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Abstract

This paper introduces a novel spectral framework for solving Markov decision processes (MDPs)
by jointly learning representations and optimal policies. The major components of the framework
described in this paper include: (i) A general scheme for constructing representations or basis func-
tions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach
where global basis functions called proto-value functions (PVFs) are formed using the eigenvectors
of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP
(iii) A three-phased procedure called representation policy iteration comprising of a sample collec-
tion phase, a representation learning phase that constructs basis functions from samples, and a final
parameter estimation phase that determines an (approximately) optimal policy within the (linear)
subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI frame-
work using least-squares policy iteration (LSPI) as the parameter estimation method (v) Several
strategies for scaling the proposed approach to large discrete and continuous state spaces, including
the Nyström extension for out-of-sample interpolation of eigenfunctions, and the use of Kronecker
sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs
(vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the
concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain
to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the
proposed framework are briefly summarized at the end.

Keywords: Markov decision processes, reinforcement learning, value function approximation,
manifold learning, spectral graph theory

1. Introduction

This paper introduces a novel spectral framework for solving Markov decision processes (MDPs)
(Puterman, 1994) where both the underlying representation or basis functions and (approximate)
optimal policies within the (linear) span of these basis functions are simultaneously learned. This
framework addresses a major open problem not addressed by much previous work in the field of
approximate dynamic programming (Bertsekas and Tsitsiklis, 1996) and reinforcement learning
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(Sutton and Barto, 1998), where the set of “features” or basis functions mapping a state s to a
k-dimensional real vector φ(s) ∈ R

k is usually hand-engineered.

The overall framework can be summarized briefly as follows. The underlying task environment
is modeled as an MDP, where the system dynamics and reward function are typically assumed to
be unknown. An agent explores the underlying state space by carrying out actions using some
policy, say a random walk. Central to the proposed framework is the notion of a diffusion model
(Coifman et al., 2005a; Kondor and Lafferty, 2002): the agent constructs a (directed or undirected)
graph connecting states that are “nearby”. In the simplest setting, the diffusion model is defined by
the combinatorial graph Laplacian matrix L = D−W , where W is a symmetrized weight matrix,
and D is a diagonal matrix whose entries are the row sums of W .1 Basis functions are derived
by diagonalizing the Laplacian matrix L, specifically by finding its “smoothest” eigenvectors that
correspond to the smallest eigenvalues. Eigenvectors capture large-scale temporal properties of a
transition process. In this sense, they are similar to value functions, which reflect the accumulation
of rewards over the long run. The similarity between value functions and the eigenvectors of the
graph Laplacian sometimes can be remarkable, leading to a highly compact encoding (measured in
terms of the number of basis functions needed to encode a value function). Laplacian basis functions
can be used in conjunction with a standard “black box” parameter estimation method, such as Q-
learning (Watkins, 1989) or least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003) to
find the best policy representable within the space of the chosen basis functions.

While the overall goal of learning representations is not new within the context of MDPs—
it has been addressed by Dayan (1993) and Drummond (2002) among others—our approach is
substantially different from previous work. The fundamental idea is to construct basis functions
for solving MDPs by diagonalizing symmetric diffusion operators on an empirically learned graph
representing the underlying state space. A diffusion model is intended to capture information flow
on a graph or a manifold.2 A simple diffusion model is a random walk on an undirected graph, where
the probability of transitioning from a vertex (state) to its neighbor is proportional to its degree, that
is Pr = D−1W (Chung, 1997). As we will see in Section 3, the combinatorial Laplacian operator L
defined in the previous paragraph is closely related spectrally to the random walk operator Pr. A key
advantage of diffusion models is their simplicity: it can be significantly easier to estimate a “weak”
diffusion model, such as the undirected random walk Pr or the combinatorial Laplacian L, than to
learn the true underlying transition matrix Pπ of a policy π.

The proposed framework can be viewed as automatically generating subspaces on which to
project the value function using spectral analysis of operators on graphs. This differs fundamen-
tally from many past attempts at basis function generation, for example tuning the parameters of
pre-defined basis functions (Menache et al., 2005; Kveton and Hauskrecht, 2006), dynamically al-
locating new parametric basis functions based on state space trajectories (Kretchmar and Anderson,
1999), or generating basis functions using the Bellman error in approximating a specific value func-
tion (Keller et al., 2006; Petrik, 2007; Parr et al., 2007; Patrascu et al., 2002). The main contribution

1. Section 9 describes how to generalize this simple diffusion model in several ways, including directed graphs where
the symmetrization is based on the Perron vector or the leading eigenvector associated with the largest eigenvalue
(Chung, 2005), state-action diffusion models where the vertices represent state-action pairs, and diffusion models for
temporally extended actions.

2. Intuitively, a manifold is a (finite or infinite) set that looks “locally Euclidean”, in that an invertible mapping can be
defined from a neighborhood around each element of the set to R

n. There are technical conditions that additionally
need to be satisfied for a manifold to be smooth, as explained in Lee (2003).
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of this paper is to show how to construct novel non-parametric basis functions whose shapes reflect
the geometry of the environment.

In this paper, basis functions are constructed from spectral analysis of diffusion operators where
the resulting representations are constructed without explicitly taking rewards into account. This
approach can be contrasted with recent approaches that explicitly use reward information to generate
basis functions (Keller et al., 2006; Petrik, 2007; Parr et al., 2007). There are clear advantages and
disadvantages to these two approaches. In the non-reward based approach, basis functions can
be more easily transferred across MDPs in situations where an agent is required to solve multiple
tasks defined on a common state (action) space. Furthermore, basis functions constructed using
spectral analysis reflect global geometric properties, such as bottlenecks and symmetries in state
spaces, that are invariant across multiple MDPs on the same state (action) space. Finally, in the
full control learning setting studied here, the agent does not initially know the true reward function
or transition dynamics, and building representations based on estimating these quantities introduces
another potential source of error. It is also nontrivial to learn accurate transition models, particularly
in continuous MDPs. However, in other settings such as planning, where the agent can be assumed
to have a completely accurate model, it is entirely natural and indeed beneficial to exploit reward or
transition dynamics in constructing basis functions. In particular, it is possible to design algorithms
for basis function generation with provable performance guarantees (Parr et al., 2007; Petrik, 2007),
although these theoretical results are at present applicable only to the more limited case of evaluating
a fixed policy. The proposed framework can in fact be easily extended to use reward information by
building reward-based diffusion models, as will be discussed in more detail in Section 9.

Since eigenvectors of the graph Laplacian form “global” basis functions whose support is the en-
tire state space, each eigenvector induces a real-valued mapping over the state space. Consequently,
we can view each eigenvector as a “proto-value” function (or PVF), and the set of PVFs form the
“building blocks” of all value functions on a state space (Mahadevan, 2005a). Of course, it is easy
to construct a complete orthonormal set of basis functions spanning all value functions on a graph:
the unit vectors themselves form such a basis, and indeed, any collection of |S| random vectors can
(with high probability) be orthonormalized so that they are of unit length and “perpendicular” to
each other. The challenge is to construct a compact basis set that is efficient at representing value
functions with as few basis functions as possible. Proto-value functions differ from these obvious
choices, or indeed other more common parametric choices such as radial basis functions (RBFs),
polynomial bases, or CMAC, in that they are associated with the spectrum of the Laplacian which
has an intimate relationship to the large-scale geometry of a state space. The eigenvectors of the
Laplacian also provide a systematic organization of the space of functions on a graph, with the
“smoothest” eigenvectors corresponding to the smallest eigenvalues (beginning with the constant
function associated with the zero eigenvalue). By projecting a given value function on the space
spanned by the eigenvectors of the graph Laplacian, the “spatial” content of a value function is
mapped into a “frequency” basis, a hallmark of classical “Fourier” analysis (Mallat, 1989).

It has long been recognized that traditional parametric function approximators may have diffi-
culty accurately modeling value functions due to nonlinearities in an MDP’s state space (Dayan,
1993). Figure 1 illustrates the problem with a simple example.3 In particular, as Dayan (1993) and
Drummond (2002) among others have noted, states close in Euclidean distance may have values that
are very far apart (e.g., two states on opposite sides of a wall in a spatial navigation task). While

3. Further details of this environment and similar variants are given in Section 2.1 and Section 4.2.
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there have been several attempts to fix the shortcomings of traditional function approximators to
address the inherent nonlinear nature of value functions, these approaches have lacked a sufficiently
comprehensive and broad theoretical framework (related work is discussed in more detail in Sec-
tion 8). We show that by rigorously formulating the problem of value function approximation as
approximating real-valued functions on a graph or manifold using a diffusion model, a more gen-
eral solution emerges that not only has broader applicability than these previous methods, but also
enables a novel framework called Representation Policy Iteration (RPI) (Mahadevan, 2005b) where
representation learning is interleaved with policy learning. The RPI framework consists of an outer
loop that learns basis functions from sample trajectories, and an inner loop that consists of a control
learner that finds improved policies.

Figure 2 shows a set of samples produced by doing a random walk in the inverted pendulum
task. In many continuous control tasks, there are often physical constraints that limit the “degrees
of freedom” to a lower-dimensional manifold, resulting in motion along highly constrained regions
of the state space. Instead of placing basis functions uniformly in all regions of the state space, the
proposed framework recovers the underlying manifold by building a graph based on the samples
collected over a period of exploratory activity. The basis functions are then computed by diagonal-
izing a diffusion operator (the Laplacian) on the space of functions on the graph, and are thereby
customized to the manifold represented by the state (action) space of a particular control task. In
discrete MDPs, such as Figure 1, the problem is one of compressing the space of (value) functions
R
|S| (or R

|S|×|A| for action-value functions). In continuous MDPs, such as Figure 2, the correspond-
ing problem is compressing the space of square-integrable functions on R

2, denoted as L
2(R2). In

short, the problem is one of dimensionality reduction not in the data space, but on the space of
functions on the data.4

Both the discrete MDP shown in Figure 1 and the continuous MDP shown in Figure 2 have “in-
accessible” regions of the state space, which can be exploited in focusing the function approximator
to accessible regions. Parametric approximators, as typically constructed, do not distinguish be-
tween accessible and inaccessible regions. Our approach goes beyond modeling just the reachable
state space, in that it also models the local non-uniformity of a given region. This non-uniform mod-
eling of the state space is facilitated by constructing a graph operator which models the local density
across regions. By constructing basis functions adapted to the non-uniform density and geometry of
the state space, our approach extracts significant topological information from trajectories. These
ideas are formalized in Section 3.

The additional power obtained from knowledge of the underlying state space graph or mani-
fold comes at a potentially significant cost: the manifold representation needs to be learned, and
furthermore, basis functions need to be computed from it. Although our paper demonstrates that
eigenvector-type basis functions resulting from a diffusion analysis of graph-based manifolds can
solve standard benchmark discrete and continuous MDPs, the problem of efficiently learning mani-
fold representations of arbitrary MDPs is beyond the scope of this introductory paper. We discuss a
number of outstanding research questions in Section 9 that need to be addressed in order to develop
a more complete solution.

One hallmark of Fourier analysis is that the basis functions are localized in frequency, but not
in time (or space). Hence, the eigenfunctions of the graph Laplacian are localized in frequency by
being associated with a specific eigenvalue λ, but their support is in general the whole graph. This

4. The graph Laplacian induces a smoothing prior on the space of functions of a graph that can formally be shown to
define a data-dependent reproducing kernel Hilbert space (Scholkopf and Smola, 2001).
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Figure 1: It is difficult to approximate nonlinear value functions using traditional parametric func-
tion approximators. Left: a “two-room” environment with 100 total states, divided into
57 accessible states (including one doorway state), and 43 inaccessible states represent-
ing exterior and interior walls (which are “one state” thick). Middle: a 2D view of the
optimal value function for the two-room grid MDP, where the agent is (only) rewarded
for reaching the state marked G by +100. Access to each room from the other is only
available through a central door, and this “bottleneck” results in a strongly nonlinear op-
timal value function. Right: a 3D plot of the optimal value function, where the axes are
reversed for clarity.
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Figure 2: Left: Samples from a series of random walks in an inverted pendulum task. Due to
physical constraints, the samples are largely confined to a narrow region. The proto-value
function framework presented in this paper empirically models the underlying manifold
in such continuous control tasks, and derives customized basis functions that exploit the
unique structure of such point-sets in R

n. Right: An approximation of the value function
learned by using PVFs.
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global characteristic raises a natural computational concern: can Laplacian bases be computed and
represented compactly in large discrete and continuous spaces?5 We will address this problem in
particular cases of interest: large factored spaces, such as grids, hypercubes, and tori, lead natu-
rally to product spaces for which the Laplacian bases can be constructed efficiently using tensor
products. For continuous domains, by combining low-rank approximations and the Nyström inter-
polation method, Laplacian bases can be constructed quite efficiently (Drineas and Mahoney, 2005).
Finally, a variety of other techniques can be used to sparsify Laplacian bases, including graph par-
titioning (Karypis and Kumar, 1999), matrix sparsification (Achlioptas et al., 2002), and automatic
Kronecker matrix factorization (Van Loan and Pitsianis, 1993). Other sources of information can
be additionally exploited to facilitate sparse basis construction. For example, work on hierarchical
reinforcement learning surveyed in Barto and Mahadevan (2003) studies special types of MDPs
called semi-Markov decision processes, where actions are temporally extended, and value functions
are decomposed using the hierarchical structure of a task. In Section 9, we discuss how to exploit
such additional knowledge in the construction of basis functions.

This research is related to recent work on manifold and spectral learning (Belkin and Niyogi,
2004; Coifman and Maggioni, 2006; Roweis and Saul, 2000; Tenenbaum et al., 2000). A major
difference is that our focus is on solving Markov decision processes. Value function approximation
in MDPs is related to regression on graphs (Niyogi et al., 2003) in that both concern approximation
of real-valued functions on the vertices of a graph. However, value function approximation is fun-
damentally different since target values are initially unknown and must be determined by solving
the Bellman equation, for example by iteratively finding a fixed point of the Bellman backup opera-
tor. Furthermore, the set of samples of the manifold is not given a priori, but is determined through
active exploration by the agent. Finally, in our work, basis functions can be constructed multiple
times by interleaving policy improvement and representation learning. This is in spirit similar to the
design of kernels adapted to regression or classification tasks (Szlam et al., 2006).

The rest of the paper is organized as follows. Section 2 gives a quick summary of the main
framework called Representation Policy Iteration (RPI) for jointly learning representations and
policies, and illustrates a simplified version of the overall algorithm on the small two-room dis-
crete MDP shown earlier in Figure 1. Section 3 motivates the use of the graph Laplacian from
several different points of view, including as a spectral approximation of transition matrices, as
well as inducing a smoothness regularization prior that respects the topology of the state space
through a data-dependent kernel. Section 4 describes a concrete instance of the RPI framework
using least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003) as the underlying control
learning method, and compares PVFs with two parametric bases—radial basis functions (RBFs)
and polynomials—on small discrete MDPs. Section 5 describes one approach to scaling proto-
value functions to large discrete product space MDPs, using the Kronecker sum matrix factorization
method to decompose the eigenspace of the combinatorial Laplacian. This section also compares
PVFs against RBFs on the Blockers task (Sallans and Hinton, 2004). Section 6 extends PVFs to con-
tinuous MDPs using the Nyström extension for interpolating eigenfunctions from sampled states to
novel states. A detailed evaluation of PVFs in continuous MDPs is given in Section 7, including

5. The global nature of Fourier bases have been exploited in other areas, for example they have led to significantly
improved algorithms for learning boolean functions (Jackson, 1995). Circuit designers have discovered fast algo-
rithms for converting state-based truth-table and decision diagram representations of boolean functions into Fourier
representations using the Hadamard transformation (Thornton et al., 2001). The eigenvectors of the graph Laplacian
on boolean hypercubes form the columns of the Hadamard matrix (Bernasconi, 1998).
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Figure 3: Flowchart of the unified approach to learning representation and behavior.

the inverted pendulum, the mountain car, and the Acrobot tasks (Sutton and Barto, 1998). Sec-
tion 8 contains a brief description of previous work. Section 9 discusses several ongoing extensions
of the proposed framework, including Kronecker product matrix factorization (Johns et al., 2007),
multiscale diffusion wavelet bases (Mahadevan and Maggioni, 2006), and more elaborate diffusion
models using directed graphs where actions are part of the representation (Johns and Mahadevan,
2007; Osentoski and Mahadevan, 2007).

