behaviors. Because BP is very fast and relatively accurate, we focus on LCBP
in the rest of this article. Note further that although the graph is rather sparse, the improvement of
LCBP over BP is significantly more than the improvement of TreeEP over BP.

5. More precisely, the PA-SG phase transition occurs at Θ = 0 and (d− 1) =
〈

tanh2(βJi j)
〉

, where 〈·〉 is the average
over all Ji j (Mooij and Kappen, 2005). What happens for Θ > 0 is not known, to the best of our knowledge.
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Figure 3: Error (left) and computation time (right) as a function of interaction strength for vari-
ous approximate inference methods (MF, BP, TreeEP) and their loop-corrected versions
(LCMF, LCBP, LCTreeEP). The averages (calculated in the logarithmic domain) were
computed from the results for 16 randomly generated instances of (N = 100,d = 3) reg-
ular random graphs with strong local fields Θ = 2.
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Figure 4: Pairwise comparisons of errors of uncorrected and loop-corrected methods, for the same
instances as in Figure 3. The solid red lines correspond with y = x, the dotted red lines
with y = x2. Only the cases have been plotted for which both approximate inference meth-
ods have converged. Saturation of errors around 10−9 is an artifact due to the convergence
criterion.

In Figures 5 and 6 we compare the different implementations of the loop correction method on
the same instances as used before. For small values of β, LCBP-Cum and LCBP-Cum-Lin both
converge and yield high quality results, and the error introduced by the linearization is relatively
small. However, for larger values of β, both methods get more and more convergence problems,
although for the few cases where they do converge, they still yield accurate results. At β≈ 10, both
methods have completely stopped converging. The error introduced by the linearization increases
for larger values of β. The computation times of LCBP-Cum, LCBP-Cum-Lin and LCBP do not
differ substantially in the regime where all methods converge. However, the quality of the LCBP
results is higher than that of the cumulant-based methods. This is mainly due to the fact that LCBP
also takes into account effective triple interactions in the initial estimates of the approximate cavity
distributions.
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Figure 6: Pairwise comparisons of errors of various methods for the same instances as in Figure
3. Only the cases have been plotted for which both approximate inference methods con-
verged.

We speculate that the reason for the break-down of LCBP-Cum and LCBP-Cum-Lin for strong
interactions is due to the choice of cumulants instead of interactions. Indeed, consider two random
variables x1 and x2 with fixed pair interaction exp(Jx1x2). By altering the singleton interactions
exp(θ1x1) and exp(θ2x2), one can obtain any desired marginals of x1 and x2. However, a fixed
pair cumulant C12 = 〈x1x2〉 − 〈x1〉〈x2〉 imposes a constraint on the range of possible expectation
values 〈x1〉 and 〈x2〉 (hence on the single-variable marginals of x1 and x2); the freedom of choice
in these marginals becomes less as the pair cumulant becomes stronger. We believe that something
similar happens for LCBP-Cum (and LCBP-Cum-Lin): for strong interactions, the approximate pair
cumulants in the cavity are strong, and even tiny errors can lead to inconsistencies which prevent
convergence.

The results of the CVM approach to loop correction are shown in Figures 7 and 8. The CVM-
Loop methods, with clusters reflecting the short loops present in the factor graph, do indeed improve
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Figure 8: Pairwise comparisons of errors for various methods for the same instances as in Figure 3.

on BP. Furthermore, as expected, the use of larger clusters (that subsume longer loops) improves the
results, although computation time quickly increases. CVM-Loop3 (not plotted) turned out not to
give any improvement over BP, simply because there were (almost) no loops of 3 variables present.
The most accurate CVM method, CVM-Loop8, needs more computation time than LCBP, whereas
it yields inferior results.6

In addition to the CVM-Loop methods, we compared with the CVM-∆ method, which uses
{∆i}i∈V as outer clusters. These clusters subsume the clusters used implicitly by BP (which are
simply the pairwise factors) and therefore one would naively expect that the CVM-∆ approximation
yields better results. Surprisingly however, the quality of CVM-∆ is similar to that of BP, although
its computation time is enormous. This illustrates that simply using larger clusters for CVM does
not always lead to better results. Furthermore, we conclude that although LCBP and CVM-∆ use
identical clusters to approximate the target probability distribution, the nature of both approxima-
tions is very different.

