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Abstract

Maximum concept classes of VC dimension d over n domain points have size ('), and this is
an upper bound on the size of any concept class of VC dimension d over n points. We give a
compression scheme for any maximum class that represents each concept by a subset of up to d
unlabeled domain points and has the property that for any sample of a concept in the class, the
representative of exactly one of the concepts consistent with the sample is a subset of the domain
of the sample. This allows us to compress any sample of a concept in the class to a subset of up
to d unlabeled sample points such that this subset represents a concept consistent with the entire
original sample. Unlike the previously known compression scheme for maximum classes (Floyd
and Warmuth, 1995) which compresses to labeled subsets of the sample of size equal d, our new
scheme istight in the sense that the number of possible unlabeled compression sets of size at most
d eguals the number of conceptsin the class.

Keywords: compression schemes, VC dimension, maximum classes, one-inclusion graph

1. Introduction

Consider the following type of protocol between a learner and a teacher. Both agree on a domain
and a class of concepts (subsets of the domain). For instance, the domain could be the plane and a
concept the subset defined by an axis-parallel rectangle (see Figure 1). The teacher gives a set of
training examples (labeled domain points) to the learner. The labels of this set are consistent with a
concept (rectangle) that is hidden from the learner. The learner’s task is to predict the label of the
hidden concept on a new test point.

Intuitively, if the training and test points are drawn from some fixed distribution, then the la-
bels of the test point can be predicted accurately provided the number of training examples is large
enough. The sample size should grow with the inverse of the desired accuracy and with the com-
plexity or “dimension” of the concept class. The most basic notion of dimension in this context
is the Vapnik-Chervonenkis dimension. This dimension is the size d of the maximum cardinality
subset of domain points such that all 29 labeling patterns can be realized by a concept in the class.
The VC dimension of axis-parallel rectangles is 4, since it is possible to label any set of 4 points
in all possible ways as long as no point lies inside the orthogonal hull of the other 3 points (where
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Figure 1: An example set consistent with some axis-parallel rectangle. Also shown is the smallest
axis-parallel rectangle containing the subsample of circled points. This rectangle is con-
sistent with all examples and the set of circled points represents a consistent concept. The
hidden rectangle generating the data is dashed. “X” is the next test point.

the orthogonal hull is defined as the smallest rectangle containing the points); also for any 5 points,
at least one of the points lies inside the orthogonal hull containing the remaining 4 points and this
disallows at least one of the 2° patterns.

This paper deals with an alternate notion of dimension used in machine learning that is related
to compression (Littlestone and Warmuth, 1986). It stems from the observation that you can often
select a subset of the training examples to represent a hypothesis consistent with all training exam-
ples. For instance, in the case of rectangles, it is sufficient to keep only the uppermost, lowermost,
leftmost and rightmost positive point. There are up to 4 points in the subsample (since some of the
4 extreme points might coincide.) The orthogonal hull of the subsample will always be consistent
with the entire sample.

More generally, a compression scheme is defined by two mappings (Littlestone and Warmuth,
1986): one mapping samples of concepts in the class to subsamples, and the other one mapping the
resulting subsamples to hypotheses on the domain of the class. Compression schemes must have
the property that the subsample always represents a hypothesis consistent with the entire original
sample. However note that the reconstructed hypothesis doesn’t have to lie in the original concept
class. It only needs to be consistent with the original sample. The subsamples represent hypotheses
and are called representatives in this paper. A compression scheme can be viewed as a set of rep-
resentatives of hypotheses with the property that every sample of the class contains a representative
of a consistent hypothesis. The size of the compression scheme is the size of the largest represen-
tative, and the minimum size of a compression scheme for a class serves as an alternate measure of
complexity.

Note that in the case of rectangles we need to keep at most 4 points and 4 also is the Vapnik-
Chervonenkis dimension of that class. One of the most tantalizing conjectures in learning theory is
the following (Floyd and Warmuth, 1995; Warmuth, 2003): For any concept class of VC dimension
d, there is a compression scheme of size at most d.
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The size of the compression scheme also replaces the VC dimension in the PAC sample size
bounds (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995; Langford, 2005). However,
in the case of compression schemes, the proofs of these bounds are much simpler. There are
many practical algorithms based on compression schemes (e.g., Marchand and Shawe-Taylor, 2002,
2003). Also, any algorithm with a mistake bound M leads to a compression scheme of size M (Floyd
and Warmuth, 1995).

Let’s consider some more illustrative examples of compression schemes. Unions of up to k
intervals on the real line form a concept class of VC dimension 2k. We can compress a sample from
this class to the following set of points: the leftmost “+” point in the sample, the leftmost “—" point
to the right of the last selected point, the leftmost “+” further to the right of the last selected point,
and so forth; stop when there are no more points whose label is opposite to the last selected point. It
is easy to see that at most 2k points are kept when the original sample is consistent with a union of
k intervals. Also the labels of the entire original sample can be reconstructed from this subsample.
Note that in this case the labels of the subsample are always alternating starting with a “+”. Thus
these labels are redundant and the above scheme can be interpreted as compressing to unlabeled
subsamples of size at most the VC dimension 2k.

Support Vector Machines also lead to a simple labeled compression scheme for halfspaces (sets
of the form {x € R": w-x > b}), because only the set of support vectors is needed to reconstruct
the hyperplane consistent with the original sample. Of course, the number of support vectors can be
quite big. However, it suffices to keep any set of essential support vectors and these sets have size
n-+ 1, where n is the dimension of the feature space (von Luxburg et al., 2004). Not surprisingly,
n—+ 1 is also the VC dimension of arbitrary halfspaces of dimension n. However, the labels of a set
of essential support vectors are not redundant and this provides an example of a labeled compression
scheme for halfspaces. There also exists a compression scheme for the same class that compresses
to at most n+ 1 unlabeled points (Ben-David and Litman, 1998). However this scheme is not
constructive.

The compression scheme conjecture is easily proven for intersection-closed concept classes
(Helmbold et al., 1992), which include the class of axis-parallel rectangles as a special case. More
importantly, the conjecture was shown to be true for maximum classes. A finite class of VC dimen-
sion d over n domain points is maximum if its size is equal to (<”d) which is the upper bound on
the size of any concept class of VC dimension d over n points. An infinite class of VC dimension d
is maximum if all restrictions to a finite subset of domain of size at least d are maximum classes of
dimension d.

Of the example concept classes discussed so far, the class of up to k intervals on the real line is
maximum. The class of halfspaces in R" is not maximum, but it is in fact a union of two classes of
VC dimension n which are “almost maximum?”: positive halfspaces and negative halfspaces (Floyd,
1989). Positive halfspaces are those that contain the “point” (0,0, ...,0) and negative halfspaces are
those that contain (—,0,...,0). Both classes of halfspaces are almost maximum in the sense that
the restriction to any set of points in general position always produces a maximum class. Finally,
the class of axis-parallel rectangles is not maximum since for any five points at least two labelings
are not realizable.

In Floyd and Warmuth (1995) it was shown that for all maximum classes there always exist
compression schemes that compress to exactly d labeled examples. In this paper, we give an alter-
nate compression scheme for finite maximum classes. Even though we do not resolve the conjecture
for arbitrary classes, we have uncovered a great deal of new combinatorics. Our new scheme com-
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X1 X2 X3 Xa r(c)
cc 0 0 0 O 0
Co 0 0 {Xg}
cs 0 0 1 1 {Xa}
c,2 0 1 0 O {x2}
Cs 0 1 0 1 {X3, X4}
Ce 0 1 u {Xz, Xg}
C7 0 1 1 1 {Xz, X4}
cg 1 0 0 O {xa}
Co 1 0 {Xl, X3}
co 1 0 1 1 {xi,x4}
cu 1 1 0 0 {x,x}

Figure 2: Hlustration of the unlabeled compression scheme for some maximum concept class. The
representatives for each concept are indicated in the right column and also as the under-
lined positions in each row. Suppose the sample is x3 = 1,x4 = 0. The set of concepts
consistent with that sample is {c2,Cs,C9}. The representative of exactly one of these
concepts is entirely contained in the sample domain {x3,X4}. For our sample this repre-
sentative is {x3} which represents c,. So the compressed sample becomes {xs}.

presses any sample consistent with a concept to at most d unlabeled points from the sample. If m
is the size of the sample, then there are (<”(‘j) sets of points of size up to d. For maximum classes,
the number of different labelings induced on any set of size m is also (y). Thus our new scheme
is “tight”. In the previous labeled scheme, the number of possible representatives was much bigger
than the number of concepts.

The new unlabeled scheme also has many interesting combinatorial properties. Let us represent
finite classes as a binary table (see Figure 2) where the rows are concepts and the columns are all the
points in the domain. Our compression scheme represents concepts by subsets of size at most d and
for any k < d, the concepts represented by subsets of size up to k will form a maximum class of VC
dimension k. Our scheme compresses as follows: After receiving a set of examples, we first restrict
ourselves to concepts that are consistent with the sample. We then compress to a representative
of a consistent concept that is completely contained in the sample domain (see Figure 2). As our
main result we will prove that for our choice of representatives, for any sample there always will be
exactly one of the consistent concepts whose representative is completely contained in the sample
domain.

Our new unlabeled compression scheme is connected to a certain undirected graph, called the
one-inclusion graph, that characterizes the concept class on a set of example points (Haussler et al.,
1994): the vertices are the possible labelings of the example points and there is an edge between
two concepts if they disagree on a single point. The edges are naturally labeled by the differing
points (see Figure 4).

