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A new clustering approach based on mode identification is developed by applying new optimiza-
tion techniques to a nonparametric density estimator. A cluster is formed by those sample points
that ascend to the same local maximum (mode) of the density function. The path from a point to
its associated mode is efficiently solved by an EM-style algorithm, namely, the Modal EM (MEM).
This method is then extended for hierarchical clustering by recursively locating modes of kernel
density estimators with increasing bandwidths. Without model fitting, the mode-based clustering
yields a density description for every cluster, a major advantage of mixture-model-based clustering.
Moreover, it ensures that every cluster corresponds to a bump of the density. The issue of diagnos-
ing clustering results is also investigated. Specifically, a pairwise separability measure for clusters
is defined using the ridgeline between the density bumps of two clusters. The ridgeline is solved
for by the Ridgeline EM (REM) algorithm, an extension of MEM. Based upon this new measure,
a cluster merging procedure is created to enforce strong separation. Experiments on simulated and
real data demonstrate that the mode-based clustering approach tends to combine the strengths of
linkage and mixture-model-based clustering. In addition, the approach is robust in high dimensions
and when clusters deviate substantially from Gaussian distributions. Both of these cases pose diffi-
culty for parametric mixture modeling. A C package on the new algorithms is developed for public
access at http://www.stat.psu.edu/~jiali/hmac.

Keywords: modal clustering, mode-based clustering, mixture modeling, modal EM, ridgeline
EM, nonparametric density

1. Introduction

Clustering is a technology employed in tremendously diverse areas for a multitude of purposes. It
simplifies massive data by extracting essential information, based on which many subsequent anal-
ysis or processes become feasible or more efficient. For instance, in information systems, clustering
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is applied to text documents or images to speed up indexing and retrieval (Li, 2005a). Clustering
can be a stand-alone process. For example, microarray gene expression data are often clustered in
order to find genes with similar functions. Clustering is also the technical core of several prototype-
based supervised learning algorithms (Hastie et al., 2001) and has been extended to non-vector data
in this regard (Li and Wang, 2006). Recent surveys (Kettenring, 2006; Jain et al., 1999) discuss the
methodologies, practices, and applications of clustering.

1.1 Background

Clustering methods fall roughly into three types. The first type uses only pairwise distances between
objects to be clustered. These methods enjoy wide applicability since a tractable mathematical
representation for objects is not required. However, they do not scale well with large data sets
due to the quadratic computational complexity of calculating all the pairwise distances. Examples
include linkage clustering (Gower and Ross, 1969) and spectral graph partitioning (Pothen et al.,
1990). The second type targets on optimizing a given merit function. The merit function reflects
the general belief about good clustering, that is, objects in the same cluster should be similar to
each other while those in different clusters be as distinct as possible. Different algorithms vary in
the similarity measure and the criterion for assessing the global quality of clustering. K-means and
k-center clustering (Gonzalez, 1985) belong to this type.

The third type relies on statistical modeling (Fraley and Raftery, 2002). In particular, each
cluster is characterized by a basic parametric distribution (referred to as a component), for instance,
the multivariate Gaussian for continuous data and the Poisson distribution for discrete data. The
overall probability density function (pdf) is a mixture of the parametric distributions (McLachlan
and Peel, 2000). The clustering procedure involves first fitting a mixture model, usually by the
EM algorithm, and then computing the posterior probability of each mixture component given a
data point. The component possessing the largest posterior probability is chosen for that point.
Points associated with the same component form one cluster. Moreover, the component posterior
probabilities evaluated in mixture modeling can be readily used as a soft clustering scheme. In
addition to partitioning data, a probability distribution is obtained for each cluster, which can be
helpful for gaining insight into the data. Another advantage of mixture modeling is its flexibility in
treating data of different characteristics. For particular applications, mixtures of distributions other
than Gaussian have been explored for clustering (Banfield and Raftery, 1993; Li and Zha, 2006).
Banerjee et al. (2005) have also used the mixture of Mises-Fisher distributions to cluster data on a
unit sphere.

The advantages of mixture modeling naturally result from its statistical basis. However, the
parametric assumptions about cluster distributions are found restrictive in some applications. Li
(2005b) addresses the problem by assuming each cluster itself is a mixture of Gaussians, providing
greater flexibility for modeling a single cluster. This method involves selecting the number of
components for each cluster and is sensitive to initialization. Although some success has been
shown using the Bayesian Information Criterion (BIC), choosing the right number of components
for a mixture model is known to be difficult, especially for high dimensional data.

Another limitation for mixture modeling comes from the sometimes serious disparity between
a component and a cluster complying to geometric heuristics. If a probability density is estimated
from the data, preferably, every cluster corresponds to a unique “bump” in the density resulting from
a tight mass of data. We refer to a bump as a “hill” and the local maximum associated with it the
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“hilltop”, that is, the mode. The rational for clustering by a mixture model is that if the component
distributions each possess a single hilltop, by fitting a mixture of them, every component captures
one separate hilltop in the data. However, this is often not true. Without careful placement and
control of their shapes, the mixture components may not align with the hills of the density, especially
when clusters are poorly separated or the assumed parametric component distribution is violated. It
is known that two Gaussians located sufficiently close result in a single mode. (On the other hand, a
two component multivariate Gaussian mixture can have more than two modes, as shown by Ray and
Lindsay, 2005). In this case, equating a component with a cluster is questionable. This profound
limitation of mixture modeling has not been adequately investigated. In fact, even to quantify the
separation between components is not easy.

Here, we develop a new nonparametric clustering approach, still under a statistical framework.
This approach inherits the aforementioned advantages of mixture modeling. Furthermore, data are
allowed to reveal a nonparametric distribution for each cluster as part of the clustering procedure. It
is also guaranteed that every cluster accounts for a distinct hill of the probability density.

1.2 Clustering via Mode Identification

To avoid restrictions imposed by parametric assumptions, we model data using kernel density func-
tions. By their nature, such densities have a mixture structure. Given a density estimate in the form
of a mixture, a new algorithm, aptly called the Modal EM (MEM), enables us to find an increasing
path from any point to a local maximum of the density, that is, a hilltop. Our new clustering algo-
rithm groups data points into one cluster if they are associated with the same hilltop. We call this
approach modal clustering. A new algorithm, namely the Ridgeline EM (REM), is also developed
to find the ridgeline linking two hilltops, which is proven to pass through all the critical points of
the mixture density of the two hills.

The MEM and REM algorithms allow us to exploit the geometry of a probability density func-
tion in a nontrivial manner. As a result, clustering can be conducted in accurate accordance with
our geometric heuristics. Specifically, every cluster is ensured to be associated with a hill, and ev-
ery sample point in the cluster can be moved to the corresponding hilltop along an ascending path
without crossing any “valley” that separates two hills. Moreover, by finding the ridgeline between
two hilltops, the way two hills separate from each other can be adequately measured and exhibited,
enabling diagnosis of clustering results and application-dependent adjustment of clusters. Modal
clustering using MEM also has practical advantages such as the irrelevance of initialization and the
ease of implementing required optimization techniques.

Our modal clustering algorithm is not restricted to kernel density estimators. In fact, it can be
used to find the modes of any density in the form of a mixture distribution. It is known that when the
number of components in a mixture increases, as long as there are sufficiently many components,
the overall fitted density of the mixture is not sensitive to that number. On the other hand, the
resulting partition of data can change dramatically if we identify each mixture component with a
cluster, as normally practiced in mixture-model-based clustering. In modal clustering, there is no
such identification, and mixture components only play the role of approximating a density. We
thus have much more flexibility at choosing mixture distributions. Specifically, we adopt the fully
nonparametric kernel density estimation, using Gaussian kernels for continuous data.

We summarize the main contributions of this paper as follows:
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¢ A new nonparametric statistical clustering algorithm and its hierarchical extension are devel-
oped by associating data points to their modes identified by MEM. Approaches to improve
computational efficiency and to visualize cluster structures for high dimensional data are pre-
sented.

e The REM algorithm is developed to find the ridgeline between the modes of any two clusters.
Measures for the pairwise separability between clusters are proposed using ridgelines. A
cluster merging algorithm to enhance modal clustering is developed.

e Experiments are conducted using both simulated and real data sets. Comparisons are made
with several other clustering algorithms such as linkage clustering, k-means, and Gaussian
mixture modeling.

1.3 Related Work

Clustering is an extensively studied research topic with vast existing literature (see Jain et al., 1999;
Everitt et al., 2001, for general coverage). Works most related to ours are mode-based clustering
methods independently developed in the communities of pattern recognition (Leung et al., 2000)
and statistics (Cheng et al., 2004). The MEM and REM algorithms, the cluster diagnosis tool, and
cluster merging procedure built upon REM are unique to our work.

In pattern recognition, mode-based clustering is studied under the name of scale-space method,
inspired by the smoothing effect of the human visual system. The scale-space clustering method
is pioneered by Wilson and Spann (1990), and furthered studied by Roberts (1997) using density
estimation and by Chakravarthy and Ghosh (1996) using the radial basis function neural network.
Leung et al. (2000) forms a function called “space scale image” for a data set. This function is es-
sentially a Gaussian kernel density estimate (differing from a true density by an ignorable constant).
The modes of the density function are solved by numerical methods. To associate a data point with
a mode, a gradient dynamic system starting from the point is defined and solved by the Euler differ-
ence method. A hierarchical clustering algorithm is proposed by gradually increasing the Gaussian
kernel bandwidth. The authors also note the non-nested nature of clustering results obtained from
increasing bandwidths.

It can be shown that the iteration equation derived from the Euler difference method is identi-
cal to that from MEM. However, MEM applies generally to any mixture of Gaussians as well as
mixtures of other parametric distributions. Its ascending property is proved rather than based on
approximation. Under the framework of scale-space clustering, general mixtures do not arise as a
concern, and naturally, only the case of Gaussian kernel density is discussed (Leung et al., 2000).
It is not clear whether the gradient dynamic system can be efficiently solved for general mixture
models. Our hierarchical clustering algorithm differs slightly from that of Leung et al. (2000) by
enforcing nested clustering. This difference only reflects an algorithmic preference and is not in-
trinsic to the key ideas of modal clustering.

Cheng et al. (2004) defined a gradient tree to be the set of steepest ascent curves of a kernel
density estimate, treating each sample point as the starting position of a curve. The gradient curves
are similar to the paths solved by the gradient dynamic system of Leung et al. (2000), but are
computed by discrete approximation. Minnotte and Scott (1993) developed the mode tree as a
visualization tool for nonparametric density estimate. The emphasis is on graphically illustrating the
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relationship between kernel bandwidths and the modes of uni- or bivariate kernel density functions.
Minnotte et al. (1998) also extended the mode tree to the mode forest.