6. The CVM errors are often seen to saturate around 10−8, which indicates that the slow convergence of the CVM
double-loop algorithm in these cases requires a stricter convergence criterion.
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Figure 9: Selected results for (N = 50,d = 6) regular random graphs with strong local fields Θ = 2.
The averaged results for LCBP-Cum and LCBP-Cum-Lin nearly coincide for β . 1.

3.1.2 WEAK LOCAL FIELDS (Θ = 0.2)

We have done the same experiments also for weak local fields (Θ = 0.2), with the other parameters
unaltered (i.e., N = 100, d = 3). The picture roughly remains the same, apart from the following
differences. First, the influence of the phase transition is more pronounced; many methods have
severe convergence problems around β = 1. Second, the negative effect of linearization on the error
(LCBP-Cum-Lin compared to LCBP-Cum) is smaller.

3.1.3 LARGER DEGREE (d = 6)

To study the influence of the degree d = |∂i|, we have done additional experiments for d = 6. We
had to reduce the number of variables to N = 50, because exact inference was infeasible for larger
values of N due to quickly increasing treewidth. The results are shown in Figure 9. As in the
previous experiments, BP is the fastest and least accurate method, whereas LCBP yields the most
accurate results, even for high β. Again we see that the LCBP error is approximately the square of
the BP error and that LCBP gives better results than LCBP-Cum, but needs more computation time.

However, we also note the following differences with the case of low degree (d = 3). The
relative improvement of TreeEP over BP has decreased. This could have been expected, because in
denser networks, the effect of taking out a tree becomes less.

Further, the relative improvement of CVM-Loop4 over BP has increased, probably because
there are more short loops present. On the other hand, computation time of CVM-Loop4 has also

1130



LOOP CORRECTIONS FOR APPROXIMATE INFERENCE ON FACTOR GRAPHS

10
−9

10
−6

10
−3

10
0

M
a
x
.
e
r
r
o
r

M
a
x
.
e
r
r
o
r

10 20 50

NN

10−2

100

102

104

T
im

e
(s

)
T

im
e

(s
)

10 20 50

NN

BP

TreeEP

LCBP

LCBP-Cum

LCBP-Cum-Lin

CVM-Loop3

CVM-Loop4

JunctionTree

Figure 10: Error (left) and computation time (right) as a function of N (the number of variables),
for random graphs with uniform degree d = 6, β = 0.1 and Θ = 2. Points are averages
over 16 randomly generated instances. Each method converged on all instances. The
results for LCBP-Cum and LCBP-Cum-Lin coincide.

increased and it is the slowest of all methods. We decided to abort the calculations for CVM-Loop6
and CVM-Loop8, because computation time was prohibitive due to the enormous amount of short
loops present. We conclude that the CVM-Loop approach to loop correction is not very efficient if
there are many loops present.

Surprisingly, the results of LCBP-Cum-Lin are now very similar in quality to the results of
LCBP-Cum, except for a few isolated cases (presumably on the edge of the convergence region).

3.1.4 SCALING WITH N

We have investigated how computation time and error scale with the number of variables N, for
fixed β = 0.1, Θ = 2 and d = 6. We used a machine with more memory (16 GB) to be able to do
exact inference without swapping also for N = 60. The results are shown in Figure 10. The error of
each method is approximately constant.

BP computation time should scale approximately linearly in N, which is difficult to see in this
plot. LCBP variants are expected to scale quadratic in N (since d is fixed) which we have verified
by checking the slopes of corresponding lines in the plot for large values of N. The computation
time of CVM-Loop3 and CVM-Loop4 seems to be approximately constant, probably because the
large number of overlaps of short loops for small values of N causes difficulties. The computation
time of the exact JunctionTree method quickly increases due to increasing treewidth; for N = 60 it
is already ten times larger than the computation time of the slowest approximate inference method.

We conclude that for large N, exact inference is infeasible, whereas LCBP still yields very
accurate results using moderate computation time.