Any prediction algorithm can be used to orient the edges of the one-inclusion graphs as follows.
Assume we are given a labeling of some m points X1, ...,Xm and an unlabeled test point x. If there
is still an ambiguity as to how x should be labeled, then this corresponds to an x-labeled edge in

2050



UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

x
iy
X
N
>
w
x
5

C1
C2
C3
Ca
Cs
Ce
C7
Cs
Co
C10

PP OORBRLPEFLROOO
OCoOrRrORRPRORRERO
OCOORRFRPROREFROPR
RPORPPRPOOOOOO

Figure 3: A maximal class of VCdim 2 with 10 concepts. Maximum concept classes of VCdim 2
have (342) = 11 concepts (see Figure 2).

one-inclusion graph for the set {x,...,Xm,X}. This edge connects the two possible extensions of
the labeling of Xy, ...,Xm to the test point x. If the algorithm predicts b, then orient the edge toward
the concept that labels x with bit b.

The vertices in the one-inclusion graph represent the possible labelings of {x1,...,Xm,x} pro-
duced by the target concepts and if the prediction is averaged over all permutations of the m+ 1
points, then the probability of predicting wrong is ﬁ where d is the out-degree of the target.
Therefore the canonical optimal algorithm predicts with an orientation of the one-inclusion graphs
that minimizes the maximum out-degree (Haussler et al., 1994; Li et al., 2002) and in Haussler et al.
(1994) it was shown that this outdegree is at most the VC dimension.

How is this all related to our new compression scheme for maximum classes? We show that for
any edge labeled with x, exactly one of the two representatives of the incident concepts contains the
point x. Thus by orienting the edges toward concept that does not have x, we immediately obtain
an orientation of the one-inclusion graphs in which all vertices have maximum outdegree at most d
(which is the best possible). Again such a d-orientation immediately leads to prediction algorithms
with a worst case expected mistake bound of ﬁ where m is the sample size (Haussler et al., 1994),
and this bound is optimal® (Li et al., 2002).

The conjecture whether there always exists a compression scheme of size at most the VC di-
mension remains open. For finite domains it clearly suffices to resolve the conjecture for maximal
classes (i.e., classes where adding any concept would increase the VC dimension). We do not know
of any natural example of a maximal concept class that is not maximum or closely related. However,
it is easy to find small artificial maximal classes (see Figure 3). We believe that much of the new
methodology developed in this paper for maximum classes will be useful in deciding the general
conjecture in the positive and think that in this paper we made considerable progress toward this
goal. In particular, we developed a refined recursive structure of finite concept classes and made
the connection to orientations of the one-inclusion graphs. Also, our scheme constructs a certain
unique matching that is interesting in its own right.

1. Predicting with a d-orientation of the one-inclusion graphs is also conjectured to lead to optimal algorithms in the
PAC model of learning (Warmuth, 2004).
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Even though the unlabeled compression schemes for maximum classes are tight in some sense,
they are not unique. There is a strikingly simple “peeling algorithm” that always seems to produce
a valid unlabeled compression scheme for maximum classes: construct the one-inclusion graph for
the domain; iteratively peel off a lowest degree vertex and represent a concept ¢ by the set of data
points incident to vertex c in the remaining graph when ¢ was removed from the graph (see Figure
7 for an example run). However, we have no proof of correctness of this algorithm and the resulting
schemes do not have as much recursive structure as the ones produced by our recursive algorithm
for which we have correctness proof. For the small example given in Figure 2, both algorithms can
produce the same scheme.

1.1 Outline of the Paper

Some basic definitions are provided in Section 2. We then define unlabeled compression schemes
in Section 3 and characterize the properties of the representation mappings of such schemes and
their relation to the one-inclusion graph. In this section we also discuss the simple Min-Peeling Al-
gorithm in more detail. This algorithm always seems to provide an unlabeled compression scheme
even though we currently do not have a correctness proof for it. Section 4 discusses linear ar-
rangements, which are special maximum concept classes, and discuss how to interpret unlabeled
compression schemes for these classes. Next, in Section 5, we briefly summarize the old scheme
for maximum classes from Floyd and Warmuth (1995) which compresses to labeled subsamples,
whereas ours uses unlabeled ones. The core of the paper is in Section 6, where we give a recursive
algorithm for constructing an unlabeled compression scheme with a detailed proof of correctness.
Section 7 contains additional combinatorial lemmas about the structure of maximum classes and
unlabeled compression schemes. In Section 8, we discuss how to possibly extend various compres-
sion schemes for maximum classes to the more general case of maximal classes. We conclude in
Section 9 with a large number of combinatorial open problems that we have encountered in this
research.

2. Definitions

Let X be a domain, where we allow X = 0. A concept ¢ is a mapping from X to {0,1}. We can also
view a concept ¢ as a characteristic function of a subset of dom(c), that is, for any domain point
x € dom(c), c(x) = 1 iff x € c. A concept class C is a set of concepts with the same domain (denoted
as dom(C)). Such a class is represented by a binary table (see Figure 2), where the rows correspond
to concepts and the columns to points in dom(C).

Alternatively, C can be represented as a subgraph of the Boolean hypercube of dimension
|dom(C)|. Each dimension corresponds to a particular domain point, the vertices are the concepts in
C and two concepts are connected with an edge if they disagree on the label of a single point. This
graph is called the one-inclusion graph of C (Haussler et al., 1994). Note that each edge is naturally
labeled by the single dimension/point on which the incident concepts disagree (see Figure 4). The
set of incident dimensions of a vertex c in a one-inclusion graph G is the set of dimensions labeling
the edges incident to c. We denote this set as Ig(c). Its size equals the degree of c in G.

We denote the restriction of a concept ¢ onto A C dom(c) as c|A. This concept has domain A
and labels that domain consistently with c. The restriction of an entire class is denoted as C|A. This
restriction is produced by simply removing all columns not in A from the table for C and collapsing
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Figure 4: One-inclusion graph for the concept class from Figure 2. The concepts are the vertices
of the graph and edges are labeled with the single differing dimension. Each concept ¢
is given as a bit pattern and the set of underlined dimensions indicates its representative
r(c). Arrows show the d-orientation derived from the compression scheme.
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Figure 5: The reduction, restriction and the tail of the concept class from Figure 2 wrt x1.

identical rows.2 Also the one-inclusion graph for the restriction C|A is now a subgraph of the
Boolean hypercube of dimension |A| instead of the full dimension |C|. We use ¢ — x as shorthand
for c[(dom(C) . {x}) and let C — x denote {c —x|c € C} (produced by removing column x from the
table, see Figure 5). A sample of a concept c is any restriction c|A for some A C dom(c).

The reduction C* of a concept class C wrt a dimension x € dom(C) consists of all those concepts
in C — x that have two possible extensions onto concepts in C. All such concepts correspond to an
edge labeled with x in the one-inclusion graph (see Figure 5). In summary, the class C* is a subset
of C —x that has the same reduced domain X — {x}.

The tail of concept class C on dimension x consists of all concepts that do not have an edge
labeled with x. Thus it corresponds to the subset of C — x that has a unique extension onto the full
domain. We denote the tail of C on dimension x as tailx(C). The class C can therefore be partitioned

as 0C*U 1C* Utaily(C), where U denotes the disjoint union and bC* consists of all concepts in C*
extended with bit b in dimension x. Note that tails have the same domain as the original class,
whereas the reduction and restriction are classes that have a reduced domain.

A finite set of dimensions A C dom(C) is shattered by a concept class C if for any possible
labeling of A, the class C contains a concept consistent with that labeling (i.e., size(C|A) = 2/4).3
The Vapnik-Chervonenkis dimension of a concept class C is the size of a maximum subset that is
shattered by that class (Vapnik, 1982). We denote this dimension as VCdim(C). Note that if |C| =1,
then VCdim(C) = 0.4

In this paper we use the binomial coefficients ({), for integers n > 0 and d, where (j) =0
ford >nord < 0and (§) =1. We make use of the following identity which holds for n > 0:
(M) = ("N + (521). Let (1) be a shorthand for the binomial sums S& o (™). Then we have a

|
similar identity for the binomial sums when n > 0: (fy) = (%4) + (54 ).

2. We define c|0 = 0. Note that C|0 = {0} if C +# 0 and 0 otherwise.
3. The notations size(A) and |A| both denote the number of elements in set A.
4. VCdim({0}) = 0 and VCdim(0) is defined to be —1.
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From Vapnik and Chervonenkis (1971) and Sauer (1972) we know that for all concept classes
with VC dimension d: |C| < (1%M(®)) (generally known as Sauer’s lemma). A concept class C with
VCdim(C) = d is called maximum (Welzl, 1987) if for all finite subsets Y of the domain dom(C),
size(C|Y) = (I¥}). IfC isa maximum class with d = VCdim(C), then ¥x € dom(C), the classes C —
and C* are also maximum classes and have VC dimensions d and d — 1, respectively (Welzl, 1987).
From this it follows that for finite domains, a concept class C is maximum iff size(C) = (1%())),

A concept class C is called maximal if adding any other concept to C will increase its VC
dimension. Any maximum class on a finite domain is also maximal (Welzl, 1987). However, there
exist finite maximal classes, which are not maximum (see Figure 3 for an example).

From now on we only consider finite classes. As our main result we construct an unlabeled
compression scheme for any finite maximum class. The existence of an unlabeled scheme for
infinite maximum classes then follows from a compactness theorem given in Ben-David and Litman
(1998). The proof of that theorem is, however, non-constructive.