2. Overview of The Framework

This section contains a brief summary of the overall framework, which we call Representation
Policy Iteration (RPI) (Mahadevan, 2005b).6 Figure 3 illustrates the overall framework. There
are three main components: sample collection, basis construction, and policy learning. Sample
collection requires a task specification, which comprises of a domain simulator (or alternatively a
physically embodied agent like a robot), and an initial policy. In the simplest case, the initial policy
can be a random walk, although it can also reflect a more informative hand-coded policy. The second
phase involves constructing the bases from the collected samples using a diffusion model, such as
an undirected (or directed) graph. This process involves finding the eigenvectors of a symmetrized
graph operator such as the graph Laplacian. The final phase involves estimating the “best” policy
representable in the span of the basis functions constructed (we are primarily restricting our attention
to linear architectures, where the value function is a weighted linear combination of the bases). The
entire process can then be iterated.

Figure 4 specifies a more detailed algorithmic view of the overall framework. In the sample
collection phase, an initial random walk (perhaps guided by an informed policy) is carried out to

6. The term “Representation Policy Iteration” is used to succinctly denote a class of algorithms that jointly learn basis
functions and policies. In this paper, we primarily use LSPI as the control learner, but in other work we have used
control learners such as Q(λ) (Osentoski and Mahadevan, 2007).
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obtain samples of the underlying manifold on the state space. The number of samples needed
is an empirical question which will be investigated in further detail in Section 5 and Section 6.
Given this set of samples, in the representation learning phase, an undirected (or directed) graph is
constructed in one of several ways: two states can be connected by a unit cost edge if they represent
temporally successive states; alternatively, a local distance measure such as k-nearest neighbor can
be used to connect states, which is particularly useful in the experiments on continuous domains
reported in Section 7. From the graph, proto-value functions are computed using one of the graph
operators discussed below, for example the combinatorial or normalized Laplacian. The smoothest
eigenvectors of the graph Laplacian (that is, associated with the smallest eigenvalues) are used to
form the suite of proto-value functions. The number of proto-value functions needed is a model
selection question, which will be empirically investigated in the experiments described later. The
encoding φ(s) : S→ R

k of a state is computed as the value of the k proto-value functions on that
state. To compute a state action encoding, a number of alternative strategies can be followed: the
figure shows the most straightforward method of simply replicating the length of the state encoding
by the number of actions and setting all the vector components to 0 except those associated with
the current action. More sophisticated schemes are possible (and necessary for continuous actions),
and will be discussed in Section 9.

At the outset, it is important to point out that the algorithm described in Figure 4 is one of many
possible designs that combine the learning of basis functions and policies. In particular, the RPI
framework is an iterative approach, which interleaves the two phases of generating basis functions
by sampling trajectories from policies, and then subsequently finding improved policies from the
augmented set of basis functions. It may be possible to design alternative frameworks where basis
functions are learned jointly with learning policies, by attempting to optimize some cumulative
measure of optimality. We discuss this issue in more depth in Section 9.

2.1 Sample Run of RPI on the Two-Room Environment

The result of running the algorithm is shown in Figure 5, which was obtained using the following
specific parameter choices.

• The state space of the two room MDP is as shown in Figure 1. There are 100 states totally,
of which 43 states are inaccessible since they represent interior and exterior walls. The re-
maining 57 states are divided into 1 doorway state and 56 interior room states. The agent
is rewarded by +100 for reaching state 89, which is the last accessible state in the bottom
right-hand corner of room 2. In the 3D value function plots shown in Figure 5, the axes are
reversed to make it easier to visualize the value function plot, making state 89 appear in the
top left (diagonally distant) corner.

• 3463 samples were collected using off-policy sampling from a random walk of 50 episodes,
each of length 100 (or terminating early when the goal state was reached).7 Four actions
(compass direction movements) were possible from each state. Action were stochastic. If a
movement was possible, it succeeded with probability 0.9. Otherwise, the agent remained in

7. Since the approximated value function shown in Figure 5 is the result of a specific set of random walk trajectories, the
results can vary over different runs depending on the number of times the only rewarding (goal) state was reached.
Section 4.2 contains more detailed experiments that measures the learned policy over multiple runs.
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RPI (πm,T,N,ε,k,O,µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation
// D: Initial set of samples

Sample Collection Phase

1. Off-policy or on-policy sampling: Collect a data set of samples Dm = {(si,ai,si+1,ri), . . .} by either
randomly choosing actions (off-policy) or using the supplied initial policy (on-policy) for a set of T
trials, each of maximum N steps (terminating earlier if it results in an absorbing goal state), and add
these transitions to the complete data set D .

2. (Optional) Subsampling step: Form a subset of samples Ds ⊆ D by some subsampling method
such as random subsampling or trajectory subsampling. For episodic tasks, optionally prune the
trajectories stored in Ds so that only those that reach the absorbing goal state are retained.

Representation Learning Phase

3. Build a diffusion model from the data in Ds. In the simplest case of discrete MDPs, construct an
undirected weighted graph G from D by connecting state i to state j if the pair (i, j) form temporally
successive states ∈ S. Compute the operator O on graph G, for example the normalized Laplacian
L = D−

1
2 (D−W )D−

1
2 .

4. Compute the k smoothest eigenvectors of O on the graph G. Collect them as columns of the basis
function matrix Φ, a |S|×k matrix. The state action bases φ(s,a) can be generated from rows of this
matrix by duplicating the state bases φ(s) |A| times, and setting all the elements of this vector to 0
except for the ones corresponding to the chosen action.a

Control Learning Phase

5. Using a standard parameter estimation method (e.g., Q-learning or LSPI), find an ε-optimal policy π
that maximizes the action value function Qπ = Φwπ within the linear span of the bases Φ using the
training data in D .

6. Optional: Set the initial policy πm+1 to π and call RPI (πm+1,T,N,ε,k,O,µ,D).

a. In large continuous and discrete MDPs, the basis matrix Φ need not be explicitly formed and the features φ(s,a)
can be computed “on demand” as will be explained later.

Figure 4: This figure shows a generic algorithm for combining the learning of representation (or
basis functions) from spectral analysis of random walks, and estimation of policies within
their linear span. Elaborations of this framework will be studied in subsequent sections.
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the same state. When the agent reaches state 89, it receives a reward of 100, and is randomly
reset to an accessible interior state.

• An undirected graph was constructed from the sample transitions, where the weight matrix W
is simply the adjacency (0,1) matrix. The graph operator used was the normalized Laplacian
L = D−

1
2 LD−

1
2 , where L = D−W is referred to as the combinatorial Laplacian (these graph

operators are described in more detail in Section 3).

• 20 eigenvectors corresponding to the smallest eigenvalues of L (duplicated 4 times, one set
for each action) are chosen as the columns of the state action basis matrix Φ. For example,
the first four eigenvectors are shown in Figure 5. These eigenvectors are orthonormal: they
are normalized to be of length 1 and are mutually perpendicular. Note how the eigenvectors
are sensitive to the geometric structure of the overall environment. For example, the second
eigenvector allows partitioning the two rooms since it is negative for all states in the first room,
and positive for states in the second room. The third eigenvector is non-constant over only
one of the rooms. The connection between the Laplacian and regularities such as symmetries
and bottlenecks is discussed in more detail in Section 3.6.

• The parameter estimation method used was least-squares policy iteration (LSPI), with γ = 0.8.
LSPI is described in more detail in Section 4.1.

• The optimal value function using unit vector bases and the approximation produced by 20
PVFs are compared using the 2D array format in Figure 6.

In the remainder of this paper, we will evaluate this framework in detail, providing some ra-
tionale for why the Laplacian bases are adept at approximating value functions, and demonstrating
how to scale the approach to large discrete MDPs as well as continuous MDPs.

3. Representation Learning by Diffusion Analysis

In this section, we discuss the graph Laplacian, specifically motivating its use as a way to construct
basis functions for MDPs. We begin with a brief introduction to MDPs, and then describe the spec-
tral analysis of a restricted class of MDPs where the transition matrix is diagonalizable. Although
this approach is difficult to implement for general MDPs, it provides some intuition into why eigen-
vectors are a useful way to approximate value functions. We then introduce the graph Laplacian
as a symmetric matrix, which acts as a surrogate for the true transition matrix, but which is easily
diagonalizable. It is possible to model non-symmetric actions and policies using more sophisticated
symmetrization procedures (Chung, 2005), and we postpone discussion of this extension to Sec-
tion 9. There are a number of other perspectives to view the graph Laplacian, namely as generating
a data-dependent reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola, 2001), as well as
a way to generate nonlinear embeddings of graphs. Although a full discussion of these perspectives
is beyond this paper, they are worth noting in order to gain deeper insight into the many remarkable
properties of the Laplacian.

3.1 Brief Overview of MDPs

A discrete Markov decision process (MDP) M = (S,A,Pa
ss′ ,R

a
ss′) is defined by a finite set of discrete

states S, a finite set of actions A, a transition model Pa
ss′ specifying the distribution over future states
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Figure 5: Top: proto-value functions formed from the four “smoothest” eigenvectors of the normal-
ized graph Laplacian in a two-room MDP of 100 states. Bottom left: the optimal value
function for a 2 room MDP, repeated from Figure 1 for comparative purposes. Bottom
right: the approximation produced by the RPI algorithm using 20 proto-value functions,
computed as the eigenvectors of the normalized graph Laplacian on the adjacency graph.
The nonlinearity represented by the walls is clearly captured.
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Two−Room MDP using Unit Vector Bases
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Figure 6: Left: the optimal value function for the two-room MDP using unit vector bases. Right:
approximation with 20 PVFs using the RPI algorithm.

s′ when an action a is performed in state s, and a corresponding reward model Ra
ss′ specifying a

scalar cost or reward (Puterman, 1994). In continuous Markov decision processes, the set of states
⊆ R

d . Abstractly, a value function is a mapping S→ R or equivalently (in discrete MDPs) a vector
∈ R

|S|. Given a policy π : S→ A mapping states to actions, its corresponding value function V π

specifies the expected long-term discounted sum of rewards received by the agent in any given state
s when actions are chosen using the policy. Any optimal policy π∗ defines the same unique optimal
value function V ∗ which satisfies the nonlinear constraints

V
∗
(s) = T ∗(V ∗(s)) = max

a

(

Rsa + γ ∑
s′∈S

Pa
ss′V

∗(s′)

)

,

where Rsa = ∑s′∈s Pa
ss′R

a
ss′ is the expected immediate reward. Value functions are mappings from

the state space to the expected long-term discounted sum of rewards received by following a fixed
(deterministic or stochastic) policy π. Here, T ∗ can be viewed as an operator on value functions, and
V ∗ represents the fixed point of the operator T ∗. The value function V π associated with following a
(deterministic) policy π can be defined as

V
π
(s) = T (V π(s)) = Rsπ(s) + γ ∑

s′∈S

Pπ(s)
ss′ V π(s′).

Once again, T is an operator on value functions, whose fixed point is given by V π. Value
functions in an MDP can be viewed as the result of rewards “ diffusing” through the state space,
governed by the underlying system dynamics. Let Pπ represent an |S| × |S| transition matrix of a
(deterministic) policy π : S→ A mapping each state s ∈ S to a desired action a = π(s). Let Rπ be a
(column) vector of size |S| of rewards. The value function associated with policy π can be defined
using the Neumann series:

V π = (I− γPπ)−1Rπ =
(

I + γPπ + γ2(Pπ)2 + . . .
)

Rπ. (1)
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3.2 Approximation of Value Functions

It is obviously difficult to represent value functions exactly on large discrete state spaces, or in
continuous spaces. Consequently, there has been much study of approximation architectures for
representing value functions (Bertsekas and Tsitsiklis, 1996). Value functions generally exhibit two
key properties: they are typically smooth, and they reflect the underlying state space geometry. A
fundamental contribution of this paper is the use of an approximation architecture that exploits a
new notion of smoothness, not in the traditional sense of Euclidean space, but smoothness on the
state space graph. The notion of smooth functions on graphs can be formalized using the Sobolev
norm (Mahadevan and Maggioni, 2006). In addition, value functions usually reflect the geometry
of the environment (as illustrated in Figure 5). Smoothness derives from the fact that the value at a
given state V π(s) is always a function of values at “neighboring” states. Consequently, it is natural
to construct basis functions for approximating value functions that share these two properties.8

Let us define a set of basis functions FΦ = {φ1, . . . ,φk}, where each basis function represents
a “feature” φi : S→ R. The basis function matrix Φ is an |S| × k matrix, where each column is a
particular basis function evaluated over the state space, and each row is the set of all possible basis
functions evaluated on a particular state. Approximating a value function using the matrix Φ can be
viewed as projecting the value function onto the column space spanned by the basis functions φi,

V π ≈ V̂ π = Φwπ = ∑
i

wπ
i φi .

Mathematically speaking, this problem can be rigorously formulated using the framework of best
approximation in inner product spaces (Deutsch, 2001). In fact, it is easy to show that the space
of value functions represents a Hilbert space, or a complete inner product space (Van Roy, 1998).
For simplicity, we focus on the simpler problem of approximating a fixed policy π, which defines a
Markov chain where ρπ represents its invariant (long-term) distribution. This distribution defines a
Hilbert space, where the inner product is given by

〈V1,V2〉π = ∑
s∈S

V π
1 (s)V π

2 (s)ρπ(s).

The “length” or norm in this inner product space is defined as ‖V‖π =
√

〈V,V 〉π. Value function ap-
proximation can thus be formalized as a problem of best approximation in a Hilbert space (Deutsch,
2001). It is well known that if the basis functions φi are orthonormal (unit-length and mutually
perpendicular), the best approximation of the value function V π can be expressed by its projection
onto the space spanned by the basis functions, or more formally

V π ≈∑
i∈I

〈V π,φi〉π φi,

where I is the set of indices that define the basis set. In finite MDPs, the best approximation can be
characterized using the weighted least-squares projection matrix

Mπ
Φ = Φ(ΦT DρπΦ)−1ΦT Dρπ ,

8. For low values of the discount factor γ, it is possible to construct highly non-smooth value functions, which decay
rapidly and are not influenced by nonlinearities in state space geometry. In many problems of interest, however, the
discount factor γ needs to be set close to 1 to learn a desirable policy.
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where Dρπ is a diagonal matrix whose entries represent the distribution ρπ. We know the Bellman
“backup” operator T defined above has a fixed point V π = T (V π). Many standard parameter estima-
tion methods, including LSPI (Lagoudakis and Parr, 2003) and LSTD (Bradtke and Barto, 1996),
can be viewed as finding an approximate fixed point of the operator T

V̂ π = Φwπ = Mπ
φ (T (Φwπ)) .

It can be shown that the operator T is a contraction mapping, where

‖TV1−TV2‖π ≤ γ‖V1−V2‖π .

A natural question that arises is whether we can quantify the error in value function approximation
under a set of basis functions Fφ. Exploiting the contraction property of the operator T under the
norm defined by the weighted inner product, it can be shown that the “distance” between the true
value function V π and the fixed point V̂ π can be bounded in terms of the distance between V π and
its projection onto the space spanned by the basis functions (Van Roy, 1998):

‖V π−V̂ π‖π ≤
1

1−κ2 ‖V
π−Mπ

φV π‖π ,

where κ is the contraction rate defined by Bellman operator T in conjunction with the weighted
least-squares projection.

