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Abstract

Face recognition is a challenging problem due to variations in pose, illumination, and expression.
Techniques that can provide effective feature representation with enhanced discriminability are cru-
cial. Wavelets have played an important role in image processing for its ability to capture localized
spatial-frequency information of images. In this paper, we propose a novel local discriminant co-
ordinates method based on wavelet packet for face recognition to compensate for these variations.
Traditional wavelet-based methods for face recognition select or operate on the most discriminant
subband, and neglect the scattered characteristic of discriminant features. The proposed method se-
lects the most discriminant coordinates uniformly from all spatial frequency subbands to overcome
the deficiency of traditional wavelet-based methods. To measure the discriminability of coordi-
nates, a new dilation invariant entropy and a maximum a posterior logistic model are put forward.
Moreover, a new triangle squareratio criterion is used to improve classification using the Euclidean
distance and the cosine criterion. Experimental results show that the proposed method is robust for
face recognition under variations in illumination, pose and expression.

Keywords: local discriminant coordinates, invariant entropy, logistic model, wavelet packet, face
recognition, illumination, pose and expression variations

1. Introduction

Face recognition (Zhao et al., 2003; Jain et al., 2004) has become one of the most active research
areas in pattern recognition. It plays an important role in many application areas, such as human-
machine interaction, authentication and surveillance. However, the wide-range variations of human
face, due to pose, illumination, and expression, result in a highly complex distribution and deterio-
rate the recognition rate. It seems impractical to collect sufficient prototype images covering all the
possible variations. Therefore, how to construct a small-size-training face recognizer robust to envi-
ronmental variations is a challenging research issue. Wavelets have been successfully used in image
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processing. Their ability to capture localized spatial-frequency information of image motivates us
to use them for feature extraction. In this study, we investigate a new approach by extracting the
features not sensitive to environmental changes from a wavelet packet dictionary.

Generally, feature extraction, discriminant analysis and classifying criterion are the three basic
elements of a face recognition system. The performance and robustness of face recognition could
be enhanced by improving these elements. Feature extraction in the sense of some linear or non-
linear transform of the data with subsequent feature selection is commonly used for reducing the
dimensionality of facial image so that the extracted features are as representative as possible. A
lot of work on face recognition has been carried out based on similarities analysis (P. Howland
and Park, 2006; Belhumeur et al., 1997; Jiang et al., 2006; Martinez and Zhu, 2005; Vaswani and
Chellappa, 2006; Xiang et al., 2006; Zhao et al., 2003). A well-known feature extraction method is
called FisherFace, based on linear discriminant analysis (LDA), which linearly projects the image
space to a low-dimensional subspace so as to discount environmental variations (Belhumeur et al.,
1997; Fukunaga, 1990). This method is a statistical linear projection method which largely relies on
the representation of the training samples. On the other hand, wavelet-based methods with no spe-
cial focus on the training data have been used for feature extraction (Mallat, 1989; Coifman et al.,
1992). The decomposition of the data into different frequency ranges allows us to isolate the fre-
quency components introduced by intrinsic deformations due to expression or extrinsic factors (like
illumination) into certain subbands. Wavelet-based methods prune away these variable subbands,
and focus on the subbands that contain the most relevant information to better represent the data.
WaveletFace (Chien and Wu, 2002) only uses the low-frequency subband to present the basic figure
of an image, and ignores the efficacy of high-frequency components. Our previous study (Dai and
Yuen, 2006) uses a wavelet enhanced regularized discriminant analysis after dimensionality reduc-
ing with low-pass filter to solve the small sample size problem, which is also a method based on the
low frequency subband. Similarly, some other studies (Feng et al., 2000; Ekenel and Sanker, 2005;
Zhang et al., 2004, 2005) employ the traditional transform (e.g., ICA, PCA, Neural Networks) to
enhance the discriminant power in one or several special subbands, the latter always fuse the dis-
criminant power in these different subbands for final classification (Ekenel and Sanker, 2005; Zhang
et al., 2005). Moreover, as a generalization of the wavelet transform, the wavelet packet not only
offers an attractive tool for reducing the dimensionality by feature extraction, but also allows us
to create localized subbands of the data in both space and frequency domains. Saito and Coifman
introduced the local discriminant basis (LDB) algorithm based on a best-basis paradigm to search
for the most discriminant subbands (basis) that illuminates the dissimilarities among classes from
the wavelet packet dictionary (Coifman and Saito, 1994; Saito and Coifman, 1994, 1995). Some
studies (Saito et al., 2002; Stranss et al., 2003) constructed the modified LDB later. In Kouzani
et al. (1997), the best-basis algorithm of Coifman and Wicherhauser (1992) is used to search for
the wavelet packet basis for face representation. In Bhagavatula and Savvides (2005), PCA is per-
formed in wavelet packet subbands and the subbands which generalize better across illumination
variations for face recognition are sought. All the methods on these studies are based on the whole
discriminant subband.

It is known that a good feature extractor for a face recognition system is claimed to select as
many the best discriminant features as possible, which are not sensitive to arbitrary environmental
variations. Nastar and Ayach (1996) investigated the relationships between variations in facial ap-
pearance and their deformation spectrum. They found that facial expressions and small occlusions
affect the intensity manifold locally. Under frequency-based representation, only high-frequency
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spectrum is affected. Moreover, changes in pose or scale of a face and most illumination variations
affect the intensity manifold globally, in which only their low-frequency spectrum is affected. Only
a change in face will affect all frequency components (Zhang et al., 2004). So there are no special
subbands whose all coordinates are not sensitive to these variations. In each subband, there may
be only segmental coordinates which have enough discriminant power to distinguish different per-
son, the remainder may be sensitive to environmental changes, but the methods based on the whole
subband will also extract these sensitive features. Moreover, there may be no special subbands
containing all the best discriminant features, because the features not sensitive to environmental
variations are always distributed in different coordinates of different subbands locally. The methods
based on the segmental subbands will lose some good discriminant features. Furthermore, in dif-
ferent subbands, the amount and distribution of best discriminant coordinates are always different.
Many less discriminant coordinates in one subband may add up to a larger discriminability than
another subband whose discriminability is added up with few best discriminant coordinates and
residual small discriminant coordinates (Saito et al., 2002), then the few best discriminant coordi-
nates will be discarded by the methods which search for the best discriminate subbands, but only
the few best discriminant coordinates are needed. So the best discriminant information selection
should be independent of their seated subbands, and only depends on their discriminability for face
recognition. However, the methods based on the whole subband neglect the distribution of features,
they are deficient to select the best discriminant features sometimes.

Moreover, how to measure the discriminability of coordinate is one crucial element of the whole
algorithm. We translate it into the separability of each coordinate-loading ensemble, and propose
a new dilation invariant entropy which is independent of the order of magnitude (OM), instead of
deficient absolute “distance” measures. Furthermore, we construct a maximum a posterior (MAP)
logistic model to produce a separability measure function which presents factually the separability
of each coordinate-loading ensemble, that is, discriminability of each coordinate. Based on the new
dilation invariant entropy and its derived separability measure function, any two coordinates are
comparable for their discriminability, either they locate in the same subband or different subbands.

To solve the “small sample size” (SSS) problem, we use the complete linear discriminant analy-
sis (CLDA) idea (YYang et al., 2005) which captures both regular and irregular discriminant informa-
tion and makes a more powerful discriminator. For classifying criterion, the traditional Euclidean
distance cannot measure the similarity very well when there exist illumination variations on facial
images, and the cosine criterion is unsatisfactory when there exist pose and expression changes.
Thus, we propose a new triangle square ratio criterion. Experimental results show that it can over-
come the deficiency of the Euclidean distance and cosine criterion very well.

In this paper, to deal with illumination, pose and expression problems, we propose a new local
discriminant coordinates (LDC) algorithm to select uniformly the most discriminant independent
coordinates in all spatial frequency subbands for face recognition, in order to overcome the limi-
tation of the methods based on whole subband. Experimental results show that our LDC feature
extraction has almost overcome the shortcomings of the methods based on subband and improves
the effect of feature extraction for face recognition under different environmental variations.

The contribution of this paper consists of the following:

e Further extension of wavelets to face recognition to deal with illumination, pose and expres-
sion problems.
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¢ Introduction of a dilation invariant entropy and a maximum a posterior logistic model for
selection of wavelet packet coordinates.

e Use of a new similarity criterion coupled with the nearest neighbor classifier.

e Design of a face recognition system, which solves the small sample size problem and is robust
to variations in illumination, pose and expression.

