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Abstract
For1 dimension reduction in the l1 norm, the method of Cauchy random projections multiplies the
original data matrix A ∈ R

n×D with a random matrix R ∈ R
D×k (k � D) whose entries are i.i.d.

samples of the standard Cauchy C(0,1). Because of the impossibility result, one can not hope to
recover the pairwise l1 distances in A from B = A×R ∈ R

n×k, using linear estimators without
incurring large errors. However, nonlinear estimators are still useful for certain applications in data
stream computations, information retrieval, learning, and data mining.

We study three types of nonlinear estimators: the sample median estimators, the geometric
mean estimators, and the maximum likelihood estimators (MLE). We derive tail bounds for the

geometric mean estimators and establish that k = O
(

logn
ε2

)

suffices with the constants explicitly

given. Asymptotically (as k → ∞), both the sample median and the geometric mean estimators
are about 80% efficient compared to the MLE. We analyze the moments of the MLE and propose
approximating its distribution of by an inverse Gaussian.
Keywords: dimension reduction, l1 norm, Johnson-Lindenstrauss (JL) lemma, Cauchy random
projections

1. Introduction

There has been considerable interest in the l1 norm in statistics and machine learning, as it is now
well-known that the l1 distance is far more robust than the l2 distance against “outliers” (Huber,
1981). It is sometimes a good practice to replace the l2 norm minimization with the l1 norm mini-
mization, for example, the Least Absolute Deviation (LAD) Boost (Friedman, 2001). Chapelle et al.
(1999) demonstrated that using the l1 (Laplacian) radial basis kernel produced better classification

1. A preliminary version appeared in COLT 2007 (Li et al., 2007b).
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results than the usual l2 (Gaussian) radial basis kernel, in their histogram-based image classification
project using support vector machines (SVM). Recently, it also becomes popular to use the l1 norm
for variable (feature) selection; success stories include LASSO (Tibshirani, 1996), LARS (Efron
et al., 2004) and 1-norm SVM (Zhu et al., 2003).

This paper focuses on dimension reduction in the l1 norm, in particular, on the method based on
Cauchy random projections, which is a special case of linear (stable) random projections (Johnson
and Schechtman, 1982; Indyk, 2000, 2006; Li, 2008).

The idea of linear random projections is to multiply the original data matrix A ∈ R
n×D with a

random projection matrix R ∈ R
D×k, resulting in a projected matrix B = AR ∈ R

n×k. We would
like k to be as small as possible. If k � D, then it should be much more efficient to compute certain
summary statistics (e.g., pairwise distances) from B as opposed to A. Moreover, B may be small
enough to reside in physical memory while A is often too large to fit in the main memory.

The choice of the random projection matrix R depends on which norm we would like to work
with. For dimension reduction in lp (0 < p ≤ 2), it is common practice to construct R from i.i.d.
samples of p-stable distributions (Johnson and Schechtman, 1982; Indyk, 2000, 2006; Li, 2008). In
the stable distribution family (Zolotarev, 1986), normal is 2-stable and Cauchy is 1-stable. Thus,
we will call random projections for l2 and l1, normal random projections and Cauchy random pro-
jections, respectively.

In normal random projections (Vempala, 2004), we can estimate the original pairwise l2 dis-
tances in A directly using the corresponding l2 distances in B (up to a normalizing constant). Fur-
thermore, the Johnson-Lindenstrauss (JL) Lemma (Johnson and Lindenstrauss, 1984) provides the
performance guarantee. We will review normal random projections in more detail in Section 2.

For Cauchy random projections, however, one shall not use the l1 distance in B to approximate
the original l1 distance in A, as the Cauchy distribution does not even have a finite first moment. The
impossibility results (Brinkman and Charikar, 2003; Lee and Naor, 2004; Brinkman and Charikar,
2005) have proved that one can not hope to recover the l1 distance using linear projections and linear
estimators (e.g., sample mean), without incurring large errors. Fortunately, the impossibility results
do not rule out nonlinear estimators, which may be still useful in certain applications in data stream
computations, information retrieval, learning, and data mining.

In this paper, we study three types of nonlinear estimators: the sample median estimators, the
geometric mean estimators, and the maximum likelihood estimators (MLE). The sample median and
the geometric mean estimators are asymptotically (as k → ∞) equivalent (i.e., both are about 80%
efficient as the MLE), but the latter is more accurate at small sample size k. Furthermore, we derive
explicit tail bounds for the geometric mean estimators and establish an analog of the JL Lemma for
dimension reduction in l1.

This analog of the JL Lemma for l1 is weaker than the classical JL Lemma for l2, as the geomet-
ric mean is not convex and hence is not a metric. Many efficient algorithms, such as some sub-linear
time (using super-linear memory) nearest neighbor algorithms (Shakhnarovich et al., 2005), rely on
metric properties (e.g., the triangle inequality). Nevertheless, nonlinear estimators may be still use-
ful in important scenarios.

• Estimating l1 distances online
The original data matrix A ∈ R

n×D requires O(nD) storage space; and hence it is often too
large for physical memory. The storage cost of materializing all pairwise distances is O(n2),
which may be also too large for the memory. For example, in information retrieval, n could
be the total number of word types or documents at Web scale. To avoid page faults, it may
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be more efficient to estimate the distances on the fly from the projected data matrix B in the
memory.

• Computing all pairwise l1 distances
In distance-based clustering, classification, and kernels (e.g., for SVM), we need to compute
all pairwise distances in A, at the cost of time O(n2D), which can be prohibitive, especially
when A does not fit in the memory. Using Cauchy random projections, the cost is reduced to
O(nDk +n2k).

• Linear scan nearest neighbor searching
Nearest neighbor searching is notorious for being inefficient, especially when the data matrix
A is too large for the memory. Searching for the nearest neighbors from the projected data
matrix B (which is in the memory) becomes much more efficient, even by linear scans. The
cost of searching for the nearest neighbor for one data point is reduced from O(nD) to O(nk).

• Data stream computations.
Massive data streams come from Internet routers, phone switches, atmospheric observations,
sensor networks, highway traffic, finance data, and more (Henzinger et al., 1999; Feigenbaum
et al., 1999; Indyk, 2000; Babcock et al., 2002; Cormode et al., 2002). Unlike in the traditional
databases, it is not common to store massive data streams; and hence the processing is often
done on the fly. In data stream computations, Cauchy random projections can be used for
(A): approximating the l1 frequency moments for individual streams; (B): approximating the
l1 differences between a pair of streams.

We briefly comment on random coordinate sampling, another strategy for dimension reduction.
One can randomly sample k columns from A ∈ R

n×D and estimate the summary statistics (includ-
ing l1 and l2 distances). Despite its simplicity, this strategy has two major drawbacks. First, in
heavy-tailed data, one may have to choose k very large in order to achieve a sufficient accuracy.
Second, large data sets are often highly sparse, for example, text data (Dhillon and Modha, 2001)
and market-basket data (Aggarwal and Wolf, 1999; Strehl and Ghosh, 2000). For sparse data, Li
and Church (2005, 2007); Li et al. (2007a) provided an alternative coordinate sampling strategy,
called Conditional Random Sampling (CRS). For non-sparse data, however, methods based on lin-
ear (stable) random projections are superior.

The rest of the paper is organized as follows. Section 2 reviews linear random projections.
Section 3 summarizes the main results for three types of nonlinear estimators. Section 4 presents
the sample median estimators. Section 5 concerns the geometric mean estimators. Section 6 is
devoted to the maximum likelihood estimators. Section 7 concludes the paper.

2. Introduction to Linear (Stable) Random Projections

We give a review on linear random projections, including normal and Cauchy random projections.
Denote the original data matrix by A ∈ R

n×D, that is, n data points in D dimensions. Let
{uT

i }n
i=1 ∈ R

D be the ith row of A. Let R ∈ R
D×k be a projection matrix and denote the entries of R

by {ri j}D
i=1

k
j=1. The projected data matrix B = AR ∈ R

n×k. Let {vT
i }n

i=1 ∈ R
k be the ith row of B,

that is, vi = RTui.

2499



LI, HASTIE AND CHURCH

For simplicity, we focus on the leading two rows, u1 and u2, in A, and the leading two rows, v1

and v2, in B. Define {x j}k
j=1 to be

x j = v1, j − v2, j =
D

∑
i=1

ri j (u1,i −u2,i) , j = 1,2, ...,k.

If we sample ri j i.i.d. from a p-stable distribution (Zolotarev, 1986), then x j’s are also i.i.d. sam-
ples of a p-stable distribution with a different scale parameter. In the family of stable distributions,
normal (p = 2) and Cauchy (p = 1) are two important special cases.