3.1.5 SCALING WITH d

It is also interesting to see how various methods scale with d, the variable degree, which is directly
related to the cavity size. We have done experiments for random graphs of size N = 24 with fixed
β = 0.1 and Θ = 2 for different values of d between 3 and 23. The results can be found in Figure 11.
We aborted the calculations of the slower methods (LCBP, LCBP-Cum, CVM-Loop3) at d = 15.
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Figure 11: Error (left) and computation time (right) as a function of variable degree d for regular
random graphs of N = 24 variables for β = 0.1 and Θ = 2. Points are averages over
16 randomly generated instances. Each method converged on all instances. Errors of
LCBP-Cum and LCBP-Cum-Lin coincide for d ≤ 15; for d > 15, LCBP-Cum became
too slow.

Due to the particular dependence of the interaction strength on d, the errors of most methods
depend only slightly on d. TreeEP is an exception: for larger d, the relative improvement of TreeEP
over BP diminishes, and the TreeEP error approaches the BP error. CVM-Loop3 gives better quality,
but needs relatively much computation time and becomes very slow for large d due to the large
increase in the number of loops of 3 variables. LCBP is the most accurate method, but becomes
very slow for large d. LCBP-Cum is less accurate and becomes slower than LCBP for large d,
because of the additional overhead of the combinatorics needed to perform the update equations.
The accuracy of LCBP-Cum-Lin is indistinguishable from that of LCBP-Cum, although it needs
significantly less computation time.

Overall, we conclude from Section 3.1 that for these binary, pairwise graphical models, LCBP
is the best method for obtaining high accuracy marginals if the graphs are sparse, LCBP-Cum-Lin
is the best method if the graphs are dense and LCBP-Cum shows no clear advantages over either
method.

3.2 Multi-variable Factors

We now go beyond pairwise interactions and study a class of random factor graphs with binary
variables and uniform factor degree |I| = k (for all I ∈ F ) with k > 2. The number of variables
is N and the number of factors is M. The factor graphs are constructed by starting from an empty
graphical model (V , /0, /0) and adding M random factors, where each factor is obtained in the follow-
ing way: a subset I = {I1, . . . , Ik} ⊆ V of k different variables is drawn; a vector of 2k independent
random numbers {JI(xI)}xI∈XI is drawn from a N (0,β) distribution; the factor ψI(xI) := expJI(xi)
is added to the graphical model. We only use those constructed factor graphs that are connected.7

The parameter β again controls the interaction strength.
We have done experiments for (N = 50,M = 50,k = 3) for various values of β between 0.01

and 2. For each value of β, we have used 16 random instances. For higher values of β, computation

7. The reason that we require the factor graph to be connected is that not all our approximate inference method imple-
mentations currently support connected factor graphs that consist of more than one connected component.
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Figure 12: Results for (N = 50,M = 50,k = 3) random factor graphs.

times increased quickly and convergence became problematic for BP, TreeEP and LCBP. This is
probably related to the effects of a phase transition. The results are shown in Figure 12.

Looking at the error and the computation time in Figure 12, the following ranking can be made,
where accuracy and computation time both increase: BP, TreeEP, CVM-Min, CVM-Loop3, LCBP.
CVM-Loop4 uses more computation time than LCBP but gives worse results. LCBP-Cum and
LCBP-Cum-Lin are not available due to the fact that the factors involve more than two variables.
Note that the improvement of TreeEP over BP is rather small. Further, note that the LCBP error is
again approximately given by the square of the BP error.

3.3 ALARM Network

The ALARM network8 is a well-known Bayesian network consisting of 37 variables (some of which
can take on more than two possible values) and 37 factors (many of which involve more than two
variables). In addition to the usual approximate inference methods, we have compared with GBP-
Min, a GBP implementation of the minimal CVM approximation that uses maximal factors as outer
clusters. The results are reported in Table 1.9

The accuracy of GBP-Min (and CVM-Min) is almost identical to that of BP for this graphical
model; GBP-Min converges without damping and is faster than CVM-Min. On the other hand,
TreeEP significantly improves the BP result in roughly the same time as GBP-Min needs. Simply
enlarging the cluster size (CVM-∆) slightly deteriorates the quality of the results and also causes an
enormous increase of computation time. The quality of the CVM-Loop results is roughly compara-
ble to that of TreeEP. Surprisingly, increasing the loop depth beyond 4 deteriorates the quality of the
results and results in an explosion of computation time. We conclude that the CVM-Loop method
is not a very good approach to correcting loops in this case. LCBP uses considerable computation
time, but yields errors that are approximately 104 times smaller than BP errors. The cumulant-