The problem of value function approximation in control learning is significantly more difficult,
in that it involves finding an approximate fixed point of the initially unknown operator T ∗. One stan-
dard algorithm for control learning is approximate policy iteration (Bertsekas and Tsitsiklis, 1996),
which interleaves an approximate policy evaluation step of finding an approximation of the value
function V̂ πk associated with a given policy πk at stage k, with a policy improvement step of finding
the greedy policy associated with V̂ πk . Here, there are two sources of error introduced by approx-
imating the exact value function, and approximating the policy. We will describe a specific type
of approximate policy iteration method—the LSPI algorithm (Lagoudakis and Parr, 2003)—in Sec-
tion 4, which uses a least-squares approach to approximate the action-value function. An additional
problem in control learning is that the standard theoretical results for approximate policy iteration
are often expressed in terms of the maximum (normed) error, whereas approximation methods are
most naturally formulated as projections in a least-squared normed space. There continues to be
work on developing more useful weighted least-square bounds, although these currently assume the
policy is exactly representable (Munos, 2003, 2005). Also, it is possible to design approximation
methods that directly carry out max-norm projections using linear programming, although this work
usually assumes the transition dynamics is known (Guestrin et al., 2001),

Our approach to the problem of control learning involves finding a suitable set of basis func-
tions by diagonalizing a learned diffusion model from sample trajectories, and to use projections
in the Hilbert space defined by the diffusion model for policy evaluation and improvement. We
first introduce the Fourier approach of finding basis functions by diagonalization, and then describe
how diffusion models are used as a substitute for transition models. In Section 9, we will return
to discuss other approaches (Petrik, 2007; Parr et al., 2007), where the Bellman operator T is used
more directly in finding basis functions.
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3.3 Spectral Analysis of Transition Matrices

In this paper, the orthogonal basis functions are constructed in the Fourier tradition by diagonalizing
an operator (or matrix) and finding its eigenvectors. We motivate this approach by first assuming that
the eigenvectors are constructed directly from a (known) state transition matrix Pπ and show that if
the reward function Rπ is known, the eigenvectors can be selected nonlinearly based on expanding
the value function V π on the eigenvectors of the transition matrix. Petrik (2007) develops this
line of reasoning, assuming that Pπ and Rπ are both known, and that Pπ is diagonalizable. We
describe this perspective in more detail below as it provides a useful motivation for why we use
diagonalizable diffusion matrices instead. One subclass of diagonalizable transition matrices are
those corresponding to reversible Markov chains (which will turn out to be useful below). Although
transition matrices for general MDPs are not reversible, and their spectral analysis is more delicate,
it will still be a useful starting point to understand diffusion matrices such as the graph Laplacian.9

If the transition matrix Pπ is diagonalizable, there is a complete set of eigenvectors Φπ = (φπ
1, . . .φ

π
n)

that provides a change of basis in which the transition matrix Pπ is representable as a diagonal
matrix. For the sub-class of diagonalizable transition matrices represented by reversible Markov
chains, the transition matrix is not only diagonalizable, but there is also an orthonormal basis. In
other words, using a standard result from linear algebra, we have

Pπ = ΦπΛπ(Φπ)T ,

where Λπ is a diagonal matrix of eigenvalues. Another way to express the above property is to write
the transition matrix as a sum of projection matrices associated with each eigenvalue:

Pπ =
n

∑
i=1

λπ
i φπ

i (φ
π
i )

T ,

where the eigenvectors φπ
i form a complete orthogonal basis (i.e., ‖ φπ

i ‖2= 1 and 〈φπ
i ,φπ

j 〉= 0, i 6= j).
It readily follows that powers of Pπ have the same eigenvectors, but the eigenvalues are raised to the
corresponding power (i.e., (Pπ)kφπ

i = (λπ
i )

kφπ
i ). Since the basis matrix Φ spans all vectors on the

state space S, we can express the reward vector Rπ in terms of this basis as

Rπ = Φπαπ, (2)

where απ is a vector of scalar weights. For high powers of the transition matrix, the projection ma-
trices corresponding to the largest eigenvalues will dominate the expansion. Combining Equation 2

9. In Section 9, we discuss extensions to more general non-reversible MDPs.
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with the Neumann expansion in Equation 1, we get

V π =
∞

∑
i=0

(γPπ)iΦπαπ

=
∞

∑
i=0

n

∑
k=1

γi(Pπ)iφπ
k απ

k

=
n

∑
k=1

∞

∑
i=0

γi(λπ
k )

iφπ
k απ

k

=
n

∑
k=1

1
1− γλπ

k
φπ

k απ
k

=
n

∑
k=1

βkφπ
k ,

where we used the property that (Pπ)iφπ
j = (λπ

j )
iφπ

j . Essentially, the value function V π is represented
as a linear combination of eigenvectors of the transition matrix. In order to provide the most effi-
cient approximation, we can truncate the summation by choosing some small number m < n of the
eigenvectors, preferably those for whom βk is large. Of course, since the reward function is not
known, it might be difficult to pick a priori those eigenvectors that result in the largest coefficients.
A simpler strategy instead is to focus on those eigenvectors for whom the coefficients 1

1−γλπ
k

are the
largest. In other words, we should pick the eigenvectors corresponding to the largest eigenvalues of
the transition matrix Pπ (since the spectral radius is 1, the eigenvalues closest to 1 will dominate the
smaller ones):

V π ≈
m

∑
k=1

1
1− γλπ

k
φπ

k απ
k , (3)

where we assume the eigenvalues are ordered in non-increasing order, so λπ
1 is the largest eigenvalue.

If the transition matrix Pπ and reward function Rπ are both known, one can of course construct basis
functions by diagonalizing Pπ and choosing eigenvectors “out-of-order” (that is, pick eigenvectors
with the largest βk coefficients above). Petrik (2007) shows a (somewhat pathological) example
where a linear spectral approach specified by Equation 3 does poorly when the reward vector is
chosen such that it is orthogonal to the first k basis functions. It is an empirical question whether
such pathological reward functions exhibit themselves in more natural situations. The repertoire of
discrete and continuous MDPs we study seem highly amenable to the linear spectral decomposition
approach. However, we discuss various approaches for augmenting PVFs with reward-sensitive
bases in Section 9.

The spectral approach of diagonalizing the transition matrix is problematic for several reasons.
One, the transition matrix Pπ cannot be assumed to be symmetric, in which case one has to deal
with complex eigenvalues (and eigenvectors). Second, we cannot assume that the transition matrix
is known. Of course, one can always use samples of the underlying MDP generated by exploration
to estimate the transition matrix, but the number of samples needed may be large. Finally, in con-
trol learning, the policy keeps changing, causing one to have to reestimate the transition matrix.
What one would ideally like to have is a surrogate model that is easier to estimate than a full transi-
tion matrix, is always diagonalizable, and results in smooth basis functions that capture large scale
geometry. Diffusion models serve to fulfill this role, as discuss next.
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
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



Figure 7: Top: A simple diffusion model given by an undirected unweighted graph connecting
each state to neighbors that are reachable using a single (reversible) action. Bottom:
first three rows of the random walk matrix Pr = D−1W . Pr is not symmetric, but it has
real eigenvalues and eigenvectors since it is spectrally related to the normalized graph
Laplacian.

3.4 From Transition Matrices to Diffusion Models

We now develop a line of analysis where a graph is induced from the state space of an MDP, by
sampling from a policy such as a random walk. Let us define a weighted graph G = (V,E,W ), where
V is a finite set of vertices, and W is a weighted adjacency matrix with W (i, j) > 0 if (i, j)∈E, that is
it is possible to reach state i from j (or vice-versa) in a single step. A simple example of a diffusion
model on G is the random walk matrix Pr = D−1W . Figure 7 illustrates a random walk diffusion
model. Note the random walk matrix Pr = D−1W is not symmetric. However, it can be easily shown
that Pr defines a reversible Markov chain, which induces a Hilbert space with respect to the inner
product defined by the invariant distribution ρ:

〈 f ,g〉ρ = ∑
v∈V

f (i)g(i)ρ(i).

In addition, the matrix Pr can be shown to be self-adjoint (symmetric) with respect to the above
inner product, that is

〈Pr f ,g〉ρ = 〈 f ,Prg〉ρ.

Consequently, the matrix Pr can be shown to have real eigenvalues and orthonormal eigenvectors,
with respect to the above inner product.

The random walk matrix Pr = D−1W is called a diffusion model because given any function f on
the underlying graph G, the powers of Pt

r f determine how quickly the random walk will “mix” and
converge to the long term distribution (Chung, 1997). It can be shown that the stationary distribution
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of a random walk on an undirected graph is given by ρ(v) = dv
vol(G) , where dv is the degree of vertex

v and the “volume” vol(G) = ∑v∈G dv. Even though the random walk matrix Pr can be diagonalized,
for computational reasons, it turns out to be highly beneficial to find a symmetric matrix with a
closely related spectral structure. This is essentially the graph Laplacian matrix, which we now
describe in more detail.

3.5 The Graph Laplacian

For simplicity, assume the underlying state space is represented as an undirected graph G = (V,E,W ),
where V is the set of vertices, E is the set of edges where (u,v)∈ E denotes an undirected edge from
vertex u to vertex v. The more general case of directed graphs is discussed in Section 9.3. The com-
binatorial Laplacian L is defined as the operator L = D−W , where D is a diagonal matrix called
the valency matrix whose entries are row sums of the weight matrix W . The first three rows of the
combinatorial Laplacian matrix for the grid world MDP in Figure 7 is illustrated below, where we
assume a unit weight on each edge:

L =









2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 3 −1 −1 0 0

. . .









.

Comparing the above matrix with the random walk matrix in Figure 7, it may seem like the
two matrices have little in common. Surprisingly, we will show that there is indeed an intimate
connection between the random walk matrix and the Laplacian. The Laplacian has many attractive
spectral properties. It is both symmetric as well as positive semi-definite, and hence its eigenvalues
are not only all real, but also non-negative. It is useful to view the Laplacian as an operator on the
space of functions F : V → R on a graph. In particular, it can be easily shown that

L f (i) = ∑
j∼i

( f (i)− f ( j)),

that is the Laplacian acts as a difference operator. On a two-dimensional grid, the Laplacian can be
shown to essentially be a discretization of the continuous Laplace operator

∂2 f
∂x2 +

∂2 f
∂y2 ,

where the partial derivatives are replaced by finite differences.
Another fundamental property of the graph Laplacian is that projections of functions on the

eigenspace of the Laplacian produce the smoothest global approximation respecting the underlying
graph topology. More precisely, let us define the inner product of two functions f and g on a graph
as 〈 f ,g〉= ∑u f (u)g(u).10 Then, it is easy to show that

〈 f ,L f 〉= ∑
u∼v

wuv( f (u)− f (v))2,

10. For simplicity, here we consider the unweighted inner product ignoring the invariant distribution ρ induced by a
random walk.
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where this so-called Dirichlet sum is over the (undirected) edges u ∼ v of the graph G, and wuv

denotes the weight on the edge. Note that each edge is counted only once in the sum. From the
standpoint of regularization, this property is crucial since it implies that rather than smoothing using
properties of the ambient Euclidean space, smoothing takes the underlying manifold (graph) into
account.

To make the connection between the random walk operator Pr introduced in the previous section,
and the Laplacian, we need to introduce the normalized Laplacian (Chung, 1997), which is defined
as

L = D−
1
2 LD−

1
2 .

To see the connection between the normalized Laplacian and the random walk matrix Pr =
D−1W , note the following identities:

L = D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 ,

I−L = D−
1
2 WD−

1
2 ,

D−
1
2 (I−L)D

1
2 = D−1W.

Hence, the random walk operator D−1W is similar to I−L , so both have the same eigenvalues,
and the eigenvectors of the random walk operator are the eigenvectors of I−L point-wise multiplied
by D−

1
2 . We can now provide a rationale for choosing the eigenvectors of the Laplacian as basis

functions. In particular, if λi is an eigenvalue of the random walk transition matrix Pr, then 1−λi is
the corresponding eigenvalue of L . Consequently, in the expansion given by Equation 3, we would
select the eigenvectors of the normalized graph Laplacian corresponding to the smallest eigenvalues.

The normalized Laplacian L also acts as a difference operator on a function f on a graph, that
is

L f (u) =
1√
du

∑
v∼u

(

f (u)√
du
− f (v)√

dv

)

wuv.

The difference between the combinatorial and normalized Laplacian is that the latter models the
degree of a vertex as a local measure. In Section 7, we provide an experimental evaluation of the
different graph operators for solving continuous MDPs.

Building on the Dirichlet sum above, a standard variational characterization of eigenvalues and
eigenvectors views them as the solution to a sequence of minimization problems. In particular,
the set of eigenvalues can be defined as the solution to a series of minimization problems using
the Rayleigh quotient (Chung, 1997). This provides a variational characterization of eigenvalues
using projections of an arbitrary function g : V → R onto the subspace Lg. The quotient gives the
eigenvalues and the functions satisfying orthonormality are the eigenfunctions:

〈g,Lg〉
〈g,g〉 =

〈g,D−
1
2 LD−

1
2 g〉

〈g,g〉 =
∑u∼v( f (u)− f (v))2wuv

∑u f 2(u)du
,

where f ≡D−
1
2 g. The first eigenvalue is λ0 = 0, and is associated with the constant function f (u) =

1, which means the first eigenfunction go(u) =
√

D 1 (for an example of this eigenfunction, see top
left plot in Figure 5). The first eigenfunction (associated with eigenvalue 0) of the combinatorial
Laplacian is the constant function 1. The second eigenfunction is the infimum over all functions
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g : V → R that are perpendicular to go(u), which gives us a formula to compute the first non-zero
eigenvalue λ1, namely

λ1 = inf
f⊥
√

D1

∑u∼v( f (u)− f (v))2wuv

∑u f 2(u)du
.

The Rayleigh quotient for higher-order basis functions is similar: each function is perpendicular
to the subspace spanned by previous functions (see top four plots in Figure 5). In other words, the
eigenvectors of the graph Laplacian provide a systematic organization of the space of functions on
a graph that respects its topology.

3.6 Proto-Value Functions and Large-Scale Geometry

We now formalize the intuitive notion of why PVFs capture the large-scale geometry of a task
environment, such as its symmetries and bottlenecks. A full discussion of this topic is beyond the
scope of this paper, and we restrict our discussion here to one interesting property connected to
the automorphisms of a graph. Given a graph G = (V,E,W ), an automorphism π of a graph is a
bijection π : V →V that leaves the weight matrix invariant. In other words, w(u,v) = w(π(u),π(v)).
An automorphism π can be also represented in matrix form by a permutation matrix Γ that commutes
with the weight matrix:

ΓW = WΓ.

An immediate consequence of this property is that automorphisms leave the valency, or degree
of a vertex, invariant, and consequently, the Laplacian is invariant under an automorphism. The set
of all automorphisms forms a non-Abelian group, in that the group operation is non-commutative.
Let x be an eigenvector of the combinatorial graph Laplacian L. Then, it is easy to show that Γx
must be an eigenvector as well for any automorphism Γ. This result follows because

LΓx = ΓLx = Γλx = λΓx.

A detailed graph-theoretic treatment of the connection between symmetries of a graph and its
spectral properties are provided in books on algebraic and spectral graph theory (Chung, 1997;
Cvetkovic et al., 1980, 1997). For example, it can be shown that if the permuted eigenvector Γx
is independent of the original eigenvector x, then the corresponding eigenvalue λ has geometric
multiplicity m > 1. More generally, it is possible to exploit the theory of linear representations of
groups to construct compact basis functions on symmetric graphs, which have found applications
in the study of complex molecules such as “buckyballs” (Chung and Sternberg, 1992). It is worth
pointing out that these ideas extend to continuous manifolds as well. The use of the Laplacian in
constructing representations that are invariant to group operations such as translation is a hallmark
of work in harmonic analysis (Gurarie, 1992).