Because clustering of independent vectors has been a widely used method for image segmen-
tation, especially in the early days (Jain and Dubes, 1988), we test the efficiency of our algorithm
on segmentation, a good example of computationally intensive applications. We have no intention
to present our clustering algorithm as a state-of-the-art segmentation method although it may well
be applied as a fast method. We note that much advance has been achieved in image segmentation
using approaches beyond the framework of clustering independent vectors (Pal and Pal, 1993; Shi
and Malik, 2000; Joshi et al., 2006).

The rest of the paper is organized as follows. Notations and the MEM algorithm are introduced
in Section 2. In Section 3, a new clustering algorithm and its hierarchical extension are developed
by associating data points with the modes of a kernel density estimate. In Section 4, the REM algo-
rithm for finding ridgelines between modes is presented. In addition, several measures of pairwise
separability between clusters are defined, which lead to the derivation of a new cluster merging
algorithm. This merging method strengthens the framework of modal clustering. In Section 5, we
present a method to visualize high dimensional data so that the discrimination between clusters is
well preserved. Experimental results on both simulated and real data sets and comparisons with
other clustering approaches are provided in Section 6. Finally, we conclude and discuss future work
in Section 7.

2. Preliminaries

We introduce in this section the Modal EM (MEM) algorithm that solves a local maximum of a
mixture density by ascending iterations starting from any initial point. The algorithm is named
Modal EM because it comprises two iterative steps similar to the expectation and the maximization
steps in EM (Dempster et al., 1977). The objective of the MEM algorithm is different from the
EM algorithm. The EM algorithm aims at maximizing the likelihood of data over the parameters of
an assumed distribution. The goal of MEM is to find the local maxima, that is, modes, of a given
distribution.

Let a mixture density be f(x) = YK ; Tfk(x), where x € RY, Ty is the prior probability of
mixture component k, and fi(x) is the density of component k. Given any initial value x©, MEM
solves a local maximum of the mixture by alternating the following two steps until a stopping
criterion is met. Start with r = 0.

1. Let

2. Update
x*+1) — argmax S prlog fi(x).
=]

X
The first step is the “Expectation” step where the posterior probability of each mixture com-
ponent k, 1 < k < K, at the current point x(") is computed. The second step is the “Maximiza-
tion” step. We assume that Sk _; pklog fk(x) has a unique maximum, which is true when the fi(x)
are normal densities. In the special case of a mixture of Gaussians with common covariance ma-
trix, that is, fix(x) = @(x | Pk, Z), where (-) is the pdf of a Gaussian distribution, we simply have
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XU+ = yK  puik. For other parametric densities fg(x), the solution to the maximization in the
second step can be more complicated and sometimes requires numerical procedures. On the other
hand, similarly as in the EM algorithm, it is usually much easier to maximize zle pklog fk(x) than
the original objective function log 25:1 T fi(X).

The proof of the ascending property of the MEM algorithm is provided in Appendix A. We omit
a rigorous discussion regarding the convergence of x(*) here. By Theorem 1 of Wu (1983), if f(x)
is a mixture of normal densities, all the limit points of {x(")} are stationary points of f(x). It is
possible that {x(")} converges to a stationary, but not locally maximal, point, although we have not
observed this in our experiments. We refer to (Wu, 1983) for a detailed treatment of the convergence
properties of EM style algorithms.

3. Clustering by Mode Identification

We focus on clustering continuous vector data although the framework extends readily to discrete
data. Given a data set {x1,X2,...,Xn}, Xj € R 9, a probability density function for the data is estimated
nonparametrically using Gaussian kernels. As the kernel density estimate is in the form of a mixture
distribution, MEM is applied to find a mode using every sample point x;, i = 1,...,n, as the initial
value for the iteration. Two points x; and x; are grouped into one cluster if the same mode is obtained
from both. When the variances of Gaussian kernels increase, the density estimate becomes smoother
and tends to group more points into one cluster. A hierarchy of clusters can thus be constructed by
gradually increasing the variances of Gaussian kernels. Next, we elaborate upon the clustering
algorithm, illustrate it with an example, and discuss approaches to speed up computation.

3.1 The Algorithm

Let the set of data to be clustered be S = {x1,X2,...,Xn}, Xi € RY. The Gaussian kernel density

estimate is formed:
n
1
= Z ~o(x[xi,2)
&N
where the Gaussian density function

1 1 )
Qx| x,2) = Wexp( “(x—x)'= x—xp) .
We use a spherical covariance matrix X = diag(c?,0?,...,02). The standard deviation o is also
referred to as the bandwidth of the Gaussian kernel. We use notation D(0?) = diag(0?,0?, ...,0%)
for brevity.

With a given Gaussian kernel covariance matrix D(o?), data are clustered as follows:

1. Form kernel density

f(x]s,0%) Zl ch|X|, %)), 1)
2. Use f(x|S,a?) as the density function. Use each x;, i = 1,2,...,n, as the initial value in the
MEM algorithm to find a mode of f(x|S,a?). Let the mode identified by starting from x; be

ch(xi).

1692



NONPARAMETRIC MODAL CLUSTERING

3. Extract distinctive values from the set {My(xi),i = 1,2,...,n} to form a set G. Label the
elements in G from 1 to |G|. In practice, due to finite precision, two modes are regarded equal
if their distance is below a threshold.

4. If My(xi) equals the kth element in G, x; is put in the kth cluster.

In the basic version of the algorithm, the density f(x|S,0?) is a sum of Gaussian kernels centered
at every data point. However, the algorithm can be carried out with any density estimate in the form
of a mixture. The key step in the clustering algorithm is the identification of a mode starting from
any x;. MEM moves from x; via an ascending path, or, figuratively, via hill climbing, to a mode.
Points that climb to the same mode are located on the same hill and hence grouped into one cluster.
We call this the Mode Association Clustering (MAC) algorithm.

Although the density of each cluster is not explicitly modeled by MAC, this nonparametric
method retains a major advantage of mixture-model-based clustering, that is, a pdf is obtained
for each cluster. These density functions facilitate soft clustering as well as cluster assignment of
samples outside the data set. Denote the set of points in cluster k, 1 < k < |G|, by Ck. The density
estimate for cluster k is

_ 1 (a2
gk(x) = MZECK ‘Ck|<P(X | %i,D(0%)) . 2

Because we do not assume a parametric form for the densities of individual clusters, our method
tends to be more robust and characterizes clusters more accurately when the attempted parametric
assumptions are violated.

It is known in the literature of mixture modeling that if the density of a cluster is estimated using
only points assigned to this cluster, the variance tends to be under estimated, although the effect on
clustering may be small (Celeux and Govaert, 1993). The under estimation of variance becomes
more severe for poorly separated clusters, which often decay towards zero too quickly on leaving
the cluster. We will see a similar phenomenon here with gi(x) having over fast decaying tails. A
correction to this problem in mixture modeling is to use soft instead of hard clustering. Every point
is allowed to contribute to every cluster by a weight computed from the posterior probability of the
cluster.

Under this spirit, we can make an ad-hoc modification on the density estimation. With gi(x) in
(2) as the initial cluster density, compute the posterior of cluster k given each x; by pj x U 'C—nk‘gk(x),

k=1, .., |G|, subject to zl‘il piw = 1. Form the updated density of cluster k by

<o YTl pik®(x | xi,D(0?))
Gk(x) = Zinzl Dik :

With the cluster density modified, it is natural to question if p;x should be updated again, which
in turn will lead to another update of §x(x). This iterative procedure can be carried out infinitely.
Whether it converges is not clear and may be worthy of investigation. On the other hand, if the
maximum a posteriori clustering based on the final §x(x) differs significantly from the result of
modal clustering, this procedure may have defeated the very purpose of modal clustering and turned
it into merely an initialization scheme. We thus do not recommend many iterative updates on g (x).
One round of adjustment from gk (x) may be sufficient. Or one can take gk(x) cautiously as a smooth
signature of a cluster, likely tighter than an accurate density estimate.
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When the bandwidth o increases, the kernel density estimate f (x|S,a?) in (1) becomes smoother
and more points tend to climb to the same mode. This suggests a natural approach for hierarchical
clustering. Given a sequence of bandwidths 01 < 0, < --- < gy, hierarchical clustering is performed
in a bottom-up manner. We start with every point x; being a cluster by itself. The set of cluster
representatives is thus Go = S = {x1,...,Xn}. This extreme case corresponds to the limit when o
approaches 0. At any bandwidth o), the cluster representatives in G,_; obtained from the preceding
bandwidth are input into MAC using the density f(x|S,02). Note that the kernel centers remain
at all the original data points although modes are identified only for cluster representatives when
I > 1. The modes identified at this level form a new set of cluster representatives G;. This procedure
is repeated across all 0;’s. We refer to this hierarchical clustering algorithm as Hierarchical MAC
(HMAC). It corresponds to the mappings x; — Mg, (Xi) — Mo, (Mg, (Xi)) — ---.

Denote the partition of points obtained at bandwidth o, by A, a function mapping x;’s to cluster
labels. If K clusters labeled 1, 2, ..., K, are formed at bandwidth o}, A (x) € {1,2,...,K}. HMAC
ensures that #’s are nested, that is, if A(xi) = A(X;j), then A 1(xi) = A;1(Xj). Recall that the
set of cluster representatives at level | is G;. HMAC starts with Gy = {x1,...,Xn} and solves G,
I =1,2,...,n, sequentially by the following procedure:

1. Form kernel density

f(x5.07) = 3 Solx|x.D(a))

2. Cluster G| by MAC using density f(x|S,0?). Let the set of distinct modes obtained be G;.

3. If B_1(x) =k and the kth element in G, _; is clustered to the k’th mode in Gy, then A (x;) =k'.
That is, the cluster of x; at level | is determined by its cluster representative in G;_1.

It is worthy to note that HMAC differs profoundly from linkage clustering, which also builds a
hierarchy of clusters. In linkage clustering, at every level, only the two clusters with the minimum
pairwise distance are merged. The hierarchy is constructed by a sequence of such small greedy
merges. The lack of overall consideration tends to result in skewed clusters. In HMAC, however, at
any level, the merging of clusters is conducted globally and the effect of every original data point
on clustering is retained through the density f (xS, o?).

3.2 An Example

We now illustrate the HMAC algorithm using a real data set. This is the glass identification data
provided by the UCI machine learning database repository (Blake et al., 1998). The original data
were contributed by Spiehler and German at the Diagnostic Products Corporation. For clarity of
demonstration, we take 105 sample points from two types of glass in this data set. Moreover, we
only use the first two principal components of the original 9 dimensions.