3. Unlabeled Compression Scheme

Our unlabeled compression scheme for maximum classes represents the concepts as unlabeled sub-
sets of dom(C) of size at most d. For any ¢ € C we call r(c) its representative. Intuitively we
want concepts to disagree on their representatives. We say that two different concepts clash wrt r if
¢l (re)ur(c)) = ¢'| (r(c)ur(c)).

Main definition: A representation mapping r of a maximum concept class C must have the follow-
ing two properties:

1. ris a bijection between C and (unlabeled) subsets of dom(C) of size at most VCdim(C) and
2. no two concepts in C clash wrtr.

The following lemma shows how the non-clashing requirement can be used to find a unique repre-
sentative for each sample.

Lemma 1 Letr be any bijection between a finite maximum concept class C of VC dimension d and
subsets of dom(C) of size at most d. Then the following two statements are equivalent:

1. No two concepts clash wrt r.

2. For all samples s of a concept from C, there is exactly one concept ¢ € C that is consistent
with sand r(c) C dom(s).

Based on this lemma it is easy to see that a representation mapping r for a maximum concept
class C defines a compression scheme as follows. For any sample s of C we compress s to the
unique representative r(c) such that c is consistent with s and r(c) C dom(s). Reconstruction is
even simpler, since r is bijective: if s is compressed to the set r(c), then we reconstruct to the
concept c. See Figure 2 for an example of how compression and reconstruction work.

Proof of Lemma 1

2 =-1: Proof by contrapositive. Assume —1, that is, there 3c,c’ € C,c # ¢’ s.t. c|r(c)Ur(c’) =
c|r(c)ur(c’). Then let s =c|r(c)ur(c’). Clearly both c and ¢’ are consistent with s and
r(c),r(c’) C dom(s). This negates 2.

2055



KuUuzMIN AND WARMUTH

1=-2: Ata high level, for any sample domain dom(s) there are as many representatives r(c) C
dom(s) as there are different samples having that domain. The no clashing condition implies
that all concepts with representatives in dom(s) are different from each other on dom(s), thus
every sample has to get at least one representative.

For a more detailed proof assume —2, that is, there is a sample s for which there are either
zero or (at least) two consistent concepts ¢ for which r(c) C dom(s). If two concepts ¢,c’ € C
are consistent with s and r(c),r(c’) C dom(s), then c|r(c) ur(c’) = c’|[r(c)Ur(c’) (which is
—1). If there is no concept ¢ consistent with s for which r(c) C dom(s), then since

size(C|dom(s)) = (|do<m(§s)\> =1|{c:r(c) Cdom(s)}| .

there must be another sample s’ with dom(s’) = dom(s) for which there are two such concepts.
So again —1 is implied. a

Once we have a valid representation mapping for some maximum concept class C, we can easily
derive a valid mapping for any restriction of the class C|A by compressing every restricted concept.
This is discussed in the following corollary.

Corollary 2 For any maximum class C and A C dom(C), if r is a representation mapping for C
then a representation mapping for C|A can be constructed as follows. For any ¢ € C|A, let ra(c) be
the representative of the unique concept ¢’ € C, such that ¢/|A=cand r(c’) C A.

Proof The construction of the mapping for C|A essentially tells us to treat the concept c as a sample
from C and to compress it. Thus we can apply Lemma 1 to see that ra(c) C A is always uniquely de-
fined. Now we need to show that ra satisfies the conditions of the Main Definition. Since the repre-
sentatives ra(c) are subsets of A, the non-clashing property for the representation mapping r for C|A
follows from the non-clashing condition for r for C. The bijection property follows from a counting
argument like the one used in the proof of Lemma 1, since size(C|A) = size({r(c) s.t. r(c) CA}).1

The following lemmas and corollaries will be stated only for the concept class C itself. However,
in light of Corollary 2 they will also hold for all restrictions C|A.

We first show that a representation mapping r for a maximum classes can be used to derive a
d-orientation for the one-inclusion graph of the class (i.e., an orientation of the edges such that the
outdegree of every vertex is at most d). As discussed in the introduction such orientations lead to a
prediction algorithm with a worst-case expected mistake bound of % at trial t.

Lemma 3 For any representation mapping r of a maximum concept class C and the one-inclusion
graph of C, any edge ¢ = ¢’ in the graph has the property that its associated dimension x lies in
exactly one of the representatives r(c) or r(c’).

Proof Since ¢ and ¢’ differ only on dimension x and c|r(c) Ur(c") # c’[r(c) Ur(c’), x lies in at least
one of r(c),r(c’). Next we will show that x lies in exactly one.

We say an edge charges its incident concept if the dimension of the edge lies in the representative
of this concept. Every edge charges at least one of its incident concepts and each concept ¢ can
receive at most |r(c)| charges. So the number of charges is lower bounded by the number of edges
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and upper bounded by the total size of all representations. We complete the proof of the lemma by
showing that the number of edges equals the total size of all representatives. This means that no
edge can charge both of its incident concepts and each point labeling an edge must lie in exactly
one of the representations of its incident concepts.

There are |C¥| edges labeled with dimension x in the one-inclusion graph for C. Since there
are n dimensions and C* is always maximum and of dimension d — 1, the total number of edges in
the graph is n(}%,), where n = |dom(C)|, d = VCdim(C). (This formula is also a special case of
Lemma 15.) The total size of all representatives is the same number because:

re=50) =5 (0) ()

The above lemma lets us orient the one-inclusion graphs for the class.

Corollary 4 For any representation mapping of maximum class C and the one-inclusion graph of
C, directing each edge away from the concept whose representative contains the dimension of the
edge creates a d-orientation of the one-inclusion graph for the class.

Proof The outdegree of every concept is equal to size of its representative, which is < d. |

The lemma also implies that the representatives of concepts are always subsets of the set of incident
dimensions in the one-inclusion graphs.

Corollary 5 Any representation mapping r of a maximum class C has the property that for any
concept ¢ € C, its representative r(c) is a subset of the dimensions incident to ¢ in the one-inclusion
graph for C.

Proof From the counting argument in the proof of Lemma 3 we see that for every x € r(c) there
must exist an edge leaving c in the graph labeled with x. |

3.1 The Min-Peeling Algorithm

As discussed at the end of the introduction, there is a simple algorithm that always seems to construct
a correct representation mapping for any maximum class. The algorithm iteratively removes any
lowest degree vertex from the one-inclusion graph for the remaining class and sets the representative
r(c) to the set of dimensions of the edges incident to ¢ when ¢ was removed from the graph. The
algorithm is formally stated in Figure 6. An illustration of several iterations of the algorithm is given
in Figure 7.

Unfortunately, we do not have a proof that this algorithm always produces a correct unlabeled
compression scheme for maximum classes. As one of the steps in the correctness proof we would
need the following: By iteratively removing the lowest degree vertex from a maximum class, we
never arrive at a subgraph whose lowest degree vertex has a degree larger than the VVC dimension of
the remaining class. A natural conjecture is that any class of VC dimension d has a vertex of degree
at most d in its one-inclusion graph. However, an elegant counterexample to this conjecture was
constructed in Rubinstein et al. (2007a). Note that their counterexample is not a maximum class and
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Min-Peeling Algorithm

Input: a finite maximum concept class C.
Output: a representation mapping r for C
Let G be the one-inclusion graph for C

While C # 0

1. Choose a minimum-degree vertex ¢ among those in C
2. r(c) := set of dimension incident to ¢ in the graph
3. Remove c from G and C

Figure 6: The Min-Peeling Algorithm for constructing an unlabeled compression scheme for max-
imum classes.

thus it does not contradict the Min-Peeling Algorithm. Maximum classes and classes obtained by
peeling them appear to have a special structure that always ensures existence of a degree < d vertex,
where d is the VC dimension of the remaining class. However a complete proof of this statement
needs to be found.

The representation mappings produced by the Min-Peeling Algorithm have less structure than
the representation mappings produced by the Tail Matching Algorithm discussed in Section 6. In
particular, they do not necessarily satisfy the condition of Lemma 12, which states the subset of
concepts corresponding to representations of size up to k forms a maximum class of VC dimension k.
For the maximum class of Figure 2, both algorithms can produce the same representation mapping.

Also note how the Min-Peeling Algorithm immediately leads to a d-orientation of the one-
inclusion graph: as we peel away a vertex, its edges are naturally oriented away from the vertex
before the edges are removed. Since each vertex has degree at most d when it is peeled away, the
outdegree of each vertex will be at most d. Moreover, the resulting orientation of the one-inclusion
graph is acyclic because all edges are oriented from a vertex toward a vertex that is removed later.
In other words, the list of vertices produced by the Min-Peeling Algorithm is a topological ordering
of the oriented one-inclusion graph (see Figure 8). As we shall see later, the Tail Matching Algo-
rithm also produces a topological order of the graph. By Corollary 4, every representation mapping
induces a d-orientation of the one-inclusion graph. However we found examples where a valid
representation mapping for a maximum class induces a cyclic orientation (not shown).

4. Linear Arrangements

In this section we visualize many of our basic notations and unlabeled compression schemes for
simple linear arrangements, which are special maximum classes. An unlabeled compression scheme
for linear arrangements is also described in Ben-David and Litman (1998).