Furthermore, considerable work in spectral graph theory as well as its applications in AI uses
the properties of the Fiedler eigenvector (the eigenvector associated with the smallest non-zero
eigenvalue), such as its sensitivity to bottlenecks, in order to find clusters in data or segment images
(Shi and Malik, 2000; Ng et al., 2002). To formally explain this, we briefly review spectral geometry.
The Cheeger constant hG of a graph G is defined as
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hG(S) = min
S

|E(S, S̃)|
min(vol S,vol S̃)

.

Here, S is a subset of vertices, S̃ is the complement of S, and E(S, S̃) denotes the set of all edges
(u,v) such that u ∈ S and v ∈ S̃. The volume of a subset S is defined as vol S = ∑x∈S dX . Consider
the problem of finding a subset S of states such that the edge boundary ∂S contains as few edges as
possible, where

∂S = {(u,v) ∈ E(G) : u ∈ S and v /∈ S}.
The relation between ∂S and the Cheeger constant is given by

|∂S| ≥ hG vol S.

In the two-room grid world task illustrated in Figure 1, the Cheeger constant is minimized by set-
ting S to be the states in the first room, since this will minimize the numerator E(S, S̃) and maximize
the denominator min(vol S,vol S̃). A remarkable inequality connects the Cheeger constant with the
spectrum of the graph Laplacian operator. This theorem underlies the reason why the eigenfunctions
associated with the second eigenvalue λ1 of the graph Laplacian captures the geometric structure of
environments, as illustrated in Figure 5.

Theorem 1 (Chung, 1997): Define λ1 to be the first (non-zero) eigenvalue of the normalized graph
Laplacian operator L on a graph G. Let hG denote the Cheeger constant of G. Then, we have

2hG ≥ λ1 >
h2

G
2 .

In the context of MDPs, our work explores the construction of representations that similarly
exploit large-scale geometric features, such as symmetries and bottlenecks. In other words, we are
evaluating the hypothesis that such representations are useful in solving MDPs, given that topology-
sensitive representations have proven to be useful across a wide variety of problems both in machine
learning specifically as well as in science and engineering more generally.

4. Representation Policy Iteration

In this section, we begin the detailed algorithmic analysis of the application of proto-value functions
to solve Markov decision processes. We will describe a specific instantiation of the RPI framework
described previously, which comprises of an outer loop for learning basis functions and an inner
loop for estimating the optimal policy representable within the given set of basis functions. In
particular, we will use least-square policy iteration (LSPI) as the parameter estimation method. We
will analyze three variants of RPI, beginning with the most basic version in this section, and then
describing two extensions of RPI to continuous and factored state spaces in Section 5 and Section 6.

4.1 Least-Squares Approximation of Action Value Functions

The basics of Markov decision processes as well as value function approximation was briefly re-
viewed in Section 3. Here, we focus on action-value function approximation, and in particular,
describe the LSPI method (Lagoudakis and Parr, 2003). In action-value learning, the goal is to
approximate the true action-value function Qπ(s,a) for a policy π using a set of basis functions

2189



MAHADEVAN AND MAGGIONI

φ(s,a) that can be viewed as doing dimensionality reduction on the space of functions. The true
action value function Qπ(s,a) is a vector in a high dimensional space R

|S|×|A|, and using the basis
functions amounts to reducing the dimension to R

k where k� |S|× |A|. The approximated action
value is thus

Q̂π(s,a;w) =
k

∑
j=1

φ j(s,a)w j,

where the w j are weights or parameters that can be determined using a least-squares method. Let Qπ

be a real (column) vector ∈ R
|S|×|A|. φ(s,a) is a real vector of size k where each entry corresponds

to the basis function φ j(s,a) evaluated at the state action pair (s,a). The approximate action-value
function can be written as Q̂π = Φwπ, where wπ is a real column vector of length k and Φ is a
real matrix with |S| × |A| rows and k columns. Each row of Φ specifies all the basis functions
for a particular state action pair (s,a), and each column represents the value of a particular basis
function over all state action pairs. The least-squares fixed-point approximation tries to find a set
of weights wπ under which the projection of the backed up approximated Q-function TπQ̂π onto the
space spanned by the columns of Φ is a fixed point, namely

Q̂π = Φ(ΦT Φ)−1ΦT (TπQ̂π),

where Tπ is the Bellman backup operator. It can be shown (Lagoudakis and Parr, 2003) that the
resulting solution can be written in a weighted least-squares form as Awπ = b, where the A matrix is
given by

A =
(

ΦT Dπ
ρ(Φ− γPπΦ)

)

,

and the b column vector is given by

b = ΦT Dπ
ρR,

where Dπ
ρ is a diagonal matrix whose entries reflect varying “costs” for making approximation errors

on (s,a) pairs as a result of the nonuniform distribution ρπ(s,a) of visitation frequencies. A and b
can be estimated from a database of transitions collected from some source, for example, a random
walk. The A matrix and b vector can be estimated as the sum of many rank-one matrix summations
from a database of stored samples.

Ãt+1 = Ãt +φ(st ,at)
(

φ(st ,at)− γφ(s′t ,π(s′t))
)T

,

b̃t+1 = b̃t +φ(st ,at)rt ,

where (st ,at ,rt ,s′t) is the tth sample of experience from a trajectory generated by the agent (using
some random or guided policy). Once the matrix A and vector b have been constructed, the system
of equations Awπ = b can be solved for the weight vector wπ either by taking the inverse of A (if it
is of full rank) or by taking its pseudo-inverse (if A is rank-deficient). This defines a specific policy
since Q̂π = Φwπ. The process is then repeated, until convergence (which can be defined as when the
L

2- normed difference between two successive weight vectors falls below a predefined threshold
ε). Note that in succeeding iterations, the A matrix will be different since the policy π has changed.
Figure 8 describes a specific instantiation of RPI, using LSPI as the control learning method.
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RPI (πm,T,N,ε,k,O,µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. See Figure 4 on page 2177.

Control Learning Phase (LSPI)

3. Initialize w0 ∈ R
k to a random vector.

4. Repeat the following steps:

(a) Set i← i + 1. Using the stored transitions (st ,at ,s′t ,a
′
t ,rt) ∈ D , compute the matrix A and

vector b as follows:

Ãt+1 = Ãt +φ(st ,at)
(

φ(st ,at)− γφ(s′t ,π(st))
)T

.

b̃t+1 = b̃t +φ(st ,at)rt .

(b) Solve the linear system of equations Ãwi = b̃ using any standard method.a

(c) Optional basis adaptation step: Prune the basis matrix Φ by discarding basis functions
(columns) whose coefficients are smaller than µ.

(d) until ‖wi−wi+1‖2 ≤ ε.

5. Set πm+1(s) = argmaxa∈AQ̂i(s,a) where Q̂i = Φwi is the ε-optimal approximation to the optimal
value function within the linear span of basis functions Φ.

6. Optional: Repeat the above procedure by calling RPI (πm+1,T,N,ε,k,O,µ,D).

a. If A is of full rank, it can be inverted, otherwise if it is rank-deficient, the pseudo-inverse of A can be used. It is possi-
ble to avoid matrix inversion entirely by using the incremental Sherman-Woodbury-Morrison method (Lagoudakis
and Parr, 2003).

Figure 8: Pseudo-code of the representation policy iteration (RPI) using the least-squares policy
iteration (LSPI) fix-point method as the control learning component.
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4.2 Evaluating RPI on Simple Discrete MDPs

In this section, we evaluate the effectiveness of PVFs using small discrete MDPs such as the two-
room discrete MDP used above, before proceeding to investigate how to scale the framework to
larger discrete and continuous MDPs.11 PVFs are evaluated along a number of dimensions, includ-
ing the number of bases used, and its relative performance compared to parametric bases such as
polynomials and radial basis functions. In subsequent sections, we will probe the scalability of
PVFs on larger more challenging MDPs.

Two-room MDP: The two-room discrete MDP used here is a 100 state MDP, where the agent is
rewarded for reaching the top left-hand corner state in Room 2. As before, 57 states are reachable,
and the remaining states are exterior or interior wall states. The state space of this MDP was shown
earlier in Figure 1. Room 1 and Room 2 are both rectangular grids connected by a single door.
There are four (compass direction) actions, each succeeding with probability 0.9, otherwise leaving
the agent in the same state. The agent is rewarded by 100 for reaching the goal state (state 89), upon
which the agent is randomly reset back to some starting (accessible) state.

Number of Basis Functions: Figure 9 evaluates the learned policy by measuring the number of
steps to reach the goal, as a function of the number of training episodes, and as the number of basis
functions is varied (ranging from 10 to 35 for each of the four actions). The results are averaged
over 10 independent runs, where each run consisted of a set of training episodes of a maximum
length of 100 steps, where each episode was terminated if the agent reached the absorbing goal
state. Around 20 basis functions (per action) were sufficient to get close to optimal behavior, and
increasing the number of bases to 35 produced a marginal improvement. The variance across runs
is fairly small for 20 and 35 bases, but relatively large for smaller numbers of bases (not shown for
clarity). Figure 9 also compares the performance of PVFs with unit vector bases (table lookup),
showing that PVFs with 25 bases closely tracks the performance of unit vector bases on this task.
Note that we are measuring performance in terms of the number of steps to reach the goal, averaged
over a set of 10 runs. Other metrics could be plotted as well, such as the total discounted reward
received, which may be more natural. However, our point is simply to show that there are significant
differences in the quality of the policy learned by PVFs with that learned by the other parametric
approximators, and these differences are of such an order that they will clearly manifest themselves
regardless of the metric used.

Comparison with Parametric Bases: One important consideration in evaluating PVFs is how
they compare with standard parametric bases, such as radial basis functions and polynomials. As
Figure 1 suggests, parametric bases as conventionally formulated may have difficulty representing
highly nonlinear value functions in MDPs such as the two room task. Here, we test whether this
poor performance can be ameliorated by varying the number of basis functions used. Figure 9
evaluates the effectiveness of polynomial bases and radial basis functions in the two room MDP. In
polynomial bases, a state i is mapped to the vector φ(i) = (1, i, i2, . . . ik−1) for k basis functions—this
architecture was studied by (Koller and Parr, 2000; Lagoudakis and Parr, 2003).12 In RBFs, a state i

11. In Section 9, we describe more sophisticated diffusion models for grid-world tasks in the richer setting of semi-
Markov decision processes (SMDPs), using directed state-action graphs with temporally extended actions, such as
“exiting a room”, modeled with distal edges (Osentoski and Mahadevan, 2007).

12. The performance of polynomial bases gets worse for higher degrees, partly due to the numerical instability caused
by taking large powers of state indices.
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Figure 9: This experiment contrasts the performance of Laplacian PVFs (top left) with unit vector
bases (top right), handcoded polynomial basis functions (bottom left) and radial basis
functions (bottom right) on a 100 state two-room discrete MDP. Results are averaged
over 10 runs. The performance of PVFs (with 25 bases) closely matches that of unit
vector bases, and is considerably better than both polynomials and RBFs on this task.

is mapped to φ j(i) = exp−
(i− j)2

2σ2 , where j is the center of the RBF basis function. In the experiments
shown, the basis centers were placed equidistantly from each other along the 100 states. The results
show that both parametric bases under these conditions performed worse than PVFs in this task. 13

Additional Results: Figure 10 shows an experiment on a larger 15× 15 two-room MDP, with
the same dynamics and goal structure as the smaller 10× 10 two-room MDP. In this environment,
there were a total of 225 states, with 157 of these being accessible interior states, and the remaining
68 representing “wall” states. Results are shown only for PVFs in this domain. The plotted result
is averaged over 10 independent learning runs. As the number of PVFs is increased, the variance
reduces and the performance significantly improves.

Figure 11 shows an additional experiment on a four-room MDP, where the agent is tasked to
reach the state marked G. Results are shown only for PVFs in this domain. The plotted result is

13. Our results do not contradict any theoretical findings regarding the generality of RBFs or systems of orthogonal
polynomials, since such results generally pertain to their asymptotic performance. Our evaluation of polynomials
and RBFs gauges their performance on particular parameter settings.
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Figure 10: This figure shows results on a larger 15× 15 two-room grid world MDP of 225 total
states. The dynamics are identical to the two-room MDP. The results shown are using
25−75 PVFs.

averaged over 10 independent learning runs. Here, the agent was trained on sample random walk
trajectories that terminated in goal state G.
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Figure 11: This figure shows results on a four-room grid world MDP of 100 total states. The dy-
namics are identical to the two-room MDP. The results shown are using 25 PVFs.

5. Scaling Proto-Value Functions: Product Spaces

Thus far, we have restricted our discussion of proto-value functions to small discrete MDPs. In this
and the next section, we explore the issue of scaling the Laplacian framework to larger discrete and
continuous domains. Computing and storing proto-value functions in large continuous or discrete
domains can be intractable: spectral analysis of the state space graph or diagonalization of the
policy transition matrix can be an infeasible eigenvector computation in large domains, even if the
matrices are inherently sparse. To address this scaling issue, we explore a number of approaches,
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from exploiting the large-scale regular structure of product spaces described in this section, to the
use of sparsification through sampling for continuous states described in the next section.

In this section, we describe a general framework for scaling proto-value functions to large fac-
tored discrete spaces using properties of product spaces, such as grids, cylinders, and tori. A crucial
property of the graph Laplacian is that its embeddings are highly regular for structured graphs (see
Figure 13). We will explain the reason for this property below, and how to exploit it to construct
compact encodings of Laplacian bases. We should also distinguish the approach described in this
section, which relies on an exact Kronecker decomposition of the Laplacian eigenspace in product
spaces, with the approximate Kronecker decomposition for arbitrary MDPs described in Section 9.
The approach described here is applicable only to MDPs where the state space can be represented
as the Kronecker sum of simpler state spaces (this notion will be defined more precisely below, but
it covers many standard MDPs like grids). More generally, the weight matrices for arbitrary MDPs
can also be factorized, although using the Kronecker product, where, however, the factorization is
an approximation (Van Loan and Pitsianis, 1993).

5.1 Product Spaces: Complex Graphs from Simple Ones

Building on the theory of graph spectra (Cvetkovic et al., 1980), we now describe a hierarchical
framework for efficiently computing and compactly storing proto-value functions. Many RL do-
mains lead to factored representations where the state space is generated as the Cartesian product of
the values of state variables (Boutilier et al., 1999). Consider a hypercube Markov decision process
with d dimensions, where each dimension can take on k values. The size of the resulting state space
is O(kd), and the size of each proto-value function is O(kd). Using the hierarchical framework pre-
sented below, the hypercube can be viewed as the Kronecker sum of d path or chain graphs, each of
whose transition matrix is of size (in the worst case) O(k2). Now, each factored proto-value function
can be stored in space O(dk2), and the cost of spectral analysis greatly reduces as well. Even greater
savings can be accrued since usually only a small number of basis functions are needed relative to
the size of a state space. We present detailed experimental results on a large factored multiagent
domain of > 106 states, where proto-value functions are constructed from diagonalizing Laplacian
matrices of size only 100× 100, a huge computational savings! Figure 12 illustrates the idea of
scaling proto-value functions to large product spaces.14

Following Cvetkovic et al. (1980), various compositional schemes can be defined for construct-
ing complex graphs from simpler graphs. We focus on compositions that involve the Kronecker
(or the tensor) sum of graphs. Let G1, . . . ,Gn be n undirected graphs whose corresponding vertex
and edge sets are specified as Gi = (Vi,Ei). The Kronecker sum graph G = G1⊕ . . .⊕Gn has the
vertex set V = V1× . . .Vn, and edge set E(u,v) = 1, where u = (u1, . . . ,un) and v = (v1, . . . ,vn), if
and only if uk is adjacent to vk for some uk,vk ∈Vk and all ui = vi, i 6= k. For example, the grid graph
illustrated in Figure 12 is the Kronecker sum of two path graphs; the hypercube is the Kronecker
sum of three or more path graphs.