8. The ALARM network can be downloaded from http://compbio.cs.huji.ac.il/Repository/Datasets/
alarm/alarm.dsc.

9. In Mooij et al. (2007), we also report experimental results for the ALARM network. In that work, we used another
update rule for LCBP, which explains the different error obtained there (5.4 · 10−04). The update rule (5) used in
the present work generally yields better results for higher-order interactions, whereas for pairwise interactions, both
update rules are equivalent.
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Method Time (s) Error
BP 0.00 2.026 ·10−01

TreeEP 0.21 3.931 ·10−02

GBP-Min 0.18 2.031 ·10−01

CVM-Min 1.13 2.031 ·10−01

CVM-∆ 280.67 2.233 ·10−01

CVM-Loop3 1.19 4.547 ·10−02

CVM-Loop4 154.97 3.515 ·10−02

CVM-Loop5 1802.83 5.316 ·10−02

CVM-Loop6 84912.70 5.752 ·10−02

LCBP 23.67 3.412 ·10−05

Table 1: Results for the ALARM network

based loop LCBP methods are not available, due to the presence of factors involving more than two
variables and variables that can take more than two values.

3.4 PROMEDAS Networks

In this subsection, we study the performance of LCBP on another “real world” example, the
PROMEDAS medical diagnostic network (Wiegerinck et al., 1999). The diagnostic model in
PROMEDAS is based on a Bayesian network. The global architecture of this network is similar
to QMR-DT (Shwe et al., 1991). It consists of a diagnosis layer that is connected to a layer with
findings.10 Diagnoses (diseases) are modeled as a priori independent binary variables causing a
set of symptoms (findings), which constitute the bottom layer. The PROMEDAS network currently
consists of approximately 2000 diagnoses and 1000 findings.

The interaction between diagnoses and findings is modeled with a noisy-OR structure. The
conditional probability of the finding given the parents is modeled by m + 1 numbers, m of which
represent the probabilities that the finding is caused by one of the diseases and one that the finding
is not caused by any of the parents.

The noisy-OR conditional probability tables with m parents can be naively stored in a table of
size 2m. This is problematic for the PROMEDAS networks since findings that are affected by more
than 30 diseases are not uncommon in the PROMEDAS network. We use an efficient implementa-
tion of noisy-OR relations as proposed by Takikawa and D’Ambrosio (1999) to reduce the size of
these tables. The trick is to introduce dummy variables s and to make use of the property

OR(x|y1,y2,y3) = ∑
s

OR(x|y1,s)OR(s|y2,y3).

The factors on the right hand side involve at most 3 variables instead of the initial 4 (left). Repeated
application of this formula reduces all factors to triple interactions or smaller.

When a patient case is presented to PROMEDAS, a subset of the findings will be clamped and
the rest will be unclamped. If our goal is to compute the marginal probabilities of the diagnostic

10. In addition, there is a layer of variables, such as age and gender, that may affect the prior probabilities of the diagnoses.
Since these variables are always clamped for each patient case, they merely change the prior disease probabilities and
are irrelevant for our current considerations.