The paper is organized as follows. In Section 2, the wavelet packet decomposition and the
local discriminant basis algorithm will be introduced. Our proposed algorithm and the whole pro-
cedure will be presented in Section 3. In Section 4, experimental results are presented, followed by
discussions and conclusion in Section 5.

2. Feature Extraction by L ocal Discriminant Basis

In this section, we first make a review on the wavelet packet decomposition, then the local discrim-
inant basis (LDB) algorithm and the modified LDB algorithm are introduced.

2.1 The Wavelet Packet Decomposition

Wavelets are functions that satisfy certain mathematical requirements and are used as basis functions
in representing data at different scales and time-frequency locations. Wavelets (Kouzani et al., 1997;
Vaidyanathan, 1993) can be generated from a two-channel filter bank method which uses repeated
filtering and downsampling to decompose signals into time-frequency subbands. The two-channel
filter bank has a lowpass filter which removes the high frequencies and a highpass filter which
removes the low frequencies. For the wavelet transform, only the lowpass filtered subband is further
iterated. As a generalization of the wavelet transform, the two-channel filter banks are iterated over
the lowpass and the highpass subbands in the wavelet packet decomposition. This generates a tree
structure which provides many possible wavelet packet bases, accordingly, signals are decomposed
into a time-frequency dictionary.

When dealing with images, the wavelet decomposition or the wavelet packet decomposition
is first applied along the rows of the images, then their results are further decomposed along the
columns. This results in four decomposed subimages L1, Hi, V1 and D1. These subimages rep-
resent different frequency localizations of the original image which refer to Low-Low, Low-High,
High-Low and High-High respectively. Their frequency components comprise the original fre-
quency components but now in distinct ranges. While the process being iterated, only L, is further
decomposed in the wavelet decomposition, but all L1, Hy, V1 and D; are further decomposed in the
wavelet packet decomposition. Figure 1 shows a two-dimensional examples of a facial image for
the wavelet decomposition and the wavelet packet decomposition with depth 2.

2.2 The Local Discriminant Basis (LDB) Algorithm

The local discriminant bases algorithm (Coifman and Saito, 1994; Saito and Coifman, 1994, 1995)
uses an adjustment of dictionary, or a wavelet packet decomposition tree which offers a library of
orthonormal basis localized both in space and in frequency. Before proceeding further, let us set our
notations. Let X = {x1,X2,---,Xy} be an ensemble of training samples with K classes, X = U§:1Xy,
and Xy = {X{,X3,---X4,}, where Ny is the number of samples belong to class y, and N = 37_; Ny.
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Lewel 1

Figure 1: (Top) The two-dimensional wavelet decomposition of facial image with depth 2. (Bottom)
The two-dimensional wavelet packet decomposition of facial image with depth 2.

We use D to represent the space-frequency dictionary consisting of a collection of wavelet packet
subbands {B;}, j =1,---,(4“"* —1)/3, where Bj = {bj1,bj2,--- ,bjn }, bji(i = 1,2,--- ,n;) are
wavelet packet coefficients and nj is the size of wavelet packet subband Bj, £ is the decomposition
level of wavelet packet.

The LDB algorithm first decomposes the training samples in the dictionary D, then sample
energies at the basis coordinates are accumulated for each sample class separately to form a space-
frequency energy distribution per class. Let F(”(Bj) be a normalized energy of class y samples
presented on the subbands Bj:

r” 85 = (" (bja). M (bj2), - ,F(y)(bjn;)) VBj C D, (1)
Ny b y|2
V) A Qi to X
rv (bjr) 2 w (2)
Yica Xl

where - denotes the standard inner product in the Euclidean space. The loss function ¢ is used to
measure “distances” among K vectors I (B;),* (B;),---,I"(Bj):

K

@u(B)) = (T (B),r " (B)),,F'®) £ Y a*(r'"(8),r"(8))) 3)

mn=1

m#£n
where d* (-,-) is a “distance” measure, it can be the I? distance, the relative entropy, or the J-
Divergence. Then ¢ (B;) will be a measure of efficacy of the subband B; for classification, and
local discriminant basis are selected by the best-basis algorithm (Coifman and Wicherhauser, 1992)
using the following criterion:

W =argmax @, (Bj). 4)

BjG@

The final step is to construct traditional discriminant analysis (e.g., LDA, CT) with features derived
from the LDB feature extraction.

1169



Liu, DAI AND YAN

2.3 The Modified LDB (MLDB) Algorithm

In Saito et al. (2002), a modified version of the LDB algorithm is introduced using the empirical
probability distributions instead of the space-frequency energy distribution as their selection strategy
to eliminate some less discriminant coordinates in each subband locally. Let

K

8it = @ (M (bje), M (bje), T (b)) = 3 d*(T" (byo),T" (byy)) (5)

that is, the discriminability of coordinate bj; (t =1,2,---,nj). Then the measure of the discrim-
inability of B; is obtained by summing only the no(< n;) largest terms, that is,

@(8) éiém (6)

where {8;,} is the decreasing rearrangement of {d;; }, and local discriminant basis are selected by

the best-basis algorithm using the criterion (4) as LDB. The final step is the same as LDB.
Although the MLDB algorithm may overcome some limitations of LDB, the selection of coordi-

nates is only limited to each subband so that coordinates in different subbands are still incomparable.

3. The General Framework of the LDC Algorithm

Our LDC algorithm uses a ternary architecture similar to LDB. We use the wavelet packet feature
extraction at the first step. The main difference between LDB and our LDC algorithm is the nature
of “distance” measure and feature selection strategy. We propose a new dilation invariant entropy to
take the place of traditional traditional absolute “distance” measures. This ensures that the compar-
ison of discriminability among all coordinates is independent of spatial frequency subbands. Thus,
our selection can be based on all coordinates of the dictionary, but not the subbands themselves.

Moreover, LDB uses only the between-class difference, and ignores the within-class difference.
This may lead to an unsatisfactory discriminability. The solution presented in this paper makes use
of the maximum a posterior (MAP) logistic model. Its derived separability measure function will
get a contrastive term to ensure not only the within-class difference is low, but also the between-
class difference is large. Our LDC algorithm does not need the best-basis algorithm (Coifman and
Wicherhauser, 1992) used in LDB, it ensures that we can select the most discriminant features with-
out any impact of the best-basis algorithm. Subsequently, the LDC algorithm uses the complete
linear discriminant analysis (CLDA) to solve the “small sample size” (SSS) problem, instead of
the traditional LDA or CT in LDB. Finally, we modify the Euclidean distance and the cosine crite-
rion in the nearest neighbor classifier, and replace them with the triangle square ratio criterion for
classification.

3.1 The Wavelet Packet Decomposition in our LDC Algorithm

In the LDC algorithm, the wavelet packet technique is used to decompose an image into subbands
that are localized in both space and frequency domains, and offers a choice of optimal coordinates
for the representation of a human face. Therefore, it is possible to seek the most discriminative
coordinates for classification. Because each child subband is derived from its parent subband at
the above level, the coordinates in the two levels are linearly dependent. In the first experiment in
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Original Image
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Level 1 L1 Ha Vi D:
v v v
Level 2 LL2 LH- RV LD:

Figure 2: The wavelet decomposition tree used in this study. The dashed part is the spatial-
frequency dictionary D in the LDC algorithm

Section 4, we will search for the most discriminant level by the best performance of its selected
coordinates. Because it is more time-consuming when the decomposition level L is larger than 4,
L =4 will be used in the experiment. In the first level, four subband images—L 1, Hy, V1, D;—are
obtained. However, the high frequency H1, V1, D; are sensitive to noises in facial images, and
Ekenel and Sanker (2005) claimed that they have low performance for classification. Moreover, the
results in Table 4 show that our dilation invariant entropy used in the LDC algorithm may extract
few high frequency components which may slightly affect the performance, also for the sake of
computational efficiency, the Hy, V1, D1 components are not further decomposed. Our experimen-
tal results show that Level 3 has better performance than Level 1, 2, 4, and the same results are also
presented in Chien and Wu (2002). In fact, with the further wavelet packet decomposition, more
fine scale information which may have good discriminant power is generated, however, the reso-
lution of subband images becomes lower so that less information exists for the purpose of object
localization (Grewe and Brooks, 1997). Neither little scale information nor little localization infor-
mation can generate a judicious combination which has best discriminate power, so Level 3 which
may give a suitable tradeoff between scale information and localization information is used in some
studies (Chien and Wu, 2002; Feng et al., 2000). We also use Level 3 in the LDC algorithm, and
our spatial-frequency dictionary D consists of 16 subbands in Level 3 (a subset of the dictionary in
the LDB algorithm) (see Figure 2). The Daubechies db4 wavelet will be used for image decompo-
sition (Daubechies, 1990), if the sizes of facial images are not the dyadic numbers, we will apply
zero-padding extension to create the smallest dyadic images for the wavelet packet decomposition.