The Kronecker sum graph can also be defined using operations on the component adjacency
matrices. If A1 is a (p,q) matrix and A2 is a (r,s) matrix, the Kronecker product matrix 15 A = A1⊗
A2 is a (pr,qs) matrix, where A(i, j) = A1(i, j)∗A2. In other words, each entry of A1 is replaced by

14. Even greater reduction in the size of PVFs can be realized by exploiting the group invariance property of Laplacian
operators, as described in Section 3.6. In particular, the graphs shown in Figure 12 have large automorphism groups,
which can be exploited in significantly reducing the size of the corresponding Laplacian eigenspaces.

15. The Kronecker product of two matrices is often also referred to as the tensor product in the literature (Chow, 1997).
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Figure 12: The spectrum and eigenspace of structured state spaces, including grids, hypercubes,
cylinders, and tori, can be efficiently computed from “building block” subgraphs, such
as paths and circles. Applied to MDPs, this hierarchical framework greatly reduces the
computational expense of computing and storing proto-value functions.

the product of that entry with the entire A2 matrix. The Kronecker sum of two graphs G = G1⊕G2

can be defined as the graph whose adjacency matrix is the Kronecker sum A = A1⊗ I2 + A2⊗ I1,
where I1 and I2 are the identity matrices of size equal to number of rows (or columns) of A1 and A2,
respectively. The main result that we will exploit is that the eigenvectors of the Kronecker product
of two matrices can be expressed as the Kronecker products of the eigenvectors of the component
matrices. The following result is well-known in the literature (Graham, 1981).

Theorem 2 Let A and B be full rank square matrices of size r× r and s× s, respectively, whose
eigenvectors and eigenvalues can be written as

Aui = λiui, 1≤ i≤ r Bv j = µ jv j, 1≤ j ≤ s.

Then, the eigenvalues and eigenvectors of the Kronecker product A⊗ B and Kronecker sum
A⊕B are given as

(A⊗B)(ui⊗ v j) = λiµ j(ui⊗ v j)

(A⊕B)(ui⊗ v j) = (A⊗ Is + Ir⊗B)(ui⊗ v j) = (λi +µ j)(ui⊗ v j).

The proof of this theorem relies on the following identity regarding Kronecker products of ma-
trices: (A⊗B)(C⊗D) = (AC)⊗ (BD) for any set of matrices where the products AC and BD are
well defined. We denote the set of eigenvectors of an operator T by the notation X(T ) and its spec-
trum by Σ(T ). A standard result that follows from the above theorem shows that the combinatorial
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graph Laplacian of a Kronecker sum of two graphs can be computed from the Laplacian of each
subgraph.16

Theorem 3 If L1 = L(G1) and L2 = L(G2) are the combinatorial Laplacians of graphs G1 =
(V1,E1,W1) and G2 = (V2,E2,W2), then the spectral structure of the combinatorial Laplacian L(G)
of the Kronecker sum of these graphs G = G1⊕G2 can be computed as

(Σ(L),X(L)) = {λi +κ j, li⊗ k j}, 1≤ i≤ |V1|,1≤ j ≤ |V2|,

where λi is the ith eigenvalue of L1 with associated eigenvector li and κ j is the jth eigenvalue of L2

with associated eigenvector k j.

The proof is omitted, but fairly straightforward by exploiting the property that the Laplace op-
erator acts on a function by summing the difference of its value at a vertex with those at adjacent
vertices. Figure 13 illustrates this theorem, showing that the eigenvectors of the combinatorial
Laplacian produce a regular embedding of a grid in 2D as well as a cylinder in 3D. These figures
were generated as follows. For the grid shown on the left, the eigenvectors were generated as the
Kronecker product of the eigenvectors of the combinatorial Laplacian for two chains of size 10.
The figure shows the embedding of the grid graph where each state was embedded in R

2 using the
second and third smallest eigenvector. For the cylinder on the right, the eigenvectors were generated
as the Kronecker product of the eigenvectors of the combinatorial Laplacian for a 10 state closed
chain and a 5 state open chain. The embedding of the cylinder shown on the right was produced
using the third and fourth eigenvector of the combinatorial Laplacian.
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Figure 13: Left: this figure shows an embedding in R
2 of a 10×10 grid world environment using

“low-frequency” (smoothest) eigenvectors of the combinatorial Laplacian, specifically
those corresponding to the second and third smallest eigenvalues. Right: the embedding
of a “cylinder” graph using two low-order eigenvectors (3rd and 4th) of the combinatorial
Laplacian. The cylinder graph is the Kronecker sum of a closed and open chain graph.

16. In contrast, the normalized Laplacian is not well-defined under sum, but has a well-defined semantics for the Kro-
necker or direct product of two graphs. The Kronecker product can also be used as a general method to approximate
any matrix by factorizing it into the product of smaller matrices. We discuss the use of this approach to scaling PVFs
in Section 9.
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For the combinatorial Laplacian, the constant vector 1 is an eigenvector with associated eigen-
value λ0 = 0. Since the eigenvalues of the Kronecker sum graph are the sums of the eigenvalues of
the individual graphs, 0 will be an eigenvalue of the Laplacian of the sum graph as well. Further-
more, for each eigenvector vi, the Kronecker product vi⊗ 1 will also be an eigenvector of the sum
graph. One consequence of these properties is that geometry is well preserved, so for example the
combinatorial Laplacian produces well-defined embeddings of structured spaces. Figure 13 shows
the embedding of a cylinder (Kronecker sum of a closed and open chain) under the combinatorial
Laplacian.

5.2 Factored Representation Policy Iteration for Structured Domains

We derive the update rule for a factored form of RPI (and LSPI) for structured domains when the
basis functions can be represented as Kronecker products of elementary basis functions on simpler
state spaces. Basis functions are column eigenvectors of the diagonalized representation of a graph
operator, whereas embeddings φ(s) are row vectors representing the first k basis functions evaluated
on state s. By exploiting the property that (A⊗B)T = AT ⊗BT , it follows that embeddings for
structured domains can be computed as the Kronecker products of embeddings for the constituent
state components. As a concrete example, a grid world domain of size m×n can be represented as
a graph G = Gm⊕Gn where Gm and Gn are path graphs of size m and n, respectively. The basis
functions for the entire grid world can be written as the Kronecker product φ(s) = φm(sr)⊗φn(sc),
where φm(sr) is the basis (eigen)vector derived from a path graph of size m (in particular, the row sr

corresponding to state s in the grid world), and φn(sc) is the basis (eigen)vector derived from a path
graph of size n (in particular, the column sc corresponding to state s in the grid world).

Extending this idea to state action pairs, the basis function φ(s,a) can written as eI(a)⊗ φ(s),
where eI(a) is the unit vector corresponding to the index of action a (e.g., action a1 corresponds
to e1 = [1,0, . . .]T ). Actually, the full Kronecker product is not necessary if only a relatively small
number of basis functions are needed. For example, if 50 basis functions are to be used in a 10×
10× 10 hypercube, the full state embedding is a vector of size 1000, but only the first 50 terms
need to be computed. Such savings imply proto-value functions can be efficiently computed even
in very large structured domains. For a factored state space s = (s1, . . . ,sm), we use the notation si

to denote the value of the ith component. We can restate the update rules for factored RPI and LSPI
as follows:

Ãt+1 = Ãt +φ(st ,at)
(

φ(st ,at)− γφ(s′t ,π(s′t))
)T

= Ãt + eI(at)⊗∏
⊗

φi(s
i
t)

×
(

eI(at) ∏
⊗

φi(s
i
t)− γeI(π(s′t))⊗∏

⊗
φi(s

′
t
i
)

)T

.

The corresponding update equation for the reward component is:

b̃t+1 = b̃t +φ(st ,at)rt = b̃t + rteI(at)⊗∏
⊗

φi(s
i
t).

5.3 Experimental Results

To illustrate the Kronecker factorization presented in the previous section, we begin with a simple
MDP. Figure 14 shows the results of using the factored RPI algorithm on a 10× 10 grid world
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Figure 14: Left: the exact value function on a 10× 10 grid world with a reward of +100 at the
center. Right: a factored (combinatorial) Laplacian approximation using basis functions
constructed by taking Kronecker products of basis functions for chain graphs (of length
corresponding to row and column sizes).

domain. There are four (compass direction) actions, each of which succeeds with probability 0.9.
Any “illegal” action (going “north” from the first row) leaves the agent in the same state. The only
reward of +100 is received for reaching the center of the grid. The discount factor was set at γ = 0.9.
If a “flat” approach was used, each basis function is a vector of size 100 and requires diagonalizing
a Laplacian matrix of size 100×100. The factored PVFs are computed as the Kronecker product of
the PVFs on a 10 node chain graph, which requires both significantly smaller space of size 10×k for
k basis functions, and much less computational effort (diagonalizing a Laplacian of size 10× 10).
These computational savings obviously magnify in larger grid world domains. In a grid world with
106 states, “flat” proto-value functions require k× 106 space and time proportional to (106)3 to be
computed, whereas the factored basis functions only require space k× 103 to store with much less
computational cost to find.

5.4 The Blocker Task

We now present a detailed study using a much larger factored multiagent domain called the “Block-
ers” task, which was first proposed by Sallans and Hinton (2004). This task, illustrated in Figure 15,
is a cooperative multiagent problem where a group of agents try to reach the top row of a grid, but
are prevented in doing so by “blocker” agents who move horizontally on the top row. If any agent
reaches the top row, the entire team is rewarded by +1; otherwise, each agent receives a negative
reward of −1 on each step. The agents always start randomly placed on the bottom row of the grid,
and the blockers are randomly placed on the top row. The blockers remain restricted to the top
row, executing a fixed strategy. The overall state space is the Cartesian product of the location of
each agent. Our experiments on the blocker domain include more difficult versions of the task not
studied in Sallans and Hinton (2004) specifically designed to test the scalability of the Kronecker
product bases to “irregular” grids whose topology deviates from a pure hypercube or toroid. In the
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Figure 15: Two versions of the blocker domain are shown, each generating a state space of > 106

states. Interior walls shown create an “irregular” factored MDP whose overall topology
can be viewed as a “perturbed” variant of a pure product of grids or cylinders (for the
“wrap-around” case).

first variant, shown on the left in Figure 15, horizontal interior walls extend out from the left and
right side walls between the second and third row. In the second variant, an additional interior wall
is added in the middle as shown on the right.17

The basis functions for the overall Blocker state space were computed as Kronecker products
of the basis functions over each agent’s state space. Each agent’s state space was modeled as a
grid (as in Figure 14) or a cylinder (for the “wrap-around” case). Since the presence of interior
walls obviously violates the pure product of cylinders or grids topology, each individual agent’s
state space was learned from a random walk. The overall basis functions were then constructed as
Kronecker products of Laplacian basis functions for each learned (irregular) state grid.

Figure 16 compares the performance of the factored Laplacian bases with a set of radial basis
functions (RBFs) for the first Blocker domain (shown on the left in Figure 15). The width of each
RBF was set at 2|Sa|

k where |Sa| is the size of each individual agent’s grid, and k is the number
of RBFs used. The RBF centers were uniformly spaced. The results shown are averages over
10 learning runs. On each run, the learned policy is measured every 25 training episodes. Each
episode begins with a random walk of a maximum of 70 steps (terminating earlier if the top row
was reached). After every 25 such episodes, RPI is run on all the samples collected thus far. The
learned policy is then tested over 500 test episodes. The graphs plot the average number of steps
to reach the goal. The experiments were conducted on both “normal” grids (not shown) and “wrap
around” cylindrical grids. The results show that RBFs converge faster, but learn a worse policy.
The factored Laplacian bases converge slower than RBFs, but learn a substantially better policy.
Figure 16 also shows results for the second Blocker domain (shown on the right in Figure 15 with
both side and interior middle walls), comparing 100 factored Laplacian bases with a similar number
of RBFs. The results show a significant improvement in performance of the factored Laplacian
bases over RBFs.

In terms of both space and time, the factored approach greatly reduces the computational com-
plexity of finding and storing the Laplacian bases. A worst-case estimate of the size of the full
Laplacian matrix is O(|S|2). Diagonalizing a |S| × |S| symmetric matrix and finding k eigenvec-
tors requires time O(k|S|2) and O(k|S|) space. Instantiating these general estimates for the Blocker

17. In the Blocker domain, the interior walls are modeled as having “zero width”, and hence all 100 states in each grid
remain accessible, unlike the two-room environment.
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domain, let n refer to the number of rows and columns in each agent’s state space (n = 10 in our ex-
periments), and k refer to the number of basis functions (k = 100 in our experiments). Then, the size
of the state space is |S| = (n2)3, implying that the non-factored approach requires O(k(n2)3) space
and O(k(n6)2) time, whereas the factored approach requires O(kn2) space and O(k(n2)2) time. Note
these are worse-case estimates. The Laplacian matrix is in fact highly sparse in the Blocker domain,
requiring far less than O(|S|2) space to be stored. In fact, even in such a deterministic MDP where
the Laplacian matrix can be stored in O(|S|) space, the non-factored approach will still take O(kn3)
space and O(kn6) time, whereas the factored approach takes O(kn) space and O(kn2) time.
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Figure 16: Comparison of factored (Laplacian) PVF basis functions with hand coded radial basis
functions (RBF) on a 10× 10 “wrap-around” grid with 3 agents and 2 blockers of >
106 states. Both approaches were tested using 100 basis functions. The plots show
performance of PVFs against RBFs on the two blocker domains in Figure 15.

6. Scaling Proto-Value Functions: Continuous Domains

Thus far, the construction of proto-value functions was restricted to discrete MDPs. We now show
how proto-value functions can be constructed for continuous MDPs, which present significant chal-
lenges not encountered in discrete state spaces. The eigenfunctions of the Laplacian can only be
computed and stored on sampled real-valued states, and hence must be interpolated to novel states.
We apply the Nyström interpolation method. While this approach has been studied previously in
kernel methods (Williams and Seeger, 2000) and spectral clustering (Belongie et al., 2002), our
work represents the first detailed study of the Nyström method for learning control, as well as a
detailed comparison of graph normalization methods (Mahadevan et al., 2006).

There is a rich and well-developed theory of the Laplace operator on manifolds, which we
can only briefly summarize here. The Laplace-Beltrami operator has been extensively studied in
the general setting of Riemannian manifolds (Rosenberg, 1997). Riemannian manifolds have been
actively studied recently in machine learning in several contexts, namely in the context of designing
new types of kernels for supervised machine learning (Lafferty and Lebanon, 2005) and faster policy
gradient methods using the natural Riemannian gradient on a space of parametric policies (Kakade,
2002; Bagnell and Schneider, 2003; Peters et al., 2003).
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The Laplacian on Riemannian manifolds and its eigenfunctions (Rosenberg, 1997), which form
an orthonormal basis for square-integrable functions on the manifold (Hodge’s theorem), generalize
Fourier analysis to manifolds. Historically, manifolds have been applied to many problems in AI,
for example configuration space planning in robotics, but these problems assume a model of the
manifold is known (Latombe, 1991; Lavalle, 2006), unlike here where only samples of a manifold
are given.

6.1 Nyström Extension

To learn policies on continuous MDPs, it is necessary to be able to extend eigenfunctions computed
on a set of points ∈R

n to new unexplored points. We describe here the Nyström method, which can
be combined with iterative updates and randomized algorithms for low-rank approximations. The
Nyström method interpolates the value of eigenvectors computed on sample states to novel states,
and is an application of a classical method used in the numerical solution of integral equations
(Baker, 1977). The eigenfunction problem can be stated as

Z

D
K(x,y)φ(y)dy = λφ(x),∀x ∈ D, (4)

where D can be any domain, for example, R. Using the standard quadrature approximation, the
above integral can be written as

Z

D
K(x,y)φ(y)dy≈

n

∑
i=1

wik(x,si)φ̂(si), (5)

where wi are the quadrature weights, si are n selected sample points, and φ̂ is an approximation to
the true eigenfunction. Combining Equation 4 and Equation 5 gives us

n

∑
i=1

wik(x,si)φ̂(si) = λ̂φ̂(x).