2.1 Normal Random Projections

When ri j is sampled from the standard normal, that is, ri j ∼ N(0,1), i.i.d., then

x j = v1, j − v2, j =
D

∑
i=1

ri j (u1,i −u2,i) ∼ N

(

0,
D

∑
i=1

|u1,i −u2,i|2
)

, j = 1,2, ...,k,

because a weighted sum of normals is also normal.
Denote the squared l2 distance between u1 and u2 by

dl2 = ‖u1 −u2‖2
2 =

D

∑
i=1

|u1,i −u2,i|2.

We can estimate dl2 from the sample squared l2 distance (i.e., sample mean):

d̂l2 =
1
k

k

∑
j=1

x2
j .

Note that kd̂l2/dl2 follows a Chi-square distribution with k degrees of freedom, χ2
k . Therefore, it

is easy to prove the following Lemma about the tail bounds:

Lemma 1

Pr(d̂l2 −dl2 ≥ εdl2) ≤ exp

(

−k
2

(ε− log(1+ ε))
)

= exp

(

−k
ε2

GR

)

, ε > 0,

Pr(d̂l2 −dl2 ≤−εdl2) ≤ exp

(

−k
2

(−ε− log(1− ε))
)

= exp

(

−k
ε2

GL

)

, 0 < ε < 1,

where the constants

GR =
2ε2

ε− log(1+ ε)
≤ 4

1− 2
3 ε

,

GL =
2ε2

−ε− log(1− ε)
≤ 4

1+ 2
3 ε

≤ 4

1− 2
3 ε

.
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Proof Using the standard Chernoff inequality (Chernoff, 1952),

Pr(d̂l2 −dl2 ≥ εdl2) =Pr
(

kd̂l2/dl2 ≥ k(1+ ε)
)

≤E
(

exp(kd̂l2/dl2t)
)

exp((1+ ε)kt)
(t > 0)

=exp

(

−k
2

(log(1−2t)+2(1+ ε)t)
)

,

which is minimized at t = ε
2(1+ε) . Thus, for any ε > 0

Pr(d̂l2 −dl2 > εdl2) ≤ exp

(

−k
2

(ε− log(1+ ε))
)

.

We can similarly prove the other tail bound for Pr(d̂l2 −dl2 ≤−εdl2).

For convenience, sometimes we would like to write the tail bounds in a symmetric form

Pr
(∣

∣d̂l2 −dl2

∣

∣≥ εdl2

)

≤ 2exp

(

−k
ε2

G

)

, 0 < ε < 1,

and we know that it suffices to let G = max{GR,GL} ≤ 4
1− 2

3 ε .

Since there are in total n(n−1)
2 < n2

2 pairs among n data points, we would like to bound the tail
probabilities simultaneously for all pairs. By the Bonferroni union bound, it suffices if

n2

2
Pr
(∣

∣d̂l2 −dl2

∣

∣≥ εdl2

)

≤ δ,

that is, it suffices if

n2

2
2exp

(

−k
ε2

G

)

≤ δ =⇒ k ≥ G
2logn− logδ

ε2 .

Therefore, we obtain one version of the Johnson-Lindenstrauss (JL) Lemma:

Lemma 2 If k ≥ G 2logn−logδ
ε2 , where G = 4

1− 2
3 ε , then with probability at least 1− δ, the squared

l2 distance between any pair of data points (among n data points) can be approximated within a
1± ε factor (0 < ε < 1), using the squared l2 distance of the projected data after normal random
projections.

Many versions of the JL Lemma have been proved (Johnson and Lindenstrauss, 1984; Frankl
and Maehara, 1987; Indyk and Motwani, 1998; Arriaga and Vempala, 1999; Dasgupta and Gupta,
2003; Indyk, 2000, 2001; Achlioptas, 2003; Arriaga and Vempala, 2006; Ailon and Chazelle, 2006).

Note that we do not have to use ri j ∼ N(0,1) for dimension reduction in l2. For example, we
can sample ri j from the following sparse projection distribution:

ri j =
√

s×







1 with prob. 1
2s

0 with prob. 1− 1
s

−1 with prob. 1
2s

. (1)
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When 1 ≤ s ≤ 3, Achlioptas (2001, 2003) proved the JL Lemma for the above sparse projection.
Recently, Li et al. (2006b) proposed very sparse random projections using s � 3 in (1), based on
two practical considerations:

• D should be very large, otherwise there would be no need for dimension reduction.

• The original l2 distance should make engineering sense, in that the second (or higher) mo-
ments should be bounded (otherwise various term-weighting schemes will be applied).

Based on these two practical assumptions, the projected data are asymptotically normal at a fast
rate of convergence when s =

√
D and the data have bounded third moments. Of course, very sparse

random projections do not have worst case performance guarantees.

2.2 Cauchy Random Projections

In Cauchy random projections, we sample ri j i.i.d. from the standard Cauchy distribution, that is,
ri j ∼C(0,1). By the 1-stability of Cauchy (Zolotarev, 1986), we know that

x j = v1, j − v2, j ∼C

(

0,
D

∑
i=1

|u1,i −u2,i|
)

.

That is, the projected differences x j = v1, j − v2, j are also Cauchy random variables with the scale
parameter being the l1 distance, d = |u1 −u2| = ∑D

i=1 |u1,i −u2,i|, in the original space.
Recall that a Cauchy random variable z ∼C(0,γ) has the density

f (z) =
γ
π

1
z2 + γ2 , γ > 0, −∞ < z < ∞.

The easiest way to see the 1-stability is via the characteristic function,

E
(

exp(
√
−1z1t)

)

= exp(−γ|t|) ,

E

(

exp

(

√
−1t

D

∑
i=1

cizi

))

= exp

(

−γ
D

∑
i=1

|ci|t
)

,

for z1, z2, ..., zD, i.i.d. C(0,γ), and any constants c1, c2, ..., cD.
Therefore, in Cauchy random projections, the problem boils down to estimating the Cauchy

scale parameter of C(0,d) from k i.i.d. samples x j ∼C(0,d). Unlike in normal random projections,
we can no longer estimate d from the sample mean (i.e., 1

k ∑k
j=1 |x j|) because E(x j) = ∞.

3. Main Results

Although the impossibility results (Lee and Naor, 2004; Brinkman and Charikar, 2005) have ruled
out accurate estimators that are also metrics, there is enough information to recover d from k samples
{x j}k

j=1, with high accuracy.
We analyze three types of nonlinear estimators: the sample median estimators, the geometric

mean estimators, and the maximum likelihood estimators.
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3.1 The Sample Median Estimators

The sample median estimator,

d̂me = median(|x j|, j = 1,2, ...,k),

is simple and computationally convenient. We recommend the bias-corrected version:

d̂me,c =
d̂me

bme
,

where

bme =
Z 1

0

(2m+1)!
(m!)2 tan

(π
2

t
)

(

t − t2)m
dt, k = 2m+1.

Here, for convenience, we only consider k = 2m+1, m = 1, 2, 3, ...
Some properties of d̂me,c:

• E
(

d̂me,c
)

= d, that is, d̂me,c is unbiased.

• When k ≥ 5, the variance of d̂me,c is

Var
(

d̂me,c
)

=d2







(m!)2

(2m+1)!

R 1
0 tan2

(π
2 t
)(

t − t2
)m

dt
(

R 1
0 tan

(π
2 t
)

(t − t2)m dt
)2 −1






, k ≥ 5

=
π2

4k
d2 +O

(

1
k2

)

.

• bme ≥ 1 and bme → 1 monotonically with increasing k.

3.2 The Geometric Mean Estimators

The geometric mean estimator

d̂gm =
k

∏
j=1

|x j|1/k

has tail bounds

Pr
(

d̂gm ≥ (1+ ε)d
)

≤UR,gm = exp

(

−k
ε2

GR,gm

)

, ε > 0

Pr
(

d̂gm ≤ (1− ε)d
)

≤UL,gm = exp

(

−k
ε2

GL,gm

)

, 0 < ε < 1

where

GR,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1+ ε)

)2
)

+ 2
π tan−1

(

2
π log(1+ ε)

)

log(1+ ε)
) ,

GL,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1− ε)

)2
)

+ 2
π tan−1

(

2
π log(1− ε)

)

log(1− ε)
) .

2503



LI, HASTIE AND CHURCH

Moreover, for small ε, we obtain the following convenient approximations:

GR,gm =
π2

2

(

1+ ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

,

GL,gm =
π2

2

(

1− ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

.

Consequently, we establish an analog of the Johnson-Lindenstrauss (JL) Lemma for dimension
reduction in l1:

If k ≥ Ggm
(2logn−logδ)

ε2 , then with probability at least 1− δ, one can recover the original l1 dis-
tance between any pair of data points (among all n data points) within a 1± ε factor (0 < ε < 1),
using d̂gm. The constant Ggm can be specified from GR,gm and GL,gm: Ggm = max{GR,gm,GL,gm}.