1134



LOOP CORRECTIONS FOR APPROXIMATE INFERENCE ON FACTOR GRAPHS

10
−8

10
−6

10
−4

10
−2

10
0

L
C

B
P

e
r
r
o
r

L
C

B
P

e
r
r
o
r

10
−9

10
−6

10
−3

10
0

BP errorBP error

10
−8

10
−6

10
−4

10
−2

10
0

C
V

M
-M

in
e
r
r
o
r

C
V

M
-M

in
e
r
r
o
r

10
−9

10
−6

10
−3

10
0

BP errorBP error

10
−8

10
−6

10
−4

10
−2

10
0

T
r
e
e
E

P
e
r
r
o
r

T
r
e
e
E

P
e
r
r
o
r

10
−9

10
−6

10
−3

10
0

BP errorBP error

10−8

10−6

10−4

10−2

100

C
V

M
-L

o
o
p
3

er
ro

r
C

V
M

-L
o
o
p
3

er
ro

r

10−9 10−6 10−3 100

BP errorBP error

10−8

10−6

10−4

10−2

100

C
V

M
-L

o
o
p
4

er
ro

r
C

V
M

-L
o
o
p
4

er
ro

r

10−9 10−6 10−3 100

BP errorBP error

10−8

10−6

10−4

10−2

100

C
V

M
-L

o
o
p
5

er
ro

r
C

V
M

-L
o
o
p
5

er
ro

r

10−9 10−6 10−3 100

BP errorBP error

Figure 13: Scatter plots of errors for PROMEDAS instances.

variables only, the unclamped findings and the diagnoses that are not related to any of the clamped
findings can be summed out of the network as a preprocessing step. The clamped findings cause
an effective interaction between their parents. However, the noisy-OR structure is such that when
the finding is clamped to a negative value, the effective interaction factorizes over its parents. Thus,
findings can be clamped to negative values without additional computation cost (Jaakkola and Jor-
dan, 1999).

The complexity of the problem now depends on the set of findings that is given as input. The
more findings are clamped to a positive value, the larger the remaining network of disease variables
and the more complex the inference task. Especially in cases where findings share more than one
common possible diagnosis, and consequently loops occur, the model can become complex.

We use the PROMEDAS model to generate virtual patient data by first clamping one of the
disease variables to be positive and then clamping each finding to its positive value with probability
equal to the conditional distribution of the finding, given the positive disease. The union of all
positive findings thus obtained constitute one patient case. For each patient case, the corresponding
truncated graphical model is generated. The number of disease nodes in this truncated graph is
typically quite large.

The results can be found in Figures 13 and 14. Surprisingly, neither TreeEP nor any of the CVM
methods gives substantial improvements over BP. TreeEP even gives worse results compared to BP.
The CVM-Min and CVM-Loop3 results appear to be almost identical to the BP results. CVM-
Loop4 manages to improve over BP in a few cases. Increased loop depth (k = 5,6) results in worse
quality in many cases and also in an enormous increase in computation time.
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Figure 14: Computation time (in seconds) for PROMEDAS instances: (left) BP computation time
vs. N; (center) LCBP computation time vs. N; (right) LCBP vs. BP.

LCBP, on the other hand, is the only method that gives a significant improvement over BP, in
each case. Considering all patient cases, LCBP corrects the BP error with more than one order
of magnitude in half of the cases for which BP was not already exact. The improvement obtained
by LCBP has its price: the computation time of LCBP is rather large compared to that of BP, as
shown in Figure 14. In many cases, this is due to a few rather large cavities. The cumulant-based
loop correction methods are not available, due to the presence of factors involving more than two
variables.

4. Discussion and Conclusion

We have proposed a method to improve the quality of the single-variable marginals calculated by
an approximate inference method (e.g., BP) by correcting for the influence of loops in the factor
graph. We have proved that the method is a generalization of BP if the initial approximate cavity
distributions factorize and the factor graph does not contain short loops of exactly four nodes. If the
factor graph does contain such short loops, we observe in many cases that the method reduces to the
minimal CVM approximation if one applies it on factorized initial approximate cavity distributions.
If, on the other hand, the LC method is applied in combination with BP estimates of the effective
cavity interactions, we have seen that the loop-corrected error is approximately the square of the
uncorrected BP error. Similar observations have been made for loop-corrected MF and TreeEP. For
practical purposes, we suggest to apply loop corrections to BP (“LCBP”), because the loop correc-
tion approach requires many runs of the approximate inference method and BP is well suited for
this job because of its speed. We have compared the performance of LCBP with other approximate
inference methods that (partially) correct for the presence of loops. In most cases, LCBP turned out
to be the most accurate method (with the notable exception of LCTreeEP, which is also considerably
more expensive). LCBP still works for relatively strong interactions, in contrast with LCBP-Cum
and LCBP-Cum-Lin.