A linear arrangement is a collection of oriented hyperplanes in R9. The cells of the arrangement
are the concepts and the planes the dimensions of the concept class. The orientations of the planes
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1100 - {@1, 22}

Figure 7: Illustration of a run of the Min-Peeling Algorithm. Each figure corresponds to an itera-
tion of the algorithm: the bold circle indicates the chosen concept to be removed and the
grey circles are the concepts that were removed previously. By completing the run, one
can produce the compression scheme given in Figure 2.
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Figure 8: Topological order and d-orientation produced by a run of Min-Peeling Algorithm for
some maximum class.

Figure 9: An example linear arrangement. The cells of the arrangement represent the concepts
and the planes the dimensions of the class. All cells on the upper side of a hyperplane
(indicated by an arrow) are labeled one in the corresponding dimension and the cells on
the lower side are labeled zero. Up to d hyperplanes bordering a cell are marked and
the set of dimensions of these marked planes forms the representative of the cell in the
unlabeled compression scheme.

are indicated by arrows (See Figure 9). All cells lying above the plane corresponding to dimension
x label x with one, and the cells below label x with zero. If the n planes are in general position
(any d hyperplanes have a unique point in common and any d 4+ 1 hyperplanes have no point in
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10

Figure 10: Restriction C — {x3,X4} of the linear arrangements concept class of Figure 9. The planes
X3 and x4 are grayed. Several cells of the full arrangement are combined into bigger
cells of the restricted arrangement. One of the subcells forming each big cell (circled)
has the property that all dimensions in its representative are still available (none of the
corresponding hyperplanes were grayed). The representative of this subcell represents
the big cell. For example the subcells 1110,1111,1101 form the larger cell for sample
(x1,1),(x2,1) and only 1111 (circled) is represented by a subset of non-grayed hyper-
planes: r(1111) = {x1 }, and therefore the sample is compressed to {x1 }.

common) then the arrangement is called simple. Such arrangements are maximum classes because
their VC dimension is min{n,d} and they have (<”d) cells (Edelsbrunner, 1987). However not all
finite maximum classes are representable as linear arrangements (Floyd, 1989).

The vertices of the one-inclusion graph are the cells of the arrangement and edges connect
neighboring cells. A restriction C — x corresponds to removing the x plane from the arrangement.
Pairs of cells that border this plane are now combined to larger cells (an example of a double restric-
tion is given in Figure 10). Samples are combined cells produced by removing some hyperplanes.
The reduction C* is the arrangement in the space of dimension d — 1 induced by the projection of
the remaining n — 1 planes onto the x plane. The subclasses 1C* and 0C* correspond to the cells di-
rectly above or below the x plane, respectively. All cells not bordering the x plane form the subclass
taily(C).

By Corollary 5, the representative of a concept in an unlabeled compression scheme is always
a subset of the incident dimensions (here the bordering hyperplanes) in the one-inclusion graph. So
we can indicate the representatives of each cell by marking the inside borders with the corresponding
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neighbouring cells (See Figure 9). Each cell marks at most d bordering hyperplanes and no cell
marks the same set of hyperplanes. The no-clashing condition of our Main Definition means that
any two cells are on opposite sides of at least one hyperplane marked by one of the cells. Also by
Lemma 3, any boundary shared between any two cells is marked on exactly one side.

We now visualize how we compress a sample, that is, we restate the process described in Figure
2 for the special case of linear arrangements. Recall that a sample s corresponds to a combined
cell produced by removing the hyperplanes in dom(c) ~. dom(s) where each of the original cells
corresponds to a concept consistent with the sample. One (and only one) of the original cells in
the combined cell that corresponds to the sample is marking only hyperplanes from the surviving
set dom(s) (circled in Figure 10). We compress the sample to that set of marked dimensions and
reconstruct based on the represented original cell. Note that if the selected original cell marks any
plane, then it must always be at the boundary of the combined cell, since cells in the middle do not
border any of the remaining hyperplanes.

It is interesting to observe how our algorithms construct representation mappings for linear
arrangements.

Conjecture 1. Sweeping the arrangement with a hyperplane that is not parallel to any plane in
the arrangement produces a compression scheme as follows: as soon as a cell is completely swept,
it marks the planes of all bordering currently live cells. The resulting sequential assignments of
representatives to concepts corresponds to a run of the Min-Peeling Algorithm.

In particular we conjecture that sweeping as prescribed iteratively completes minimum degree
cells.

The recursive Tail Matching Algorithm of Section 6 chooses some plane x and first finds a
compression scheme for the projection C* of the linear arrangement onto the this plane. Each
projected cell from C* corresponds to two cells, one from 0C* and one from 1C*. The algorithm
uses the scheme for C* for all concepts in OC*, that is, all cells bordering the x plane from below.
The sibling cells in 1C* right above the plane receive the same marks but also an additional mark
from the x plane. The recursive algorithm uses exactly d marks for all vertices in taily(C) (the cells
not bordering the x plane). However, this assignment cannot be easily visualized.

Note that one of the planes has the property that the markings produced by the recursive algo-
rithm all lie on one side of the plane. We initially conjectured that there always exist representation
schemes that place the marks on the same side for all planes. However we found small counterex-
amples to this conjecture (not shown).

Simple linear arrangements are known to have the following property: the shortest path between
any two cells is always equal to the Hamming distance between the cells (Edelsbrunner, 1987).
Surprisingly, we were able to show in Lemma 14 that all maximum classes have this property.

5. Comparison with Old Scheme

In the unlabeled compression schemes introduced in this paper, each subset of up to d domain
points represents a unique concept in the class, and every sample of a concept contains exactly one
subset that represents a concept consistent with the sample. Before we show that there always exist
unlabeled compression schemes, we present the old compression scheme for maximum classes from
Floyd and Warmuth (1995) in a concise way that brings out the difference between both schemes.
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In the old scheme every set of exactly d labeled points represents a concept. Let u denote
such a set of d labeled points. By the properties of maximum classes, the reduction C9MU) js a
maximum class of VC dimension 0, that is, just a single concept on the domain dom(C) ~. dom(u).®
Augmenting this concept with any of the 29 labelings of dom(u), leads to a concept in C on the full
domain. Let c, denote the concept in C represented by the labeled set u in this way.

Note that there are 29 (3) labeled subsets of size d when the domain size is n, and the number of
concepts in the maximum class C is (<”d) This means that some concepts have multiple represen-
tatives in the old scheme. In Figure 11 we give both compression schemes for the maximum class
used in the previous figures.

We first reason that every concept in C is represented by some labeled subset u of the domain
of size d. Since the one-inclusion graph for C is connected (see Gurvits, 1997, or Lemma 14 of this
paper), any concept ¢ has an edge along some dimension x. Therefore, ¢ — x lies in C*. Inductively
we can find a labeled set v of size d — 1 that represents ¢ —x in C*. Now let u = vU {(x,c(x))}.
Clearly, ¢, = ¢ (since C9om(U) — (CX)dom(v)),

We still need to show that for every sample s of C with at least d points, there is at least one
labeled subset u of size d that represents a concept consistent with the entire sample. Since the
restriction C|dom(s) is a maximum class of VC dimension d, it follows from the previous paragraph
that there is a labeled subset u representing the concept s of C|dom(s). However, u also represents
a concept c in C. It suffices to show that u represents the same concept on dom(s) wrt both classes
C and C|dom(s).

Assume the concept for C labels some point x in dom(s) ~. dom(u) with 0 and the concept for
C|dom(s) labels this point with 1. Then from the construction of the representations for C it follows
that there are 24 concepts in C that label x with 0 and dom(u) in all possible ways. Similarly there
are 29 concepts in C|dom(s) labeling x with 1. The latter concepts extend to concepts in C and
therefore the d + 1 points dom(u) U {x} are shattered by class C, which is a contradiction.

6. Tail Matching Algorithm for Constructing an Unlabeled Compression Scheme

The unlabeled compression scheme for any maximum class can be found by the recursive algorithm
given in Figure 13. For any x € dom(C), there are two “copies” of C* in the original class, one
in which the concepts in C* are extended in the x dimension with label 0 and one with extension
(x,1). This algorithm first finds a representation mapping r for C* to subsets of size up to d — 1 of
dom(C) ~.x. It then uses this mapping for the (x,0) extension and adds x to all the representatives
in the other extension. Finally, the algorithm completes r by finding the representatives for taily(C)
via the subroutine given in Figure 14.

For correctness, it suffices to show that the constructed mapping satisfies both conditions of our
Main Definition. We begin with some additional definitions and a sequence of lemmas.

Forae {0,1} and c € C —x, ac denotes a concept formed from ¢ by extending it with (x,a). Itis
usually clear from the context what the missing x dimension is. Similarly, aC* denotes the concept
class formed by extending all the concepts in C* with (x,a). Each dimension x € dom(C) can be

used to split class C into three disjoint sets: C = 0C*U 1C* Utaily(C).