To remove the bias and also reduce the variance, we recommend the bias-corrected geometric
mean estimator:

d̂gm,c = cosk
( π

2k

) k

∏
j=1

|x j|1/k,

which is unbiased and has variance

Var
(

d̂gm,c
)

= d2

(

cos2k
( π

2k

)

cosk
(π

k

) −1

)

=
π2

4
d2

k
+

π4

32
d2

k2 +O

(

1
k3

)

.

We also derive tail bounds for d̂gm,c:

Pr
(

d̂gm,c ≥ (1+ ε)d
)

≤UR,gm,c, ε > 0

Pr
(

d̂gm,c ≤ (1− ε)d
)

≤UL,gm,c, 0 < ε < 1,

and show that, compared with d̂gm, the ratios of the tail bounds

ρR,k =
UR,gm,c

UR,gm
→ ρR,∞ =

1
(1+ ε)C1

exp

(

−π2

8
A1 +

π
2

C1 tan

(

π2

2
A1

))

,

ρL,k =
UL,gm,c

UL,gm
→ ρL,∞ =

1
(1− ε)C2

exp

(

π2

8
A2 −

π
2

C2 tan

(

π2

2
A2

))

,

as k → ∞, where A1, C1, A2, and C2 are only functions of ε.

3.3 The Maximum Likelihood Estimators

Denoted by d̂MLE,c, the bias-corrected maximum likelihood estimator (MLE) is

d̂MLE,c = d̂MLE

(

1− 1
k

)

,

where d̂MLE solves a nonlinear MLE equation

− k

d̂MLE
+

k

∑
j=1

2d̂MLE

x2
j + d̂2

MLE

= 0.

Some properties of d̂MLE,c:
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• It is nearly unbiased, E
(

d̂MLE,c
)

= d +O
(

1
k2

)

.

• Its asymptotic variance is

Var
(

d̂MLE,c
)

=
2d2

k
+

3d2

k2 +O

(

1
k3

)

,

that is,
Var(d̂MLE,c)
Var(d̂me,c)

→ 8
π2 ,

Var(d̂MLE,c)
Var(d̂gm,c)

→ 8
π2 , as k → ∞. ( 8

π2 ≈ 80%)

• Its distribution can be accurately approximated by an inverse Gaussian, at least in the small
deviation range, which suggests the following approximate tail bound

Pr
(

|d̂MLE,c −d| ≥ εd
) ∼
≤ 2exp

(

−ε2/(1+ ε)
2
(

2
k + 3

k2

)

)

, 0 < ε < 1,

which is verified by simulations for the tail probability ≥ 10−10 range.

4. The Sample Median Estimators

Recall in Cauchy random projections, B = AR, we denote the leading two rows in A by u1, u2 ∈R
D,

and the leading two rows in B by v1, v2 ∈ R
k. Our goal is to estimate the l1 distance d = |u1 −u2| =

∑D
i=1 |u1,i −u2,i| from {x j}k

j=1, x j = v1, j − v2, j ∼C(0,d), i.i.d.
A widely-used estimator in statistics is based on the sample inter-quantiles (Fama and Roll,

1968, 1971; McCulloch, 1986). For the symmetric Cauchy, the (absolute) sample median estimator

d̂me = median{|x j|, j = 1,2, ...,k}

is convenient because the population median of absolute Cauchy is exactly d (Indyk, 2006).
It is well-known in statistics that d̂me, is asymptotically unbiased and normal; see Lemma 3. For

small samples (e.g., k ≤ 20), however, d̂me is severely biased.

Lemma 3 The sample median estimator, d̂me, is asymptotically unbiased and normal

√
k
(

d̂me −d
) D

=⇒ N

(

0,
π2

4
d2
)

.

When k = 2m+1, m = 1, 2, 3, ..., the rth moment of d̂me can be represented as

E
(

d̂me
)r

= dr
(

Z 1

0

(2m+1)!
(m!)2 tanr

(π
2

t
)

(

t − t2)m
dt

)

, m ≥ r (2)

If m < r, then E
(

d̂me
)r

= ∞.
Proof Let f (z;d) and F(z;d) be the probability density and cumulative density respectively for
|C(0,d)|:

f (z;d) =
2d
π

1
z2 +d2 , F(z;d) =

2
π

tan−1
( z

d

)

, z ≥ 0.
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The inverse of F(z;d) is F−1 (q;d) = d tan
(π

2 q
)

. Here, we take q = 0.5, to consider the sample
median. By the asymptotic normality of sample quantiles (David, 1981, Theorem 9.2), we know that

√
k
(

d̂me −d
) D

=⇒ N

(

0,
1
2

1
2

(

f
(

d tan
(π

2
1
2

)

;d
)

× tan
(π

2
1
2

))2 =
π2

4
d2

)

,

that is, d̂me is asymptotically unbiased and normal with the variance Var
(

d̂me
)

= π2

4k d2 +O
(

1
k2

)

.
For convenience, we assume k = 2m+1. Again, by properties of sample quantile (David, 1981,

Chapter 2.1), the probability density of d̂me is

fd̂me
(z) =

(2m+1)!
(m!)2 (F(z;d)(1−F(z;d)))m f (z;d),

from which we can write down the rth moment of d̂me in (2), after some change of variables.

Once we know E
(

d̂me
)

, we can design an unbiased estimator as described in Lemma 4.

Lemma 4 The estimator,

d̂me,c =
d̂me

bme
,

is unbiased, that is, E
(

d̂me,c
)

= d, where the bias-correction factor bme is

bme =
E
(

d̂me
)

d
=

Z 1

0

(2m+1)!
(m!)2 tan

(π
2

t
)

(

t − t2)m
dt, (k = 2m+1). (3)

The variance of d̂me,c is

Var
(

d̂me,c
)

= d2







(m!)2

(2m+1)!

R 1
0 tan2

(π
2 t
)(

t − t2
)m

dt
(

R 1
0 tan

(π
2 t
)

(t − t2)m dt
)2 −1






, k = 2m+1 ≥ 5.

d̂gm,c and d̂gm are asymptotically equivalent, that is,

√
k
(

d̂me,c −d
) D

=⇒ N

(

0,
π2

4
d2
)

.

The bias-correction factor bme is monotonically decreasing with increasing m, and

bme ≥ 1, lim
m→∞

bme = 1.

Proof Most of the results follow directly from Lemma 3. Here we only show bme decreases mono-
tonically and bme → 1 as m → ∞.

Note that (2m+1)!
(m!)2

(

t − t2
)m

, 0 ≤ t ≤ 1, is the probability density of a Beta distribution Beta(m+

1,m+1), whose rth moment is E(zr) = (2m+1)!(m+r)!
(2m+1+r)!m! .
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By Taylor expansions (Gradshteyn and Ryzhik, 1994, 1.411.6),

tan
(π

2
t
)

=
∞

∑
j=1

22 j
(

22 j −1
)

(2 j)!
|B2 j|

(π
2

)2 j−1
t2 j−1,

where B2 j is the Bernoulli number (Gradshteyn and Ryzhik, 1994, 9.61).
Therefore,

bme =
∞

∑
j=1

22 j
(

22 j −1
)

(2 j)!
|B2 j|

(π
2

)2 j−1 (2m+1)!(m+2 j−1)!
(2m+2 j)!m!

.

It is easy to show that (2m+1)!(m+2 j−1)!
(2m+2 j)!m! decreases monotonically with increasing m and it con-

verges to
(

1
2

)2 j−1
. Thus, bme also decreases monotonically with increasing m.

From the Taylor expansion of tan(t), we know that

bme →
∞

∑
j=1

22 j
(

22 j −1
)

(2 j)!
|B2 j|

(π
2

)2 j−1
(

1
2

)2 j−1

= tan

(

π
2

1
2

)

= 1.

It is well-known that bias-corrections are not always beneficial because of the bias-variance
trade-off phenomenon. In our case, because the correction factor bme ≥ 1 always, the bias-correction
not only removes the bias of d̂me but also reduces the variance of d̂me.

The bias-correction factor bme can be numerically evaluated and tabulated, at least for small k.
Figure 1 plots bme as a function of k, indicating that d̂me is severely biased when k ≤ 20. When
k > 50, the bias becomes negligible.
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Figure 1: The bias correction factor, bme in (3), as a function of k = 2m+1. After k > 50, the bias
is negligible. Note that bme = ∞ when k = 1.
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5. The Geometric Mean Estimators

This section derives estimators based on the geometric mean, which are more accurate than the
sample median estimators. The geometric mean estimators allow us to derive tail bounds in ex-
plicit forms and (consequently) establish an analog of the Johnson-Lindenstrauss (JL) Lemma for
dimension reduction in the l1 norm.

Lemma 5 Assume x ∼C(0,d). Then

E
(

|x|λ
)

=
dλ

cos(λπ/2)
, |λ| < 1.