3.2 The Dilation Invariant Entropy

In this subsection, we first point out the deficiency of absolute “distance” measures in wavelet-based
methods, then introduce our dilation invariant entropy and its property.

3.2.1 DEFICIENCY OF ABSOLUTE “DISTANCE” MEASURES IN WAVELET-BASED METHODS

To introduce our new dilation invariant entropy, we first list several traditional discriminant mea-
sures. Given two nonnegative sequences W = (W1,Ws,--- ,Wp), Z = (21,22, ,Zn), the square 02
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norm is defined by
n

4 (wz) £ w2l =  (wi—a)” (7)

Suppose S wi = 1,5,z =1, then the Kullback-Leibler divergence (Kullback and Leibler,
1951), also known as relative entropy, is defined by

n .
d“-°(w,z 2 S wilog ot 8
(w2) = 5 wilog ®

with the convention that log0 = —o, logy/0 = co for y > 0 and 0(£e) = 0. A symmetric version
of d¥? is the J-Divergence (Kullback and Leibler, 1951) given by

KLD KLD
dJDIV(W’Z) A d (W7Z)"’2'd (Z,W). (9)
It is easy to show that measures in Equations (7)-(9) are additive discriminant measure, that is,
n
= Zld*(wi,zi) (+=s/2,KLD,JDIV). (10)

From Equations (3) and (10), we know that the discriminant measure of subband Bj in the LDB
algorithm can be written as

K Nj

@B =3 5 dr" (b),r" (bj). (11)

mn=1t—=

m#n
Also from Equations (5) and (6), we know that the discriminant measure of subband Bj in the
MLDB algorithm can be written as

K No

®B) =Y 3 d (" (bje). M (bjr)), (o <n)) (12)

mn=1{—
m#£n
where bj«), (t =1,---,ng) are the first ng coordinates with largest discriminability in subband B;.
However, there are no normalized conditions imposed in each subband when the decomposition
level £ > 0, because for each subband B;(j > 1) (B is the original image)

ir( i) er )<1 and Zr bjs ¢co,zr ))#Ci Wy
t=

where Co,C, are constants independent of y and Bj. Without the normalized conditions, the absolute
“distance” measures (7)-(9) will lead to a jeopardy that ¢ (B;) and ¢ (B;) depend absolutely on the
order of magnitude (OM) of I'™ (bj¢), I (bje) and '™ (bj)), T (b)) respectively.
Unfortunately, we find that the OM of coordinate loadings make much difference between lower
spatial frequency subbands and higher spatial frequency subbands. For example, the coordinate
loadings in the first spatial frequency subband Bg (=LL; in Figure 2) of the second level may vary
from 0.1 to 10, and the coordinate loadings in the second spatial frequency subband B7 (=LH; in
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Bs B7
@ (bet) @ (bet) o (bn) @ (br)
1.47e-04 3.86e-04 6.72e-08 4.90e-07
8.04e-05 3.57e-04 4.13e-07 5.04e-06
2.07e-04 3.91e-04 1.32e-06 1.10e-07
1.06e-04 3.57e-04 5.45e-07 7.02e-08
1.07e-04 3.83e-04 1.43e-07 5.32e-08
2.05e-04 3.57e-04 5.20e-09 7.14e-08

Table 1: Values of I (be), ™" (bz) (y=1,2; t =1,--- ,6)

Figure 2) of the second level may vary from 0.001 to 0.01. Table 1 lists an example of some values
of ¥ (bet), r (b7t) computed by Equation (2) in latter experiment.

From Equations (11),(12) and (2), we can deduce a bad result that the coordinates in lower
spatial frequency subbands have more discriminability because of the larger OM of theirs loadings,
and the coordinates in higher spatial frequency subbands have less discriminability because of the
smaller OM of theirs loadings. So the low spatial frequency subbands are dominant in the LDB
and MLDB algorithm. However, it is unreasonable to neglect the middle and high spatial frequency
components merely for small OM of their loadings. Our experimental results also show that not
only low spatial frequency components, but also middle spatial frequency components are useful
for face recognition.

3.2.2 THE DILATION INVARIANT ENTROPY AND ITS PROPERTY

First, we define that the separability of sample ensemble X is the probability of classifying all sam-
ples into their genuine classes by certain discriminant functions. It is well-known that the separabil-
ity of X does not depend on the absolute distances based on the OM of sample values, but depends
on the relative distances among all the samples in X. For each coordinate ¢, the coordinate loadings
from all the training samples can induce a sample ensemble X ¢ in R!, and the discriminability of ¢
is equivalent to the separability of X€, so it is independent of the OM of coordinate loadings, and
only depends on the relative distances among the coordinate loadings from all the training samples.
Obviously, the “distance” measures used in LDB do not take this fact into account. So we propose
a new “distance” measure derived from the J-Divergence. We call it the dilation invariant entropy :

dDIE(W’Z) ) l_ﬁlm(\%l logw; + VZTII logzi) = ii (Wi _Ziz)((\ll\(l)igfzii)_ logz;) (13)

where w = (W1, Wo, -+ ,Wy), Z= (21,22, -+ ,Zn) are two nonnegative sequences, with the convention
that log0 = —oo, logy/0 = oo for y > 0 and 0(+-0) = 0.

Proposition 1 The new relative entropy defined by Equation (13) is dilation invariant.

Proof Suppose the dilation transform f :w € R" — f(w) =aw € R", a(> 0) is a dilation constant,
then
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d%E(f(w), f(2)) = d”%(aw, az) = i; (aw; — agl();\ll\(l)lgf\;vzll)_ logaz;)

a(w; —z)(logw; +loga — logz; — loga)
2a(w; +z;)

(Wi — zi)(logwi — Iogzi)

2(wi +1z)

'(w,z).

=}

s

I
o
]

In fact, the new dilation invariant entropy is the generalization of the J-Divergence (when the
J-Divergence satisfies the constraint: w+z = 1) because

leE(W 7) = C (Wi —zi)(logwi —logz)
’ i; 2(wi +1;)
21w Zi Wi Zi
=) 5 lo —lo
iZZ(W +1i Wi+2i)( gWi+2i gWi+Zi) (14)
1 n /
= (Sw Iog + 4 Iog—I
DUCEELE ]
dJDlV(W7Z)
wherew| = 2=,z = A5, wi+z{ =land W' = (W}, -~ ,wy), 2" = (7}, ,z;). Equation (14) shows

that the dllatlon invariant entropy normalizes the sample ensembles into unit sample ensembles with
the sum formalism, so different sample ensembles are comparable for their separability. Similarly,
we can define the dilation invariant #2 norm as

dDMZ(W’Z) - (I;(W:’r‘ Z a Wiz‘;‘zi )2> N (lZlONl/ _Zi/)2> - dZZ(lez/)' (15)

In Section 4, we will conduct an experiment to test the performance of the LDC algorithm using
both dilation invariant entropy and dilation invariant #2 norm.

The dilation-invariance of the new relative entropy ensures that the separability of each coordinate-
loadings ensemble X € is independent of its OM. Accordingly, the discriminability of each coordinate
¢ can be independent of its corresponding subband. It offers a benefit that any two coordinates in
the dictionary 9 are comparable for their discriminability. So all the coordinates in the dictionary
can be uniformly selected by a criterion.