5. Here C9M(U) js just the consecutive reduction on all d dimensions in dom(u). The result of this operation does not
depend on the order of the reductions (Welzl, 1987).
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X1 X2 X3 Xs4 | Unlab. Labeled Representatives

0 0 0 0 0 {(Xl>o)7(X270)}7{(X170)7(X370)}7{(X2a0)7(X370)}

0 1 0 {X3} {(X170)7(X371)}7{(X170)7(X470)}?{(X270)7(X4?0)}
{(X270)7 (X3?1)}

0 0 1 1 {X4} {(X170)7 (X471)}¢{(X270)7 (X4>1)}

0 1 0 0 {XZ} {(X170)7(XZvl)}7{(X271)7(X370)}7{(X370)7(X470)}

1 0 0 0 {Xl} {(Xlal)v(XZ?O)}>{(X171)7(X3>O)}

1 0 1 0 {Xl,Xg} {(Xl,O), (X3, 1)}, {(Xl,l), (X4,0)}

1 0 1 1 {X]_,X4} {(X]_, l), (X4, 1)}

1 1 0 0 {Xl,Xz} {(Xl,l), (X27 1)}

0 1 0 1 |{xgxa} | {(x3,0),(x4,1)}

0 1 1 0 {X27X3} {(Xz,l),(X3,1>},{(X2,1),(X4,0)},{(X3,1),(X4,0)}

0 1 1 1 {x2,Xa} {(x2,1), (xa,1)},{(x3,1), (Xa,1)}

Figure 11: The new unlabeled compression scheme and the old labeled compression scheme for a
maximum class.

Unlabeled Labeled
Consider all concepts consistent

with the sample and choose the
concept whose representative lies
completely in the domain of the
sample. Compress to that repre-
sentative

Compress to any set of d labeled
points u in the sample such that the
single concept C%™(Y) is consistent
with the sample

Compression

Predict with the single con-
cept in C9M™Y that is ex-
tended with the examples
fromu

Predict with the represented

Reconstruction
concept

# of representatives: | () 29(3)

Figure 12: Comparison of the two compression schemes.

A forbidden labeling (Floyd and Warmuth, 1995) of a class C of VC dimension d is a labeled
set f of d + 1 points in dom(C) that is not consistent with any concept in C. We first note that for
a maximum class of VC dimension d there is exactly one forbidden labeling f for each set of d + 1
dimensions in dom(C). This is because the restriction C|dom(f) is maximum with dimension d
and its size is thus 29+1 — 1. Also if C = 0, then VCdim(C) = —1 and the empty set is the only
forbidden labeling.

Our Tail Matching Algorithm assigns all concepts in taily(C) a forbidden labeling of the class
C* of size (d — 1) + 1. Since c|r(c) is now a forbidden labeling for C*, clashes between the taily(C)
and C* are avoided. If n is the domain size of C, then the number of such forbidden labelings is

(”gl). The class taily(C) contains the same number of concepts, since C —x = C*U (tailx(C) — X)
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and C* and C — x are maximum classes:

fail(C)] = & =xI~ e = (ns_dl) - <§nd_—l 1) B (n;1>' @

We next show that every tail concept contains some forbidden labeling of C* and each such
forbidden labeling occurs in at least one tail concept. Since any finite maximum class is maximal,
adding any concept increases the VC dimension. Adding any concept in taily(C) — x to C* increases
the dimension of C* to d. Therefore all concepts in taily(C) contain at least one forbidden labeling of

CX. Furthermore, since C — x shatters all sets of size d and C —x = C*U (tail(C) — x), all forbidden
labels of C* appear in the tail.

We will now show that the Tail Subroutine actually constructs a matching between the forbidden
labelings of size d for C* and the tail concepts that contain them. This matching is unique (Theorem
10 below) and using these matched forbidden labelings as representatives avoids clashes between
tail concepts.

We begin by establishing a recursive structure for the tail (see Figure 15 for an example).

Lemma 6 LetC be a maximum class and x # y be two dimensions in dom(C). If we denote taily(CY)
as {ci :i €1} and taily(C —vy) as {cj : j € I} (where I NJ = 0),° then there exist bit values {a; : i €

1},{a; : j € J} for the y dimension such that taily(C) = {ajc; : i € 1} U{ajcj : j € I}.

Proof First note that the sizes add up as they should (see Equation 1 for the tail size calculation):

()| = ("3 ) = (§73) + (73 ?) = i©)1+ ib(c )

Next we will show that any concept in taily(CY) and taily(C —y) can be mapped to a concept in
taily(C) by extending it with a suitable y bit. We also have to account for the possibility that there
can be some concepts ¢ € tailx(CY) Ntailx(C —y). Concepts in the intersection will need to be
mapped back to two different concepts of taily(C).

Consider some concept ¢ € taily(CY). Since ¢ € CY, both extensions Oc and 1c exist in C. (Note
that the first bit is the y position.) If at least one of the extensions lies in tailx(C), then we can choose
one of the extensions and map c to it. Assume that neither Oc and 1c lie in tailx(C). This means
that these concepts both have x edges to some concepts 0c’, 1¢’, respectively. But then ¢’ € CY and
therefore (c,c’) forms an x edge in CY. Thus ¢ ¢ tailx(CY), which is a contradiction.

Now consider a concept ¢ € tailx(C —y). It might have one or two y extensions in C. Assume Oc
was an extension outside of the tailx(C). Then this extension has an x edge to some Oc’ and therefore
(c,c’) forms an x edge in C —y. It follows that all extensions of ¢ will be in the tail.

Finally, we need to avoid mapping back to the same concept in tailx(C). This can only happen
for concepts in ¢ € tailx(CY) Ntaily(C —y). In this case Oc,1c € C, and by the previous paragraph,
both lie in tailx(C). So we can arbitrarily map c € tailx(CY) to Oc and c € taily(C —vy) to 1c. [

The next lemma shows that the order of the restriction and reduction operations is interchange-
able (see Figure 16 for an illustration).

6. Note that while CY C C —Yy, this does not imply that tailx(CY) C tailx(C —y), as the deletion of the concepts (C—y) \
CY from C —y can remove X edges as well, and thus introduce new tail concepts. See Figure 15 for an example.
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Tail Matching Algorithm
Input: a maximum concept class C
Output: a representation mapping r for C

1. If VCdim(C) =0 (i.e., C contains only one concept c), then r(c) := 0.
Otherwise, pick any x € dom(C) and recursively find a representation mapping
for C*.

2. Expand F to 0C*U 1C*:
Ve eC*:r(cu{x=0}):=F(c)and r(cu{x=1}) :=F(c)Ux

3. Extend r to taily(C) via the subroutine of Figure 14.

Figure 13: The recursive algorithm for constructing an unlabeled compression scheme for maxi-
mum classes.

Tail Subroutine
Input: a maximum concept class C, x € dom(C)
Output: an assignment of representatives to taily(C)

1. If VCdim(C) =0 (i.e.,, C = {c} =tailx(C)), then r(c) := 0.

If VCdim(C) = |dom(C)], then taily(C) =0and r := 0.

Otherwise, pick some y € dom(C), y # x and recursively find representatives for
tailx(CY) and tailx(C —v).

2. Ve e tailx(CY) \tailx(C —y), find ¢’ € tailx(C), st. ¢/ —y=c, r(c’) :=r(c)U
{y}

3. Ve e tailx(C —y) \taily(CY), find ¢’ € taily(C), s.t. ¢’ —y =¢, r(c') :=r(c).

4. Ve € tailx(CY) Ntailx(C —y), consider the concepts Oc,1c € taily(C). Let ry
be the representative for ¢ from tailx(CY) and ry be the one from taily(C — ).
Suppose, wlog, that Oc|r; U{y} is a sample not consistent with any concept in C*.
Then r(0c) :=r1U{y}, r(1c) :=ry.

Figure 14: The Tail Subroutine for finding tail representatives

Lemma 7 For any maximum class C and two dimensions x #y in dom(C), C*—y = (C —y)*.

Proof We first show that C*—y C (C —y)*. Take any ¢ € C*—y. By the definition of restriction,
there exists a bit ay such that ayc € C*. Since concepts in C* always have two extensions in C, it
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X1 X3 X4
0 0 0 X1 X3 X
0 1 O 01 5’ 6‘ X1 Xo X3 Xs4
0 1 1 1 0 0 0 1 0 1 Htaily(C—x2)
1 0 O 01 0 0 1 1 0 taily(C?)
1 1 0 0o 1 1 0 1 1 1 Htaily(C?)
1 1 1
0 0 1
C—x2 C*x taily, (C)

Figure 15: Illustration of Lemma 6 which shows that taily, (C) can be composed from taily, (C*2) and
taily, (C —x2); class C is from Figure 2, tails in classes are separated by horizontal lines
and the last column for taily, (C) indicates whether the concept comes from taily, (C*?)
or taily, (C —x2).

0 0 0

0 0 1

01 0 8 2 8 0 O

0 1 1 01 1 1 0

1 0 0 10 0 11

1 10

1 1 1

C—Xo Ccx CY —Xo = (C — Xz)xl

Figure 16: Illustration of Lemma 7 which shows that C** —x, = (C —x2): class C is given in
Figure 2.

follows that Oayc, 1layc € C. By first restricting these two concepts in y and then reducing in x we
have Oc,1c € C—yand c € (C —y)*, respectively.

Both (C —y)* and C* —y are maximum classes with the same domain size |[dom(C)| — 2 and the
same VC dimension. Therefore both have the same size, and since C*—y C (C —y)¥, they are in
fact equal. |

Corollary 8 Any forbidden labeling of (C —y)* is also a forbidden labeling of C*.

Proof By the previous lemma, the forbidden labelings of (C —y)* and C* —y are the same. The
corollary now follows from the fact that the forbidden labelings of C* —y are exactly all forbidden
labeling of C* that do not contain y. |
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Lemma 9 If we have a forbidden labeling for C* of size d — 1, then there exists a bit value for the
y dimension such that extending this forbidden labeling with this bit results in a forbidden labeling
of size d for C*.