Proof Using the integral table (Gradshteyn and Ryzhik, 1994, 3.221.1, page 337),

E
(

|x|λ
)

=
2d
π

Z ∞

0

yλ

y2 +d2 dy =
dλ

π

Z ∞

0

y
λ−1

2

y+1
dy =

dλ

cos(λπ/2)
.

From Lemma 5, by taking λ = 1
k , we obtain an unbiased estimator, d̂gm,c, based on the bias-

corrected geometric mean in the next lemma, which is proved in Appendix A.

Lemma 6

d̂gm,c = cosk
( π

2k

) k

∏
j=1

|x j|1/k, k > 1 (4)

is unbiased, with the variance (valid when k > 2)

Var
(

d̂gm,c
)

= d2

(

cos2k
( π

2k

)

cosk
(π

k

) −1

)

=
d2

k
π2

4
+

π4

32
d2

k2 +O

(

1
k3

)

.

The third and fourth central moments are

E
(

d̂gm,c −E
(

d̂gm,c
))3

=
3π4

16
d3

k2 +O

(

1
k3

)

,

E
(

d̂gm,c −E
(

d̂gm,c
))4

=
3π4

16
d4

k2 +O

(

1
k3

)

.

The higher (third or fourth) moments may be useful for approximating the distribution of d̂gm,c.
In Section 6, we will show how to approximate the distribution of the maximum likelihood estimator
by matching the first four moments (in the leading terms). We could apply the similar technique to
approximate d̂gm,c. Fortunately, we do not have to do so because we are able to derive the exact tail
bounds for d̂gm,c in Lemma 9.

Note that in (4), as k → ∞, the bias-correction term converges to 1 quickly:

cosk
( π

2k

)

=

(

1− 1
2

( π
2k

)2
+ ...

)k

= 1− k
2

( π
2k

)2
+ ... = 1− π2

8
1
k

+ ... → 1.
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When k is not too small (e.g., k > 50), the geometric mean estimator without bias-correction,

d̂gm =
k

∏
j=1

|x j|1/k, k > 1,

gives similar results as d̂gm,c. As shown in Figure 2, the ratios of the mean square errors (MSE)

MSE
(

d̂gm
)

MSE
(

d̂gm,c
) =

1
cosk( π

k )
− 2

cosk( π
2k )

+1

cos2k( π
2k )

cosk( π
k )

−1
(5)

demonstrate that the two geometric mean estimators are similar when k > 50, in terms of the MSE.
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Figure 2: The ratios of the mean square errors (MSE)
MSE(d̂gm)

MSE(d̂gm,c)
in (5) indicate that the difference

between d̂gm and d̂gm,c becomes negligible when k > 50.

One advantage of d̂gm is the convenience for deriving tail bounds. Thus, before presenting
Lemma 9 for d̂gm,c, we prove tail bounds for d̂gm in Lemma 7 (proved in Appendix B).

Lemma 7

Pr
(

d̂gm ≥ (1+ ε)d
)

≤UR,gm = exp

(

−k
ε2

GR,gm

)

, ε > 0

Pr
(

d̂gm ≤ (1− ε)d
)

≤UL,gm = exp

(

−k
ε2

GL,gm

)

, 0 < ε < 1

where

GR,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1+ ε)

)2
)

+ 2
π tan−1

(

2
π log(1+ ε)

)

log(1+ ε)
) , (6)

GL,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1− ε)

)2
)

+ 2
π tan−1

(

2
π log(1− ε)

)

log(1− ε)
) . (7)
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Moreover, for small ε, we have the following convenient approximations:

GR,gm =
π2

2

(

1+ ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

, (8)

GL,gm =
π2

2

(

1− ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

. (9)

Consequently, as ε → 0+, we know

GR,gm → π2

2
, GL,gm → π2

2
.

Figure 3 plots the constants GR,gm and GL,gm in (6) and (7), along with their convenient approx-
imations (8) and (9). For GR,gm, the exact and approximate expressions are indistinguishable when
ε < 2. For GL,gm, the exact and approximate expressions are indistinguishable when ε < 0.7. The
plots also suggest that the approximations, (8) and (9), are upper bounds of the exact constants, (6)
and (7), respectively.
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Figure 3: We plot the constants GR,gm and GL,gm in (6) and (7), along with their convenient approx-
imations (8) and (9).

Consequently, Lemma 7 establishes an analog of the Johnson-Lindenstrauss (JL) Lemma for
dimension reduction in l1:

Lemma 8 If k ≥Ggm
(2logn−logδ)

ε2 , then with probability at least 1−δ, one can recover the original l1

distance between any pair of data points (among all n data points) within a 1±ε factor (0 < ε < 1),
using d̂gm. It suffices to specify the constant Ggm = max{GR,gm,GL,gm}.

Similarly, we derive tail bounds for the unbiased geometric mean estimator d̂gm,c, in Lemma 9,
which is proved in Appendix C.
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Lemma 9

Pr
(

d̂gm,c ≥ (1+ ε)d
)

≤UR,gm,c =
coskt∗1

( π
2k

)

cosk
(

πt∗1
2k

)

(1+ ε)t∗1
, ε > 0

where

t∗1 =
2k
π

tan−1
(

(

log(1+ ε)− k logcos
( π

2k

)) 2
π

)

.

Pr
(

d̂gm,c ≤ (1− ε)d
)

≤UL,gm,c =
(1− ε)t∗2

cosk
(

πt∗2
2k

)

coskt∗2
( π

2k

)

, 0 < ε < 1, k ≥ π2

8ε

where

t∗2 =
2k
π

tan−1
(

(

− log(1− ε)+ k logcos
( π

2k

)) 2
π

)

.

As k → ∞, for any fixed ε, we have

ρR,k =
UR,gm,c

UR,gm
→ ρR,∞ =

1
(1+ ε)C1

exp

(

−π2

8
A1 +

π
2

C1 tan

(

π2

2
A1

))

, (10)

ρL,k =
UL,gm,c

UL,gm
→ ρL,∞ =

1
(1− ε)C2

exp

(

π2

8
A2 −

π
2

C2 tan

(

π2

2
A2

))

, (11)

where UR,gm and UL,gm are upper bounds for d̂gm as derived in Lemma 7, and

A1 =
2
π

(

tan−1
(

log(1+ ε)
2
π

))

, C1 =
1/2

1+
(

log(1+ ε) 2
π
)2 ,

A2 =
2
π

(

tan−1
(

− log(1− ε)
2
π

))

, C2 =
1/2

1+
(

log(1− ε) 2
π
)2 .

Figure 4 plots the tail bound ratios ρR,k and ρL,k as defined in Lemma 9, indicating that the
asymptotic expressions ρR,∞ and ρL,∞ are in fact very accurate even for small k (e.g., k = 10).

Figure 4 illustrates that introducing the bias-correction term in d̂gm,c reduces the right tail bound
but amplifies the left tail bound. Because the left tail bound is usually much smaller than the right
tail bound, we expect that overall the bias-correction should be beneficial, as shown in Figure 5,
which plots the overall ratio of tail bounds:

ρk =
UR,gm,c +UL,gm,c

UR,gm +UL,gm
=

coskt∗1 ( π
2k )

cosk

(

πt∗1
2k

)

(1+ε)t∗1
+ (1−ε)t∗2

cosk

(

πt∗2
2k

)

coskt∗2 ( π
2k )

exp
(

−k ε2

GR,gm

)

+ exp
(

−k ε2

GL,gm

) . (12)

Finally, Figure 6 compares d̂gm,c with the sample median estimators d̂me and d̂me,c, in terms of
the mean square errors. d̂gm,c is considerably more accurate than d̂me at small k. The bias correction
significantly reduces the mean square errors of d̂me.
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Figure 4: Tail bound ratios ρR,k and ρL,k as defined in (10) and (11) for k = 2,5,10, along with the
asymptotic expressions ρR,∞ and ρL,∞. The dashed curves correspond to k = ∞.
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Figure 5: The overall ratios of tail bounds, ρk as defined in (12) are almost always below one,
demonstrating that the bias-corrected estimator d̂gm,c may exhibit better overall tail be-
havior than the biased estimator d̂gm.

6. The Maximum Likelihood Estimators

This section analyzes the maximum likelihood estimators (MLE), which are asymptotically opti-
mum (in terms of the variance). In comparisons, the sample median and geometric mean estimators
are not optimum. Our contribution in this section includes the higher-order analysis for the bias and
moments and accurate closed-from approximations to the distribution of the MLE.

The method of maximum likelihood is widely used. For example, Li et al. (2006a) applied the
maximum likelihood method to normal random projections and provided an improved estimator of
the l2 distance by taking advantage of the marginal information.
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Figure 6: The ratios of the mean square errors (MSE), MSE(d̂me)

MSE(d̂gm,c)
and MSE(d̂me,c)

MSE(d̂gm,c)
, demonstrate that

the bias-corrected geometric mean estimator d̂gm,c is considerably more accurate than the
sample median estimator d̂me. The bias correction on d̂me considerably reduces the MSE.
Note that when k = 3, the ratios are ∞.