3.3 Feature Selection Criterion

Sometimes, maximizing the between-class difference or minimizing the within-class difference
alone leads to a bad result. So in the LDC algorithm, our separability measure function will contain
a term to maximize the between-class difference and minimize the within-class difference simulta-
neously.
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3.3.1 THE MAXIMUM a posteriori (MAP) LOGISTIC MODEL

To select the most discriminant coordinates, we make use of the Bayesian algorithm based on min-
imizing the error on the training set. The Bayesian algorithm adopts a probabilistic measure of
similarity based on a Bayesian MAP analysis of face differences. In the traditional methods (Wang
etal., 2006; Chou, 2000), the similarity measure is used to characterize what kind of image variation
is typical for the same person and what is for different persons. In this paper, the MAP similarity
measure is used to choose the coordinates that make the training data set with known class labels
having the minimum error. In this way the selected coordinates can make the known classification
of training data set the most probable:

K
¢ =arg mgxyz\%xy) /x Pe(Xy[x)1(x € Xy)dP(x)

where #(-) is the cardinal number, and 1(-) is the indicator function. The posterior probability
Pc(Xy|x) can be rewritten as

Pe(Xy[x) = Pc(X|Xy)Pc(Xy) /Pe(X) = Pe(X[Xy)Pc(Xy) /P (X).

Since P(x) is not a function of the class index and thus has no effect in the MAP decision, the needed
probabilistic knowledge can be represented by the class prior distribution P¢(Xy) and the conditional
probability Pc(x|Xy) which will be modeled by logistic functions.

Definition 1 The prior distribution P¢(Xy) is defined as

1 1
Pe(Xy) = = :
C( Y) T 1—|—eXp(—dDIE(r(y)<C),r(o)(C)))
K 1 (16)
T= Zx 1 dPE TV © :
=1 1+exp(—=d™" (M (c),M(c)))
Definition 2 The conditional probability Pe(x|Xy)(x = xY) is defined as
1
Pe(XY[Xy) = 17

1+ exp(leE (r_(y) (C), rv (C))

where ' (c) is defined by Equation (2), representing the normalized spatial-frequency energy map
of class y on coordinate c, and can be thought of as the center of class y. Similar to that of LDB, we
set

s Je-x?

2
A Yhavialex|
X% -

.
1 S Xl

EV)( ) represents the normalized spatial-frequency energy map of sample x! on coordinate c, and
©(c) represents the normalized spatial-frequency energy map of all the training samples on coor-
inate ¢, which can be considered as the center of all samples.

The properties of the probability functions P¢(Xy) and Pe(x|Xy) can be made clear by consider-
ing the sigmoid function:

) ()

(18)
c
c

r
r
d

1
- 1+exp(—yd +9)

f(d)
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with 8 normally set to zero and y set to 1 for Pg(Xy) and -1 for Pc(x|Xy). When y= 1, f(d) is
a monotonically increasing function, a larger dD'E(I'(”(c), r (c))) means that it is more probable
to separate class set Xy. Contrarily, when y= —1, f(d) is a monotonically decreasing function, a
smaller dD'E(I'i(y> (c), r (c)) means that sample x? is more likely to belong to class set Xy. In fact,
the idea of MAP logistic model is derived from the Fisher criterion. Moreover, the sigmoid function
can effectively allay the effect of outliers which have great effect on the Fisher criterion.

3.3.2 SEPARABILITY MEASURE AND FEATURE SELECTION CRITERION

For the given training data set, the empirical probability measure P(x) defined on the training data set
is a discrete probability measure that assigns equal mass at each sample. We define the separability
measure as

K
SM(c) :y;%xy) /X Po(XyX)L(x € X,)dP(x)
K

~y NyP YIXy)Pe(X
NyZLN—yi; c(X7 | Xy)Pe(Xy) (19)

KP(X)(”P(V\X))
;Z; Y NYig& Y

In fact, the separability measure defined by Equation (19) is an empirical measure. If the training
samples are obtained by an independent sampling from a space with a fixed probability distribution
Po(x), the empirical probability distribution P(x) will converge to Py(x) in distribution as N — co.
Then the empirical measure defined on the N independent training samples will converge to the
expected measure as the sample size N increases. With sufficient training samples, the empirical
measure is an estimate of the expected measure. The goodness of this estimate is determined by the
training sample size N and the convergence rate of the empirical probability measure P(x) to the
limit distribution Py(X).
Furthermore, we use the following criterion for feature selection:

Criterion: Select uniformly the first Ny coordinates from the dictionary 9 with largest separability
measure defined by Equation (19).

3.4 Discriminant Analysis

LDA (Fukunaga, 1990) is a linear statistic classification method, which tries to find a linear trans-
form so that after its application the scatter of sample vectors is minimized within each class and
the scatter of mean vectors around the total mean vector is maximized simultaneously.

Let the between-class scatter operator Sy, and the within-class scatter operator Sy, be:

1 K 1 K Ny
Sh=3 Ny(my—mo)(my—mo)T, Sw= (X'y—my)(x'y—my)T
N ;Z; N ;Z;g;_ I

where my is the mean of the mapped training sample of class y, and mg is the mean across all the
mapped training samples. Then the Fisher criterion function can be defined by
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The solution to maximizing J1(¢1) can be found by searching for a direction which maximizes the
projected class means (the numerator) while minimizing the class variances in this direction (the
denominator).

However, the LDA algorithm often suffers from the “small sample size” (SSS) problem which
exists in high-dimensional pattern recognition tasks, where the number of available samples is
smaller than the dimensionality of the samples. Many methods (Mika et al., 1999; Baudat and
Anouar, 2000; S. Mika and Miiller, 2003; Yang, 2002) discard the discriminant information con-
tained in the null space of Sy,. But a significant result is a finding that there exists crucial discrim-
inative information in the null space of S,, (Chen et al., 2000; Zhuang and Dai, 2007; Yang and
Yang, 2003; Yu and Yang, 2001). We proposed the use of regularization (Dai and Yuen, 2003), but
it involves a determination of parameters. Yang et al. (2005) proposed a complete kernel Fisher
discriminant analysis algorithm which makes full use of two kinds of discriminant information, reg-
ular and irregular in kernel feature space. Its advantage is that no estimation of parameter is needed.
Based on their idea, we use complete linear discriminant analysis (CLDA) in the LDC algorithm to
solve the SSS problem.

In Equation (20), if the within-class scatter operator Sy, is invertible, ¢ISW¢1 > 0 always holds
for every nonzero vector ¢4, and the Fisher criterion can be directly employed to extract a set of
optimal discriminant vectors. If S, is singular, there always exist vectors satisfying ¢ Sw® = 0.
These vectors are from the null space of S, (null(Sy)) and can be very effective if they satisfy
$TSpd > 0 at the same time (Chen et al., 2000; Zhuang and Dai, 2007; Yang and Yang, 2003; Yu
and Yang, 2001). In this case, the Fisher criterion degenerates into the following between-class
scatter criterion:

J1(91) (9170, ]1¢1]| = 2). (20)

J2(92) = 0302, (ll92]l =1). (21)

CLDA uses the between-class scatter criterion defined in Equation (21) to derive the irregular dis-
criminant vectors from null(Sy), while using the standard Fisher criterion defined in Equation (20)
to derive the regular discriminant vectors from range(Sy).

In our experiments, we capture all the regular discriminant vectors which satisfy Ji(¢1) > 0
from the range space of Sy, simultaneously, we capture all the irregular discriminant vectors which
satisfy Jo(¢2) > 0 from the null space of Sy,

3.5 A New Criterion for the Nearest Neighbor (NN) Classifier

After the discriminant features are extracted, a remaining key element of face recognition is to
design a robust classifier. Because there are large numbers of classes in face recognition problems,
we do not use the hyperplane classifier, but the NN classifier which is more suitable for such many-
class problems. Because the NN classifier forms class boundaries with piecewise linear hyperplanes,
any classifying border can be approximated by a series of hyperplanes defined locally. Moreover,
classifying criterion is the core of the design. The Euclidean distance is the most popular one which
exhibits the distance between two vectors intuitively. However, it ignores the correlation which is
also important for measuring the similarity of two vectors. On the contrary, the cosine criterion
(Zzhang and Korfhage, 1999) exhibits the correlation, but ignores the distance between two vectors.
In order to improve the Euclidean distance and cosine criterion, we propose a new triangle square

1177



Liu, DAI AND YAN

ratio which takes into account of both distance and correlation between two vectors. Suppose L1,
U, are two vectors, the triangle square ratio is defined as

Jur — V2|13
TSR(L1.Ly)) = ———— "= |
(V102) = 0, BT 0ol

The triangle square ratio is a similarity measure based on the argument and modulus of each vector,
as shown in proposition 2.