HMAC is applied to the data using a sequence of kernel bandwidths 01 < 0 < --- < 0y, N = 20,
chosen equally spaced from [0.16,26] = [0.225,4.492], where G is the larger one of the sample
standard deviations of the two dimensions. Among the 20 different g;’s, only 6 of them result in
clustering different from o, _4, reflecting the fact that the bandwidth needs to increase by a sufficient
amount to drive the merging of some existing cluster representatives. The number of clusters at the
6 levels is sequentially 21, 11, 5, 3, 2, 1.
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We demonstrate the clustering results at the 2nd and 3rd level in Figure 1. At the 2nd level, 11
clusters are formed, as shown by different symbols in Figure 1(a). The 11 modes identified at level
2 are merged into 5 modes at level 3 when the bandwidth increases from 0.449 to 0.674. Figure 1(b)
shows the ascending paths generated by MEM from the 11 modes (crosses) at level 2 to the 5 modes
(squares) at level 3. The contour lines of the density function with the corresponding bandwidth of
level 3 are plotted in the background for better illustration. The 5 clusters at level 3 are shown in
Figure 1(c). These 5 modes are again merged into 3 modes at level 4, as shown in Figure 1(d).

3.3 Measures for Enhancing Speed

Because the nonparametric density estimate in (1) is a sum of kernels centered at every data point,
the amount of computation to identify the mode associated with a single point grows linearly with
n, the size of the data set. The computational complexity of clustering all the data by MAC is thus
quadratic in n. In practice, however, it is often unnecessary to use the basic kernel estimate. A
preliminary clustering can be first applied to {xi,...,Xn} to yield m clusters, where m is significantly
smaller than n, but still much larger than the desired number of clusters. Suppose the m cluster
centroids are S = {Xy, ...,Xm} and the number of points in cluster §j isnj, j=1,2,...,m. We use the
density estimate

{(x15.0(0Y) = S Uix|%.D(0?)
2,0 oI

in MAC to cluster the x;’s. Since MEM applies to general mixture models, the modified density
function causes no essential changes to the clustering procedure.

The purpose of the preliminary clustering is more of quantizing the data than clustering. Com-
putation is reduced by not discerning points in the same quantization region when formulating the
density estimate. If m is sufficiently large, S is adequate to retain the topological structures in the
nonparametric density estimate. In this fast version of MAC, we search for a mode for every X;.
Examples exploiting the fast MAC are given in Section 6.

4. Analysis of Cluster Separability via Ridgelines

A measure for the separability between clusters is useful for gaining deeper understanding of clus-
tering structures in data. With this measure, the difference between clusters is quantified, rather
than being simply categorical. This quantification can be useful in certain situations. For instance,
in taxonomy study, after grouping instances into species, scientists may need to numerically assess
the disparity between species, often taken as an indicator for evolutionary proximity. A separability
measure between the clusters of species can effectively reflect such disparity. Such a measure is also
useful for diagnosing clustering results and for the mere interest of designing clustering algorithms.
Based upon it, we derive a mechanism to merge weakly separated clusters. Although the separabil-
ity measure is a diagnostic tool and the cluster merging method can adjust the number of clusters, in
this paper, we do not pursue the problem of choosing the number of clusters fully automatically. It
is well known that determining this number is a deep problem, and domain knowledge often needs
to be called upon for a final decision in various applications.

The separability measure we define here exploits the geometry of the density functions of two
clusters in a comprehensive manner. We only require the cluster pdf to be a mixture distribution,
for example, a Gaussian kernel density estimate. Before formulating the separability measure, we
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Figure 1: Clustering results for the glass data set obtained from HMAC. (a) The 11 clusters at level
2. (b) The MEM ascending paths from the modes at level 2 (crosses) to the modes at
level 3 (squares), and the contours of the density estimate at level 3. (c) The 5 clusters
at level 3. (d) The ascending paths from the modes at level 3 (crosses) to those at level 4
(squares) and the contours of the density estimate at level 4. (e) Ridgelines between the
3 major clusters at level 3. (f) The density function along the 3 ridgelines.

1696



NONPARAMETRIC MODAL CLUSTERING

define a ridgeline between two unimodal clusters. The REM algorithm is developed to solve the
ridgeline.

4.1 Ridgeline

The ridgeline between two clusters with density g1 (X) and g2(X) is
L={x(a):(1—a)Ologgi(x)+alloggz(x) =0,0<a <1}. (3)

For a mixture density of the two clusters, §(x) = g1 (X) + Tg2(X), Tu + T =1, if §(x) >0
for any x, the modes, antimodes (local minimums), and saddle points of §(x) must occur in L for
any prior probability Ty. The locations of these critical points, however, depend on 1t;. This fact is
referred to as the critical value theorem and is proved by Ray and Lindsay (2005).

Remarks:

1. Eq. (3) is precisely the critical point equation for the exponential tilt density g(x|a) =
c(a)g1(x)1%g2(x)®, where c(a) is a normalizing constant. This density family is an ex-
ponential family, with sufficient statistic log(gz2(x)/g1(x)).

2. The set of solutions in £ is, in general, a 1-dimensional manifold; that is, a curve. When both
g1 and g, are normal densities, the solution is explicit (see Ray and Lindsay, 2005), and the
solutions form a unique one-dimensional curve. More generally, the solutions are possibly a
set of curves that pass through the modes of the g1 (x) and ga(x).

3. If both g1 and g, are unimodal and have convex upper contour sets, it can be proved that the
solutions form a unique curve between the modes of g1 and g, respectively. In our discussion,
we assume unimodal g; and go.

Since the local maxima of the exponential tilt function g(x; a) satisfy Eq. (3), we solve (3) by
maximizing log(g(x|a)) = (1 —a)loggi(x) + aloggz(x). In the case when the two cluster densi-
ties g; and g are themselves mixtures of basic parametric distributions, for example, normal, we
develop an ascending algorithm to maximize the function, referred to as the Ridgeline EM (REM)
Algorithm. For notational brevity, assume that both g, and g, are mixtures of T parametric distri-
butions:

T
zTﬁKth ) :172'

Starting from an initial value x(°), REM updates x by iterating the two steps:
1. Compute
Pix = TG khix(x /Zm]hlj =1,..,T,i=12.

2. Update x("+1):

T T
X" = argmax(1—a) ¥ pucloghik(x)+a Y paxloghak(x) .
X K=1 k=1
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REM ensures that g(x("*%) | a) > g(x(") | a). Proof is given in Appendix B. As with MEM,
we will not rigorously study the convergence properties of the sequence {x(r)}. In the special case
hix(X) = (X | Mi,), the update equation for x"+1) becomes

T T
I+ — (1-a) Z P1kH1k + O z P2.xH2k -
K=1 k=1

The Gaussian kernel density estimate belongs to this case.

At the two extreme values o = 0, 1, the solutions are the modes of g1 (x) and gx(x) respectively.
We solve x(a) sequentially on a set of grid points 0 = ap < a3 < --- < oz = 1. First, x(0) =
argmax, g1 (x) is solved by MEM. For every oy, x(a_1), previously calculated, is used as initial
value to start the iterations in REM.

Suppose two clusters, denoted by z; and z,, have densities g; and g», and prior probabilities T
and 1, respectively. We define a pairwise separability as

5 _ . Mingmmgr(X(@)) + Tega(X(a) _, Taga(X(a*)) + Tega(X(a*))
(z1,22) = 1— =1- 4)
01 (X(0)) + T2g2(X(0)) 191 (X(0)) + T2g2(X(0))
where a* = argmin, Tug1 (X(a)) 4+ 10g2(X(a)). Usually, the prior probabilities 1 or T are propor-
tional to the cluster sizes. It is obvious that S(z1,22) € [0,1]. To symmetrize the measure, we define
the pairwise symmetric separability as $(z1,22) = min[S(z1,22),S(z2,21)).

By finding x(a*), we can evaluate the amount of “dip” along the ridgeline. By the critical
value theorem, the minimum of Tg;(X) + T@g2(x), if exists, lies on the ridgeline and therefore
must be x(a*). Hence, if there is a “dip” in the mixture of the two clusters, it will be captured
by the ridgeline. According to definition (4), a deeper “dip” leads to higher separability. In our
implementation, we approximate a* by

a* ~ argmin g1 (X(01)) + TRg2(X(0y)) ,
,0<1<C

where o, 0 <1 <, are the grid points.

We also define the separability for a single cluster to quantify its overall distinctness from other
clusters. Specifically, suppose there are m clusters denoted by z;, i = 1,...,m. The separability of
cluster z;, denoted by s(z;) is defined by

(@) =, in L S@2)
We call a cluster “insignificant” if its separability is below a given threshold €. In our discussion,
e=0.5.

Take the glass data set as an example. As shown in Figure 1(c), the points are divided into 5
groups at that level of the clustering hierarchy. Two of the clusters each contain a single sample
point, which is far from the other points and forms a mode alone. The separability of these two
clusters are weak, respectively 0.00 and 0.30. The three other clusters are highly separable, with
separability values 0.94, 0.84 and 0.81. Figure 1(e) shows the ridgelines between any two of the
three significant clusters, and Figure 1(f) shows the density function along the ridgelines, normalized
to one at the ridgeline end point x(0) or x(1) (depending on whichever is larger).

The task of identifying insignificant clusters in Figure 1(c) is not particularly challenging be-
cause the two smallest clusters are “singletons” (containing only one sample). However, cluster size
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is not the sole factor affecting separability. Take the clusters in Figure 1(a) as an example. The
separability of the 11 clusters and their corresponding sizes (number of points contained) are listed
in Table 1. It is shown that although cluster 9 is the third largest cluster, its separability is low. At
threshold € = 0.5, this cluster is insignificant. In contrast, by being far from all the other clusters,
cluster 6, a singleton, has separability 0.87. The low separability of cluster 9 is caused by its prox-
imity to cluster 1, the largest cluster which accounts for 60% of the data. Clusters that contain a
large portion of data tend to “absorb” surrounding smaller clusters. The attraction of a small cluster
to a bigger one depends on its relative size, tightness, distance to the bigger cluster, as well as the
orientation of the data masses in the two clusters.