On sparse factor graphs, TreeEP can obtain significant improvements over BP by correcting for
loops that consist of part of the base tree and one additional interaction, using little computation
time. However, for denser graphs, we observed that the difference between the quality of TreeEP
and BP marginals diminishes. For both sparse and dense graphs, LCBP obtained more accurate
results than TreeEP, although the computation time quickly increases for denser graphs.
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We have seen that the CVM-Loop approximation, which uses small loops as outer clusters,
can also provide accurate results, provided that the number of short loops is not too large and the
number of intersections of clusters is limited. However, the computation time becomes prohibitive
in many cases. In order to obtain the same accuracy as LCBP, the CVM-Loop approach usually
needs significantly more computation time. This behavior is also seen on “real world” instances
such as the ALARM network and PROMEDAS test cases. There may exist other cluster choices
that give better results for the CVM approximation, but no general method for obtaining “good”
cluster choices seems to be known (although for some special cases, for example, 2D grids, very
good choices exist). Welling et al. (2005) give some criteria for “good” CVM cluster choices, but
to our knowledge, no good general method for choosing CVM clusters is known.11

We have also compared the performance of LCBP with the original implementations proposed
by Montanari and Rizzo (2005) (LCBP-Cum and LCBP-Cum-Lin) on the limited class of binary
pairwise models. The original implementations work with cumulants instead of interactions and
we believe that this explains the observed convergence difficulties of LCBP-Cum and LCBP-Cum-
Lin in the regime of strong interactions. On sparse graphs, LCBP obtained better accuracy than
LCBP-Cum and LCBP-Cum-Lin, using approximately similar computation time. This is mainly
due to the fact that LCBP estimates the higher-order effective interactions in the cavity distributions.
On dense graphs, both LCBP and LCBP-Cum become computationally infeasible. The linearized
version LCBP-Cum-Lin, which is still applicable in these cases, performed surprisingly well, often
obtaining similar accuracy as LCBP-Cum. For random graphs with high degree d (i.e., large Markov
blankets), it turned out to be the most accurate of the applicable approximate inference methods.
It is rather fortunate that the negative effect of the linearization error on the accuracy of the result
becomes smaller as the degree increases, since it is precisely for high degree where one needs the
linearization because of performance issues.

In the experiments reported here, the standard JunctionTree method was almost always faster
than LCBP. The reason is that we have intentionally selected experiments for which exact inference
is still feasible, in order to be able to compare the quality of various approximate inference methods.
However, as implied by Figure 10, there is no reason to expect that LCBP will suddenly give inac-
curate results when exact inference is no longer feasible. Thus we suggest that LCBP may be used
to obtain accurate marginal estimates in cases where exact inference is impossible because of high
treewidth. As illustrated in Figure 10, the computation time of LCBP scales very different from that
of the JunctionTree method: whereas the latter is exponential in treewidth, LCBP is exponential in
the size of the Markov blankets.

The fact that computation time of LCBP (in its current form) scales exponentially with the
size of the Markov blankets can be a severe limitation in practice. Many real world Bayesian
networks have large Markov blankets, prohibiting application of LCBP. The linear cumulant-based
implementation LCBP-Cum-Lin does not suffer from this problem, as it is quadratic in the size of
the Markov blankets. Unfortunately, this particular implementation can in its current form only be
applied to graphical models that consist of binary variables and factors that involve at most two
variables (which excludes any interesting Bayesian network, for example). Furthermore, problems
may arise if some factors contain zeroes. For general application of loop correction methods, it
will be of paramount importance to derive an implementation that combines the generality of LCBP

11. After submitting this manuscript, we became aware of the method called IJGP(i) proposed in Dechter et al. (2002).
IJGP(i) is essentially a heuristic to create region graphs that can also significantly improve on BP. We have not yet
done an experimental comparison of LCBP with IJGP(i).
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with the speed of LCBP-Cum-Lin. This topic will be left for future research. The work presented
here provides some intuition that may be helpful for constructing a general and fast loop correction
method that is applicable to arbitrary factor graphs that can have large Markov blankets.

Another important direction for future research would be to find an extension of the loop cor-
rection framework that also gives a loop-corrected approximation of the normalization constant Z in
(1). Additionally, and possibly related to that, it would be desirable to find an approximate “free en-
ergy”, a function of the beliefs, whose stationary points coincide with the fixed points of Algorithm
1. This can be done for many approximate inference methods (MF, BP, CVM, EP) so it is natural to
expect that the LC algorithm can also be seen as a minimization procedure of a certain approximate
free energy. Despite some efforts, we have not yet been able to find such a free energy.