Proposition 2 Suppose 6 is the include angle of v, and vy, then TSR(v1,V2) — 0 if and only if
|lu1]]2 — [|u2]|2 @and & — O, which implies the correlation between v, and v, should approach 1.

Proof

~ 2[|uall2-Juzl2

[a][3 + [|v2[3
>1—cos® (“="holds if and only if 1|2 =]v2]2)
>0 (“="holdsifandonlyif 8=0).

TSR(v1,u2) =1 cos® (by the cosine law)

(22)

In fact, if v1 and v, are unit vectors, the triangle square ratio is equivalent to Euclidean distance.
Also, Equation (22) shows that triangle square ratio is a modification of cosine criterion by the

term % If |Ju1||2 = ||u2]|2, it is equivalent to cosine criterion. Moreover, we have done
2 2

large numbers of numerical experiments which exclusively show that /T SR(v1,V7) satisfies the
triangle inequality, and the symmetric and positive definitive properties are obvious. So we guess
+/TSR(v1,V2) is a distance measure, its proof in theory is an open problem.

Experimental results in Section 4 show that the triangular square ratio is more robust against
illumination variations than the Euclidean distance, whilst retaining the robustness against pose and
expression changes as the Euclidean distance. On the other hand, although the triangular square
ratio marginally underperforms the cosine criterion when there are variations of illumination, it can
obviously outperform the cosine criterion when there are changes of pose and expression.

3.6 The Procedure of Proposed LDC Algorithm

We summarize our local discriminant wavelet packet coordinates algorithm as follows:
Step 1: The wavelet packet transform

Expand each training sample x! into the spatial-frequency dictionary 9 (see Figure 2) by
the wavelet packet decomposition, then x) will be represented by the loadings of coordinates in D.
Step 2: The LDC selection transform

(2.a) For each coordinate ¢ in the dictionary D, use the Equations (2), (18), (16), and (17) to
compute its prior distribution P¢(Xy) and conditional probability Ps(x!|Xy), whereafter, compute its
separability measure defined by Equation (19), that is, its discriminability.

(2.b) Select the first Ng coordinates from 9 with the largest discriminability. Whereupon, each
training sample x}' can be represented by a feature vector v which is formed by the loadings of the
selected coordinates. These feature vectors form a new feature space .

Step 3: The CLDA transform
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Use the Equations (20) and (21) to construct the subspace template by the complete linear dis-
criminant analysis (CLDA) in F.
Step 4: Testing a new probe sample

For a new probe sample, it will be expanded into the spatial-frequency dictionary 9D by the
wavelet packet decomposition, and be extracted the loadings of the corresponding coordinates se-
lected in Step 2 to form a new feature vector v.,,. Then v, Will be projected to the subspace
constructed in Step 3 and classified by the nearest neighbor classifier.

Simply, the LDC algorithm can be represented as:

Output =Ts-To - T1 - Input

where Ty is the wavelet packet transform, T, is the LDC selection transform. and T3 is the CLDA
transform.

3.7 Computational Complexity Comparison of the LDC and LDB Algorithm

The framework of the LDC algorithm is similar to LDB. We compare their computational complex-
ity step by step:
Step 1: The wavelet packet transform

The same procedure of the LDC and LDB algorithms cost O(N - nyn¢- £), where n, x n¢ is the
size of facial images, L is the level of the wavelet packet decomposition.
Step 2: The LDC/LDB selection transform

(2.a) For each coordinate in D¢, the LDC algorithm needs to compute the prior distribution
(16), the conditional probability (17) and its discriminability (19), so the costs of all the coordinates
in D.pc are O(N -nyne) + O(K - neng) +O(N - nyne). For each subband in D, e, the LDB algorithm
needs to compute the space-frequency energy distribution (2), (1) and its measure of efficacy (3).
So the costs of all the subbands in Dyps are O(N -neng- L) +O(K2-neng- L).

(2.b) The LDC algorithm needs to sort all the coordinates in D, by their discriminability,
which costs O(n;n¢ - log,(nyne)). The LDB algorithm needs to select the local discriminant basis
from D_ps using the best-basis algorithm, which costs O(L -4*). Then both algorithms need to
represent all the training samples by new feature vectors, which cost O(N - Np).

Step 3: The CLDA/LDA transform

CLDA in the LDC algorithm has the same computational complexity O((Np)?) as LDA in the
LDB algorithm in the new feature space 7.

Step 4: Testing a new probe sample

A new probe sample should be transformed by T, T, T3 with complexity O(nyn¢- L) +O(Ng) +
O(Np - Nev) and classified by the NN classifier with complexity O(N - Ngy), where Ngy, is the number
of eigenvectors extracted by CLDA or LDA.

The computational complexity of Step 2 shows that the LDC algorithm is more efficient than
LDB in many real applications when K is large. Table 11 also validates the fact.

4. Experiment Results

The results presented in this section are divided into five parts. First, we construct a dictionary D
and choose a preferable Ng for our LDC algorithm. As aforementioned, the LDC algorithm consists
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of the LDC based feature extraction, the complete linear discriminant analysis (CLDA) and the
nearest neighbor (NN) classifier with the triangle square ratio (T SR) criterion. In the second and
third parts, we evaluate the efficacy of the LDC feature extraction and the new classifying criterion
respectively. The fourth part gives the performance of the whole LDC algorithm. Some further
researches of the LDC algorithm are shown in the final part.

4.1 Database

1) FERET Database: The FERET database, distributed by the National Institute of Standards and
Technology, consists of 14051 eight-bit grayscale images of human heads with different expres-
sions, poses, occlusion and illuminations (Phillips et al., 2000). Two data sets of the database are
used in our experiments, one is a small data set, which contains 432 images of 72 people and each
individual has six images, the other is a large data set with 255 individuals, and each person has four
frontal images, the datas are extracted from four different sets, namely, Fa, Fb, Fc, and duplicate
(Phillips et al., 2000). There are 1020 images in this data set. All the images are aligned by the
centers of eyes and mouth, and then normalized with the resolution 92 x 112. Some images from
both data sets of the FERET database are shown in Figure 3.

2) ORL Database: The Olivetti-Oracle Research Lab (ORL) database has 40 subjects and each
subject has 10 different facial views representing various expressions, small occlusion (by glasses),
different scales and orientations. So there are totally 400 facial images in the database. Each image
has 92 x 112 pixels in gray scale. Some samples are shown in Figure 4.

3) Hybrid Database: As aforementioned, the variations of the ORL database and the FERET
database are very different, which lead to unequal covariance distribution. So we blend the small
FERET data set and the ORL database together, in order to test the performance of the LDC algo-
rithm when facial images have larger illumination variations and pose, expression changes (Loog
and Duin, 2004). The hybrid database has 832 images of 112 persons.

4) CMU PIE Database: The CMU Pose, Illumination, and Expression (PIE) (Sim et al., 2003)
database consists of 41368 images of 68 people. Each person has images captured under 13 different
poses and 43 different illumination conditions and with four different expressions. In this paper, we
use a subset that focuses on illumination variations with pose and expression variations in frontal

0

Figure 3: Facial images of the FERET database. (Top) A person from the small data set. (Bottom)
A person from the large data set.
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Figure 4: Segmental facial images of one person. (Top) From the ORL database. (Bottom) From
the CMU PIE database.

Database Total_ number | Number of images | Number of
of images per person classes
ORL 400 10 40
SmallFERET 432 6 72
LargeFERET 1020 4 255
Hybrid 832 6or10 112
CMU-lights 2924 43 68

Table 2: Statistics for face images

view. There are 68 persons with each 43 images yielding a total of 2924 images. Each image has
92 x 112 pixels in gray scale. Some samples are shown in Figure 4.

The statistics of each data set is listed in Table 2.

4.2 Parameter Setting

In order to show more comparability with the PCA+CLDA, WaveletFace, LDB and MLDB algo-
rithms and present the performance of our LDC algorithm more accurately, CLDA is used to capture
the complete discriminant features in the five algorithms. The number of discriminant vectors is ob-
tained in the same way as the LDC algorithm (see Subsection 3.4).