Cluster 1 2 3 4 5 6 7 8 9 10 11
Size 63 1 1 2 4 25
Separability | 0.94 | 0.41 | 0.41 | 0.31 | 0.68 | 0.87 | 0.13 | 0.13 | 0.18 | 0.46 | 0.92

[
[ERN
[EEN
ol
[EEN

Table 1: Separability between clusters in the glass data set

4.2 Merging Clusters Based on Separability

To elaborate on the relationships between clusters, we compute the matrix of separability between
any pair of clusters. We can potentially use this matrix to decide which clusters can be merged due
to weak separation. As discussed previously, one way to merge clusters is to increase the bandwidth
of the kernel function used by HMAC. However, an enlarged bandwidth may cause prominent clus-
ters to be clumped while leaving undesirable small “noisy” clusters unchanged. Merging clusters
according to the separability measure is one possible approach to eliminate “noisy” clusters without
losing important clustering structures found at a small bandwidth. We will show by the glass data
that the merging method makes clustering results less sensitive to bandwidth.

Let the clusters in consideration be {z,2y,...,zm}. We denote the pairwise separability between
cluster zi and zj in short by S; j, where S; j = S(z;,z;). Note in general S; j # S; ;. Let a threshold for
separability be €, 0 < € < 1. Let the density function of cluster z; be g;(-) and the prior probability
be 15. Denote the weighted mode of each cluster density function by &(z;) = 13 maxg;(x). Since in
MEM the mode maxg;i(x) for each cluster z; is computed when z; is formed, d(z;) requires no extra
computation after clustering. We refer to &(z;) as the significance index of cluster z;.

The main idea of the merging algorithm is to have clusters with a higher significance index
absorb other clusters that are not well separated from them and are less dominant (lower significance
index). Several issues need to be resolved to avoid arbitrariness in merging. First, a cluster z; may be
weakly separated from several other clusters with higher significance indices. Among those clusters,
we let the one from which z; is worst separated to absorb z;. Second, two weakly separated clusters
zi and z; may have the same significance indices, that is, d(zj) = 8(zj); and hence it is ambiguous
which cluster should be treated as the dominant one. We solve this problem by introducing the
concept of cliques. The clusters are first grouped into cliques which contain weakly separated z;’s
with the same value of &(z;). Clusters in different cliques are ensured to be either well separated or
have different significance indices. We then apply the absorbing process to the cliques, without the
possibility of encountering the aforementioned ambiguity.
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Next, we describe how to form cliques and extend the definition of pairwise separability to
cliques. In order to carry out the merging of cliques, a directed graph is constructed upon the
cliques based on pairwise separability and the comparison of significance indices.

1. Tied: Cluster z; and z; are defined to be tied if S(z;,z;) < € and 8(z;) = (z;).

2. Clique: Cluster zj and z; are in the same clique if (a) zj and z; are tied, or (b) there is a cluster
zy such that z; and zy are in the same clique, and zj and zi are in the same clique.

Remark: the relationship “tied” results in a partition of z;’s. Each group formed by the par-
tition is a clique. Because being tied requires &(zj) = d(zj), in practice, we only observe
clusters being tied when they are all singletons.

We now define the separability between cliques. Without loss of generality, let clique ¢; =
{z1,22,...,Zm, } and ¢2 = {Zmy+1, -, Zm+my }. DeNOte the clique-wise separability by Sc(c1,C2):

Sc(C1,¢0) £ min min S(z;,2;) .
o(C1.C2) 1<i<my my+1<j<my+mp (@.2;)

Since in general, S(zj,zj) # S(zj,zi), the asymmetry carries over to Sc(C1,C2) # Sc(C2,C1). We
also denote the significance index of a clique c; as &(c;). Since all the clusters in ¢; have equal
significance indices, we let &(c;) = 8(z;’), where z;; is any cluster included in c;.

Regard each clique as a node in a graph. Suppose there are M cliques {c1,...,Cm}. A directed
graph is built as follows. For two arbitrary cliques ¢; and cj, a link from c; to ¢ is made if

1. S¢(ci,cj) <&

2. S¢(ci,Cj) = ming,i Sc(ci,ck) and j is the smallest index among all those j”’s that achieve
SC<Ci,Cj/) = mink# SC(Ci,Ck).

3. 9(ci) < d(c).

A clique ¢; is said to be linked to c; if there is a directed edge from c; to c;. It is obvious by
the second requirement in the link construction that every clique is linked to at most another clique.
In Appendix C, it is proved that a graph built by the above rules has no loops. An example graph
is illustrated in Figure 2(b). If we disregard the directions of the links, the graph is partitioned into
connected subgraphs. In the given example in Figure 2(b), there are four connected subgraphs. The
basic idea of the merging algorithm is to let the most dominant clique in one subgraph absorb all
the others in the same subgraph.

We call clique c; the parent clique of ¢; if there is a directed link from ¢; to c;. In this case, we
also say ¢; is directly absorbed by cj. By construction, 8(ci) < &(cj). More generally, if there is a
directed path from c; to cj, then c; is called an ancestor of c;, and ¢; is absorbed by cj. Again, we
have &(ci) < &(cj) by transitivity. In each connected subgraph containing k nodes, because there
is no loop, there are exactly k — 1 links. Since every node has at most one link originating from
it, the k — 1 links have to originate from k — 1 different nodes. Therefore, there is precisely 1 node
in each connected subgraph that has no link originating from it. This node is called the head node
(clique) of the connected nodes. It is not difficult to see that the head node is an ancestor for all the
other nodes in the subgraph. As a result, the significance index of the head clique is strictly larger
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than that of any other clique in the subgraph. In this sense, the head clique dominates all the other
connected cliques.

Combining clusters by the above method is the first and main step in our merging algorithm.
To account for outliers, the second step in the algorithm employs the notation of coverage rate.
Outlier points far from all the essential clusters tend to yield high separability and hence will not be
merged. In HMAC, to “grab” those outliers, the kernel bandwidth needs to grow so large that under
such a bandwidth, many significant clusters are undesirably merged. To address this issue, we find
the smallest clusters and mark them as outliers if their total size proportional to the entire data set is
below a threshold. For instance, if the coverage rate allowed is 95%, this threshold is then 5%.

We now summarize our cluster merging algorithm as follows. We call the merging procedure
conducted based on the separability measure stage | merging and that based on coverage rate stage 11
merging. The two stages do not always have to be concatenated. We can apply each alone. Applying
only stage | is equivalent to applying two stages and setting the coverage rate to 100%; applying
only stage Il is equivalent to setting the threshold of separability to 0.0. Assume the starting clusters
are {z1,22,...,Zm}.

1. Stage I: merging based on separability.
(a) Compute the separability matrix [S; j], i,j = 1,...,m, and the significant index &(z;),
i=1,...m.

(b) Form cliques {c1,Co,...,Ci} based on [S; ;] and &(zj)’s, where m < m. Record the z;’s
contained in each clique.

(c) Construct the directed graph.

(d) Merge cliques that are in the same connected subgraph. z;’s contained in merged cliques
are grouped into one cluster. Denote those merged clusters by {Z1,7,...,2m}, where
m <M.
2. Stage II: merging based on coverage rate. Denote the coverage rate by p.
(a) Calculate the sizes of clusters {21122,...,2,:”} and denote them by fij, i =1,...,M. The

size of the whole data setisn =y, fij.

(b) Sort fij, i = 1,...,M, in ascending order. Let the sorted sequence be A (), A2), .-, Ay
Let o) = 0. Let k be the largest integer such that z}‘:o A < (L—p)n.

(c) Ifk >0, go to the next step. Otherwise, stop and the final clusters are {71,725, ...,2m}.

(d) ForeachZ;,i=1,...k findall the original clusters z;’s that are merged into Z ;). Denote
the index set of the z;’s by Hj). Let H' = UX_H;) and H” = U, H).

(e) ForeachZg),i=1,...k find j* = argminjcy, miniey,, S(z,z;). Find the cluster Z;: that
contains zj-. Merge Z(;) with Z;;. The new clusters obtained are {Z1,2y,...,Zm}, where
m=m-k <.

(f) Resetm —mandz; — 7, i=1,...,m. Go back to step (a).

Unless there is a definite need to assign every data point to one of the major clusters, in certain ap-
plications, it may be more preferable to keep the outlier status of some points rather than allocating
them to distant clusters.
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Figure 2: The process of merging clusters for the glass data set. (a) The clustering result after
merging clusters in the same cliques. (b) The cliques and directed graph constructed
based on separability. (c), (d) The clustering results after stage | and stage Il merging
respectively.

The first stage merging based on separability is intrinsically connected with linkage-based ag-
glomerative clustering. For details on linkage clustering, see Jain et al. (1999). In a nutshell,
linkage clustering forms clusters by progressively merging a pair of current clusters. Initially,
every data point is a cluster. The two clusters with the minimum pairwise distance are chosen
to merge at each step. The procedure is greedy in nature since minimization is conducted se-
guentially through every merge. Linkage clustering methods differ by the way between-cluster
distance is updated when a new cluster is combined from two smaller ones. For instance, in sin-
gle linkage, if cluster &, and &3 are merged into &4, the distance between &; and &4 is calculated
as d(&1,&4) = min(d(&1,&2),d(&1,&3)). If complete linkage, the distance becomes d(§1,&4) =
max(d(&1,&2),d(&1,&3)).

Our merging algorithm is a particular kind of linkage clustering where the elements to be clus-
tered are cliques and the distance between the cliques is the separability. The update of this distance
for merged groups of cliques is however different from commonly used versions in linkage clus-
tering. The update is the same as single linkage under a certain scenario, but differs in general
because of the directed links and the notion of head cliques. We may call this linkage clustering
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algorithm directional single linkage for reasons that will be self-evident shortly. Consider the above
example where €, and &3 merge into &4. We call & more dominant than &’ if the head clique in &
has a higher significance index than that in &', and denote &(§) > 6(&’). Without loss of generality,
assume &(&2) > 8(&3). Then the update of d(&1,&4) and the ordering of &(§1) and &(&4) (needed for
updating the distance) follows three cases:

d(&1,84) = d(&1,&2), and &(&1) > O(¢&a), if 5(€1) > 6(&2)
d(&1,&4) =d(&1,&2), and 8(&1) < 8(&4), if5(&3) < 8(81) < d(&2)
d(&1,84) =min(d(&1,82),d(&1,€3)), and &(&1) <O(&s),  iFO(&1) < B(&3) -

In our proposed merging procedure, we essentially employ a threshold to stop merging when all the
between-cluster distances exceed this value. An alternative is to apply the directional single linkage
clustering and stop merging when a desired number of clusters is achieved.