Proof We will establish a bijection between forbidden labelings of C* of size d that contain y and
forbidden labelings of size d — 1 for C*¥. Since C* is a maximum class of VC dimension d — 1, it
has (”al) forbidden labelings of size d, one for every set of d dimensions from dom(C) . x. Exactly
(5-2) of these forbidden labelings contain y and this is also the total number of forbidden labelings
of sized — 1 for C.

We map the forbidden labelings of size d for C* that contain y to labelings of size d — 1 by
discarding the y dimension. Assume that a labeling constructed this way is not forbidden in C%.
Then by extending the concept that contains this labeling with both (y,0) and (y,1) back to C*, we
will hit the original forbidden set, thus forming a contradiction.

It follows that every forbidden set is mapped to a different forbidden labeling and by the count-
ing argument above we see that all forbidden sets are covered. Thus the mapping is a bijection and
the inverse of this mapping proves the lemma. |

Theorem 10 Let C be any maximum class C of VC dimension d and domain size n. For any x €
dom(C) we can construct a bipartite graph between the (";%) concepts in taily(C) and the (";%)
forbidden labelings of size d for C* with an edge between a concept and a forbidden labeling if this
labeling is contained in the concept. All such graphs have a unique matching.

Proof The proof is an induction on n = |[dom(C)| and d. More precisely, we induct on the pairs
(n,d) (where n > d) in lexicographic order. The minimal element of this order is (0,0).

Note that in the Tail Matching Algorithm 13 we actually stop when n = d, in which case we
have a complete hypercube with no tail and the matching is empty. Also for d = 0, there is a single
concept which is always in the tail and gets matched to the empty set.

Inductive hypothesis: For any maximum class C, such that (|dom(C|,VCdim(C)) < (n,d) the
statement of the theorem holds.

Inductive step. Let x,y € dom(C) and x #y. By Lemma 6, we can compose tailx(C) from
taily(CY) and taily(C —y). Since VCdim(CX) =d — 1 and |dom(C —x)| =n—1," then (n—1,d), (n—
1,d —1) < (n,d) and we can use the inductive hypothesis for these classes and assume that the
desired matchings already exist for taily(CY) and taily(C —y).

Now we need to combine these matchings to form a matching for taily(C). See Figure 14 for a
description of this process. Concepts in tailx(C —y) are matched to forbidden labelings of (C —y)*
of size d. By Lemma 8, any forbidden labeling of (C —y)* is also a forbidden labeling of C*. Thus
this part of the matching transfers to the appropriate part of taily(C) without alterations. On the
other hand, tailx(CY) is matched to labelings of size d — 1. We can make them labelings of size
d by adding some value for the y coordinate. Some care must be taken here. Lemma 9 tells us
that one of the two extensions will in fact have a forbidden labeling of size d (that includes the y
coordinate). In the case where just one of two possible extensions of a concept in tailx(CY) is in the
tailx(C), there are no problems: the single concept will be the concept of Lemma 9, since the other
concept lies in C* and thus does not contain any forbidden labelings. There is also the possibility

7. VCdim(C —x) = d, unless n = d, in which case it would obviously drop by one as well.
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that both extensions are in tailx(C). From the proof of Lemma 6 we see that this only happens to the
concepts that are in tailx(CY) Ntaily(C —y). Then, by Lemma 9, we can figure out which extension
corresponds to the forbidden labeling involving y and use that for the tailx(CY) matching. The other
extension will correspond to the taily(C —y) matching. Essentially, where before Lemma 6 told us
to map the intersection taily(CY) Ntailx(C —y) back to tailx(C) by assigning a bit arbitrarily, we now
choose a bit in a specific way.

So far we have shown that the matching exists. We still need to verify its uniqueness. From any
matching for tailx(C) we will show how to construct matchings for taily(C —y) and taily(CY) with
the property that two different matchings for tailyx(C) will disagree with the constructed matchings
for either taily(C —y) or taily(CY). Now, uniqueness follows by induction.

Consider any concept c in tailx(C), such that ¢ —y € tailx(CY) \ tailx(C —y). Then c—y lies
in C —y, but not in tailx(C —y). Therefore c —y must belong to either 0(C —y)* or 1(C —y)*,
which means that this concept cannot contain a forbidden set for (C —y)*. We claim that any
forbidden set of ¢ for C* must contain y. Otherwise such a set would be forbidden for C* —y,
which by Lemma 7 equals (C —y)*. By a similar argument, concepts c € taily(C), such thatc—y €
tailx(C —y) \ tailx(CY) have to be matched to forbidden sets that do not contain y (since a forbidden
set of size d for C* that contains y, becomes a forbidden set of size d — 1 for C* just by removing y,
and condition ¢ —y ¢ tailx(CY) implies that ¢ does not contain any such forbidden sets).

From these two facts it follows that if a concept in tailx(C) is matched to a forbidden set contain-
ing y, then c —y € tailx(CY), and if it is matched to a set not containing y, then ¢ —y € taily(C — ).
We conclude that a matching for taily(C) splits into a matching for taily(C —y) and a matching for
tailx(CY). This implies that if there are two matchings for all of taily(C), then there are either two
matchings for tailx(C —y) or two matchings for taily(CY). [ |

Theorem 11 The Tail Matching Algorithm of Figure 13 returns a representation mapping that sat-
isfies both conditions of the Main Definition.

Proof Proof by induction ond =VCdim(C). The base case isd = 0: this class has only one concept
which is represented by the empty set.

The algorithm recurses on C* and VCdim(C*) =d — 1. Thus we can assume that it has a correct
representation mapping for C* that uses sets of size at most d — 1 for the representatives.

Bijection condition: The representation mapping for C is composed of a bijection between 1C*
and all sets of size < d containing x, a bijection between 0C* and all sets of size < d that do not
contain x, and finally a bijection between taily(C) sets of size equal d that do not contain x.

No clashes condition: By the inductive assumption there cannot be any clashes internally within
each of the subclasses 0C* and 1C*, respectively. Clashes between 0C* and 1C* cannot occur be-
cause such concepts are always differentiated on the x bit and x belongs to all representatives of
1C*. By Theorem 10, we know that concepts in the tail are assigned to representatives that define
a forbidden labeling for C*. Therefore, clashes between taily(C) and 0C*, 1C* are avoided. Finally,
we need to argue that there cannot be any clashes internally within the tail. By Theorem 10, the
matching between concepts in taily(C) and forbidden labeling of C* is unique. So if this matching
resulted in a clash, that is, c1|r1 Uz = c2|rp U, then both ¢4 and ¢z would contain the forbidden
labelings specified by representative ry and r». By swapping the assignment of forbidden labels be-
tween ¢4 and ¢y (i.e., 1 is assigned to c1|r2 and ¢ to co|r1) we would create a new valid matching,

2069



KuUuzMIN AND WARMUTH

thus contradicting the uniqueness of the matching. |

Note that by Corollary 4, the unlabeled compression scheme produced by our recursive algorithm
induces a d-orientation of the one-inclusion graph: orient each edge away from the concept that
contains the dimension of the edge in its representative. As was the case for the orientation pro-
duced by the Min-Peeling Algorithm, the resulting orientation is acyclic. As a matter of fact a
topological order can be constructed by ordering the concepts of C as follows: 0C*,1C* taily(C).
The concept within tailx(C) can be ordered arbitrarily and the concepts within 0C* and 1C* are
ordered recursively based on the topological order for C*.

7. Miscellaneous Lemmas

We conclude with some miscellaneous lemmas that highlight the combinatorics underlying the un-
labeled compression schemes for maximum classes. The first one shows that the representatives
constructed by our Tail Matching Algorithm induce a nesting of maximum classes. This is a special
property, because there are cases where the simpler Min-Peeling Algorithm produces a representa-
tion mapping that does not have this property (not shown).

Lemma 12 Let C be a maximum concept class with VC dimension d and let r be a representation
mapping for C produced by the Tail Matching Algorithm. For0 <k <d, letCx={ceCs. t. |r(c)| <
k}. Then Cy is a maximum concept class of VC dimension k.

Proof Proof by induction on d. Base case d = 0: the class has only one concept and the lemma
clearly holds.

The lemma trivially holds for k = 0 or k = d. Otherwise let x € dom(C) be the first dimension
used in the recursion of the Tail Matching Algorithm and assume by induction that the lemma holds
for C*. Consider which concepts in C belong to Cy. Clearly none of the concepts in tailx(C) lie in
Ck because their representatives are of size d > k. From the recursion of the algorithm it follows
that Cx = 0C{ U 1CY_,, that is, it consists of all concepts in 0C* with representatives of size <Kk in
the mapping for C*, plus all the concepts in 1C* with representatives of size <k — 1 in the mapping
for C*. By the inductive assumption, C} and Cy_; are maximum classes with VVC dimension k and
k — 1, respectively. Furthermore, the definition of Cy implies that Ci_; C C}.

Since [Ci| = [0CY| + [1C¢ 4| = ("3) + (5) = (5. the class Ci has the right size and
VCdim(Cy) > k. We still need to show that Cy does not shatter any set of size k+ 1. Consider any
such set that does not contain x. This set would have to be shattered by Cy —x = CXUC}_; = C,
which is impossible. Now consider any set A of size k + 1 that does contain x. All the 1 values for
the x coordinate happen in the 1C)_, part of Cx. Thus A~ x must be shattered by C{ ; whose VC
dimension is again one too low. |

We actually proved that the Cy produced by the representation mapping of the Tail Matching Al-
gorithm always satisfy the recurrence C, = 0C U 1C¥ ;. On the other hand there are nestings of
maximum concept classes Co C C1 C ... C Cq = C, where Cy has VC dimension k, for which the
above recurrence does not hold (not shown).