The FisherFace technique uses the classical PCA+LDA. The N¢rain— K — A (A is the critical value
which ensures S,y is non-singular) eigenvectors with largest eigenvalues are preserved on ‘PCA step’
(Belhumeur et al., 1997). For the PCA+CLDA algorithm, we select the first min(No, Mo)(Mg is the
number of non-zero eigenvalues) eigenvectors with largest eigenvalues on ‘PCA step’. For direct
LDA (DLDA), we use all the eigenvectors in their Step 2 (Yu and Yang, 2001).

The third-level lowest frequency subband LLL3 with a matrix of (n; /8) x (n¢/8) (where n; x n¢
is the resolution of original image) is referred to as WaveletFace (Chien and Wu, 2002). Because
the LDB algorithm selects a best discriminant subset of the whole basis, we choose four subbands,
and the number of selected coordinates is closest to Ng. For the MLDB algorithm, we choose Ng
coordinates as LDC on the scheme—five subbands with each 260 coordinates.
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Method Parameters
ethods number of features for discriminant analysis  classifier (criterion)
FisherFace Nerain — K — A NN(I?)
PCA+CLDA | min(No, Mo) NN(I2)
DLDA all eigenvectors NN(1?)
WaveletFace | subband LLL3 in D NN(I?)
LDB four subbands NN(1?)
MLDB 5% 260 NN(I2)
LDC No NN(T SR)

Table 3: Parameters of aforementioned methods

In the “‘Decision Step’, we use the nearest neighbor classifier with the Euclidean distance for the
aforementioned methods as their original forms. For our LDC algorithm, we use the new triangle
square ratio criterion, the Euclidean distance and the cosine criterion are used for comparison. Most
parameters are listed in Table 3.

The recognition rate is calculated as the ratio of the number of successful recognition and the
total number of test samples. All the experiments are repeated 30 times, and the final recognition
rate is the average value of the thirty results. Suppose M is the number of facial images for each
person. On each database, we randomly select ip(< M) images from each person for training, while
the rest M — ig images of each individual are selected for testing. ig is a small integer, in order to
show the performance of the LDC algorithm when there are small-size-training samples.

4.3 Construction of the Dictionary © and Choice of Ng

In this subsection, we conduct two experiments to construct the dictionary D and select a suitable
Np for the LDC algorithm.

4.3.1 CONSTRUCTION OF THE DICTIONARY D

In the first experiment, to construct our dictionary 9, we search for the most discriminant level
by the best performance of its selected coordinates. Because it is more time-consuming when the
decomposition level L is larger than 4, £ = 4 is used in the experiment. In order to test the effect
of high frequency components and show the tolerance of the dilation invariant entropy in LDC to
noise, we design two schemes: Scheme 1 uses all the subbands in the wavelet decomposition tree,
Scheme 2 only uses the left subtree whose root node is L;, that is the Hy, V1, D1 components are
not further decomposed. For each level, we select the first 1000 coordinates by the criterion in
Subsection 3.3 for both schemes. Their performances on the small FERET data set and the ORL
database are shown in Table 4.

Table 4 shows that the performance of Scheme 1 is marginally underperform Scheme 2, and
Scheme 1 with all the subbands in the wavelet packet tree is more time-consuming than Scheme
2 which only uses the left subtree whose root node is L;. So Scheme 2 is adopted in the LDC
algorithm. However, the effect of high frequency components is very slight, especially in the first
three levels, which implies that our dilation invariant entropy has good tolerance to noise. Table
4 also shows that the third level has the best performance, it can offer a judicious combination of
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Database | Training | schemes Level
samples (i) 1 2 3 4
3 1 8243+ 240 91.38+257 9299+ 160 90.43+238
2 82.35+£254 9219+232 9330+185 9234+1.78
ORL 4 1 8554+ 276 94.00£1.56 94.47+168 91.79+2.08
2 85.56+2.87 9443 +1.62 9526+ 146 94.18+1.35
5 1 87.70+£2.03 9532+145 9542+171 9257 +1.62
2 87.82+2.12 96.03+149 96.23+155 94.12+159
3 1 9242+ 193 91.88+1.69 92334251 9241+242
2 9242+ 193 9188 +1.77 92304243 9253 +2.39
FERET 4 1 9493+ 140 94.79+225 9523+240 94.31+258
(small) 2 9493+ 140 9472 +2.04 95604220 95.30+294
5 1 9593+ 141 96.30+1.76 97.04+192 96.39+295
2 9593+ 141 96.07+1.90 9690+ 233 97.13+2.13

(x)E(xx): () represents the recognition rate (%), (x*) represents standard deviation (%).

Table 4: Effect of high frequency components and performances of level 1,2,3,4

scale information and localization information. So Level 3 is used in the LDC algorithm, and our
spatial-frequency dictionary 9 consists of the first 16 subbands in the third level (see Figure 2).

4.3.2 CHOICE OF Np

Because all of the top Ng coordinates are used for the classification, a natural way to determine the
best Np is to select the top Np coordinates and compute the average recognition rates for various
different No. Based on the idea, we use a global to local search strategy (Mdiller et al., 2001) on both
data sets of the FERET database. Because the computational complexity of CLDA is O((Np)?), for
the sake of computational efficiency, we set the range [100,2500] as the original wide range of Ng. In
the “global” stage, we compare the performances of the LDC algorithm using the top Ng coordinates
when Np increases from 100 to 2500 with interval 100 on the small data set, as shown in Figure 5
(Left). It shows that the LDC algorithm has a good and stable performance after Ng = 700 because
more good discriminant features are used. After No = 1700, the performance slightly decreases due
to the more redundant information included. So we ascertain a more precise subrange [700, 1700]
where the optimal Ny might exist.

In the “local” stage, we compare the performances of different Ng between 700 and 1700 with
interval 100 on the large data set, as shown in Figure 5 (Right). From the overall comparison of
two stages, we find that when N increases from 1300 to 1700 with interval 100, their performances
are very close, and the performance of Ng = 1300 is marginally better than others. Also for the
sake of computational efficiency, we select the first Ng = 1300 best discriminant coordinates in our
following experiments.

However, it should point out that the choice of Ng is not necessarily easy and needs further
research. The best Ny may be not the same for different databases, and it may be ascertained by the
cross validation method. We use the natural method and generalize the same Ng = 1300 to other
databases, in order to show that the LDC algorithm has robustness with respect to No. Figure 6 also
validates the conclusion.
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Figure 5: (Left) The performances of the LDC algorithm using different Ny between 100 and 2500
with interval 100 on the small FERET data set. (Right) The performances of the LDC
algorithm using different N between 700 and 1700 with interval 100 on the large FERET
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Figure 6: The performances of the LDC algorithm using different Ny between 1300 and 1700 with
interval 100. (Left) The ORL database. (Right) The CMU-lights database.

4.3.3 RECONFIRMATION OF THE DICTIONARY D USING Ng=1300

Moreover, we return to the anterior experiment (the construction of the dictionary ) with the top
No(= 1300) coordinates. The results prove that the third level has the best performance once again,
as shown in Figure 7.

4.4 Efficacy of the LDC Based Feature Extraction

It is of paramount importance for face recognition to extract most discriminant features that are
less sensitive to environmental variations. In this subsection, we compare the efficacy of feature
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Figure 7: Performances of the LDC algorithm with No(=1300) coordinates in four levels. (Left)
The ORL database. (Right) The small FERET data set.

Training Methods with the 12 criterion
Database .

samples (i) LDC LDB MLDB WaveletFace

3 9343+195 9330+222 9249+191 92.92+ 1.60

ORL 4 95814+ 159 9560+ 153 9518 +1.39 9456+ 1.77
5 96.95+ 159 96.65+1.20 96.43+129 94.20+1.82

FERET 3 89.63+3.01 87.56+3.29 84.23+326 88.80+ 3.47
(small) 4 9292 +457 9190+ 4.48 88.80+4.11 85744485
5 96.11 +£3.39 95.69+3.29 93.01+380 87.50+3.28

FERET 2 7953 +323 76.05+290 67.16+3.36 73.18+4.77
(large) 3 89.32+182 8745+194 79.69+1.99 7259+4.14
CMU- 3 79.46 + 1095 79.92 + 1091 81.304+9.87 78.44+ 10.92
lights 6 9348 +7.63 9369+752 94.16+6.89 85.08+7.79
9 96.83 +4.29 96.54 +450 96.76 +4.56 54.80 + 17.52

Table 5: Comparison with wavelet-based methods

extraction in LDC with other wavelet-based methods, such as LDB, MLDB and WaveletFace on the
ORL database, both data sets of the FERET database and the CMU-lights database. The setting of
the feature extractions can be seen in Subsection 4.2. In order to show more comparability, all the
methods use CLDA and the NN classifier with the Euclidean distance.