We use the glass data set in the previous section to illustrate the merging algorithm. The thresh-
old for separability is set to € = 0.5 and the coverage rate is p = 95%. Apply the algorithm to the 11
clusters formed at the 2nd level of the hierarchical clustering, shown in Figure 1(a). We refer to the
clusters as z1, ..., 211, where the label assignment follows the indication in the figure. The 11 clus-
ters form 9 cliques. Figure 2(a) shows the clustering after merging clusters in the same clique. The
square (triangle) symbol used for z, (z7) is now used for both z, (z7) and z3 (zg) to indicate that they
have been merged. To highlight the relationship between the merged clusters and the original clus-
ters, the list of updated symbols for each original cluster is given in every scatter plot. Figure 2(b)
demonstrates the directed graph constructed for the cliques. The z;’s contained in each clique are
indicated in the node. Figure 2(c) shows the clustering result after stage | merging. The symbol of
the head clique in each connected subgraph is adopted for all the clusters it absorbs. The 4 clusters
generated at stage | contain 73, 25, 6, 1 points respectively. At p = 95%, only the cluster of size 1
is marked as an outlier cluster, and is merged with the cluster of size 6.

Because clusters with low separability are apt to be grouped together when the kernel band-
width increases, it is not surprising for the clustering result obtained by the merging algorithm to
agree with clustering at a higher level of HMAC. On the other hand, examining separability and
identifying outlier clusters enhance the robustness of clustering results, a valuable trait especially
in high dimensions. Examples will be shown in Section 6. For practical interest, when equipped
with the merging algorithm, we do not need to generate all the hierarchical levels in HMAC until
reaching a targeted number of clusters. Instead, we can apply the merging algorithm to a relatively
large number of clusters obtained at an early level and reduce the number of clusters to the desired
value.

5. Visualization

For clarity, we have used 2-D data to illustrate our new clustering methods, although these methods
are not limited by data dimensions. Projection into lower dimensions is needed to visualize clus-
tering results for higher dimensional data. PCA (principal component analysis) is a widely used
linear projection method, but it is not designed to reveal clustering structures. We will describe in
this section a linear projection method that aims at effectively showing clustering structures. The
method is employed in our experiments. We note that visualization is a rich research area in its own
right. However, because this topic is beyond the focus of the current paper, we will not discuss it in
great depth, nor make thorough comparisons with other methods.
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Modal clustering provides us an estimated density function and a prior probability for each clus-
ter. Suppose K clusters are generated. Let the cluster density function of x, x € 9, be gx(x), and
the prior probability be Ty, k = 1,2, ...,K. Forany x € R 9, its extent of association with each cluster
k is indicated by the posterior probability py(x) O Tigk(X). To determine the posterior probabili-

ties px(x), under a given set of priors, it suffices to specify the discriminant functions log gi((’)‘())

Iog Sis z )) Without loss of generallty we use gk (x) as the basis for computing the ratios. Our pro-

gk(( )) k=1,...,K—1can be well approximated
if only the projection of data into the plane is specified. By preserving the discriminant functions,
the posterior probabilities of clusters will remain accurate.

Let the data set be {x1,X2,....Xxn}, X; € RY. Denote a particular dimension of the data set by

X.1 = (X11,X2,, .- Xn1)4 | = 1,...,d. For each k, k = 1,...,K — 1, the pairs (x;,log gk(x'>)) i=1,..,n,

are computed. Let y; = log % Linear regression is performed based on the pairs (Xi,Yik), | =
1,...,n, to acquire a linear approximation for each discriminant function. Let By o,Bk1,Bk2, .-, Bkd
be the regression coefficients for the kth discriminant function. Denote By = (Bx 1, Bk 2, ---, [3k7d)t and
the fitted values for log gk(( ) by Yik = Bko + B&xi. Also denote ¥ x = B&xi = Vik — Bxo. For mathe-
matical tractability, we convert the approximation of the discriminant functions to the approximation
of their linearly regressed values (i 1,Yi 2, ...,Vik—1), i = 1,...,n, which is equivalent to approximate
(Yi,1,¥i 2, ..., Vi k—1) since the two only differ by a constant. To precisely specify (¥i 1,¥i 2, ....Vik-1),
we need the projection of x; onto the K — 1 directions, B1, B2, ..., Bk _1. I1f we are restricted to show-
ing the data in a plane and K — 1 > 2, further projection of (¥i 1,Yi2,...,¥ik—1) is needed. At this
stage, we employ PCA on the vectors (i 1,¥i 2, ..., Vik—1) (referred to as the discriminant vectors),
i=1,...,n, to yield a two-dimensional projection. Suppose the two principal component directions
for the discriminant vectors are yj = (Yj 1,....Yjk-1)", j = 1,2. The two principal components v,
j=1,2,are

V| Y11 V1K1
V2| Y21 Yo k—1 d [K-1
=Vj1| . +o k-1 | = Z [Z YikBr | X -
: ; I=1 [ k=1
Vn,j Y1 YnK-1
To summarize, the two projection directions for x; are
K-1 K-1 K-1 t
= > VikBx > VikBr2:- D VikBra | , =12 (5)
K=1 K=1 K=1

In practice, it may be unnecessary to preserve all the K — 1 discriminant functions. We can apply
the above method to a subset of discriminant functions corresponding to major clusters. The two
projection directions in (5) are not guaranteed to be orthogonal, but it is easy to find two orthonormal
directions spanning the same plane.

If we use a basis function other than gk (x), say gk (x), to form the discriminant functions, the
new set of vectors Bi’s will span the same linear space as the Bi’s obtained with gk (x). The reason is
that the new discriminant functions Iog g"( ) , 1<k <K, k=#k, canbe linearly transformed from the

previously defined (yi 1,¥i2, -, Yi k1) oy log S —yik—Yik, fork# KK, log €045 = —y; ¢, and
linear regression is used on the y; x’s. On the other hand, as the linear transform is not orthonormal,

the PCA result is not invariant under the transform and the projection directions T; can change.
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6. Experiments

We present in this section experimental results of the proposed modal clustering methods on simu-
lated and real data. We also discuss measures for enhancing computational efficiency and describe
the application to image segmentation, which may involve clustering millions of data points.

6.1 Simulated Data

We experiment with three simulated examples to illustrate the effectiveness of modal clustering. We
start by comparing linkage clustering with mixture modeling using two data sets. This will allow
us to illustrate the strengths and weaknesses of these two methods and therefore better demonstrate
the tendency of modal clustering to combine their strengths. We then present a study to assess the
stability of HMAC over multiple implementations and its performance under increasing dimensions.
In this study, comparisons are made with the M| ust function in R, a state-of-the-art mixture-model-
based clustering tool (Fraley and Raftery, 2002, 2006).

For our two data sets, single linkage, complete linkage, and average linkage yield similar re-
sults. For brevity, we only show results of average linkage. In average linkage, if cluster z, and
z3 are merged into z4, the distance between z; and z4 is calculated as d(z1,z4) = n2n+2n3d(21722) +
nzrjfnsd(zl,zg, where n, and ng are the cluster sizes of z, and z3 respectively. Details on clustering
by mixture modeling are referred to Section 1.1. We will also show results of k-means clustering.

The first data set, referred to as the noisy curve data set, contains a half circle and a straight line
(or bar) imposed with noise, as shown in Figure 3(a). The circle centers at the origin and has radius
7. The line is a vertical segment between (13,—8) and (13,0). Roughly % of the 200 points are
uniformly sampled from the half circle and % of them uniformly from the bar. Then, independent
Gaussian noise with standard deviation 0.5 is added to both the horizontal and vertical directions of
each point.

Consider clustering into two groups. The results of average linkage, mixture modeling, and
k-means are shown in Figure 3(a), (b), (c). For this example, average linkage partitions the data
perfectly into a noisy half circle and bar. Results of mixture modeling and k-means are close. In
both cases, nearly one side of the half circle is grouped with the bar. In this example, the mixture
model is initialized by the clustering obtained from k-means; and the covariance matrices of the two
clusters are not restricted.

The second data set contains 200 samples generated as follows. The data are sampled from two
clusters with prior probability 1/3 and 2/3 respectively. The first cluster follows a single Gaussian
distribution with mean (6,0) and covariance matrix diag(1.52,1.5%). The second cluster is generated
by a mixture of two Gaussian components with prior probability 1/5 and 4/5, means (—3,0) and
(0,0), and covariance matrices diag(32,3%) and diag(1,1) respectively. The two clusters are shown
in Figure 4(a). Again, we compare results of average linkage, mixture modeling, and k-means,
shown in Figure 4(b), (c), (d). For mixture modeling, we use Mclust with three components and
optimally selected covariance structures by BIC. Two of the three clusters generated by Mclust are
combined to show the binary grouping. For this example, mixture modeling and k-means yield a
partition close to the two original clusters, while average linkage gives highly skewed clusters, one
of which contains a very small number of points on the outskirt of the mass of data.

We apply HMAC to both data sets and show the clustering results obtained at the level where
two clusters are formed. For the noisy curve data set, HMAC perfectly separates the noisy half circle
and the bar, as shown in Figure 3(a). For the second example, shown in Figure 4(e), HMAC vyields
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Figure 3: Clustering results for the noisy curve data set. (a) The two original clusters. The two
clusters obtained by average linkage clustering and HMAC are identical to the original
ones. (b) Clustering by mixture modeling with two Gaussian components. (c) Clustering
by k-means. (d) Clustering by HMAC at the first level of the hierarchy.

clusters closest to the original ones among all the methods. Comparing with mixture modeling,
HMAC is more robust to the non-Gaussian cluster distributions.

The above two data sets exemplify situations in which either the average linkage clustering or
mixture modeling (or k-means) performs well but not both. In the first data set, the two clusters are
well separated but seriously violate the assumption of Gaussian distributions. By greedy pairwise
merging, average linkage successfully divides the two clusters. In contrast, both mixture modeling
and k-means attempt to optimize an overall clustering criterion. Mixture modeling favors elliptical
clusters because of the Gaussian assumption, and k-means favors spherical clusters due to extra
restrictions on Gaussian components. As a result, one side of the noisy half circle is grouped with
the bar to achieve better fitting of Gaussian distributions. On the other hand, mixture modeling
and k-means perform significantly better than average linkage in the second example. The greedy
pairwise merging in average linkage becomes rather arbitrary when clusters are not well separated.

