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Abstract
Recently, Ye (2005) suggested yet another optimization criterion for discriminant analysis and pro-
posed a characterization of the family of solutions to this objective. The characterization, however,
merely describes a part of the full solution set, that is, it is not complete and therefore not at all a
characterization. This correspondence first gives the correct characterization and afterwards com-
pares it to Ye’s.
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1. Classical and New Criteria

Given N feature vectors of dimensionality n, a linear reduction of dimensionality, based on classical
Fisher LDA, determines an n×d transformation matrix L that, for a given d < K, K the number of
classes, maximizes the so-called Fisher criterion: F(A) = tr((AtSW A)−1(AtSBA)) or, equivalently,
F0(A) = tr((AtST A)−1(AtSBA)). Here, SB := ∑K

i=1 pi(mi −m)(mi −m)t, SW := ∑K
i=1 piSi, and

ST = SB + SW . The matrices SB, SW , and ST are the so-called between-class, pooled within-class,
and total covariance matrices. In addition, mi is the mean vector of class i, pi is the prior of class i,
and the overall mean m equals ∑k

i=1 pimi. Finally, Si is the covariance matrix of class i.
A solution to these optimization problems can be obtained by means of a generalized eigen-

value decomposition, which Fukunaga (1990) relates to a simultaneous diagonalization of the two
matrices involved (see also Campbell and Atchley, 1981). More common is it to apply a standard
eigenvalue decomposition to S−1

T SB (or S−1
W SB), resulting in an equivalent set of eigenvectors. The d

columns of the optimal solution L are simply taken to equal the d eigenvectors corresponding to the
d largest eigenvalues. It is known that this solution is not unique and the full class can be obtained
by multiplying L to the right with nonsingular d ×d matrices (see Fukunaga, 1990).

Clearly, if the total covariance ST is singular, neither the generalized nor the standard eigenvalue
decomposition can be readily employed. Directly or indirectly, the problem is that the matrix inverse
S−1

T does not exist, which is the typical situation when dealing with small samples. In an attempt to
overcome this problem, Ye (2005) introduced a different criterion that is defined as

F1(A) = tr((AtST A)+(AtSBA)) , (1)
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where + denotes taking the Moore-Penrose generalized inverse of a matrix. Like for F0, an optimal
transform L is one that maximizes the objective F1. Again, this solution is not unique.

2. Correct Characterization

For the full characterization of the set of solutions to Equation (1), initially the problem is looked at
from a geometrical point of view (cf., Campbell and Atchley, 1981). It is assumed that the number
of samples N is smaller than or equal to the feature dimensionality n. In the undersampled case, it
is clear that all data variation occurs in an N −1-dimensional subspace of the original space.

To start with, a PCA of the data is carried out and the first N − 1 principal components are
rotated to the first N − 1 axes of the n-dimensional space by means of a rotation matrix R. This
matrix consists of all (normalized) eigenvectors of ST taken as its columns. After this rotation, new
total and between-class covariance matrices, S′

T = RtST R and S′
B = RtSBR, are obtained. These

matrices can be partitioned as follows: S′
T =

(ΣT 0
0 0

)

and S′
B =

(ΣB 0
0 0

)

, where ΣT and ΣB are N −1×
N −1 covariance matrices and ΣT is nonsingular and diagonal by construction. The between-class
variation is obviously restricted to the N −1-dimensional subspace in which the total data variation
takes place, therefore a same partitioning of S′

B is possible. However, the covariance submatrix
ΣB is not necessarily diagonal, neither does it have to be nonsingular. Basically, the PCA-based
rotation R converts the initial problem into a more convenient one, splitting up the original space in
an N −1-dimensional one in which “everything interesting” takes place and a remaining n−N +1-
dimensional subspace in which “nothing happens at all”.

Now consider F1 in this transformed space and take a general n× d transformation matrix A,
which is partitioned in a way similar to the covariance matrices, that is,

A =

(

X
Y

)

. (2)

Here, X is an N −1×d-matrix and Y is of size n−N +1×d. Taking this definition, the following
holds (cf., Ye, 2005):

F1(A) = tr((AtS′
T A)+(AtS′

BA)) = tr

((

(

X
Y

)t(ΣT 0
0 0

)(

X
Y

)

)+(
(

X
Y

)t(ΣB 0
0 0

)(

X
Y

)

))

=tr

(

(

XtΣT X 0
0 0

)+(
XtΣBX 0

0 0

)

)

= tr

((

(XtΣT X)−1 0
0 0

)(

XtΣBX 0
0 0

))

= tr((XtΣT X)−1(XtΣBX)) = F0(X) .

From this it is immediate that a matrix A maximizes F1 if and only if the submatrix X maximizes
the original Fisher criterion in the lower-dimensional subspace. Moreover, if L is such a matrix
maximizing F1 in the PCA-transformed space, it is easy to check that R−1L = RtL provides a
solution to the original, general problem that has not been preprocessed by means of a PCA (see
also Fukunaga, 1990). A characterization of the complete family of solutions can now be given.

Let Λ ∈ R
N−1×d be an optimal solution of F0(X) = tr((XtΣT X)−1(XtΣBX)). As already noted

in Section 1, the full set of solutions is given by F = {ΛZ ∈R
N−1×d |Z ∈ GLd(R)}, where GLd(R)

denotes the general linear group of d × d invertible matrices. The previous paragraph essentially
demonstrates that if X ∈ F , A in Equation (2) maximizes F1. The matrix Y can be chosen ad
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libitum. Now, the latter provides the solution in the PCA-transformed space and to solve the general
problem we need to take the rotation back to the original space into account. All in all, this leads to
the following complete family of solutions L , maximizing F1 in the original space:

L =

{

Rt
(

ΛZ
Y

)

∈ R
n×d
∣

∣

∣
Z ∈ GLd(R),Y ∈ R

n−N+1×d
}

, (3)

where Λ = argmaxX tr((XtΣT X)−1(XtΣBX)) and Rt takes care of the rotation back.

3. Original Characterization

Though not noted by Ye (2005), his attempt to characterize the full set of solutions of Equation (1)
is based on a simultaneous diagonalization of the three covariance matrices SB, SW , and ST that is
similar to the ideas described by Campbell and Atchley (1981) and Fukunaga (1990). Moreover,
Golub and Van Loan (Theorem 8.7.1. 1996) can be readily applied to demonstrate that such si-
multaneous diagonalization is possible in the small sample setting. After the diagonalization step,
partitioned between-class, pooled within-class, and total covariance matrices are considered. This
partitioning is similar to the one employed in the previous section, which does not enforce matrices
to be diagonal however.

In the subsequent optimization step, the classical Fisher criterion is maximized basically in the
appropriate subspace, comparable to the approach described above, but in a mildly more involved
and concealed way. For this, matrices of the form Rt

(X
Y

)

are considered, consider Equations (2) and
(3). However, Y is simply the null matrix and the family of solutions L ′ provided is limited to

L
′ =

{

Rt
(

ΛZ
0

)

∈ R
n×d
∣

∣

∣
Z ∈ GLd(R)

}

.

Obviously, this is far from a complete characterization, especially when N − 1 � n which is, for
instance, typically the case for the data sets considered by Ye (2005).

Generally, the utility of a dimensionality reduction criterion, without additional constrains, de-
pends on the efficiency over the full set of solutions. As Ye (2005) only considers two very specific
instances from the large class of possibilities, it is unclear to what extent the new criterion really
provides an efficient way of performing a reduction of dimensionality.
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