Open Problem 1. We do not know whether for any nesting Co C C; C ... € Cg = C of maximum
classes, where Cy has VC dimension k, there always exists a representation mapping that induces
this nesting.
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We now consider the connectivity of the one-inclusion graphs of maximum classes. It was
known previously that they are connected (Gurvits, 1997). We show in Lemma 14 that the length
of the shortest path between any two concepts in these graphs is always the Hamming distance
between the concepts. This property was previously known for the one-inclusion graphs of linear
arrangements, which are special maximum classes. The following technical lemma is necessary to
prove the property for arbitrary maximum classes.

We use Ic(c) to denote the set of dimensions incident to ¢ in the one-inclusion graph for C and
let E(C) denote the set of all edges of the graph.

Lemma 13 For any maximum class C and x € dom(C), restricting wrt x does not change the sets
of incident dimensions of concepts in tailx(C), that is, Vc € tailx(C), Ic(c) = lc_x(c — ).

Proof Let (c,c’) be any edge leaving a concept ¢ € tailx(C). By the definition of tailx(C), this edge
cannot be an x edge, and therefore ¢ and ¢’ agree on x and (c —x,¢’ —x) is an edge in C —x. It
follows that Ic(c) C Ic_x(c —x) when ¢ € taily(C).

If Ic(c) is a strict subset of Ic_x(c — x) for some ¢ € taily(C), then the number of edges incident
to taily(C) —x = (C —x) ~C*in C —x is larger than the number of edges incident to taily(C) in C.
The first number is a difference between the sizes of edge sets of the two maximum classes C — x
and C*. Recall that if C is maximum on domain of size n and has VVC dimension d, then its edge set

E(C) has size n(g"d’_ll) (see proof of Lemma 3 or Lemma 15). Thus the first number is

EC—X)|-[EC=(n-1) (S”O,__zl) —<”—1><§nd__22>

:(n—l)G:i) :d(”;1>.

Furthermore, the second number is the number of edges in C minus the number of intra edges
in 0C* and 1C¥*, respectively, minus the number of cross edges between 0C* and 1C*:

E(C)|—2/E(C] - [cY = n(;d_11> —2(n-1) (énd—ZZ) B (snd_11>
(”_1)(<§nd_—11> _2<§nd_—22>>

a0 ((57)-(447))

_ (n—l)(S_i):d(ndl>-

Thus the two numbers are the same and we have a contradiction. [ |

Lemma 14 In the one-inclusion graph for a maximum concept class C, the length of the shortest
path between any two concepts is equal to their Hamming distance.

Proof The proof will proceed by induction on |dom(C)|. The lemma trivially holds when |dom(C)| =
0 (i.e., C =0). Let cq,c2 be any two concepts in a maximum class C of domain size n > 0 and let
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x € dom(C). Since C — x is a maximum concept class with a reduced domain size, there is a shortest
path P between ¢; —x and ¢, — x in C — x of length equal their Hamming distance. The class C — x
is partitioned into C* and taily(C) — x. If €1 is the first concept of P in C* and ¢, the last, then by
induction on the maximum class C* (also of reduced domain size), there is a shortest path between
¢1 and €, that only uses concepts of C*. Thus we can assume that P begins and ends with a segment
in tailx(C) —x and has a segment of C* concepts in the middle, where some of the three segments
may be empty.

We partition taily(C) into taily—o(C) and tailx—1(C). There are no edges between these two
sets because they would have to be x edges. There are also no edges between the restrictions
taily_o(C) — x and taily—1(C) — x of the two sets, because by Lemma 13 these edges would also
exist between the original sets taily_o(C) and taily_1(C). It follows that any segment of P from
tailx(C) — x must be from the same part of the tail. Also if the initial segment and final segment
of P are both non-empty and from different parts of the tail, then the middle C* segment cannot be
empty.

We can now construct a shortest path P” between c1 and ¢, from the path P. If ¢1(x) = c2(x) then
we extend the concepts in P with x = c4(x) to obtain a path P’ between c; and c; in C of the same
length. Note that from the above discussion, all concepts in the beginning and ending tail segments
of P come from the part of the tailx(C) that label x with c1(x) = c2(x). Also for the middle segment
of P we have the freedom to use label c1(x).

If c1(x) # c2(x), then P must contain a concept €1 in C*, because if all concepts in P lied in
taily(C) — x then this would imply an edge between a concept in taily_o(C) — x and a concept in
taily_1(C) — x. We now construct a new path P" in C of length |P|+ 1 which is one more than the
Hamming distance |P| between ¢, —x and ¢, — x: extend the concepts up to €3 in P with label ¢1(x)
on x; then cross to the sibling concept €, which disagrees with €; only on its x dimension; finally
extend the concepts in path P from €, onward with label c2(x) on x. |

We already know that the number of vertices and edges in the one-inclusion graph of a maximum
class of domain size n and VC dimension d is () and n(<”djll), respectively. Since vertices and
edges are hypercubes of dimension 0 and 1, respectively, these bounds are special cases of the below

lemma and corollary, where we bound the number of hypercubes of dimension r, for 0 <r <d.

Lemma 15 Let C be any class of domain size n and VC dimension d. Then the number of hy-
percubes of dimension 0 < r < d which are subgraphs of the one-inclusion graph for C is at most

(7) (<a’e)-

Proof Pick any subset A C dom(C) of size r. Recall that C” consists of all concepts in C|(dom(C) —
A) with the property that all 2/ extensions to the original domain dom(C) are in C. Thus any
concept in the reduced class C* defines a hypercube of dimension |A| which is a subgraph of the
original one-inclusion graph for C. Also from the definition of C* it follows that all hypercubes that
are subgraphs using the dimension set A correspond to a concept in C”. Note that two hypercubes
from the same C* have no common concepts (vertices), but hypercubes from different restriction
sets of the same size may overlap on their vertex set but they are never identical.

From the above discussion it follows that the total number of hypercubes of dimension r is the
total size of all C*, where A has size r. Since the reductions C* are classes of domain size n —r and
VC dimensions at most d — r, the inequalities of the lemma follow from Sauer’s lemma. |
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Corollary 16 For maximum classes of domain size n and VC dimension d, all d + 1 inequalities of
the previous lemma are tight. Also for any class C of domain size n and VC dimension d, if one of
the inequalities is tight, then C is maximum and they are all tight.

Proof For maximum classes we have that for any set A of size 0 < r < d, the reduction CAofC
is also a maximum class on domain size n —r and VC dimension d —r (Welzl, 1987; Floyd and
Warmuth, 1995). Therefore for maximum classes all inequalities are tight.

Observe that since |C| = |C*| + |C — x|, it follows that if C* and C — x are maximum, then
Cl= (5% + (%) = (L)) and C is maximum as well.

If the inequality of the previous lemma is tight for some size r, then for all sets of this size, CA
is @ maximum class of VC dimension n —r. We will show by the usual double induction on n and
d, that in this case C is maximum. Essentially, for C* the inequality for size r — 1 is tight, since for
all A containing x, CA = (CX)(A\X). Furthermore, for C — x the inequality for size r is tight, since for
all A not containing x, (C —x)* D CA—x and C* — x is maximum because C* is maximum. [

If the following lemma could be proven for any concept class produced by peeling minimum
degree vertices off a maximum class, then this would be sufficient to prove the non-clashing condi-
tion for the representation map produced by the Min-Peeling Algorithm. However the current proof
only holds for maximum classes, which is the base case.

Lemma 17 In a maximum class C the labeling of the set of incident dimensions of any concept ¢
uniquely identifies the concept, that is:

ve'eC: ¢ #¢c < cllc(c) #c/|Ic(c). 2)

Proof We employ an induction on |dom(C)|. The base case is [dom(C)| = VCdim(C). In this
case, C is a complete hypercube. Note that if Ic(c) = dom(C), then c|lc(c) = ¢c|dom(C) = ¢ and
Equation (2) follows from the uniqueness of each concept. In the hypercube all concepts have this
property.

For the general case, if Ic(c) # dom(C) pick x ¢ Ic(c) for which ¢ € tailx(C). We have to show
that V¢’ # ¢, c|lc(c) # ¢’|Ic(c). Consider the maximum concept class C — x and its concept ¢ — X.
Because of the reduced domain, we know by induction that

V" eC—x:c"#c—x & c—X|lc_x(c—x) # ¢"|lc_x(c —X).

Since ¢’ = ¢/ —x, for some ¢’ € C, we can let quantification run over ¢’ € C and the above is
equivalent to

Ve'eC:cd—x#c—x & c—xX|lc_x(c—X) # ¢’ —x|lc_x(c —X).