HMAC demonstrates a blend of traits from average linkage and mixture modeling. When the
kernel bandwidth is small, the cluster to which a point is assigned is largely affected by its neighbors.
Points close to each other tend to be grouped together, as shown by Figure 3(d) and Figure 4(f).
This strong inclination of putting neighboring points in the same cluster is also a feature of average
linkage. However, a difference between HMAC and average linkage is that decisions to merge in
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Figure 4: Clustering results for the second simulated data set. (a) The original two clusters. (b)

Clustering by average linkage. (c) Clustering by mixture modeling using Mclust with
three Gaussian components. Two clusters are merged to show the binary grouping. (d)
Clustering by k-means. (e) Clustering by HMAC. (f) Clustering by HMAC at the first
level of the hierarchy.
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the latter are always local. While in HMAC, when the bandwidth increases, global characteristics
of the data become highly influential on clustering results. Hence the clustering result tends to
resemble that of mixture modeling (k-means) which enforces a certain kind of global optimality. In
spite of this similarity, HMAC is more robust for clusters deviating from Gaussian distributions. In
practice, it is usually preferable to ensure very close points are grouped together and in the mean
time to generate clusters with global optimality. These two traits, however, are often at odds with
each other, a phenomenon discussed in depth by Chipman and Tibshirani (2006).

Chipman and Tibshirani (2006) noted that bottom-up agglomerative clustering methods, such
as average linkage, tend to generate good small clusters but suffer at extracting a few large clusters.
The strengths and weaknesses of top-down clustering methods, such as k-means, are the opposite.
A hybrid approach is proposed in that paper to combine the advantages of bottom-up and top-
down clustering, which first seeks mutual clusters by bottom-up linkage clustering and then applies
top-down clustering to the mutual clusters. HMAC also integrates the strengths of both types of
clustering, in a way not as explicit as the hybrid method but more automatically.

To systematically study the performance of HMAC for high dimensional data and its stability
over multiple implementations, we conduct the following experiment. We generate 55 random data
sets each of dimension 50 and size 200. The first two dimensions of the data follow the distribution
of the noisy curve data in the first example described. The other 48 dimensions are independent
Gaussian noise all following the normal distribution with mean zero and standard deviation 0.5,
same as the noise added to the half circle and line segment in the first two dimensions. As gold
standard, we regard data generated by adding noise to the half circle as one cluster and those to the
line segment as the other.

Clustering results are obtained for each of the 55 data sets using HMAC and Mclust respectively.
For HMAC, the level of the dendrogram yielding two clusters is chosen to create the partition of the
data. In another word, the basic version of HMAC is used without the separability based merging of
clusters. For Mclust, we set the number of clusters to 2, but allow the algorithm to optimally select
the structure of the covariance matrices using BIC. All the structural variations of the covariance
matrices provided by Mclust are searched over. In Mclust, the mixture model is initialized using the
suggested default option, that is, to initialize the partition of data by an agglomerative hierarchical
clustering approach, an extension of linkage clustering based on Gaussian mixtures (Fraley and
Raftery, 2006). This initialization may be of advantage especially to data in this study because as
shown previously, linkage clustering generates perfect clustering for the noisy curve data set in the
first example.

Denote each data setk, k =1,2,...,55, by Ay = {xi(k),i =1,...,200}, where xi(k) = (xi(.kl),xi(ﬁkz), veey

Xi50)" For each xi(k), we form a sequence of its lower dimensional vectors: xi(k") = (xi("?,xi(_? , ...,xi(}f))t,
| =2,3,...,50. Let Ax) = {xi(k"),i =1,...,200}. HMAC and Mclust are applied to every Ay,
| =2,..,50, k =1,...,55. Let the clustering error rate obtained by HMAC for Ay, be rliT) and

that by Mclust be rl(({\,/'). We summarize the clustering results in Figure 5.

To assess the variation of clustering performance over multiple implementations, we compute
the percentage of the 55 data sets that are not perfectly clustered by the two methods at each dimen-
sion | =2,...,50. Figure 5(a) shows the result. For HMAC, this percentage stays between 25% and
32% over all the dimensions. While, for Mclust, the percentage is consistently and substantially
higher, and varies greatly across the dimensions. For | > 43, none of the data sets can be perfectly
clustered by Mclust.

(k)
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Figure 5: Clustering results obtained by HMAC and Mclust for the 55 high dimensional noisy curve
data sets. (a) The percentage of data sets that are not perfectly clustered with increasing
dimensions. (b) The average and median of clustering error rates.

To examine clustering accuracy with respect to increasing dimensions, for each | = 2, ..., 50, the

mean T_(V'IJ'), T_("IV'), and the median F_(,'IJ'), F,(V'IV') over the data sets are computed and shown in Figure 5(b).

For HMAC, the mean T_(T) varies only slightly around 7.5% when the dimension increases, and

(lH) stays at zero. The error rates obtained from Mclust, on the other hand, change

dramatically with the dimension. And for | = 2 and | > 30, both T_(f;/') and F.(,'IV') are significantly

higher than T_(?). Interestingly, the worst error rate from Mclust is achieved at | = 2 with T_("z") > 23%
rather than at the high end of the range of dimensions. This seems to suggest that the extra noise
dimensions help to mollify the effect of non-Gaussian shaped clusters. When | > 30, r('}/') and F,(ﬁ")
increase steadily with the dimension and eventually reaches nearly 20%. 7 '

the median

Because it is expected that Gaussian components in the mixture model cannot well capture the
half circle structure in the data, we have also tested Mclust with 3 components so that the half circle
can possibly be characterized by two components. In this case, two of the three clusters need to be
combined in order to compute the accuracy with respect to the original two classes. The selection
of the two clusters to combine is not trivial. If we use a simple rule of combining the two clusters
with the closest pair of centers, the average classification accuracies (over different dimensions)
are mostly inferior to those by Mclust with 2 components. Note that the ridgeline based merging
procedure in Section 4 may be invoked instead. A detailed examination in this direction is out of the
scope of this paper. If we search through all the possible combinations and always choose the one
that yields the best classification accuracy, the average accuracies are better than those achieved by
HMAC. However, this comparison inherently favors Mclust because the true class labels are used
to decide the binary grouping of the 3 components, while HMAC is purely unsupervised.
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6.2 Real Data Sets

In this section, we apply HMAC to real data sets, compare our method of visualization described
in Section 5 with PCA, and demonstrate the usage of the cluster merging algorithm described in
Section 4.2.

6.2.1 GLASS DATA

We first examine the aforementioned glass data set using the entire set of 214 samples and all
the original 9 features. Applying HMAC, a dendrogram of 10 levels is obtained, as shown in
Figure 6(a). The number of clusters at each level is listed in Table 2. The sizes of the largest 4
clusters at each level are also given in this table. The dendrogram and the table show that 3 clusters
containing more than 5 points are formed at the first level. These 3 prominent clusters are retained
or augmented up to level 3. At level 4, two of the 3 prominent clusters are merged, leaving 2
prominent clusters which are further merged at level 7. At this level, both the dendrogram and
the table suggest the main clustering structure in the data is annihilated by the very large kernel
bandwidth. However, the number of clusters generated at level 7 is 7 instead of 1. Except the largest
cluster, the other 5 clusters each contain no more than 3 points and in total only 9. They may be
considered more appropriately as “outliers” than clusters. At even higher levels, these tiny clusters
are merged gradually into the main mass of data.

Level 1 2 3 4 5 6 7 8 9 10
# clusters 29 | 25 | 18 | 15 | 13 | 11 7 6 3
Size of 1st cluster | 160 | 163 | 176 | 177 | 179 | 180 | 205 | 208 | 210 211
Sizeof2nd cluster | 12 | 12 | 12 | 21 | 21 | 22 3 2 2 2
Size of 3rd cluster | 9 9 9 3 3 3 2 1 1 1
Size of 4th cluster | 5 6 2 2 2 2 1 1 1 | not exist

Table 2: The clustering results for the full glass data set.

The above discussion suggests that to obtain a given number of clusters, it is not always a good
practice to choose a level in the hierarchy that yields the desired number of clusters. We may select a
level at which major clusters are merged and outliers are mistaken as plausible clusters. One remedy
is to apply the cluster merging algorithm to a larger number of clusters formed at a lower level. We
will present results of this approach shortly.

To compare our visualization method with PCA, the clustering results at level 3 are shown in
Figure 6(b) and (c) using the two projection methods respectively. Both projections are orthonormal.
In our visualization method, the projection only attempts to approximate the discriminant functions
between the 3 major clusters. It is obvious that the new visualization method shows the clustering
structure better than PCA. The two projection directions derived by our method are used when
presenting other clustering results for a clear correspondence between points in different plots.

If we apply our cluster merging algorithm at level 3, we obtain results shown in Figure 6(d) and
(e). In Figure 6(d), three clusters are formed by applying stage Il merging based on coverage rate.
The parameter p = 95%. Merging based on separability is not conducted because we attempt to get
3 clusters and the 3 largest clusters at this level already account for close to 95% of the data. This
clustering result is much more preferable than the 3 clusters directly generated by HMAC at level

1710



Level 10

Level 7

NONPARAMETRIC MODAL CLUSTERING

0.3

0.251

0.2r

0.151

0.1

L ster
0.05- %gﬁ *

ol o
00sr i )
-01f g 0 ©
Cluster2 %
—0.151 x
-0.2 .
~0.4 02 0 0.2
03 5
0.25¢
<
0.2t o
0.15¢
0l 0
0.05f %% : Q
ol 0.0
-0.05}
s o
01t ¥ o
e
-0.15} ,
O
-02 ‘ ]
0.4 -02 0 0.2

(d)

Cluster 2
>

>

, |

9
Cluster 3

0.3

i
-0.4 -0.

i i i
2 0 0.2 0.4

0.6

0.25[

0.2r

0.15f

0.1r

0.05-

—0.051

-0.1r

-0.15f

-0.2

-0.4

i i
-0.2 0

(€)

0.2

Figure 6: Results for the full glass data set. (a) The dendrogram created by HMAC. (b) Visual-
ization by our method using regression on discriminant functions. (c) Visualization by
PCA. (d), (e) Three (two) clusters obtained by applying the merging algorithm to clusters

generated by HMAC at level 3.
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Level 8

Figure 7: The dendrogram generated by HMAC for the infant data set.

10, containing 211, 2, and 1 points respectively. If we apply merging based on separability with
threshold € = 0.4 (stage 1) and merging based on coverage rate with p = 95% (stage I1), we obtain
two clusters shown in Figure 6(e).

6.2.2 INFANT ATTENTION TIME

The second real data set is provided by Hoben Thomas, funded by the German Research Foundation
Grant (Az. Lo 337/19-2), in the Department of Psychology at Penn State. In a study of infants’
behavior, 51 infants were tested in two occasions apart by several months. In each occasion, a visual
stimulus was given to the infants repeatedly for 11 times, with a fixed amount of time separating the
stimuli. An infant’s attention time in every stimulus was recorded. We thus have a data set of 51
samples with dimension 22. It is of interest to examine whether the infant data possess clustering
structure and the behavior patterns of different groups. It is challenging to cluster this data set
because of the high dimensionality and relatively small sample size.