By letting x denote any set of n points, for example the set of quadrature points si itself, the
kernel k(si,s j) becomes a symmetric matrix. This enables computing the approximate eigenfunction
at any new point as

φ̂m(x) =
1

λ̂

n

∑
i=1

wik(x,si)φ̂m(si). (6)

Let us instantiate Equation 6 in the context of the normalized Laplacian L = I−D−
1
2 WD−

1
2 .

First, note that if λi is an eigenvalue of L , then 1−λi is the corresponding eigenvalue of the diffusion
matrix D−

1
2 WD−

1
2 . Applying the the Nyström extension for computing the eigenfunctions of the

normalized Laplacian Lφi = λiφi, we get the equation

φi(x) =
1

1−λi
∑
y∼x

w(x,y)
√

d(x)d(y)
φi(y),

where d(z) = ∑y∼z w(z,y), and x is a new vertex in the graph. Note that the weights w(x,y) from the
new state x to its nearest neighbors y in the previously stored samples is determined at “run time”
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Figure 17: This figure illustrates the Nyström interpolation method for extending eigenfunctions
on samples to new states. Left: the 3rd eigenvector of the Laplacian plotted on a set
of samples (shown as filled dots) drawn from a random walk in the inverted pendulum
domain, as well as its Nyström interpolated values. Right: the Nyström interpolated
6th eigenvector illustrated the entire state space as well as on the actual samples (again
shown as filled dots).

using the same nearest neighbor weighting algorithm used to compute the original weight matrix
W . An extensive discussion of the Nyström method is given in Drineas and Mahoney (2005), and
more details of its application to learning control in MDPs are given in Mahadevan et al. (2006).

Figure 17 illustrates the basic idea. Note that the Nyström method does not require recalculating
eigenvectors—in essence, the embedding of a new state is computed by averaging over the already
computed embeddings of “nearby” states. In practice, significant speedups can be exploited by using
the following optimizations. We have empirically observed that roughly only 10% of the overall
samples needed for learning a good policy are necessary to construct basis functions. Once the bases
is defined over these sub-sampled states, the Nyström extended embeddings of the remaining 90%
of training samples needs to be calculated only once, and henceforth can be cached during repeated
runs of policy iteration. During testing, the Nyström embeddings of novel states encountered must
be computed, but since the eigenvectors are defined over a relatively small core set of sample states,
the extensions can be computed very efficiently using a fast nearest neighbor algorithm.18

6.2 Representation Policy Iteration for Continuous Domains

Figure 18 presents the modified RPI algorithm for continuous Markov decision processes. The core
of the algorithm remains the same as before, but there are important differences from the discrete
case. First, the proto-value functions are computed on a subsampled set of states, for two reasons:

18. In our experiments, we used the TSTOOLS MATLAB nearest neighbor package.
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RPI (πm,T,N,Z,ε,k,O,D):

// πm: Initial policy
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// D: Data set of transitions

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. Build an undirected weighted graph G from the set of subsampled transitions Ds ⊆ D using the
method described in Section 6.4 on graph construction from point sets ∈ R

n. Compute the operator
O on graph G as discussed in Section 6.4.

3. Compute the k “smoothest” eigenvectors of O on the sub-sampled graph Ds, and collect them as
columns of the basis function matrix Φ, a |Ds| × k matrix. The embedding of a state action pair
φ(s,a) where s ∈Ds is given as ea⊗φ(s), where ea is the unit vector corresponding to action a, φ(s)
is the sth row of Φ, and ⊗ is the Kronecker product.

Control Learning Phase:

4. See Figure 8 on page 2191. For all transitions involving a state s /∈ Ds, its embedding is computed
using the Nyström extension described in Section 6.1.

5. Optional: Repeat the above procedure by calling RPI (πm+1,T,N,ε,k,O,µ,D).

Figure 18: Pseudo-code of the representation policy iteration algorithm for continuous MDPs.

the number of samples needed to compute the proto-value functions is much less than that needed to
learn a good policy using RPI, as the experiments in Section 7 reveal. In Figure 18, DZ denotes the
subsampled set of states. The choice of the subsampling method can make a significant difference,
as explained below. The second major difference is the use of the Nyström method to extend proto-
value functions from the samples stored in DZ to all the states visited during the initial random walk
(denoted D in Figure 18), as well as new states encountered during the testing of a learned policy.

6.3 Sampling from Point Sets ∈ R
n

One challenge in continuous MDPs is how to choose a subset of samples from which a graph can be
built and proto-value functions computed. The set of samples collected during the course of explo-
ration can be very large, and a much smaller set of samples is usually sufficient to learn proto-value
functions. Many ways of constructing a subsample from the overall sample can be devised. The
simplest method is of course to randomly subsample from the complete set, but this might not be
the most efficient way of using the samples. Figure 19 illustrates two methods for subsampling in
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Figure 19: The problem of subsampling is illustrated in the mountain car domain. On the left is
shown the original states visited during a random walk. In the middle is the subsam-
pled data using a random subsampling algorithm. On the right is a trajectory based
subsampling method.

the mountain car domain, including random subsampling and trajectory-based subsampling. The
trajectory-based algorithm follows a greedy strategy: starting with the null set, add samples to the
subset that are not within a specified distance to any sample currently in the subset. A maximal
subset is returned when no more samples can be added. The trajectory-based method also tries to
retain “important” samples, such as goal states or states with high reward. Note that the random sub-
sampling method clearly loses important information about the trajectory, which is nicely retained
by the trajectory method.

More formally, the trajectory based subsampling algorithm works as follows. We define an ε-net
of points in S ′ to be a subset S ′′ such that no two points are closer than ε, and that for every point y
in S ′, there is a point in S ′′ which is not farther than ε from y. One can construct a (random) ε-net
in S ′ as follows. Pick x0 ∈ S ′ at random. By induction, for k ≥ 1 suppose x0,x1, . . . ,xk have been
picked so that the distance between any pair is larger than ε. If

Rk := S ′ \ (∪k
l=1Bε(xl))

is empty, stop, otherwise pick a point xk+1 in Rk. By definition of Rk the distance between xk+1 and
any of the points x0, . . . ,xk is not smaller than ε. When this process stops, say after k∗ points have
been selected, for any y ∈ S ′ we can find a point in S ′′ not farther than ε, for otherwise y ∈ Rk∗ and
the process would not have stopped.

In the experiments reported in Section 7, where states are continuous vectors ∈ R
n, typically

< 10% of the transitions in the original set of random walks are necessary to learn an adequate set
of basis functions. For example, in the mountain car task, around 700 samples are sufficient to form
the basis functions, whereas usually > 7000 samples are needed to learn a close to optimal policy.19

19. In Section 9, we describe how Kronecker factorization can be used to significantly compress the size of the basis
matrices.
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6.4 Graph Construction from Point Sets ∈ R
n

Given a data set {xi} in R
n, we can associate different weighted graphs to this point set. There are

different choices of edges and for any such choice there is a choice of weights on the edges. In
the experiments below, the following construction was used. Edges were inserted between a pair of
states xi and x j if:

• x j is among the k nearest neighbors of xi, where k > 0 is a parameter.

Weights were assigned to the edges in the following way:

• W (i, j) = α(i)e−
||xi−x j ||2Rn

σ , where σ > 0 is a parameter, and α a weight function to be specified.

Observe that for undirected graphs, since x j can be among the K nearest neighbors of xi but xi

may not be among the K nearest neighbors of x j, the above construction will still yield asymmetric
weight matrices. We used an additional symmetrization step where we replaced the weight matrix W
constructed by the symmetric W +W T . If the states {xi} are drawn uniformly from a Riemannian
manifold, then it is shown in Belkin and Niyogi (2004) that the above construction, with α = 1,
approximates the continuous Laplace-Beltrami operator on the underlying manifold. If {xi} is not
drawn uniformly from the manifold, as it typically happens in MDPs when the space is explored
by an agent, it is shown in Lafon (2004) that a pre-processing normalization step can (must) be
performed that yields the weight function α, so that the above construction yields an approximation
to the Laplace-Beltrami operator. Various ways of normalizing the weight matrix were explored in
our experiments in Section 7. In particular, we compared the normalized Laplacian L = D−

1
2 (D−

W )D−
1
2 and the combinatorial Laplacian, L = D−W operators.

7. Fully Interleaved Representation and Policy Learning: Continuous MDPs

In this section, we present a detailed analysis of fully interleaved representation and policy learning
on continuous MDPs. By “fully interleaved”, we mean that the overall learning run is divided into
a set of discrete episodes of sample collection, basis construction, and policy learning. At the end
of each episode, a set of additional samples is collected using either a random walk (off-policy)
or the currently best performing policy (on-policy), and then basis functions are then recomputed
and a new policy is learned. In all the experiments below, the trajectory based method was used to
build the graph from which proto-value functions were learned. We discuss alternate approaches
for interleaving basis function generation and control learning in Section 9.

7.1 Three Control Tasks

We explored the effectiveness and stability of proto-value functions in three continuous domains—
the Acrobot task, the inverted pendulum task, and the mountain car task—that have long been
viewed as benchmarks in the field. These three domains are now described in more detail.

The Inverted Pendulum: The inverted pendulum problem requires balancing a pendulum of un-
known mass and length by applying force to the cart to which the pendulum is attached. We used
the implementation described in Lagoudakis and Parr (2003). The state space is defined by two
variables: θ, the vertical angle of the pendulum, and θ̇, the angular velocity of the pendulum. The
three actions are applying a force of -50, 0, or 50 Newtons. Uniform noise from -10 and 10 is added
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to the chosen action. State transitions are defined by the nonlinear dynamics of the system, and
depend upon the current state and the noisy control signal, u.

θ̈ =
gsin(θ)−αmlθ̇2 sin(2θ)/2−αcos(θ)u

4l/3−αml cos2(θ)
,

where g is gravity, 9.8 m/s2, m is the mass of the pendulum, 2.0 kg, M is the mass of the cart, 8.0
kg, l is the length of the pendulum, .5 m, and α = 1/(m+M). The simulation time step is set to 0.1
seconds. The agent is given a reward of 0 as long as the absolute value of the angle of the pendulum
does not exceed π/2. If the angle is greater than this value the episode ends with a reward of -1.
The discount factor was set to 0.95. The maximum number of episodes the pendulum was allowed
to balance was fixed at 3000 steps. Each learned policy was evaluated 10 times.

Mountain Car: The goal of the mountain car task is to get a simulated car to the top of a hill
as quickly as possible (Sutton and Barto, 1998). The car does not have enough power to get there
immediately, and so must oscillate on the hill to build up the necessary momentum. This is a
minimum time problem, and thus the reward is -1 per step. The state space includes the position
and velocity of the car. There are three actions: full throttle forward (+1), full throttle reverse (-1),
and zero throttle (0). Its position, xt and velocity ẋt , are updated by

xt+1 = bound[xt + ẋt+1]

ẋt+1 = bound[ẋt +0.001at +−0.0025,cos(3xt)],

where the bound operation enforces−1.2≤ xt+1 ≤ 0.6 and −0.07≤ ẋt+1 ≤ 0.07. The episode ends
when the car successfully reaches the top of the mountain, defined as position xt >= 0.5. In our
experiments we allow a maximum of 500 steps, after which the task is terminated without success.
The discount factor was set to 0.99.

The Acrobot Task: The Acrobot task (Sutton and Barto, 1998) is a two-link under-actuated robot
that is an idealized model of a gymnast swinging on a highbar. The only action available is a torque
on the second joint, discretized to one of three values (positive, negative, and none). The reward
is −1 for all transitions leading up to the goal state. The detailed equations of motion are given
in Sutton and Barto (1998). The state space for the Acrobot is 4-dimensional. Each state is a 4-
tuple represented by (θ1, θ̇1,θ2, θ̇2). θ1 and θ2 represent the angle of the first and second links to
the vertical, respectively, and are naturally in the range (0,2π). θ̇1 and θ̇2 represent the angular
velocities of the two links. Notice that angles near 0 are actually very close to angles near 2π due to
the rotational symmetry in the state space.

Figure 20 plots the Acrobot state space projected onto the subspace spanned by the two joint an-
gles θ1 and θ2. This subspace is actually a torus. To approximate computing distances on the torus,
the original states were projected upwards to a higher dimensional state space ⊂ R

6 by mapping
each angle θi to (sin(θi),cos(θi)). Thus, the overall state space is now (sin(θ1),cos(θ1), θ̇1,sin(θ2),
cos(θ2), θ̇2). The motivation for this remapping is that now Euclidean distances in this augmented
space better approximate local distances on the torus. In fact, ignoring the wrap-around nature of
the Acrobot state space by simply using a local Euclidean distance metric on the four-dimensional
state space results in significantly poorer performance. This example illustrates how overall global
knowledge of the state space, just like in the Blockers domain, is valuable in designing a better local
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Figure 20: The state space of the Acrobot (shown on the left) exhibits rotational symmetries. The
figure on the right plots its projection onto the subspace of R

2 spanned by the two joint
angles θ1 and θ2, which can be visualized as a torus. The angular velocities θ̇1 and
θ̇2 were set to 0 for this plot. The points shown on the torus are subsampled states
from a random walk. The colors indicate the value function, with red (darker) regions
representing states with higher values.

distance function for learning PVFs. This domain serves to reemphasize that basis construction is
dependent on a good choice of a local distance metric.

7.2 RPI with Off-Policy Sampling

In the first set of experiments, we used off-policy random walks in Step 1 of the sample collection
phase in the RPI algorithm since we wanted to compare the effects of different parameter choices
(graph operator, number of nearest neighbors, number of bases) using the same set of samples. In
Section 7.4 we will see that significantly better results were obtained using a modified form of on-
policy sampling. Table 1 summarizes the range of parameters over which the RPI algorithm was
tested in these domains. The results for the following experiments were (median) averaged over 30
runs. To avoid clutter, variances are shown only on selected plots.

As Table 1 reveals, the type of off-policy sample collection used in the experiments below
varied, from a long series of short random walks (inverted pendulum) to a short series of long
random walks (Acrobot). In particular, in the inverted pendulum, samples were collected using a
series of short random walks, typically of length < 20 before the episode terminated because the
pole was dropped. This simple strategy was sufficient to explore the underlying manifold. By
contrast, in the mountain car domain, longer random walks were needed to explore the manifold.
One reason for this difference is the nature of the underlying manifold: the samples in the inverted
pendulum are in a relatively narrow region around the 45 degree line. In contrast, the samples in the
mountain car domain are distributed across a wider region of the state space. Finally, in the Acrobot
domain, the random walks were very long, terminating when the goal state was reached.
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Another difference in sample collection in these domains was in initialization. In the inverted
pendulum and Acrobot domains, the initial state was always set the same, with the pole starting
from the vertical position at rest, or the arm at rest. In the mountain car domain, however, starting
the car from a position of rest at the bottom of the hill produced poorer results than starting from
the bottom with the velocities initialized randomly. The experiments reported below scaled the raw
state variables to make the dimensions of each variable more commensurate. The scaling used is
shown in Table 1.

While performance in all three domains is measured by the number of steps, note that for the
Acrobot and mountain car task, lower numbers indicate better performance since we are measuring
the steps to reach the goal. In the inverted pendulum, however, since we are measuring the number
of steps that the pole remained upright, higher numbers indicate better performance.

Local Distance Metric: In the first experiment, illustrated in Figure 21, the effect of varying the
local distance metric used in constructing the graph Laplacian was evaluated, from a low setting
of k = 10 nearest neighbors to a higher setting of k = 50 nearest neighbors. All the plots in the
figure show median-averaged plots over 30 learning runs. Variances are not shown to avoid clutter.
The effect of varying k was most pronounced in the inverted pendulum domain, with less tangible
results in the mountain car and Acrobot domains. Note that in the inverted pendulum domain, the
differences between k = 25 and k = 50 are negligible, and the corresponding runs tightly overlap.