Recall our goal is to estimate d from k i.i.d. samples x j ∼ C(0,d), j = 1,2, ...,k. The log joint
likelihood of {x j}k

j=1 is

L(x1,x2, ...xk;d) = k log(d)− k log(π)−
k

∑
j=1

log(x2
j +d2),

whose first and second derivatives (w.r.t. d) are

L′(d) =
k
d
−

k

∑
j=1

2d

x2
j +d2

,

L′′(d) = − k
d2 −

k

∑
j=1

2x2
j −2d2

(x2
j +d2)2

= −L′(d)

d
−4

k

∑
j=1

x2
j

(x2
j +d2)2

.

The maximum likelihood estimator of d, denoted by d̂MLE , is the solution to L′(d) = 0, that is,

− k

d̂MLE
+

k

∑
j=1

2d̂MLE

x2
j + d̂2

MLE

= 0. (13)

Because L′′(d̂MLE) ≤ 0, d̂MLE indeed maximizes the joint likelihood and is the only solution to
the MLE equation (13). Solving (13) numerically is not difficult (e.g., a few iterations using the
Newton’s method). For a better accuracy, we recommend the following bias-corrected estimator:

d̂MLE,c = d̂MLE

(

1− 1
k

)

.

Lemma 10 concerns the asymptotic moments of d̂MLE and d̂MLE,c, proved in Appendix D.
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Lemma 10 Both d̂MLE and d̂MLE,c are asymptotically unbiased and normal. The first four moments
of d̂MLE are

E
(

d̂MLE −d
)

=
d
k

+O

(

1
k2

)

Var
(

d̂MLE
)

=
2d2

k
+

7d2

k2 +O

(

1
k3

)

E
(

d̂MLE −E(d̂MLE)
)3

=
12d3

k2 +O

(

1
k3

)

E
(

d̂MLE −E(d̂MLE)
)4

=
12d4

k2 +
222d4

k3 +O

(

1
k4

)

.

The first four moments of d̂MLE,c are

E
(

d̂MLE,c −d
)

= O

(

1
k2

)

Var
(

d̂MLE,c
)

=
2d2

k
+

3d2

k2 +O

(

1
k3

)

E
(

d̂MLE,c −E(d̂MLE,c)
)3

=
12d3

k2 +O

(

1
k3

)

E
(

d̂MLE,c −E(d̂MLE,c)
)4

=
12d4

k2 +
186d4

k3 +O

(

1
k4

)

.

The order O
(

1
k

)

term of the variance, that is, 2d2

k , is well-known (Haas et al., 1970). We derive
the bias-corrected estimator, d̂MLE,c, and the higher order moments using stochastic Taylor expan-
sions (Bartlett, 1953; Shenton and Bowman, 1963; Ferrari et al., 1996; Cysneiros et al., 2001).

We will propose an inverse Gaussian distribution to approximate the distribution of d̂MLE,c, by
matching the first four moments (at least in the leading terms).

6.1 A Numerical Example

The maximum likelihood estimators are tested on some Microsoft Web crawl data, a term-by-
document matrix with D = 216 Web pages. We conduct Cauchy random projections and estimate
the l1 distances between words. In this experiment, we compare the empirical and (asymptotic) the-
oretical moments, using one pair of words. Figure 7 illustrates that the bias correction is effective
and these (asymptotic) formulas for the first four moments of d̂MLE,c in Lemma 10 are accurate,
especially when k ≥ 20.

6.2 Approximate Distributions

Theoretical analysis on the exact distribution of a maximum likelihood estimator is difficult. It is
common practice to assume normality, which, however, is inaccurate.2 The Edgeworth expansion

2. The simple normal approximation can be improved by taking advantage of the conditional density on the ancillary
configuration statistic, based on the observations x1, x2, ..., xk (Fisher, 1934; Lawless, 1972; Hinkley, 1978).
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Figure 7: One pair of words are selected from a Microsoft term-by-document matrix with D =
216 Web pages. We conduct Cauchy random projections and estimate the l1 distance
between one pair of words using the maximum likelihood estimator d̂MLE and the bias-
corrected version d̂MLE,c. Panel (a) plots the biases of d̂MLE and d̂MLE,c, indicating that the
bias correction is effective. Panels (b), (c), and (d) plot the variance, third moment, and
fourth moment of d̂MLE,c, respectively. The dashed curves are the theoretical asymptotic
moments. When k ≥ 20, the theoretical asymptotic formulas for moments are accurate.

improves the normal approximation by matching higher moments (Feller, 1971; Bhattacharya and
Ghosh, 1978; Severini, 2000), which however, has some well-known drawbacks. The resultant ex-
pressions are quite sophisticated and are not accurate at the tails. It is possible that the approximate
probability has values below zero. Also, Edgeworth expansions consider the support to be (−∞,∞),
while d̂MLE,c is non-negative.

The saddle-point approximation (Jensen, 1995) in general improves Edgeworth expansions, of-
ten considerably. Unfortunately, we can not apply the saddle-point approximation in our case (at
least not directly), because it requires a bounded moment generating function.

We propose approximating the distributions of d̂MLE,c directly using some well-studied common
distributions. We will first consider a gamma distribution with the same first two (asymptotic)
moments of d̂MLE,c. That is, the gamma distribution will be asymptotically equivalent to the normal
approximation. While a normal has zero third central moment, a gamma has nonzero third central
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moment. This, to an extent, speeds up the rate of convergence. Another important reason why a
gamma is more accurate is because it has the same support as d̂MLE,c, that is, [0,∞).

We will furthermore consider a generalized gamma distribution, which allows us to match the
first three (asymptotic) moments of d̂MLE,c. Interestingly, in this case, the generalized gamma ap-
proximation turns out to be an inverse Gaussian distribution, which has a closed-form probability
density. More interestingly, this inverse Gaussian distribution also matches the fourth central mo-
ment of d̂MLE,c in the O

(

1
k2

)

term and almost in the O
(

1
k3

)

term. By simulations, the inverse
Gaussian approximation is highly accurate.

Note that, since we are interested in the very small (e.g., 10−10) tail probability range, O
(

k−3/2
)

is not too meaningful. For example, k−3/2 = 10−3 if k = 100. Therefore, we will have to rely on
simulations to assess the accuracy of the approximations. On the other hand, an upper bound may
hold exactly (verified by simulations) even if it is based on an approximate distribution.

As the related work, Li et al. (2006c) applied gamma and generalized gamma approximations
to model the performance measure distribution in some wireless communication channels using
random matrix theory and produced accurate results in evaluating the error probabilities.

6.2.1 THE GAMMA APPROXIMATION

The gamma approximation is an obvious improvement over the normal approximation.3 A gamma
distribution, G(α,β), has two parameters, α and β, which can be determined by matching the first
two (asymptotic) moments of d̂MLE,c. That is, we assume that d̂MLE,c ∼ G(α,β), with

αβ = d, αβ2 =
2d2

k
+

3d2

k2 , =⇒ α =
1

2
k + 3

k2

, β =
2d
k

+
3d
k2 .

Assuming a gamma distribution, it is easy to obtain the following Chernoff bounds:

Pr
(

d̂MLE,c ≥ (1+ ε)d
) ∼
≤ exp(−α(ε− log(1+ ε))) , ε > 0 (14)

Pr
(

d̂MLE,c ≤ (1− ε)d
) ∼
≤ exp(−α(−ε− log(1− ε))) , 0 < ε < 1, (15)

where we use
∼
≤ to indicate that these inequalities are based on an approximate distribution.

Note that the distribution of d̂MLE/d (and hence d̂MLE,c/d) is only a function of k (Antle and
Bain, 1969; Haas et al., 1970). Therefore, we can evaluate the accuracy of the gamma approximation
by simulations with d = 1, as presented in Figure 8.

Figure 8(a) shows that both the gamma and normal approximations are fairly accurate when the
tail probability ≥ 10−2 ∼ 10−3; and the gamma approximation is obviously better.

Figure 8(b) compares the empirical tail probabilities with the gamma Chernoff upper bound
(14)+(15), indicating that these bounds are reliable, when the tail probability ≥ 10−5 ∼ 10−6.

6.2.2 THE INVERSE GAUSSIAN (GENERALIZED GAMMA) APPROXIMATION

The distribution of d̂MLE,c can be well approximated by an inverse Gaussian distribution, which is a
special case of the three-parameter generalized gamma distribution (Hougaard, 1986; Gerber, 1991;

3. Recall that, in normal random projections for dimension reduction in l2 (see Lemma 1), the resultant estimator of the
squared l2 distance has a Chi-squared distribution, which is a special case of gamma.
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Figure 8: We consider k = 10, 20, 50, 100, 200, and 400. For each k, we simulate standard Cauchy
samples, from which we estimate the Cauchy parameter by the MLE d̂MLE,c and compute
the tail probabilities. Panel (a) compares the empirical tail probabilities (thick solid) with
the gamma tail probabilities (thin solid), indicating that the gamma distribution is better
than the normal (dashed) for approximating the distribution of d̂MLE,c. Panel (b) compares
the empirical tail probabilities with the gamma upper bound (14)+(15).