Applying HMAC to the data, we obtain a dendrogram shown in Figure 7. At level 2, two promi-
nent clusters emerge, containing 8 and 27 samples respectively. All the other clusters are singletons.
At the next higher level, the two main clusters are merged. Because all the other clusters are sin-
gletons, we essentially partition the data into a main group and several outliers. There is no clear
clustering structure preserved after level 2. Figure 8(a) and (b) show the clustering results obtained
at level 2 using projection directions derived by our visualization method and PCA respectively.
Specifically, in our method, the density of the largest cluster is used as the basis to form the dis-
criminant functions of the other clusters. The projection directions are derived to best preserve the
discriminant functions of the second and third largest clusters. The separation of the 2 main clusters
is reflected better in (a) than (b). The ridgeline between the two major clusters at level 2 is com-
puted, and the density function along this ridgeline is plotted in Figure 8(c). The plot shows that the
“valley” between the two clusters is not deep comparing with the peak of the less prominent cluster,
indicating weak separation between the clusters.

As the dendrogram suggests, if we need to cluster the infants into two groups, specifically, to
assign the singletons into the two main clusters, we cannot simply cut the dendrogram at a level that
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Figure 8: Results for the infant data set. (a) Visualization by our method using regression on dis-
criminant functions. (b) Visualization by PCA. (c) Density function along the ridgeline
between the two major clusters at level 2. (d) Two clusters obtained by applying the
merging algorithm to clusters generated by HMAC. (e) The modal curves of the two
main clusters obtained by HMAC at level 2. Dashed line: cluster 1. Solid line: cluster
2. Dash-dot line: the observation on the 10th infant, who deviates enormously from the
cluster modes. (f) The mean curves of the two clusters obtained by fitting a mixture of 2
Gaussian components.
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yields two clusters. For this purpose, we use the stage Il merging procedure with a coverage rate of
85%. The clustering result is shown in Figure 8(d).

To compare the infants in the two main clusters identified by HMAC, we plot the “modal curves”
for both test occasions in Figure 8(e). By modal curve, we refer to the mode of a cluster displayed
with the dimension index as the horizontal axis and the value in that dimension as the vertical axis.
It is meaningful to view a mode as a curve in this study because the experiments were conducted
sequentially and dimension i corresponds to the ith measurement in the sequence. According to
Figure 8(e), the main difference between the two groups of infants is their attention time for the
first stimulus in each test occasion. The circle cluster exhibits a significantly longer attention time
for the initial stimulus in both occasions. According to HMAC, 8 infants belong to the long initial
attention time group and 27 infants belong to the short time group. The other 16 infants’ data are
distinct from both groups. In Figure 8(e), the attention time of the 10th infant is shown by the dash-
dot lines. This infant is the most “extreme” outlier which corresponds to the right most branch in
the dendrogram of Figure 8(c). The plot shows that this infant behaved very differently from the
average in the first test. Instead of gradually decreasing, his attention time jumped to a very high
value for the third stimulus and again for the last stimulus. If a clear-cut two groups are desired,
Figure 8(d) shows that 13 infants are partitioned into the long time group and 38 into the short time
group.

We also perform clustering on this data set by fitting a mixture of two Gaussian components. The
EM algorithm is used to estimate the mixture model using k-means clustering to initialize, and the
maximum a posterior criterion is used to partition the data. For the two clusters obtained, we display
the two Gaussian mean vectors as curves in Figure 8(f). Just as in the clustering by HMAC, one
cluster had longer attention time to the initial stimulus in both occasions. However, the difference
between the attention time in the first occasion for the two clusters was not substantial. Using
mixture modeling, the long time group included 26 infants while the short time group included 25.

6.2.3 NEWSGROUP DATA

In the previous two examples, we cannot quantitatively examine the clustering performance be-
cause there are no given class labels for the data points. In the third example, we use a data
set containing documents labeled by different topics. This data set is taken from the newsgroup
data (Lang, 1995). Each instance corresponds to a document in one of the two computer related
topics: conp. 0s. ms-wi ndows. i sc (class 1) and conp. wi ndows. x (class 2). The numbers of in-
stances in the two classes are close: 975 (class 1) and 997 (class 2). The raw data for each document
simply contain the words appeared in this document and their counts of occurrences. We process the
data by stemming the words and employing two stages of dimension reduction. For details on the
dimension reduction procedure, which relies mainly on two-way mixture modeling, we refer to (Li
and Zha, 2006). In summary, we represent every document by a 10-dimensional vector, where each
dimension is the total number of occurrences for a chosen collection of words. We then normalize
the vector such that each dimension becomes the frequency of the corresponding set of words.

Due to the large data size, it is unrealistic to show the dendrogram generated by HMAC directly.
Instead, we provide a summarized version of the dendrogram emphasizing prominent clusters in
Figure 9(a). In order to retain as much information as possible in the summary, a cluster will
be regarded “prominent” and shown individually if it contains at least 3% of the total data. This
requirement for showing a cluster is rather mild. The number in each node box in the tree indicates
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Figure 9: Results for the document data set. (a) The summarized dendrogram showing the promi-
nent clusters. (b) The density function along the ridgeline between the two major clusters
at level 12.

the cluster size. The number of data points not covered by the prominent clusters at any level is
shown in the box to the right of the dendrogram. As shown in the figure, prominent clusters do
not appear until level 6. At level 6, the four prominent clusters are very small. About 77% of the
data are scattered in tiny clusters. At level 8, two major clusters emerge, each accounting for nearly
39% of the data. The rest data do not form any prominent clusters. The two major clusters remain
through level 8 to level 18, and each absorbs more data points at every increased level. For brevity,
we omit showing the sizes of these two clusters between level 9 and 18. At level 19, the two major
clusters are merged, and there are 19 outlier points not absorbed into the main mass of data. This
dendrogram strongly suggests there are two major clusters in this data set because before level 8, the
clusters formed are too small and the percentage of data not covered by the clusters is too high. If
we allow 5% points to lie outside prominent clusters, we can choose level 12 in the dendrogram. At
level 12, the two clusters are of size 950 and 932. To examine the separation of the two clusters at
this level, we calculate the ridgeline between them and plot the density function along the ridgeline
in Figure 9(b). The mode heights of the two clusters are close, and the cluster separation is strong.

Level 8 9 10 11 12 13 14 15 16 17 18
Correct (%) | 73.5|80.4 | 854 | 87.7 | 89.0 | 90.2 | 91.0 | 91.2 | 91.5 | 91.6 | 91.7
Incorrect (%) | 39 | 49 | 57 | 61 | 64 | 65 | 68 | 68 | 69 | 7.1 | 7.2
Uncovered (%) | 226 | 148 | 89 | 6.2 | 46 | 32 | 22 | 20 | 16 | 1.2 | 10

Table 3: The clustering accuracy of HMAC for the document data set. The percentages of points
that are correctly clustered, incorrectly clustered, and not covered by the two major clusters
are listed.
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From level 8 to 18, we compute the percentages of points that are correctly clustered, incorrectly
clustered, and not covered by the two major clusters. Table 3 provides the result. At level 18, 91.7%
data points are correctly clustered. For comparison, we apply Mclust to the same data set. If we
specify the range for the number of clusters as 2 to 10 and let Mclust choose the best number and the
best covariance structure using BIC, the number of clusters chosen is 3. The sizes of the 3 clusters
are 763, 668, and 541. The first two clusters are highly pure in the sense of containing points from
the same class. The third cluster however contains about 40% class 1 points and 60% class 2. If we
label the third cluster as class 2, the overall clustering accuracy is 87.6%. On the other hand, if we
fix the number of clusters at 2 and run Mclust, the clustering accuracy becomes 94%.

6.2.4 DISCUSSION ON PARAMETER SELECTION

As shown by the above examples of real data clustering, it is often not obvious which level in the
dendrogram produced by HMAC should be used to yield the final clustering. This is a general issue
faced by agglomerative clustering approaches. Prior information about data or our implicit assump-
tions about good clusters can play an important role in this decision. One common assumption we
make is that a valid cluster ought not be too small. Under this principle, we declare a level of the
dendrogram too low (small bandwidth) if all the clusters are small and a level too high (large band-
width) if a very large portion of the data (e.g., 95%) belong to a single cluster. For the intermediate
acceptable levels in the dendrogram, we have designed the coverage rate mechanism to ensure that
very small clusters are excluded. The chosen coverage rate reflects the amount of outliers one be-
lieves to exist. Despite the inevitable subjectiveness of this value, the coverage rate affects only the
grouping of a small percentage of outlier points.

A more profound effect on the clustering result comes from the merging procedure based on sep-
arability which involves choosing a separability threshold. As we have discussed in Section 4.2, the
merging process based on separability is essentially the directional single linkage clustering which
stops when all the between-cluster separability measures are above the threshold. The threshold
directly determines the final number of clusters, but is irrelevant to the full clustering hierarchy gen-
erated by the directional single linkage. Hence in situations where we have a targeted number of
clusters to create, we can avoid choosing the threshold and simply stop the directional single linkage
when the given number is reached. Of course, if at a certain level of the dendrogram, there exist
precisely the targeted number of valid clusters, we can use that level directly rather than applying
merging on clusters at a lower level. Whether the HMAC dendrogram clearly suggests the right
number of clusters can be highly data dependent. For instance, in the document clustering example,
the dendrogram in Figure 9(a) strongly suggests two clusters because at all the acceptable levels
there are two reasonably large clusters. On the other hand, for the glass data set with results shown
in Figure 6, it is not so clear-cut whether there are three or two clusters.

Another choice we need to make in HMAC is the sequence of kernel bandwidths, 01 < 07 <
.-+ < 0y. Itis found empirically that as long as the grid of bandwidths is sufficiently fine, the
prominent clusters created are not sensitive to the exact sequence. Major clustering structures often
remain over a wide range of bandwidths. We have always used a uniformly spaced sequence of
bandwidths in our experiments. If precisely two clusters merge at every increased level of a dendro-
gram, that is, the number of clusters decreases exactly by one, the dendrogram will have n levels,
where n is the data size. We call such a dendrogram all-size since the clustering into any number of
groups smaller than n appears at a certain level. We rarely observe an all-size dendrogram generated
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by HMAC. On the other hand, by using extremely refined bandwidths, we indeed obtained all-size
dendrograms for the example in Section 3.2 and the infant data set.

We note that linkage clustering by construction generates the all-size dendrogram. However, it
is not necessarily a good practice to simply choose a level in the dendrogram that yields the desired
number of clusters, as we have discussed previously for the dendrogram of HMAC. Hence, the fact
that the dendrogram generated by HMAC is usually not all-size raises little concern. In practice,
since the targeted number of clusters is normally much smaller than the data size, it is easy to find
a relatively low level at which the number of clusters exceeds the target. We can then apply the
separability based directional single linkage clustering at that level, and achieve any number of
clusters smaller than the starting value.