Table 5 shows that the LDC based feature extraction has the best result on the ORL database,
both data sets of the FERET database, and it outperforms WaveletFace, though it underperforms
LDB and MLDB marginally on the CMU-lights database. Moreover, LDC is more efficient than
LDB, MLDB because of the lower computational complexity when K is large, especially on the
large FERET data set (K = 255). On the whole, the feature extraction of LDC is more effective than
the kin methods, including LDB, MLDB and WaveletFace.

1185



Liu, DAI AND YAN

Training Methods with the triangle square ratio criterion

Database samples (io) LDC LDB MLDB WaveletFace
3 93.49+219 9293+217 9227 +182 92.80+1.72

ORL 4 9554 +1.45 9532 +151 94.67+1.64 9413+ 1.82
5 96.72+ 171 96.65+154 96.37 +141 93.60+1.83

FERET 3 9222 +2.18 90.03+239 87.15+291 90.54+ 2.29
(small) 4 9532 +190 94.31+258 9153+331 87.78+2.92
5 97.27 +£2.01 9556 +256 94.17+288 87.18+221

FERET 2 86.54 +2.78 84.11+282 77.39+334 79.01+4.28
(large) 3 9430 £ 0.37 92.39+0.48 87.87+1.78 7498 +5.17
CMU- 3 91.62 +6.63 9190 +6.57 92.31+6.37 88.67+8.28
lights 6 97.82 +3.18 97.82+325 98.14+290 87.57+6.86
9 98.75+2.09 98.47 +£230 98.73+2.14 5596+ 17.81

Table 6: Efficacy of the triangle square ratio criterion

4.5 Efficacy of the Triangle Square Ratio Criterion

Classifier and its classifying criterion are also important elements for face recognition. Generally,
distance-based criterion is more robust than correlation-based criterion with respect to pose and
expression changes while the contrary result is shown with respect to illumination variations. To
extend the capacity covering variations of pose, expression and illumination, we have proposed
the new triangle square ratio criterion in Subsection 3.5. In this experiment, we use the same four
feature extractions and CLDA as in Subsection 4.4, but the Euclidean distance is replaced by the
triangle square ratio criterion for the NN classifer. The results on the ORL database, both data sets
of the FERET database and the CMU-lights database are shown in Table 6.

Comparing the results on Table 6 with Table 5 which uses the Euclidean distance, it shows
that the triangle square ratio criterion performs better than the Euclidean distance considerably on
both data sets of the FERET database and the CMU-lights database, while its efficacy is very close
to the Euclidean distance on the ORL database. In fact, the FERET database, the CMU-lights
database concern about illumination variations (light intensity and direction respectively), and the
ORL database concerns about expression and pose changes. Comparison results show that the trian-
gle square ratio criterion is more robust against illumination variations than the Euclidean distance,
whilst retaining the robustness against pose and expression changes as the Euclidean distance.

Furthermore, we replace the triangle square ratio criterion with the cosine criterion, whilst
keeping the other setting, on the ORL database and the small FERET data set. The performance of
the cosine criterion is showed in Table 7. The comparison between Table 6 and Table 7 shows that
the triangle square ratio criterion performs better than the cosine criterion considerably on the ORL
database, although it marginally underperforms the cosine criterion on the small FERET data set.

4.6 Performance of the LDC Algorithm

In this part, we compare the performance of LDC with statistical methods, including FisherFace,
PCA+CLDA, DLDA, and wavelet based methods: WaveletFace, LDB, MLDB on both individual
and hybrid databases. All the methods used for comparison keep their settings as their original
forms (see Subsection 4.2).
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Training Methods with the cosine criterion
Database samples (i) LDC LDB MLDB WaveletFace
3 9254 +193 9156 +£2.12 90.99 +£2.03 91.88+1.73
ORL 4 94.78 +1.42 9425+ 150 93.71+1.71 93.46+ 1.89
5 96.22 +1.60 96.00+1.49 9553+ 158 93.73 4+ 1.76
FERET 3 9241 +1.97 90.15+256 86.99+3.00 90.82+ 2.58
) 4 95.67 +1.96 94.86 +2.31 91.85+3.29 87.94+ 351
(sma 5 97.27 £2.01 9556 +2.43 94.49 +2.62 87.55+ 2.59

Table 7: Performance of the cosine criterion

Since our motivation is to compensate for illumination, pose and expression variation, from
the properties of various databases, the ORL database is used to test moderate variations in pose
and expression, the CMU-lights database to test illumination variations, the FERET database for
more generic situation, and the hybrid database to test heteroscedastic class covariance distribution
tolerance.

4.6.1 COMPARISON ON THE INDIVIDUAL DATABASES

The comparison of results are depicted in Table 8. Although some algorithms occasionally have
better performance, LDC shows stable performance for every number of training samples per class
on all databases. Especially on the large FERET data set, it outperforms FisherFace, PCA+CLDA,
DLDA, WaveletFace, LDB, MLDB by 30.94%, 10.49%, 31.85%, 13.36%, 10.49%, 19.38% respec-
tively when two samples per class are used for training, and by 21.75%, 5.95%, 31.75%, 21.71%,
6.85%, 14.61% respectively when three samples per class are used for training. In particular, LDC
significantly outperforms FisherFace, DLDA, WaveletFace. From the standard derivation, we can
see that LDC has better stability than other algorithms.

4.6.2 COMPARISON ON THE HYBRID DATABASE

On the hybrid database, we randomly select i (ip=2 to 4) images from each person for training, the
rest (6—ip) images of each individual in the small FERET data set are tested while the rest (10—ig)
images of each individual in the ORL database are used for testing. The comparison results are
recorded in Table 9.

It shows that when the number of training sample per class increases from 2 to 4, the average
recognition rates of LDC are from 82.20% to 90.28%. The performance is better than Fisher-
Face, PCA+CLDA, DLDA, WaveletFace, LDB and MLDB which increase from 60.38%, 79.06%,
66.86%, 77.43%, 77.99%, 76.00%, to 75.63%, 90.64%, 80.85%, 66.09%, 88.11%, 86.09% respec-
tively on the hybrid database.

As a whole, these experimental results reveal that LDC has better performance and stability on
the ORL, FERET, CMU-lights databases than other methods, including FisherFace, PCA+CLDA,
DLDA, WaveletFace, LDB and MLDB, especially outperforms FisherFace, DLDA, WaveletFace.
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Database Methods 3 Training samples (lo) 5
FisherFace 87.20+£1.96 90.53+1.87 92.07+1.97
PCA+CLDA | 91.89+1.97 94.81+168 96.48 £ 1.58
DLDA 84.17 +£223 87.31+1.92 90.17+ 155

ORL WaveletFace | 92.92+1.60 9456 +1.77 94.20+1.82
LDB 0330 +£2.22 9560+ 153 96.65+ 1.20
MLDB 9249 +191 9518+1.39 96.43+1.29
LDC(TSR) 0349+219 9554+145 96.72+1.71
FisherFace 84.85+3.64 88.01+4.91 91944423
PCA+CLDA | 89.07 +2.88 92.85+4.06 95.60 + 3.95
DLDA 80.45+481 86.34+528 88.61+6.41
IZsEnI?aIfI; WaveletFace | 88.80+ 3.47 85.74 +4.85 87.50+ 3.28
LDB 8756 +3.29 9190+4.48 95.69 4+ 3.29
MLDB 8423 +£3.26 88.80+4.11 93.01+3.80
LDC(TSR) 0222 +218 9532+1.90 97.27+2.01
Training samples (i)
2 3

FisherFace 55.60 +5.10 72.55 + 2.57

PCA+CLDA | 76.05+3.36 88.35+ 1.74

FERET DLDA 54.69 +4.86 62.55+ 2.30

(large) WaveletFace | 73.18+4.77 7259 +4.14

LDB 76.056+290 8745+1.94

MLDB 67.16 £3.36 79.69 + 1.99

LDC(TSR) 86.54 +2.78 94.30 + 0.37

Training samples (ip)
3 6 9

FisherFace 80.57 + 896 94.46+6.44 97.36 +4.08
PCA+CLDA | 78.48 +10.89 9391 +7.72 97.45+3.70
CMU- DLDA 76.92 +7.48 87.49+6.60 92.65+ 4.60
lights WaveletFace | 78.44+ 10.92 85.08 +7.79 54.80 + 17.52
LDB 79.92 +£1091 93.69+7.52 96.54 +4.50
MLDB 81.30 +£9.87 94.16 +6.89 96.76 + 4.56
LDC(TSR) 91.62 +6.63 97.82+3.18 98.75+ 2.09