Number of Basis Functions: Figure 22 varied the number of proto-value functions used. Here,
there were significant differences, and the results reveal a nonlinear relationship between the number
of PVFs used and the best performance. In the Acrobot task, the best results were obtained for 25
and 100 PVFs, and significantly poorer results for 50 PVFs. In the inverted pendulum domain,
10 PVFs was significantly better than using 30 PVFs, but was closely matched by using 60 PVFs.
Finally, in the mountain car domain, 30 PVFs produced the best results, followed by 50 PVFs and a
setting of 10 PVFs produced the worst results.

Type of Graph Operator: Figure 23 investigates the effect of varying the graph operator in the
three domains. The two operators compared were the normalized Laplacian L = I−D−

1
2 WD−

1
2

and the combinatorial Laplacian L = D−W . In both the Acrobot and mountain car domains, the
normalized Laplacian operator produced significantly better results than the combinatorial Lapla-
cian. However, in the inverted pendulum domain, the combinatorial Laplacian was better than the
normalized Laplacian operator. These results suggest an interesting dependence between the graph
operator and the type of manifold. Note that in both the Acrobot and mountain car domains, the
manifold is significantly more spread out spatially than the inverted pendulum task.

7.3 RPI with On-Policy Sampling

As noted earlier, the performance of PVFs can be improved using a modified form of on-policy
sampling in Step 1 of the sample collection phase in the RPI algorithm. Specifically, we kept track
of the best-performing policy (in terms of the overall performance measure of the number of steps).
If the policy learned in the current round of RPI improved on the best-performing policy thus far,
samples were collected in the next iteration of RPI using the newly learned policy (which was then
viewed as the best performing policy in subsequent runs). Otherwise, samples were collected us-
ing an off-policy random walk. We also found that using shorter episodes of sample collection in
between rounds of representation construction and policy estimation also produced better results.
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Figure 21: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car domains
as a function of the number of nearest neighbors used to compute the graph Laplacian.
Results are median averages over 30 learning runs. In all three domains, the graph
operator used was the normalized Laplacian. For the Acrobot domain, the number of
PVFs was set at 100, whereas in the mountain car and inverted pendulum tasks, the
number of PVFs was set to 30.
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Figure 22: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car domains as
a function of the number of basis functions. Results shown are median averages over
30 learning runs. In all three domains, the normalized Laplacian was used as the graph
operator. The number of nearest neighbors k = 25 in the Acrobot and inverted pendulum
domains, and k = 30 in the mountain car domain.

Figure 24 shows the results of these two modifications in the Acrobot domain, whereas Figure 25
and Figure 27 show the corresponding results from the inverted pendulum and mountain car do-
mains. Comparing these results with the corresponding off-policy results in Figure 21, Figure 22,
and Figure 23 shows significantly faster convergence of PVFs in all three domains.

7.4 Comparing PVFs with RBFs on Continuous MDPs

In this section, we compare the performance of PVFs with radial basis functions (RBFs), which are
a popular choice of basis functions for both discrete and continuous MDPS. We restrict our com-
parison of PVFs and RBFs in this section to the inverted pendulum and mountain car domains. To
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Figure 23: Performance of PVFs in the Acrobot, inverted pendulum, and mountain car domains as
a function of the graph operator. Results shown are median averages over 30 learning
runs. In the Acrobot task, 100 PVFs were used, whereas 30 basis functions were used in
the mountain car task, and 10 basis functions were used in the inverted pendulum task.

choose a suitable set of parameters for RBFs, we initially relied on the values chosen in the pub-
lished study of LSPI for the inverted pendulum domain (Lagoudakis and Parr, 2003). However, we
found that by tuning the kernel widths, we were able to significantly improve the performance of
RBFs over that previously reported in their experiments. Table 2 shows the parameters of the RBF
used in the comparisons below. Generally speaking, the results demonstrate that PVFs are signifi-
cantly quicker to converge, by almost a factor of two in both the inverted pendulum and mountain
car domains. Asymptotically, both approaches to converge to the same result. We emphasize that
these comparisons are meant to be suggestive, and not definitive. For example, we did not fine tune
the centers of the RBF bases, or incorporate the scaling factors used in the experiments with PVFs.
Our goal here is to provide a reasonable set of benchmarks to compare PVFs against, commensurate
with that shown in earlier studies using such parametric approximators.
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Figure 24: Performance of PVFs with on-policy sampling in the Acrobot task. The plot on the left
shows the median average number of steps to goal averaged over 30 runs. The plot on
the right shows the variance, after scaling the y axis to magnify the plot.

Inverted Pendulum: We begin by comparing the performance of PVFs with a linear RBF ap-
proximation architecture for the inverted pendulum domain. Figure 25 plots the effect of varying
the kernel width for RBFs in the inverted pendulum domain (left plot). It is seen that the best results
are obtained for a kernel width σ = 0.25. We compare a varying number of RBF architectures with
using 15 PVFs in Figure 25 (right plot). PVFs converge significantly faster to the final goal of bal-
ancing the pendulum for 3000 steps: PVFs take 20 trials to converge, but RBFs take roughly twice
as long. Figure 26 plots the variance across 100 learning runs for both PVFs and RBFs, showing
that PVFs not only converge faster, but also have significantly less variance.

Mountain Car: As with the inverted pendulum, we were able to improve the performance of
RBFs by fine-tuning the kernel width, although the differences are less significant than in the in-
verted pendulum domain. Figure 27 plots the effect of varying the kernel width for RBFs using 13
basis functions in the mountain car domain (left plot). We also found increasing the number of RBF
basis functions above 13 worsened their performance. The figure also plots the best performing RBF
architecture (13 basis functions) compared with the PVF approach (25 basis functions). Given suf-
ficient training experience, both converge to approximately the same result, although PVFs seem to
converge to a slightly better result. However, as with the inverted pendulum results, PVFs converge
significantly quicker, and clearly outperform RBFs for smaller numbers of samples.

Figure 28 shows the variances over 30 runs for both PVFs and RBFs in the mountain car domain.
As in the inverted pendulum, we note that PVFs clearly converge more quickly to a more stable
performance than RBFs, although the differences are not as dramatic as in the inverted pendulum
domain.
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Parameter Inverted Pendulum Mountain Car Acrobot
Episodes T (20 to 160) (50 to 300) (5 to 40)

Episode Length N ≤ 20 ≤ 70 ≤ 800
Nearest neighbors ω {10,25,50} {10,25,50} {25, 50, 100 }
Number of PVFs k {10,30,60} {10,30,50} { 25, 50, 100 }
Graph Operator O (Norm., Comb.) (Norm., Comb.) (Norm., Comb.)

Scaling (3θ, θ̇) (x,3ẋ) (θ1,θ2,0.5θ̇1,0.3θ̇2)

Table 1: Parameter values (as defined in Figure 18) for Acrobot, inverted pendulum and mountain
car domains. Comb. and Norm. refer to the combinatorial and normalized Laplacian
operators.
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Figure 25: Left: The performance of a linear parametric RBF architecture is analyzed for vary-
ing kernel widths in the inverted pendulum domain. Right: A comparison of 15 PVFs
with several choices of RBFs on the inverted pendulum task, focusing on the initial 100
episodes averaged over 100 runs.
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Figure 26: This plot shows that PVFs (right) have significantly less variance compared to RBFs
(left) in the inverted pendulum task. Both plots show median-averaged number of steps
the pole was balanced over 100 learning runs.
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Figure 27: Left: The performance of a linear parametric RBF architecture is analyzed for varying
kernel widths in the mountain car domain. Right: A comparison of 25 PVFs and 13
RBFs on the mountain car task. Higher number of RBFs produced worse results.
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Number of RBFs Inverted Pendulum RBF Parameters
10 3 x-axis, 3 y-axis, σ = 1,0.5,0.25,0.125
13 4 x-axis, 3 y-axis, σ = 0.25
17 4 x-axis, 4 y-axis, σ = 0.25
Number of RBFs Mountain Car RBF Parameters
13 4 x-axis, 3 y-axis, σ = 0.5,0.1,0.05

Table 2: RBF parameter settings for inverted pendulum and mountain car experiments.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

A
v
e
ra

g
e
 S

te
p
s

RBFs on the Mountain Car Task

RBFs

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

N
u
m

b
e
r 

o
f 
S

te
p
s

PVFs in the Mountain Car Domain

PVFs

Figure 28: Left: The variance in performance of a linear parametric RBF architecture is analyzed
over 30 learning runs in the mountain car domain. Right: Variance across 30 runs for
PVFs in the mountain car task.

8. Related Work

In this section, we briefly review related work, beginning with methods for approximating value
functions, followed by a description of past research on representation learning, concluding with a
short summary of recent work on manifold and spectral learning.

8.1 Value Function Approximation

Value function approximation has been studied by many researchers. Bertsekas and Tsitsiklis (1996)
provide an authoritative review. Parametric approaches using linear architectures, such as radial ba-
sis functions (Lagoudakis and Parr, 2003), and nonlinear architectures, such as neural networks
(Tesauro, 1992), have been extensively explored. However, most approaches (with notable excep-
tions discussed below) are based on a fixed parametric architecture, and a parameter estimation
method is used to approximate value functions, such as temporal-difference learning (Sutton and
Barto, 1998; Tsitsiklis and Van Roy, 1997), least squares projection (Bradtke and Barto, 1996;
Boyan, 1999; Nedic and Bertsekas, 2003; Lagoudakis and Parr, 2003), and linear programming
(de Farias, 2003; Guestrin et al., 2003). There has also been significant work on non-parametric
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methods for approximating value functions, including nearest neighbor methods (Gordon, 1995) and
kernel density estimation (Ormoneit and Sen, 2002). Although our approach is also non-parametric,
it differs from kernel density estimation and nearest neighbor techniques by extracting a distance
measure through modeling the underlying graph or manifold. Non-parametric kernel methods based
on Hilbert spaces have also been applied to value function approximation, including support vector
machines (Dietterich and Wang, 2002) and Gaussian processes (Engel et al., 2003; Rasmussen and
Kuss, 2004). Note that in this approach, the kernel is largely hand-engineered, such as the Gaussian
kernel. Our approach can be viewed as extending this work using an automatically generated data-
dependent graph or diffusion kernel (Kondor and Vert, 2004). There are interesting connections
between the graph Laplacian matrix and covariance matrices (Ben-Chen and Gotsman, 2005).

8.2 Representation Learning

The problem of learning representations has a long history in AI. Amarel (1968) was an early pio-
neer, advocating the study of representation learning through global state space analysis. Amarel’s
ideas motivated much subsequent research on representation discovery (Subramanian, 1989; Utgoff
and Stracuzzi, 2002), and many methods for discovering global state space properties like “bottle-
necks” and “symmetries” have been studied (McGovern, 2002; Ravindran and Barto, 2003; Mannor
et al., 2004). However, this past research lacked a formal framework showing how the geometrical
analysis of a state space analysis can be transformed into representations for approximating value
functions, a hallmark of our approach.

There have been several attempts at overcoming the limitations of traditional function approxi-
mators, such as radial basis functions. In particular, it has been recognized that Euclidean smooth-
ing methods do not incorporate geometric constraints intrinsic to the environment: states close in
Euclidean distance may be far apart on the manifold. Dayan (1993) proposed the idea of building
successor representations. While this approach was restricted to policy evaluation in simple discrete
MDPs, and did not formally build on manifold or graph-theoretic concepts, the idea of construct-
ing representations that are faithful to the underlying dynamics of the MDP was a key motivation
underlying this work. Drummond (2002) also pointed out the nonlinearities that value functions
typically exhibit, and used techniques from computer vision to detect nonlinearities. Neither of
these studies formulated the problem of value function approximation as approximating functions
on a graph or manifold, and both were restricted to discrete MDPs. There have been several at-
tempts to dynamically allocate basis functions to regions of the state space based on the nonuniform
occupancy probability of visiting a region (e.g., Kretchmar and Anderson, 1999), but these meth-
ods do not construct the basis functions adaptively. Finally, there has also been research on finding
common structure among the set of value functions on a given state space, where only the goal lo-
cation is changed (Foster and Dayan, 2002), assuming a probabilistic generative (mixture) model of
a value function, and using maximum likelihood estimation techniques. Proto-value functions can
be viewed similarly as the building block of the set of value functions on a given state space, except
that they are constructed without the need to make such parametric assumptions.

8.3 Manifold and Spectral Learning

This research also builds on recent work on manifold and spectral learning, including diffusion maps
(Coifman et al., 2005a,b,c), ISOMAP (Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), and
Laplacian eigenmaps (Belkin and Niyogi, 2004; Jones et al., 2007). One major difference is that
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these methods have largely (but not exclusively) been applied to nonlinear dimensionality reduction
and semi-supervised learning on graphs, whereas our work focuses on approximating (real-valued)
value functions on graphs. Although related to regression on graphs (Niyogi et al., 2003), the
problem of value function approximation is fundamentally different: the set of target values is not
known a priori, but must be inferred through an iterative process of computing an approximate fixed
point of the Bellman backup operator, and projecting these iterates onto subspaces spanned by the
basis functions. Furthermore, value function approximation introduces new challenges not present
in supervised learning or dimensionality reduction: the set of samples is not specified a priori, but
must be collected through active exploration of the state space.

9. Discussion and Future Research

The fundamental contribution of this paper is an algorithmic framework called RPI that combines
the learning of representations (basis functions) and policies. RPI is based on some specific design
choices, and we have naturally restricted our description of the framework to the simplest settings.
The scope of RPI can easily be extended to more general situations. Many extensions of the frame-
work are being actively explored, and we briefly summarize these ongoing investigations.

9.1 Analysis of RPI and Variants

RPI is based on a two-phased procedure, where basis functions are learned from spectral analysis of
trajectories generated by simulating policies, and improved policies are found by a control learning
algorithm using the newly generated basis functions. Section 7 evaluated both the off-policy setting,
where basis functions were learned purely from random walks, as well as the on-policy setting,
where additional samples were generated from newly learned improved policies and combined with
the random-walk samples. In both approaches, a smaller subset of samples were extracted using a
subsampling method described in Section 6.3. Many questions remain to be addressed about the
specific properties of architectures like RPI as well as other related architectures that combine the
learning of representation and behavior. We summarize some key issues that need to be addressed
in future research:

• How can we modify the design of RPI, so that basis functions are learned simultaneously
with the learning of policies? Recent work on Bellman-error basis functions (Keller et al.,
2006; Petrik, 2007; Parr et al., 2007) suggests an alternative approach where basis functions
are learned in-situ during the policy evaluation phase itself, by explicitly modeling the error
in approximating the value function using the Bellman residual. In such approaches, the basis
functions generated are very sensitive to a specific reward function, whose shapes reflect the
error in approximating a given value function. Can such in-situ basis-function learners be
combined with offline approaches such as RPI, where basis functions are generated using a
more global analysis of the state space as a whole, to yield more robust provably optimal
control learners? For example, Petrik (2007) proposes combining reward-specific Krylov
bases with Laplacian bases as a way of integrating localized high-frequency reward-specific
bases with more global long-term eigenvector bases such as PVFs. We discuss below other
approaches for integrating local vs. global basis functions, such as diffusion wavelets.

• Is it possible to specify optimality metrics for basis function generation, similar to metrics
used in control learning such as maximizing the cumulative long-term discounted sum of

2218



LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

rewards (or average reward)? How can the cost of learning basis functions be amortized over
multiple problems? Does this tradeoff suggest a way to balance the learning of reward-based
and reward-independent basis functions?