Li et al., 2006c), denoted by GG(α,β,η). Note that the usual gamma distribution is a special case
with η = 1.

If z ∼ GG(α,β,η), then the first three moments are

E(z) = αβ, Var(z) = αβ2, E(z−E(z))3 = αβ3(1+η).

We can approximate the distribution of d̂MLE,c by matching the first three moments, that is,

αβ = d, αβ2 =
2d2

k
+

3d2

k2 , αβ3(1+η) =
12d3

k2 ,

from which we obtain

α =
1

2
k + 3

k2

, β =
2d
k

+
3d
k2 , η = 2+O

(

1
k

)

. (16)

Taking only the leading term for η, the generalized gamma approximation of d̂MLE,c would be

GG

(

1
2
k + 3

k2

,
2d
k

+
3d
k2 ,2

)

. (17)

In general, a generalized gamma distribution does not have a closed-form density function
although it always has a closed-from moment generating function. In our case, (17) is actu-
ally an inverse Gaussian (IG) distribution, which has a closed-form density function. Assuming
d̂MLE,c ∼ IG(α,β), with parameters α and β defined in (16), the moment generating function (MGF),
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the probability density function (PDF), and cumulative density function (CDF) would be (Seshadri,
1993, Chapter 2) (Tweedie, 1957a,b)4

E
(

exp(d̂MLE,ct)
) ∼

= exp
(

α
(

1− (1−2βt)1/2
))

,

fd̂MLE,c
(y)

∼
=

α
√

β√
2π

y−
3
2 exp

(

−(y/β−α)2

2y/β

)

=

√

αd
2π

y−
3
2 exp

(

−(y−d)2

2yβ

)

,

Pr
(

d̂MLE,c ≤ y
) ∼

= Φ





√

α2β
y

(

y
αβ

−1

)



+ e2αΦ



−
√

α2β
y

(

y
αβ

+1

)





= Φ

(
√

αd
y

( y
d
−1
)

)

+ e2αΦ

(

−
√

αd
y

( y
d

+1
)

)

,

where Φ(.) is the standard normal CDF, that is, Φ(z) =
R z
−∞

1√
2π e−

t2
2 dt. Here we use

∼
= to indicate

that these equalities are based on an approximate distribution.
Assuming d̂MLE,c ∼ IG(α,β), the fourth central moment should be

E
(

d̂MLE,c −E
(

d̂MLE,c
))4 ∼

= 15αβ4 +3
(

αβ2)2

= 15d

(

2d
k

+
3d
k2

)3

+3

(

2d2

k
+

3d2

k2

)2

=
12d4

k2 +
156d4

k3 +O

(

1
k4

)

.

Lemma 10 has shown the true asymptotic fourth central moment:

E
(

d̂MLE,c −E
(

d̂MLE,c
))4

=
12d4

k2 +
186d4

k3 +O

(

1
k4

)

.

That is, the inverse Gaussian approximation matches not only the leading term, 12d4

k2 , but also almost

the higher order term, 186d4

k3 , of the true asymptotic fourth moment of d̂MLE,c.

Assuming d̂MLE,c ∼ IG(α,β), the tail probability of d̂MLE,c can be expressed as

Pr
(

d̂MLE,c ≥ (1+ ε)d
) ∼

= Φ
(

−ε
√

α
1+ ε

)

− e2αΦ
(

−(2+ ε)
√

α
1+ ε

)

, ε > 0

Pr
(

d̂MLE,c ≤ (1− ε)d
) ∼

= Φ
(

−ε
√

α
1− ε

)

+ e2αΦ
(

−(2− ε)
√

α
1− ε

)

, 0 < ε < 1.

Assuming d̂MLE,c ∼ IG(α,β), it is easy to show the following Chernoff bounds:

Pr
(

d̂MLE,c ≥ (1+ ε)d
) ∼
≤ exp

(

− αε2

2(1+ ε)

)

, ε > 0 (18)

Pr
(

d̂MLE,c ≤ (1− ε)d
) ∼
≤ exp

(

− αε2

2(1− ε)

)

, 0 < ε < 1. (19)

4. The inverse Gaussian distribution was first noted as the distribution of the first passage time of the Brownian motion
with a positive drift. It has many interesting properties such as infinitely divisibility. Two monographs (Chhikara and
Folks, 1989; Seshadri, 1993) are devoted entirely to the inverse Gaussian distributions. For a quick reference, one
can check http://mathworld.wolfram.com/InverseGaussianDistribution.html.
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To see (18), assume z ∼ IG(α,β). Then, using the Chernoff inequality:

Pr(z ≥ (1+ ε)d) ≤E(zt)exp(−(1+ ε)dt)

=exp
(

α
(

1− (1−2βt)1/2
)

− (1+ ε)dt
)

,

whose minimum is exp
(

− αε2

2(1+ε)

)

, attained at t =
(

1− 1
(1+ε)2

)

1
2β . We can similarly show (19).

Combining (18) and (19) yields a symmetric approximate bound

Pr
(∣

∣d̂MLE,c −d
∣

∣≥ εd
) ∼
≤ 2exp

(

−ε2/(1+ ε)
2
(

2
k + 3

k2

)

)

, 0 < ε < 1.

Figure 9 compares the inverse Gaussian approximation with the same simulations as presented
in Figure 8, indicating that the inverse Gaussian approximation is highly accurate. When the tail
probability ≥ 10−4 ∼ 10−6, we can treat the inverse Gaussian as the exact distribution of d̂MLE,c.
The Chernoff upper bounds for the inverse Gaussian are always reliable in our simulation range (the
tail probability ≥ 10−10).
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Figure 9: We compare the inverse Gaussian approximation with the same simulations as presented
in Figure 8. Panel (a) compares the empirical tail probabilities with the inverse Gaussian
tail probabilities, indicating that the approximation is highly accurate. Panel (b) com-
pares the empirical tail probabilities with the inverse Gaussian upper bound (18)+(19).
The upper bounds are all above the corresponding empirical curves, indicating that our
proposed bounds are reliable at least in our simulation range.

7. Conclusion

In machine learning, it is well-known that the l1 distance is far more robust than the l2 distance
against “outliers.” Dimension reduction in the l1 norm, however, has been proved impossible if
we use linear random projections and linear estimators. In this study, we analyze three types of
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nonlinear estimators for Cauchy random projections: the sample median estimators, the geometric
mean estimators, and the maximum likelihood estimators. Our theoretical analysis has shown that
these nonlinear estimators can accurately recover the original l1 distance, even though none of them
can be a metric.

The sample median estimators and the geometric mean estimators are asymptotically equivalent
but the latter are more accurate at small sample size. We have derived explicit tail bounds for the
geometric mean estimators in exponential forms. Using these tail bounds, we have established an
analog of the Johnson-Lindenstrauss (JL) Lemma for dimension reduction in l1, which is weaker
than the classical JL Lemma for dimension reduction in l2.

We conduct theoretic analysis on the maximum likelihood estimators (MLE), which are “asymp-
totically optimum.” Both the sample median and geometric mean estimators are about 80% efficient
as the MLE. We propose approximating the distribution of the MLE by an inverse Gaussian, which
has the same support and matches the leading terms of the first four moments of the MLE. Approx-
imate tail bounds have been provided based on the inverse Gaussian approximation. Verified by
simulations, these approximate tail bounds hold at least in the ≥ 10−10 tail probability range.

Although these nonlinear estimators are not metrics, they are still useful for certain applications
in, for example, data stream computations, information retrieval, learning and data mining, when-
ever the goal is to compute the l1 distances efficiently using a small storage space in a single pass of
the data.

Li (2008) generalized the geometric mean estimators to the stable distribution family, for dimen-
sion reduction in the lp norm (0 < p ≤ 2). Li (2008) also proposed the harmonic mean estimator for
p → 0+, which is far more accurate than the geometric mean estimator.5 In addition, Li (2007) sug-
gested very sparse stable random projections by replacing the stable distribution with a mixture of
a symmetric Pareto distribution and point mass at the origin, for considerably simplifying the sam-
pling procedure (to generate the projection matrix) and for achieving a significant cost reduction of
matrix multiplication operations.