Table 8: Comparison on the individual databases

4.7 Some Further Researches of the LDC Algorithm

In this subsection, we keep the experimental settings in Subsection 4.2 and carry out some further
researches of the LDC algorithm, including: effects of different wavelets, effects of different relative
“distance” measures and comparison of CPU time.
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Training samples (ip)

Methods 5 3 7
FisherFace 60.38 +-3.24 7258 £ 251 75.63+2.87
PCA+CLDA | 79.06 £2.22 86.99+1.34 90.64 +1.77
DLDA 66.86 - 2.57 7455+ 2.61 80.85+1.89
WaveletFace | 77.43 +2.28 76.21 155 66.09 4 2.86
LDB 7799 +£221 8581+1.73 88.11+1.78
MLDB 76.00 & 2.07 83.41+1.85 86.09 £ 2.20
LDC(TSR) 82.20 - 1.69 88.46 +1.44 90.28 + 1.47

Table 9: Comparison on the hybrid database

Database | wavelets 3 Training sZmpIes (io) 5
harr 9249 4+ 216 9479+155 96.33+ 153
db6 92.86 £1.52 9524 +£153 96.30+ 155
sym2 92.83 +2.02 9529+1.74 96.78 + 1.77
ORL coif2 93.27+1.37 9494+ 139 95.67 +1.67
bior2.4 | 9238 +2.08 94.04 +-1.37 94.93 +1.54
rbio2.4 | 93.714+2.10 95.194+1.33 95.78 & 1.64
db4 93.494+219 9554+145 96.72+1.71
harr 93.69 & 2.07 95.86 +£2.17 97.22+1.96
db6 91.76 = 2.65 9458 £ 2.44 95.42 +2.42
FERET syr_n2 9256 +2.41 95.72+2.60 97.22+2.34
(small) C_Olf2 91.73 £ 255 94.75+2.15 96.30+1.94
bior2.4 | 90.88 +2.10 94.47 +2.78 95.46 +-1.86
rbio2.4 | 91594220 95.1242.37 96.16 & 2.55
db4 9222 +£2.18 9532+1.90 97.27+201

Table 10: Performances of different wavelet basis functions

4.7.1 EFFECTS OF DIFFERENT WAVELET BASIS FUNCTIONS

We use different wavelet basis functions for the wavelet packet decomposition on the ORL database
and the small FERET data set, including: harr wavelet, Daubechies db6 wavelet, Symlets sym2
wavelet, Coiflets coif2 wavelet, Biorthogonal spline bior2.4 wavelet, Reverse biorthogonal spline
rbio2.4 wavelet. Their performances are depicted in Table 10.

Table 10 shows that the performances of the harr and sym2 wavelets are very close to the db4
wavelet. Although other wavelets a little underperform the db4 wavelet, their performances are also
better than some other methods shown in Table 8. So we can conclude that the changes among
aforementioned different wavelet basis functions have small effects on the performance of the LDC
algorithm. Moreover, the orthogonal wavelets are superior to the biorthogonal wavelets in general.

4.7.2 EFFECTS OF DIFFERENT RELATIVE “DISTANCE” MEASURES

In order to show the effect of different relative “distance” measures on the performance of classi-
fication, we compare the dilation invariant entropy with the dilation invariant 12 norm (15) on the
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Figure 8: Performances of the LDC algorithm using the dilation invariant entropy and the dilation
invariant 12 norm. (Left) The ORL database. (Right) The small FERET data set.

Database Methods
LDC FisherFace LDB MLDB WaveletFace
ORL (K = 40) 154 8 336 263 23
SmallFERET (K =72) | 164 24 415 400 40
LargeFERET (K = 255) | 269 521 2888 3045 123

Table 11: Comparison of training CPU time (seconds)

ORL database and the small FERET data set. The results are shown in Figure 8. It shows that the
dilation invariant 1% norm marginally underperforms the dilation invariant entropy, which implies
the changes between aforementioned different relative “distance” measures have slight effects on
the performance of the LDC algorithm.

4.7.3 COMPARISON OF CPU TIME

We conduct an experiment to compare the time-consumption of the LDC algorithm with the popular
statistics-based method: FisherFace and the wavelet-based methods: LDB, MLDB, WaveletFace on
the ORL database and both data sets of the FERET database. We randomly select 3 images from
each person for training. The experiments are implemented using MATLAB in a personal computer
with Pentium 4 CPU and 256MB RAM. The time-consumptions are shown in Table 11. Although
LDC is less efficient than WaveletFace, it is considerably more efficient than LDB and MLDB,
especially when K is large. When K increases, the time-consumption of LDC increases more slowly
than that of FisherFace, so that LDC can catch up with and surpass the efficiency of FisherFace.

It should point out that in our experiments, LDB selects the four best discriminant subbands
from the local discriminant basis (see Subsection 4.2) and the number of selected coordinates is
bigger than No(= 1300). So LDB takes more time than LDC, MLDB in the CLDA transform.
However, MLDB based feature extraction needs to estimate the probability density functions, when
K increases, it takes more and more time than LDB based feature extraction, so the total time in Ta-
ble 11 shows that LDB is more expensive than MLDB on the ORL database and the small FERET
data set due to their small K, the contrary result is shown on the large FERET data set due to its
large K.
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5. Discussions and Conclusion

In this paper, we have presented a novel local discriminant coordinates (LDC) method based on
wavelet packet for face recognition to compensate for illumination, pose and expression variations.
The method searches for the most discriminant coordinates from a wavelet packet dictionary, instead
of the most discriminant basis as in the LDB algorithm. The LDC idea makes use of the scattered
characteristic of the best discriminant features. In our method, the feature selection procedure is
independent of subbands, and only depends on the discriminability of all coordinates. We have
shown that the traditional “distance” measures (e.g., the 12 distance, relative entropy) are deficient
to measure the separability, while comparing the separability of two sample ensembles. We have
proposed a new dilation invariant entropy which is independent of the order of magnitude. We
have used the dilation invariant entropy and a MAP logistic model to measure the separability of
coordinate-loading ensemble accurately. It locates in either low spatial frequency subbands or high
spatial frequency subbands. So any two coordinates in the wavelet packet dictionary are comparable
for their discriminability. Experimental results show that the LDC based feature extraction is more
effective than LDB, MLDB, WaveletFace, PCA for feature extraction.

The LDC based feature extraction not only selects low frequency components, but also middle
frequency components. From its significant improvement upon the WaveletFace method which only
uses low frequency components, we can conclude that middle frequency components are helpful
for face recognition, since their judicious combination with low spatial frequency components can
improve the performance of face recognition greatly.

We have modified the Euclidean distance and the cosine criterion in the nearest neighbor clas-
sifier, and proposed a new triangle square ratio criterion which takes into account of two similarity
measures, distance and correlation. Experimental results show that the triangle square ratio cri-
terion is more robust against illumination variations than the Euclidean distance, while retaining
the robustness against pose and expression changes as the Euclidean distance. Also, it can obvi-
ously outperform the cosine criterion when there are changes of pose and expression, although it
marginally underperforms the cosine criterion when there are variations of illumination. So it can
well extend the capacity covering variations of pose, expression and illumination.

We have used the ORL database to test moderate variations in pose and expression, the CMU
database to test illumination variations, the FERET database for more generic situation, and the
hybrid to test heteroscedastic class covariance distribution.

In conclusion, experimental results show that our LDC algorithm can well preserve the most
discriminant information of facial image and improve the performance for face recognition under
different variations. Also, experimental results show that our LDC algorithm has robustness with
respect to the number of selected coordinates. The changes among some different wavelet basis
functions and different relative “distance” measures have few effects on its performance. Moreover,
it is an efficient method.

The LDC idea may have numerous applications beyond the one described in this paper. It also
can be applied to feature or variable selection in other dictionaries of basis functions instead of
wavelets, such as the local trigonometric functions.
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