• What are the pros and cons of off-policy sampling vs. on-policy sampling in designing the
outer loop of RPI? For example, is it possible to construct problems where on-policy sampling
results in oscillation, as samples are increasingly generated from policies that visit increas-
ingly restricted portions of the state space? In the experiments in Section 7, newly generated
samples are combined with previously generated samples to avoid overfitting basis functions
to narrow regions of the state space, but this strategy may be computationally expensive in
large MDPs.

• Under what assumptions can RPI be shown to converge? It is clear from the experiments
presented in Section 7 that RPI converges extremely quickly in problems like the inverted
pendulum, whereas in other problems such as the mountain car or Acrobot, convergence
takes significantly longer. Can we characterize more formally conditions on the underlying
state (action) manifold under which RPI can be shown to reliably converge?

9.2 Combining Nonparametric Graph-based and Parametric Basis Functions

Proto-value functions are given information about the underlying state space manifold in terms of
the underlying graph that captures non-local smoothness, whereas parametric bases generally make
fairly broad uniformity assumptions about the underlying state space topology. It is reasonable
to try to combine the graph-based approach with parametric methods, such as RBFs, to combine
the advantages of the two approaches. For example, geodesic Gaussian kernels (Sugiyama et al.,
2007) are based on learning a graph of the underlying MDP from random walks, and using the
shortest path between any two states as the distance metric for a set of RBFs defined on the graph.
The Gaussian exponential term in the RBF approximator can be shown to be the solution of a
diffusion kernel (Kondor and Lafferty, 2002) or heat kernel (Chung, 1997) defined by a differential
equation, whose solution can be expressed as a matrix exponential function of the graph Laplacian.
Interestingly, matrix exponentials can serve as generators of manifold structures called Lie groups
(Baker, 2001), of which some interesting varieties are rotation and motion groups discussed in more
detail in Section 9.8. The Laplacian can also be viewed as an inverse covariance matrix (Ben-Chen
and Gotsman, 2005), defining a smoothing prior on the space of functions, which can be contrasted
with other priors such as Gaussian processes (Rasmussen and Kuss, 2004; Rasmussen and Williams,
2006). It is possible to combine the graph Laplacian smoothness functional with other parametric
smoothing kernels using manifold regularization methods (Belkin et al., 2006).

9.3 Proto-Value Functions From Directed Graphs

In this paper, we constructed PVFs by diagonalizing a symmetric diffusion operator on an undirected
graph. This approach can be readily generalized to more elaborate diffusion models which capture
asymmetry of actions using directed graphs. In particular, PVFs can be constructed by diagonalizing
the directed graph Laplacian (Chung, 2005), which is defined as

LD = Dφ−
DφP+PT Dφ

2
,
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where Dφ is a diagonal matrix whose entries are given by φ(v), the Perron vector or leading eigen-
vector associated with the spectral radius of the transition matrix P specifying the directed random
walk on G. For a strongly connected directed graph G, the Perron-Frobenius theorem can be ap-
plied to show that the transition matrix is irreducible and non-negative, and consequently the leading
eigenvector associated with the largest (real) eigenvalue must have all positive components φ(v) > 0.
In an initial study (Johns and Mahadevan, 2007), we have found that the directed graph Laplacian
can result in a significant improvement over the undirected Laplacian in some discrete and con-
tinuous MDPs. For example, in a modified two-room task where there are two “one-way” doors
leading from one room to the other, PVFs constructed from the directed Laplacian significantly out-
performed the non-directional PVFs constructed from undirected graphs for certain locations of the
goal state (e.g., near one of the one-way doors). Directed PVFs also appeared to yield improvements
in some continuous control tasks, such as the inverted pendulum.

9.4 Scaling PVFs by Kronecker Product Factorization

Proto-value functions can be made more compact using a variety of sparsification methods, some
of which have been explored in the literature on kernel methods. These include matrix sparsifica-
tion techniques (Achlioptas et al., 2002), low-rank approximation techniques (Frieze et al., 1998),
graph partitioning (Karypis and Kumar, 1999), and Kronecker product approximation (Van Loan
and Pitsianis, 1993). We discuss one specific approach that we have implemented for continuous
MDPs, and that has given us promising results (Johns et al., 2007). A random walk weight matrix
Pr = D−1W constructed through the methods specified above in Section 6 can be approximated by
a Kronecker product of two smaller stochastic matrices Pa and Pb, which minimizes the Frobenius
norm of the error:

f (Pa,Pb) = min(‖Pr−Pa⊗Pb‖F) .

We have implemented the approach specified in Van Loan and Pitsianis (1993) to construct two
smaller stochastic matrices whose Kronecker product approximates the original random walk ma-
trix Pr. 20 To ensure that the decomposed matrices are not only stochastic, but also diagonalizable,
which the Kronecker factorization procedure does not guarantee, we incorporate an additional step
using the Metropolis Hastings algorithm (Billera and Diaconis, 2001) to make the smaller matrices
Pa and Pb reversible. Then, the PVFs for the original random walk matrix Pr can be approximated
as the Kronecker product of the PVFs of the factorized smaller reversible matrices Pr

a and Pr
b (since

the smaller matrices are reversible, they can also be symmetrized using the normalized Laplacian,
which makes the numerical task of computing their eigenvectors much simpler). In an initial study
(Johns et al., 2007), we have been able to significantly reduce the size of the random walk weight
matrices for the inverted pendulum, mountain car, and the Acrobot tasks with modest loss in per-
formance compared to the full matrix. For example, in the Acrobot task, the original basis matrix
is compressed by a factor of 36 : 1, which resulted in a policy slightly worse than the original larger
basis matrix. One important point to emphasize is that the full basis matrix never needs to be stored

20. It is important to distinguish this approach from the Kronecker decomposition approach described in Section 5,
where the factorization was not an approximation, but an exact decomposition assuming the overall state space was a
product space. Here, the Kronecker factorization can be applied to arbitrary weight matrices, but the decomposition
is an approximation.
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or computed in constructing the state embeddings from the smaller matrices. The factorization can
be carried out recursively as well, leading to a further reduction in the size of the basis matrices.

9.5 Multiscale Diffusion Wavelet Bases

In this paper, proto-value functions were constructed by diagonalization, that is by finding eigenvec-
tors, of a symmetrized diffusion operator such as the Laplacian on an undirected graph. Formally,
such eigenvectors are essentially global Fourier bases and their properties have been extensively
studied in Euclidean spaces (Mallat, 1989). One well-known limitation of global Laplacian bases is
that they are poor at representing piecewise linear (value) functions. We have extended the approach
presented in this paper to construct multiscale diffusion bases, using the recently proposed diffusion
wavelet framework (Coifman and Maggioni, 2006; Bremer et al., 2006). Diffusion wavelets provide
an interesting alternative to global Fourier eigenfunctions for value function approximation, since
they encapsulate all the traditional advantages of wavelets (Mallat, 1989): basis functions have com-
pact support, and the representation is inherently hierarchical since it is based on multi-resolution
modeling of processes at different spatial and temporal scales. In Mahadevan and Maggioni (2006)
we compare the performance of diffusion wavelet bases and Laplacian bases on a variety of simple
MDPs. In Maggioni and Mahadevan (2006), we present an efficient direct method for policy evalu-
ation by using the multiscale diffusion bases to invert the Bellman matrix I− γPπ. We are currently
exploring faster methods of constructing multiscale diffusion wavelet bases.

9.6 Policy and Reward-Sensitive PVFs

In the PVF framework presented above, basis functions are constructed without taking rewards into
account. This restriction is not intrinsic to the approach, and reward or policy information when
available can easily be incorporated into the construction of PVFs. One recent approach studied in
Petrik (2007) assumes that the reward function Rπ and policy transition matrix Pπ are known, and
combines Laplacian PVF bases with Krlyov bases. This approach is restricted to policy evaluation,
which consists of solving the system of linear equations

(I− γPπ)V π = Rπ.

This equation is of the well-studied form Ax = b, and Krylov bases are used extensively in the
solution of such linear systems of equations. The Krylov space is defined as the space spanned by
the vectors

(

b Ab A2b . . .Am−1b
)

.

The use of Krylov bases to compress the belief space of a partially-observable Markov decision
process (POMDP) is investigated in Poupart and Boutilier (2003), which explores how to exploit the
factored representation of the transition dynamics specified by a dynamic Bayes net. As discussed
earlier, Keller et al. (2006) and Parr et al. (2007) both investigate constructing reward-sensitive basis
functions by explicitly estimating the error in approximating the value function using the Bellman
residual. These approaches can also be combined with Laplacian PVFs in several ways, for example
by combining low-frequency Laplacian bases with the more high-frequency reward-specific Krylov
bases, or by using the estimated Bellman residuals to set the weights of the graph.
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A more direct way to incorporate reward-sensitive information into PVFs is to modify the weight
matrix W to take into account the gradient of the value function to be approximated. Formally, this
approach is similar to estimating a function by knowing not only its values at sample points, but
also its gradient. Of course, any errors in the estimation of such gradients will then be reflected
in the weight matrix, and such an approach is not also without some drawbacks. While making
bases sensitive to rewards can lead to superior results, if the reward function or policy is modified,
reward-sensitive basis functions would need to be re-learned. In comparison, reward-independent
bases may be more generally applicable across different tasks.

9.7 Learning State Action PVFs

In our paper, the basis functions φ(s) are originally defined over states, and then extended to state
action pairs φ(s,a) by duplicating the state embedding |A| times and “zeroing” out elements of the
state-action embedding corresponding to actions not taken. That is, φ(s,a) = φ(s)⊗ Ia where Ia

is a vector indicator function for action a (all elements of Ia are 0 except for the chosen action).
This construction is somewhat wasteful, especially in domains where the number of actions can
vary significantly from one state to another. We have recently implemented PVFs on state action
graphs, where vertices represent state action pairs. Thus, the pair (s,a) is connected by an edge to
the pair (s′,a′) if action a in state s resulted in state s′ from which action a′ was next attempted.
State action graphs are naturally highly directional, and we used the directed Laplacian to compute
basis functions over state action graphs. Our initial results (Osentoski and Mahadevan, 2007) show
that state action bases can significantly improve the performance of PVFs in discrete MDPs.

9.8 Group-Theoretic Methods for Constructing Proto-Value Functions

As we discussed earlier in Section 3.6, there is a long tradition in mathematics of constructing
representations that are invariant under a group operator, including Fourier and wavelet transforms
(Mallat, 1989). One interesting extension is to exploit the properties of linear (matrix) represen-
tations of groups to construct compact PVFs. In particular, many of the continuous MDPs we
studied, including the inverted pendulum and the Acrobot, define continuous manifolds that have
been extensively studied in mathematics (Baker, 2001) and robotics (Lavalle, 2006). In addition,
the product spaces described in Section 5 generate graphs with large automorphism groups, which
can be exploited in reducing the size of their associated Laplacian eigenspaces.

To make this more concrete, consider the set of points generated by a rotation of a rigid object
in R

2. This manifold can be modeled as a Lie (matrix) group called SO(2), which stands for special
orthogonal group of order 2. This rotation group is defined by all orthogonal matrices whose deter-
minant is 1. Rotations and translations in R

2 can be represented by another Lie group called SE(2)
(special Euclidean group). Finally, problems like the Acrobot task are instances of kinematic chains,
which can be modeled by products of SE(2) matrices. These groups generalize correspondingly to
higher dimensions. Note that SE(n) groups are non-Abelian because rotations do not commute with
translations—the order matters! A detailed overview of Fourier analysis on non-Abelian groups
is given in Chirikjian and Kyatkin (2001), with an emphasis on rotation and motion groups use-
ful in robotics. An interesting direction for future work is to exploit such group representations to
construct compact PVFs.
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9.9 Proto-Value Functions for Semi-Markov Decision Processes

Proto-value functions provide a way of constructing function approximators for hierarchical rein-
forcement learning (Barto and Mahadevan, 2003), as well as form a theoretical foundation for some
recent attempts to automate the learning of task structure in hierarchical reinforcement learning, by
discovering “symmetries” or “bottlenecks” (McGovern, 2002; Ravindran and Barto, 2003; Mannor
et al., 2004; Şimşek et al., 2005). In particular, Şimşek et al. (2005) use the second eigenvector of the
discrete graph Laplacian operator I−D−1W to find bottlenecks in (undirected) state space graphs.
Ravindran and Barto (2003) explore the use of group homomorphisms on state action spaces to
abstract semi-MDPs, which can be combined with PVFs as a way of solving large SMDPs.

Another direction that we have begun exploring is to construct PVFs for temporally extended
actions, such as “exiting a room”. These temporally extended actions result in longer “distal” edges
connecting non-adjacent vertices (such as the vertices corresponding to interior states in a room with
those representing the “door” state). Our initial results reported in Osentoski and Mahadevan (2007)
suggest that constructing PVFs over state-action graphs using these distal edges can significantly
improve the performance over PVFs constructed over state graphs with only primitive actions.

9.10 Theoretical Analysis

Theoretical guarantees on the efficiency of proto-value functions in approximating value functions
are being investigated. Some results follow immediately from the construction of proto-value func-
tions. For example, it can be shown easily that the approximation produced by projecting a given
function on a graph on the subspace spanned by the smallest k proto-value functions produces glob-
ally the smoothest approximation taking the graph or manifold into account (Mahadevan and Mag-
gioni, 2006). There are also classical results on the efficiency of Fourier bases for approximating
smooth functions in a Sobolev space (Mallat, 1989), which can be carried over to the discrete case
of graphs. Belkin and Niyogi (2005) and Hein et al. (2007) study the sampling conditions under
which the various graph Laplacians converge to the Laplace-Beltrami operator on the underlying
manifold. For example, Hein et al. (2007) show that under non-uniform sampling conditions, the
random walk Laplacian converges to a weighted Laplace-Beltrami operator. These results need to
be combined with exploration techniques to investigate the conditions under which these sampling
conditions can be met in the context of MDPs. We are also currently exploring the stability of the
subspaces defined by proto-value functions using the tools of matrix perturbation theory (Stewart
and Sun, 1990; Sato, 1995), which quantifies the degree to which small perturbations of (positive
definite) matrices lead to bounded changes in the spectrum and eigenspace as well.

9.11 Transfer Across Tasks

Proto-value functions are learned not from rewards, but from the topology of the underlying state
space (in the “off-policy” case). Consequently, they suggest a solution to the well-known problem
of transfer in reinforcement learning (Mahadevan, 1992; Sherstov and Stone, 2005). One key ad-
vantage of proto-value functions is that they provide a theoretically principled approach to transfer,
which respects the underlying state (action) space manifold. We have recently begun to investigate
a framework called proto-transfer learning to explore the transfer of learned representations from
one task to another (in contrast to transferring learned policies) (Ferguson and Mahadevan, 2006).
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10. Summary

This paper describes a novel spectral framework for learning both representation and control in
Markov decision processes, where basis functions called proto-value functions are constructed by
diagonalization of a symmetric diffusion operator learned from samples collected during a random
walk of the underlying state space. Proto-value functions can be defined in several ways: this pa-
per focused principally on using the graph Laplacian on undirected graphs. Eigenfunctions of the
graph Laplacian provide geometrically customized basis functions that capture large-scale proper-
ties such as bottlenecks and symmetries. Projections of a value function onto the eigenfunctions
of the graph Laplacian provide the globally smoothest approximation that respects the underlying
graph or manifold. A general algorithmic framework called representation policy iteration (RPI)
was presented consisting of three components: sample collection, basis function construction, and
control learning. A specific instance of RPI was described that uses the least-squares policy itera-
tion (LSPI) method as the underlying control learner. Several directions for scaling the approach
were described, including Kronecker sum matrix factorization for large factored MDPs, and sparse
sampling combined with the Nystrom̈ interpolation method for continuous MDPs. Detailed experi-
mental results were provided using benchmark discrete and continuous MDPs, which evaluated the
effectiveness of the proto-value function approach, and compared their performance to handcoded
parametric function approximators, such as polynomials and radial basis functions. Many exten-
sions of the proposed framework are possible, and a few promising directions were elaborated.
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