6.3 Image Segmentation

To demonstrate the applicability of HMAC to computationally intensive tasks, we develop an im-
age segmentation algorithm based on HMAC. A basic approach to image segmentation is to cluster
the pixel color components and label pixels in the same cluster as one region (Li and Gray, 2000).
This approach partitions images into regions that are relatively homogeneous. Examples of seg-
mentation via clustering are shown in Figure 10. We employed the speeding up method described
in Section 3.3. Our image segmentation method comprises the following steps: (a) Apply k-center
algorithm to cluster image pixels into a given number of groups. This number is significantly larger
than the desired number of regions. In particular, we set it to 100. (b) Form a data set {x1,...,Xn},
n = 100, where Xx; is the mean of the vectors assigned to the ith group by k-center clustering. For
each x;, assign weight w;, where w; is the percentage of pixels assigned to x;. (c) Apply the weighted
version of HMAC to the data set. The only difference lies in the formula for the kernel density esti-
mator. In the weighted version, f(x) = S, wi@(x | x;,D(0?)). (d) Starting from the first level of the
dendrogram formed by HMAC, apply the cluster merging algorithm described in Section 4.2. If the
number of clusters after merging is smaller than or equal to the given targeted number of segments,
stop and output the clustering results at this level. Otherwise, repeat the merging process at the
next higher level of the dendrogram. For brevity, we simply refer to this segmentation algorithm as
HMAC.

To assess the computational efficiency of HMAC, we experiment with 100 digital photo images
randomly selected from the Corel image database (Wang et al., 2001). Every image is of size
256 x 384 or 384 x 256. The experiments were conducted on a 1.2GHz Sun UltraSparc processor.
We compare the segmentation time of HMAC and k-means. On average, it takes 4.41 seconds
to segment an image using HMAC. The average number of segmented regions is 6.0. For k-means
clustering, we experimented with both dynamically determining and fixing the number of segmented
regions. In the dynamic case, the average number of regions generated per image by thresholding
is 5.5. The average segmentation time for each image is 4.43 seconds, roughly equal to the time
of HMAC. However, the computation time of k-means increases if more regions are formed for an
image. If we fix the number of segmented regions to 6.0, the average segmentation time is 4.87
seconds per image.

In terms of segmentation results, whether HMAC or k-means is preferred is application depen-
dent. K-means clusters the pixels and computes the centroid vector for each cluster according to
the criterion of minimizing the mean squared distance between the original vectors and the centroid
vectors. HMAC, however, finds the modal vectors, at which the kernel density estimator achieves
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Figure 10: Segmentation results. First row: Original images. Second row: mode colors of the
clusters generated by HMAC. Third row: mean colors of the clusters generated by k-
means.

a local maxima. These vectors are peaks of density bumps. They are significant in the sense of
possessing locally maximum density, but may not be the best approximation to the original vectors
in an average sense. Figure 10 shows the representative colors extracted by HMAC and k-means
for several impressionism paintings. For HMAC, the mode color vector of each cluster is shown as
a color bar; and for K-means, the mean vector of each cluster is shown. The representative colors
generated by k-means tend to be “muddier” due to averaging. Those by HMAC retain the true col-
ors better, for instance, the white color of the stars in the first picture and the purplish pink of the
vase in the second. On the other hand, HMAC may ignore certain colors that either are not distinct
enough from others or do not contain enough pixels. For the purpose of finding the main palette of
a painting, HMAC may be more preferable.

7. Conclusion

In this paper, we have introduced an EM-style algorithm, namely, Modal EM (MEM), for finding
local maxima of mixture densities. For a given data set, we model the density of the data non-
parametrically using kernel functions. Clustering is performed by associating each point to a mode
identified by MEM with initialization at this point. A hierarchical clustering algorithm, HMAC, is
developed by gradually increasing the bandwidth of the kernel functions and by recursively treating
modes acquired at a smaller bandwidth as points to be clustered when a larger bandwidth is used.
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The Ridgeline EM (REM) algorithm is developed to find the ridgeline between the density
bumps of two clusters. A separability measure between two clusters is defined based on the ridge-
line, which takes comprehensive consideration of the exact densities of the clusters. A cluster merg-
ing method based on pairwise separability is developed, which addresses the competing factors of
using a small bandwidth to retain major clustering structures and using a large one to achieve a low
number of clusters.

The HMAC clustering algorithm and its combination with the cluster merging algorithm are
tested using both simulated and real data sets. Experiments show that our algorithm tends to unite
merits of linkage clustering and mixture-model-based clustering. Applications to both simulated
and real data also show that the algorithm works robustly with high dimensional data or clusters de-
viating substantially from Gaussian distributions. Both of these cases pose difficulty for parametric
mixture modeling.

A C package at htt p: // www. st at. psu. edu/ ~j i al i / hmac is developed, which includes the
implementation of the HMAC algorithm, REM for computing ridgelines, and the separability/
coverage rate based merging algorithm.

There are several directions that can be pursued in the future to strengthen the framework of
modal clustering. In the current work, we use a fixed bandwidth for the kernel density functions.
We can explore ways to make the bandwidth vary with the location of the data because there may not
exist a single bandwidth suitable for the entire data set. Moreover, in this paper, we have discussed
an approach to best visualize clusters in lower dimensions. A related and interesting question is to
find a lower dimensional subspace in which the data form well separated modal clusters. We expect
that the optimization of the subspace needs to be conducted as an integrated part of the modal
clustering procedure.
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Appendix A.

We prove the ascending property of the MEM algorithm. Let the mixture density be f(x) =
K Tifi(x). Denote the value of x at the rth iteration of MEM by x(). We need to show
f(x(M1) > f(x(), or equivalently, log f (x("*1) > log f (x(").

Let us introduce the latent discrete random variable J € {1,2,...,K} with prior probabilities
P(J = k) = k. Assume that the conditional density of X given J =k is fi(x). Then the marginal
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distribution of X is f(x), as specified above. Define the following functions:
L(x) = Iog f(x),

QX' %) = zpk ) log T fi(x),

K
HX [x) = Q(X'[x)—L(X)= 3 p(x)logpk(x)
K=1
where p(X) =Pl =k | X =x) = T'“(kg) is the posterior probability of J being k given x. Denote

the posterior probability mass function (pmf) given x by p(x) = (p1(X), p2(X), ..., Px (X)).

Because H(x | x) —H(x' | x) = D(p(x) || p(x")) and relative entropy D(- || -) is always nonneg-
ative (Cover and Thomas, 1991), H(x" | x) < H(x | x) for any pair of x and x". On the other hand,
according to the MEM algorithm,

X = argmax z pr(x")Y log fi(x)

= argmax (Z p(x")) log T + Z p(x")) log fic(x ))

= argmaxQ(x | x").
X

Hence, Q(x"+ | x() > Q(x() | x("). Finally, we prove the ascending property:

L(x1) = (x| xM) — H (x| xT) > Qx| x) —H (™ | x(V) = L(x")y.

Appendix B.

Recall that the Ridgeline EM algorithm aims at maximizing logg(x | o) = (1 — a)loggi(x) +
alogga(x), where 0 < a < 1 and g1 (x) and g(x) are two mixture densities gi(x) = S &_; T§ xhi x(X),
i =1,2. We prove here the ascending property of this algorithm, as described in Section 4.1.

Following the definitions in Appendix A, we form functions L;(x), Qi (X' | x), and H;(X'|x)
for densities gj(x), i = 1,2, respectively. Specifically, Li(x) = loggi(x), Qi(X' | X) = T r_1 pix(X)
log 15 khi « (X'), and Hi (X' | X) = S ¥_; pik(X) log pix (X'), where pi «(x) = T5 chi « (X)/gi (x). Note that,
based on the proof in Appendix A, we have Lj(x") = Qj(X’ | x) — Hi(X' | x) and H;(x | x) > H;(x | x).
We now define

L(x) = (1—o)Li(x)+aLa(x)
QX [x) = (1—a)Qu(X| )+0(Q2( 1 X)
HX [x) = (1—a)Hy(X | x)+aHa (X |x).

According to the Ridgeline EM algorithm, x(+) = argmax, Q(x' | x("). Hence Q(x("*+¥) |
(M) > Q(x™ | xI). Also, it is obvious that H(x(") | x(V) > A(x(™Y | x(). Finally, we prove
the ascending property:

L(70) = QO [ x0) = A [ x0) = Q™ [x7) — A | x0) = LX)
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Appendix C.

We prove here the graph constructed in Section 4.2, where every clique corresponds to a node, has
no loop. We denote a node (i.e., a clique) by c;. By construction, a directed edge from ¢; to c; exists
if the following conditions are satisfied:

1. S¢(ci,cj) <&

2. Sc(Ci,Cj) = minyyi Sc(Ci,ck) and j is the smallest index among all those j’’s that achieve
SC(Ci,er) = mink# SC(Ci,Ck).

3. 8(ci) < d(cj).

We refer to the three conditions as Condition 1, 2, 3.

We prove the non-existence of loops by contradiction. We will first show that if there is a loop in
the graph, this loop is directed. Then, we will prove that a directed loop cannot exist. Without loss
of generality, assume that there is a loop connecting nodes {ci,Ca,...,Cx} sequentially. The edges
in the loop are {e12,€23,...,ek_1k €k 1}, Where g; j connects ¢; and c;. Let head(e; ;1) indicate the
node from which edge e; j;1 starts. Obviously, head(ejj 1) = Cj Of Ci1.

Without loss of generality, let head(ex1) = ck. By Condition 2, every node can have almost
one edge starting from it. Hence head(ex_1k) = Cck—1. For an arbitrary j > 1, assume that for
i=]j,j+1,...k—1, we have head(ej ;1) = c;. Since head(e;j;+1) = cj, again by Condition 2,
head(ej_1,j) = Cj—1. Thus, fori= j—1,j,....k—1, we have head(e; ;1) = ¢i. By induction, for
any i =1,....k—1, we have head(e;it1) = ¢j. Therefore, the loop connecting {c1,C,...,Ck} iS
directed.

By Condition 3 of the graph construction procedure, if head(e; j) = c;, then & < &;. Thus, if
there is a directed loop connecting nodes {c1,Co, ...,Cx} and head(e; j;1) = ci, we get the contradic-
tion: & < &y < -+ < & < O1. This proves that there is no loop (regardless of directed or not) in the
graph.
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