The general method of linear (stable) random projections is an appealing paradigm for applica-
tions involving massive, high-dimensional, non-sparse, and heavy-tailed data. If there is prior infor-
mation that the data are highly sparse (e.g., text data), other alternative dimension reduction methods
may be more suitable; for example, the new technique called Conditional Random Sampling (CRS)
(Li and Church, 2005, 2007; Li et al., 2007a) was particularly designed for approximating distances
(and other summary statistics) in highly sparse data.
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Appendix A. Proof of Lemma 6

Assume that x1, x2, ..., xk, are i.i.d. C(0,d). The estimator, d̂gm,c, expressed as

d̂gm,c = cosk
( π

2k

) k

∏
j=1

|x j|1/k,

is unbiased, because, from Lemma 5,

E
(

d̂gm,c
)

= cosk
( π

2k

) k

∏
j=1

E
(

|x j|1/k
)

= cosk
( π

2k

) k

∏
j=1

(

d1/k

cos
( π

2k

)

)

= d.

The variance is

Var
(

d̂gm,c
)

= cos2k
( π

2k

) k

∏
j=1

E
(

|x j|2/k
)

−d2

= d2

(

cos2k
( π

2k

)

cosk
(π

k

) −1

)

=
π2

4
d2

k
+

π4

32
d2

k2 +O

(

1
k3

)

,

because

cos2k
( π

2k

)

cosk
(π

k

) =

(

1
2

+
1
2

(

1
cos(π/k)

))k

=

(

1+
1
4

π2

k2 +
5
48

π4

k4 +O

(

1
k6

))k

= 1+ k

(

1
4

π2

k2 +
5
48

π4

k4

)

+
k(k−1)

2

(

1
4

π2

k2 +
5
48

π4

k4

)2

+ ...

= 1+
π2

4
1
k

+
π4

32
1
k2 +O

(

1
k3

)

.

Some more algebra can similarly show the third and fourth central moments:

E
(

d̂gm,c −E
(

d̂gm,c
))3

=
3π4

16
d3

k2 +O

(

1
k3

)

,

E
(

d̂gm,c −E
(

d̂gm,c
))4

=
3π4

16
d4

k2 +O

(

1
k3

)

.

Appendix B. Proof of Lemma 7

We will use the Markov moment bound, because d̂gm,c does not have a moment generating function

(E
(

d̂gm,c
)t

= ∞ if t ≥ k). In fact, even when the Chernoff bound is applicable, for any positive
random variable, the Markov moment bound is always sharper than the Chernoff bound (Philips
and Nelson, 1995; Lugosi, 2004).

By the Markov moment bound, for any ε > 0 and 0 < t < k,

Pr
(

d̂gm ≥ (1+ ε)d
)

≤ E
(

d̂gm
)t

((1+ ε)d)t =
1

cosk
( πt

2k

)

(1+ ε)t
,
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whose minimum is attained at t = k 2
π tan−1

(

2
π log(1+ ε)

)

. Thus

Pr
(

d̂gm ≥ (1+ ε)d
)

≤exp

(

−k

(

log

(

cos

(

tan−1
(

2
π

log(1+ ε)
)))

+
2
π

tan−1
(

2
π

log(1+ ε)
)

log(1+ ε)
))

=exp

(

−k

(

−1
2

log

(

1+

(

2
π

log(1+ ε)
)2
)

+
2
π

tan−1
(

2
π

log(1+ ε)
)

log(1+ ε)

))

=exp

(

−k
ε2

GR,gm

)

,

where

GR,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1+ ε)

)2
)

+ 2
π tan−1

(

2
π log(1+ ε)

)

log(1+ ε)
) .

Again, by the Markov moment bound, for any 0 < ε < 1,

Pr
(

d̂gm ≤ (1− ε)d
)

= Pr

(

1

d̂gm
≥ 1

(1− ε)d

)

≤ E
(

d̂gm
)−t

((1− ε)d)−t =
(1− ε)t

cosk
( πt

2k

) ,

whose minimum is attained at t = −k 2
π tan−1

(

2
π log(1− ε)

)

. Thus

Pr
(

d̂gm ≤ (1− ε)d
)

≤exp

(

−k

(

log

(

cos

(

tan−1
(

2
π

log(1− ε)
)))

+
2
π

tan−1
(

2
π

log(1− ε)
)

log(1− ε)
))

=exp

(

−k

(

−1
2

log

(

1+

(

2
π

log(1− ε)
)2
)

+
2
π

tan−1
(

2
π

log(1− ε)
)

log(1− ε)

))

=exp

(

−k
ε2

GL,gm

)

,

where

GL,gm =
ε2

(

− 1
2 log

(

1+
(

2
π log(1− ε)

)2
)

+ 2
π tan−1

(

2
π log(1− ε)

)

log(1− ε)
) .

Finally, we derive convenient approximations for GG,gm and GL,gm, for small ε (e.g., ε < 1).
Recall that, for |x| < 1, we have

log(1+ x) = x− x2

2
+

x3

3
− x4

4
+ ...

tan−1(x) = x− x3

3
+ ...
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Thus for small ε, we have

GR,gm

=
ε2

(

− 1
2 log

(

1+
(

2
π log(1+ ε)

)2
)

+ 2
π tan−1

(

2
π log(1+ ε)

)

log(1+ ε)
)

=
ε2

− 1
2

(

(

2
π log(1+ ε)

)2 − 1
2

(

2
π log(1+ ε)

)4
+ ...

)

+ 2
π

(

2
π log(1+ ε)− 1

3

(

2
π log(1+ ε)

)3
+ ...

)

log(1+ ε)

=
π2

2 ε2

log2(1+ ε)
(

1− 2
3π2 log2(1+ ε)+ ...

) =
π2

2 ε2

(

ε− ε2

2 + ε3

3 + ...
)2(

1− 2
3π2 ε2 + ...

)

=
π2

2

(

1− ε
2

+
ε2

3
+ ...

)−2(

1− 2
3π2 ε2 + ...

)−1

=
π2

2

(

1+ ε− 2
3

ε2 +
(−2)(−3)

2

(

− ε
2

+
ε2

3
+ ...

)2

+ ...

)

(

1+
2

3π2 ε2 + ...

)

=
π2

2

(

1+ ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

.

Similarly, for small ε, we have

GL,gm

=
ε2

(

− 1
2 log

(

1+
(

2
π log(1− ε)

)2
)

+ 2
π tan−1

(

2
π log(1− ε)

)

log(1− ε)
)

=
ε2

− 1
2

(

(

2
π log(1− ε)

)2 − 1
2

(

2
π log(1− ε)

)4
+ ...

)

+ 2
π

(

2
π log(1− ε)− 1

3

(

2
π log(1− ε)

)3
+ ...

)

log(1− ε)

=
π2

2 ε2

log2(1− ε)
(

1− 2
3π2 log2(1− ε)+ ...

) =
π2

2 ε2

(

−ε− ε2

2 − ε3

3 + ...
)2(

1− 2
3π2 ε2 + ...

)

=
π2

2

(

1+
ε
2

+
ε2

3
+ ...

)−2(

1− 2
3π2 ε2 + ...

)−1

=
π2

2

(

1− ε− 2
3

ε2 +
(−2)(−3)

2

(

ε
2

+
ε2

3
+ ...

)2

+ ...

)

(

1+
2

3π2 ε2 + ...

)

=
π2

2

(

1− ε+

(

1
12

+
2

3π2

)

ε2 + ...

)

.

Appendix C. Proof of Lemma 9

For any ε > 0 and 0 < t < k, the Markov inequality says

Pr
(

d̂gm,c ≥ (1+ ε)d
)

≤ E
(

d̂gm,c
)t

(1+ ε)tdt =
coskt

( π
2k

)

cosk
( πt

2k

)

(1+ ε)t
,
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which can be minimized by choosing the optimum t = t∗1 , where

t∗1 =
2k
π

tan−1
(

(

log(1+ ε)− k logcos
( π

2k

)) 2
π

)

.

We need to make sure that 0 ≤ t∗1 < k. t∗1 ≥ 0 because logcos(.) ≤ 0; and t∗1 < k because
tan−1(.) ≤ π

2 , with equality holding only when k → ∞.
Now we show the other tail bound Pr

(

d̂gm,c ≤ (1− ε)d
)

. Let 0 < t < k.

Pr
(

d̂gm,c ≤ (1− ε)d
)

=Pr

(

cos
( π

2k

)k k

∏
j=1

|x j|1/k ≤ (1− ε)d

)

=Pr

(

k

∏
j=1

|x j|−t/k ≥
(

(1− ε)d
cosk

( π
2k

)

)−t)

≤
(

(1− ε)
cosk

( π
2k

)

)t
1

cosk
( πt

2k

) ,

which is minimized at t = t∗2

t∗2 =
2k
π

tan−1
(

(

− log(1− ε)+ k logcos
( π

2k

)) 2
π

)

,

provided k ≥ π2

8ε , otherwise t∗2 may be less than 0. To see this, in order for t∗2 ≥ 0, we must have

log(1− ε) ≤ k logcos
( π

2k

)

, i.e., 1− ε ≤ cosk
( π

2k

)

.