Recently, other loop correction approaches (to the Bethe approximation) have been proposed
in the statistical physics community (Parisi and Slanina, 2006; Chertkov and Chernyak, 2006b). In
particular, Chertkov and Chernyak (2006b) have derived a series expansion of the exact normalizing
constant Z in terms of the BP solution. The first term of the series is precisely the Bethe free energy
evaluated at the BP fixed point. The number of terms in the series is finite, but can be very large,
even larger than the number of total states of the graphical model. Each term is associated with
a “generalized loop”, which is a subgraph of the factor graph for which each node has at least
connectivity two. By truncating the series, it is possible to obtain approximate solutions that improve
on BP by taking into account a subset of all generalized loops (Gómez et al., forthcoming; Chertkov
and Chernyak, 2006a). Summarizing, the approach to loop corrections by Chertkov and Chernyak
(2006b) takes a subset of loops into account in an exact way, whereas the loop correction approach
presented in this article takes all loops into account in an approximate way. More experiments
should be done to compare both approaches.

Summarizing, we have proposed a method to correct approximate inference methods for the
influence of loops in the factor graph. We have shown that it can obtain very accurate results, also
on real world graphical models, outperforming existing approximate inference methods in terms of
quality, robustness or applicability. We have shown that it can be applied to problems for which
exact inference is infeasible. The rather large computation time required is an issue which deserves
further consideration; it may be possible to use additional approximations on top of the loop correc-
tion framework that trade quality for computation time.
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Appendix A. Original Approach by Montanari and Rizzo (2005)

For completeness, we describe the implementation based on cumulants as originally proposed by
Montanari and Rizzo (2005). The approach can be applied in recursive fashion. Here we will only
discuss the first recursion level.
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Consider a graphical model which has only binary (±1-valued) variables and factors that involve
at most two variables. The corresponding probability distribution can be parameterized in terms of
the local fields {θi}i∈V and the couplings {Ji j = J ji}i∈V , j∈∂i:

P(x) =
1
Z

exp

(

∑
i∈V

θixi +
1
2 ∑

i∈V
∑
j∈∂i

Ji jxix j

)

.

Let i ∈ V and consider the corresponding cavity network of i. For A ⊆ ∂i, the cavity moment

M \i
A is defined as the following expectation value under the cavity distribution:

M \i
A :=

∑
x∂i

Z\i(x∂i) ∏
j∈A

x j

∑
x∂i

Z\i(x∂i)
,

where we will not explicitly distinguish between approximate and exact quantities, following the
physicists’ tradition.12 The cavity cumulants (also called “connected correlations”) C \iA are related
to the moments in the following way:

M \i
A = ∑

B∈Part(A)
∏

E∈B
C \iE

where Part(A) is the set of partitions of A .
We introduce some notation: we define for A ⊆ ∂i:

tiA := ∏
k∈A

tanhJik.

Further, for a set X , we denote the even subsets of X as P+(X) := {Y ⊆ X : |Y | is even} and the odd
subsets of X as P−(X) := {Y ⊆ X : |Y | is odd}.

Using standard algebraic manipulations, one can show that for j ∈ ∂i, the expectation value of
x j in the absence of the interaction ψi j = exp(Ji jxix j) can be expressed in terms of cavity moments
of i as follows:

∑
A∈P+(∂i\ j)

tiA M \i
A∪ j + tanhθi ∑

A∈P−(∂i\ j)

tiA M \i
A∪ j

∑
A∈P+(∂i\ j)

tiA M \i
A + tanhθi ∑

A∈P−(∂i\ j)

tiA M \i
A

. (10)

On the other hand, the same expectation value can also be expressed in terms of cavity moments of
j as follows:

tanhθ j ∑
A∈P+(∂ j\i)

t jB M \ j
B + ∑

A∈P−(∂ j\i)
t jB M \ j

B

∑
A∈P+(∂ j\i)

t jBM \ j
B + tanhθ j ∑

A∈P−(∂ j\i)
t jB M \ j

B

. (11)

The consistency equations are now given by equating (10) to (11) for all i ∈ V , j ∈ ∂i.