Because

cosk
( π

2k

)

≥
(

1− 1
2

( π
2k

)2
)k

≥ 1− π2

8k
,

it suffices if 1− ε ≤ 1− π2

8k , that is, k ≥ π2

8ε .
Now we prove the asymptotic (as k → ∞) expressions for the ratios of tail bounds, another way

to compare d̂gm and d̂gm,c.
First, we consider the right tail bounds. For large k, the optimal t = t∗1 can be approximated as

t∗1 =
2k
π

tan−1
(

(

log(1+ ε)− k logcos
( π

2k

)) 2
π

)

∼2k
π

tan−1
(

log(1+ ε)
2
π
− k

2
π

log

(

1− π2

8k2

))

∼2k
π

tan−1
(

log(1+ ε)
2
π

+
π
4k

)

∼2k
π

(

tan−1
(

log(1+ ε)
2
π

)

+
π
4k

1

1+
(

log(1+ ε) 2
π
)2

)

(Taylor expansion)

∼2k
π

(

tan−1
(

log(1+ ε)
2
π

))

+
1/2

1+
(

log(1+ ε) 2
π
)2

=kA1 +C1,
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where

A1 =
2
π

(

tan−1
(

log(1+ ε)
2
π

))

, C1 =
1/2

1+
(

log(1+ ε) 2
π
)2 .

Note that, in the asymptotic decomposition, t∗1 ∼ kA1 +C1, the term kA1 is the optimal “t” in
proving the right tail bound for d̂gm. Thus to study the asymptotic ratio of the right tail bounds, we
only need to keep track of the additional terms in

coskt∗1
( π

2k

)

cosk
(

πt∗1
2k

)

(1+ ε)t∗1
.

Because

coskt∗1
( π

2k

)

∼
(

1− π2

8k2

)k2A1+kC1

∼ exp

(

−π2

8
A1

)

,

and

cosk
(

πt∗1
2k

)

∼cosk
(

πA1

2
+

πC1

2k

)

∼cosk
(

πA1

2

)(

1− πC1

2k
tan
(π

2
A1

)

)k

(Taylor expansion)

∼cosk
(

πA1

2

)

exp

(

−πC1

2
tan
(π

2
A1

)

)

,

we know the ratio of the right tail bounds

ρR,k =

coskt∗1 ( π
2k )

cosk

(

πt∗1
2k

)

(1+ε)t∗1

exp
(

−k ε2

GR,gm

) → ρR,∞ =
1

(1+ ε)C1
exp

(

−π2

8
A1 +

π
2

C1 tan

(

π2

2
A1

))

.

Next, we consider the left tail bound. First, we obtain an asymptotic decomposition of t ∗2 :

t∗2 =
2k
π

tan−1
(

(

− log(1− ε)+ k logcos
( π

2k

)) 2
π

)

∼2k
π

tan−1
(

− log(1− ε)
2
π
− π

4k

)

∼2k
π

(

tan−1
(

− log(1− ε)
2
π

))

− 1/2

1+
(

log(1− ε) 2
π
)2 (Taylor expansion)

=kA2 −C2,

where

A2 =
2
π

(

tan−1
(

− log(1− ε)
2
π

))

, C2 =
1/2

1+
(

log(1− ε) 2
π
)2 .
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Again, in the above asymptotic decomposition, t∗1 ∼ kA2 −C2, the term kA2 is the optimal “t”
in proving the left tail bound for d̂gm. Thus to study the asymptotic ratio of the left tail bounds, we
only need to keep track of the additional terms in

(1− ε)t∗2

coskt∗2
( π

2k

)

1

cosk
(

πt∗2
2k

) .

Because

coskt∗2
( π

2k

)

∼
(

1− π2

8k2

)k2A2−kC2

∼ exp

(

−π2

8
A2

)

,

and

cosk
(

πt∗2
2k

)

∼cosk
(

πA2

2
− πC2

2k

)

∼cosk
(

πA2

2

)(

1+
πC2

2k
tan
(π

2
A2

)

)k

∼cosk
(

πA2

2

)

exp

(

πC2

2
tan
(π

2
A2

)

)

,

we know the ratio of the left tail bounds

ρL,k =

(1−ε)t∗2

coskt∗2 ( π
2k )

1

cosk

(

πt∗2
2k

)

exp
(

−k ε2

GL,gm

) → ρL,∞ =
1

(1− ε)C2
exp

(

π2

8
A2 −

π
2

C2 tan

(

π2

2
A2

))

.

Appendix D. Proof of Lemma 10

Assume x ∼C(0,d). The log likelihood l(x;d) and its first three derivatives are

l(x;d) = log(d)− log(π)− log(x2 +d2),

l′(d) =
1
d
− 2d

x2 +d2 ,

l′′(d) = − 1
d2 −

2x2 −2d2

(x2 +d2)2 ,

l′′′(d) =
2
d3 +

4d
(x2 +d2)2 +

8d(x2 −d2)

(x2 +d2)3 .

The MLE d̂MLE is asymptotically normal with mean d and variance 1
kI(d) , where I(d), the ex-

pected Fisher Information, is

I = I(d) = E
(

−l′′(d)
)

=
1
d2 +2E

(

x2 −d2

(x2 +d2)2

)

=
1

2d2 ,
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because

E

(

x2 −d2

(x2 +d2)2

)

=
d
π

Z ∞

−∞

x2 −d2

(x2 +d2)3 dx

=
d
π

Z π/2

−π/2

d2(tan2(t)−1)

d6/cos6(t)
d

cos2(t)
dt

=
1

d2π

Z π/2

−π/2
cos2(t)−2cos4(t)dt

=
1

d2π

(

π
2
−2

3
8

π
)

= − 1
4d2 .

Therefore, we obtain

Var
(

d̂MLE
)

=
2d2

k
+O

(

1
k2

)

.

General formulas for the bias and higher moments of the MLE are available in Bartlett (1953)
and Shenton and Bowman (1963). We need to evaluate the expressions in (Shenton and Bowman,
1963, 16a-16d), involving tedious algebra:

E
(

d̂MLE
)

= d − [12]

2kI2 +O

(

1
k2

)

Var
(

d̂MLE
)

=
1
kI

+
1
k2

(

−1
I
+

[14]− [122]− [13]

I3 +
3.5[12]2 − [13]2

I4

)

+O

(

1
k3

)

E
(

d̂MLE −E
(

d̂MLE
))3

=
[13]−3[12]

k2I3 +O

(

1
k3

)

E
(

d̂MLE −E
(

d̂MLE
))4

=
3

k2I2 +
1
k3

(

− 9

I2 +
7[14]−6[122]−10[13]

I4

)

+
1
k3

(−6[13]2 −12[13][12]+45[12]2

I5

)

+O

(

1
k4

)

,

where, after re-formatting,

[12] = E(l′)3 +E(l′l′′), [14] = E(l′)4, [122] = E(l′′(l′)2)+E(l′)4,

[13] = E(l′)4 +3E(l′′(l′)2)+E(l′l′′′), [13] = E(l′)3.

We will neglect most of the algebra. To help readers verifying the results, the following formula
we derive may be useful:

E

(

1
x2 +d2

)m

=
1×3×5× ...× (2m−1)

2×4×6× ...× (2m)

1
d2m , m = 1,2,3, ...

Without giving the detail, we report

E
(

l′
)3

= 0, E
(

l′l′′
)

= −1
2

1
d3 , E

(

l′
)4

=
3
8

1
d4 ,

E(l′′(l′)2) = −1
8

1
d4 , E

(

l′l′′′
)

=
3
4

1
d4 .
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Hence

[12] = −1
2

1
d3 , [14] =

3
8

1
d4 , [122] =

1
4

1
d4 , [13] =

3
4

1
d4 , [13] = 0.

Thus, we obtain

E
(

d̂MLE
)

= d +
d
k

+O

(

1
k2

)

Var
(

d̂MLE
)

=
2d2

k
+

7d2

k2 +O

(

1
k3

)

E
(

d̂MLE −E
(

d̂MLE
))3

=
12d3

k2 +O

(

1
k3

)

E
(

d̂MLE −E
(

d̂MLE
))4

=
12d4

k2 +
222d4

k3 +O

(

1
k4

)

.

Because d̂MLE has O
(

1
k

)

bias, we recommend the bias-corrected estimator

d̂MLE,c = d̂MLE

(

1− 1
k

)

,

whose first four moments are, after some algebra,

E
(

d̂MLE,c
)

= d +O

(

1
k2

)

Var
(

d̂MLE,c
)

=
2d2

k
+

3d2

k2 +O

(

1
k3

)

E
(

d̂MLE,c −E
(

d̂MLE,c
))3

=
12d3

k2 +O

(

1
k3

)

E
(

d̂MLE,c −E
(

d̂MLE,c
))4

=
12d4

k2 +
186d4

k3 +O

(

1
k4

)

.
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