12. In Montanari and Rizzo (2005), the notation C̃(i)
A is used for the cavity moment M \i

A .
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The expectation value of xi (in the presence of all interactions) can be similarly expressed in
terms of cavity moments of i:

Mi := ∑
xi=±1

P(xi)xi =

tanhθi ∑
A∈P+(∂i)

tiA M \i
A + ∑

A∈P−(∂i)

tiA M \i
A

∑
A∈P+(∂i)

tiA M \i
A + tanhθi ∑

A∈P−(∂i)

tiA M \i
A

. (12)

A.1 Neglecting Higher-order Cumulants

Montanari and Rizzo proceed by neglecting cavity cumulants C \iA with |A |> 2. Denote by Part2(A)
the set of all partitions of A into subsets which have cardinality 2 at most. Thus, neglecting higher-
order cavity cumulants amounts to the following approximation:

M \i
A ≈ ∑

B∈Part2(A)
∏

E∈B
C \iE . (13)

By some algebraic manipulations, one can express the consistency Equations (10) = (11) in this
approximation as follows:

M \i
j =

tanhθ j ∑
A∈P+(∂ j\i)

t jB M \ j
B + ∑

A∈P−(∂ j\i)
t jB M \ j

B

∑
A∈P+(∂ j\i)

t jB M \ j
B + tanhθ j ∑

A∈P−(∂ j\i)
t jB M \ j

B

− ∑
k∈∂i\ j

tikC \ijk

tanhθi ∑
A∈P+(∂i\{ j,k})

tiA M \i
A + ∑

A∈P−(∂i\{ j,k})
tiA M \i

A

∑
A∈P+(∂i\ j)

tiA M \i
A + tanhθi ∑

A∈P−(∂i\ j)

tiA M \i
A

. (14)

One can use (13) to write (14) in terms of the singleton cumulants {M \i
j }i∈V , j∈∂i and the pair cumu-

lants {C \ijk}i∈V , j∈∂i,k∈∂i\ j. Given (estimates of) the pair cumulants, the consistency Equations (14)
are thus fixed point equations in the singleton cumulants. The procedure is now:

• Estimate the pair cumulants {C \ijk}i∈V , j∈∂i,k∈∂i\ j using BP in combination with linear response
(called “response propagation” in Montanari and Rizzo (2005)).

• Calculate the fixed point {M \i
j }i∈V , j∈∂i of (14) using the estimated pair cumulants.

• Use (12) in combination with (13) to calculate the final expectation values {M j} j∈V using the
estimated pair cumulants and the fixed point of (14).

A.2 Linearized Version

The update equations can be linearized by expanding up to first order in the pair cumulants C \ijk .
This yields the following linearized consistency equation (Montanari and Rizzo, 2005):

M \i
j = T \ j

i − ∑
l∈∂i\ j

Ω\ij,ltilC
\i
jl + ∑

{l1,l2}:l1,l2∈∂ j\i
Γ\ j

i,l1l2
t jl1t jl2C \ j

l1l2
(15)
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where

T \iA := tanh

(

θi + ∑
k∈∂i\A

tanh−1 (tikM \i
k )

)

,

Ω\ij,l :=
T \ijl

1+ tilM
\i
l T \ijl

,

Γ\ j
i,l1l2

:=
T \ j

il1l2
−T \ j

i

1+ t jl1t jl2M \ j
l1

M \ j
l2

+ t jl1M \ j
l1

T \ j
il1l2

+ t jl2M \ j
l2

T \ j
il1l2

.

The final magnetizations (12) are, up to first order in the pair cumulants:

M j = T \ j + ∑
{l1,l2}:l1,l2∈∂ j2

Γ\ j
l1l2

t jl1t jl2C \ j
l1l2

+O(C2)

where

Γ\ j
l1l2

:=
T \ j

l1l2
−T \ j

1+ t jl1t jl2M\ j
l1

M \ j
l2

+ t jl1M \ j
l1

T \ j
l1l2

+ t jl2M \ j
l2

T \ j
l1l2

.
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