Also since ¢ € taily(C) does not have an x edge, V¢’ € C : ¢/ —x # c—x is equivalentto V¢’ €C : ¢/ #
c and by Lemma 13, Ic_x(c —x) = Ic(c). This gives us the equivalent statement: V¢’ €eC : ¢’ #A¢ <
¢ —X|lc(c) # ¢/ —x|lc(c). Finally, since x ¢ Ic(c), c —x|lc(c) = cl|lc(c) and ¢’ — x|Ic(c) = ¢|Ic(c),
giving us Equation (2). |
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0 0 1 0 {Xg}

0 1 0 0 f{x}

1 0 0 0 f{x}

0 1 1 0 {Xz7 Xg}
1 0 1 0 {xg,x3}
1 1 0 0 {Xl, Xz}
0 1 1 1 {Xl, X4}
1 0 1 1 {Xz, X4}
1 1 0 1 {xsXa}

11 1 1 {xg

Table 1: A maximal class that does not have a compression scheme with a representation mapping
from sets of domain points of size at most VCdim(C) = 2 to concepts. However if we are
allow mappings to concepts in and outside of the class, then the no-clashing condiction
can still be satisfied and a valid scheme exists. In the given solution, {x4} represents 1111,
which is not a concept in the class.

Conjecture 2. The above lemma holds for all classes produced by iteratively peeling minimum
degree vertices off a maximum class.

8. Discussion of Possible Compression Schemes for Maximal Classes

This section discusses the possibility of proving the compression scheme conjecture in the general
case. Any finite or infinite concept class is called maximal if no concept can be added without
increasing the VVC dimension. Any concept class can be embedded into a maximal class by adding
as many concepts to the class as possible until no new concept can be added without increasing the
VC dimension. Figure 3 presents an example of a maximal class. All finite maximum classes are
also maximal, but there are infinite maximum classes which are not maximal (Floyd and Warmuth,
1995). For the rest of this section maximal means: finite, maximal and not maximum.

A natural idea for constructing a compression scheme for any class is to embed that class into
some other class, for which a compression scheme is known. However adding any concepts to a
maximal class increases its VC dimension, so we would want an embedding that does not increase
the VC dimension too much. The question whether and how this can be done is an intriguing open
problem of its own.

The old labeled compression scheme for maximum classes cannot be extended to maximal
classes due to the nature of its mapping between representatives and represented concepts. The old
scheme compresses to a labeled set u of size VCdim(C) = d and u represents the single concept
in the d-fold reduction C%™\ extended with the d examples of u (See Section 5). In the case of
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Table 2: A maximal class that does have an unlabeled scheme where concepts in the class have
multiple representatives. The no-clashing holds for any representatives of different con-
cepts, and for all samples there is exactly one consistent concept with a representative in
the sample domain.

maximal classes, many d-fold reductions will be empty. Thus it is unclear, which concepts the
corresponding set of d labeled examples should represent. Essentially, the old scheme relied on
the fact that maximum classes are unions of hypercubes of dimension VCdim(C). Maximal classes
do not have this property. Their one-inclusion graphs can be disconnected. In particular, there are
maximal classes whose one-inclusion graph has several isolated vertices, that is, vertices with no
incident edges (not shown). Nevertheless, it may be possible to somehow cover maximal classes
with hypercubes of dimension d or slightly larger.

Now we consider the possibility of generalizing our new unlabeled compression scheme from
finite maximum classes to finite maximal ones. Recall that our scheme has the property that for any
sample from the class, there is exactly one representative contained within the domain of the sample
whose concept is consistent with the sample. Of particular importance in achieving this property
was the no-clashing condition for the representatives of concepts. The following lemma describes
the effect of having non-clashing representatives for arbitrary concept classes.

Lemma 18 Let r be any injection between a finite concept class C of VC dimension d and subsets
of dom(C) of size at most d. Then the following two statements are equivalent:

1. No two concepts clash wrt r.
2. For all samples s from C, there is at most one concept ¢ € C that is consistent with s and

r(c) C dom(s).

Proof If there are two concepts ¢ and ¢’ that are consistent with s and r(c),r(c’) C dom(s), then
the concepts clash because c|r(c) Ur(c’) = c|r(c)ur(c’). Conversely, if two concepts ¢ and ¢’
clash, then the sample c|r(c) Ur(c’) is consistent with at least two concepts ¢ and ¢’ that satisfy
r(c),r(c’) C dom(s). [ |
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Intuitively, the no-clashing condition causes the representatives to be spread out as much as possible
in an attempt to cover all the samples of concepts in the class. Lemma 18 says that there is at most
one representative whose concept is consistent with the sample. However we also need the at least
one condition, which assures that every sample can be compressed. For maximum classes, the latter
condition was assured by a counting argument: the number of concepts in C|dom(s) and the number
of subsets of size up to d in dom(s) is the same; also all such subsets must represent some concept
and the no-clashing condition assured that these concepts disagreed on dom(s). It follows that for
each sample, there is always at least one representative in its domain that represents a consistent
concept.

There are maximal concept classes of VC dimension d that shatter any set of size d (see Table
2). There are |C| representatives in total and this is less than the total number of subsets of size up
to d (since C is maximal but not maximum). Therefore, for some domain of size d, there are 2d
concepts but less than that many representatives over the domain.

Of course it makes sense to use all subsets of size up to d by assigning some concepts more
than one representative. Note that two representatives of the same concept always clash. However,
we still must avoid clashes between representatives of different concepts. A compression scheme
is valid if for any sample domain, the number of concepts on the domain equals the number of
concepts that have at least one representative inside the domain. There exists such a scheme with
multiple representatives for the maximal class of Table 2.

Unfortunately, Table 1 presents a maximal concept class that does not have an unlabeled com-
pression scheme of size equal the VC dimension with multiple representatives of concepts in the
class. We checked that for any assignment of multiple representatives to concepts in this class, there
is always some sample that cannot be compressed, that is, there is no representative of a consistent
concept in the sample domain. On the other hand, it is very easy to produce an unlabeled compres-
sion scheme for this class if we let some subsets of size at most d represent hypotheses outside of
the class. Note that in the example of Table 1, the no-clashing condition is satisfied not only for all
concept pairs, but also for the additional hypothesis and any concept in the class.

For the class of Table 1, there also is a compression scheme that maps labeled sets of size equal
d to just concepts in the class. We do not know whether such schemes exist for arbitrary finite
concept classes. However, there is an infinite maximum (but not maximal) concept class of VC
dimension one with the following property: there is no scheme when labeled points must represent
concepts in the class, but there is a scheme when labeled points can represent hypotheses outside
of the class (Eaton, 2005). Also, there is no unlabeled compression scheme for positive halfspaces
in R? in which the compression sets (of size at most two) represent positive halfspaces (Neylon,
2006b).

As has become apparent, there are many variations of compression schemes. We now give a
unified notation for all these variations. A compression scheme for a concept class C is essentially
defined by a mapping f from representatives to hypotheses which are arbitrary subsets of dom(C).
Note that the direction of this mapping is opposite to the representation mapping r used for maxi-
mum classes.

To define the mapping f, we first choose a set R of representatives which are sets of labeled
and/or unlabeled sample points in dom(C). The mapping f maps R to hypotheses, which are arbi-
trary subsets of dom(C). Note that f is not required to be injective, allowing for multiple represen-
tatives of the same hypothesis. The size of the scheme is the maximum size of any set in R. The
mapping f produces a compression scheme as follows:
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e Compression. For any sample s of a concept in C, consider the set of all representatives r € R
that lie in s and compress to any such r for which the hypothesis f(r) is consistent with the
sample s.

e Reconstruction. Use hypothesis f(r) to reconstruct the labels of the original sample s.

e Validity. Mapping f gives a valid compression scheme, if every sample of a concept in C can
be compressed as above.

The no-clashing condition seems to be useful to construct compression schemes for maximal
classes as well. However, as we shall see, many techniques for assuring this condition for maximum
classes are not applicable in the more general case. Recall that our Tail Matching Algorithm used
the forbidden sets of C* to represent the concepts in tailx(C). This immediately prevented clashes
between tail concepts and the rest of the class. However, in maximal classes the number of tail
concepts can be larger than the number of forbidden sets of C*. For example, in the maximal class
of Figure 3 all tails have size 4, but there are only 3 = (*,%) forbidden sets for C*.

Of course, we can consider other splits of C into two parts and use forbidden sets of one part as
representatives for the other. A natural idea is to split C into a concept class C’ of VC dimension
one lower than C and a shell C \.C’ of size at most (), which is the number of forbidden sets when
the domain size is n. For maximum classes, such splits always exist (see Lemma 12), but we do not
know this for maximal classes. However, we found a particular maximal class (not shown) with a
split of the above form for which there are two concepts in the shell that contain only one forbidden
set and this set is the same. Thus, we have a single forbidden set available for representing two
concepts, and therefore using forbidden sets as representatives does not seem to work for maximal
classes.

The Min-Peeling Algorithm provided a simple way of constructing a scheme for maximum
classes. For maximal classes, this algorithm fails on simple examples. Part of the problem seems
to be that maximal classes have too few edges. Thus a potential idea is to add “virtual” edges to
maximal classes, so that a richer set of representatives is obtained. We hope to add edges so that the
representatives produced by the Min-Peeling Algorithm satisfy the no-clashing condition. Our tests
along these lines were inconclusive.

We conclude this section by discussing which lemmas of the previous sections still hold for
maximal classes. We have already discussed in this section how the no-clashing condition partially
carries over to maximal classes. For a maximum class C, both C — x and C* are again maximum.
This recursion lies at the core of many of the techniques. Maximal classes can still be split as

C = 0CXU 1C* Utaily(C), but now C* and C — x are not necessarily maximal and they do not have
specific sizes. Our Tail Matching Algorithm relied on a further decomposition of the class taily(C)
given in Lemma 6: for any concept in tailx(C —y) or tailx(CY), we can extend these concepts with
a 'y bit to concepts in tailx(C). These extensions also exist for maximal classes, but we cannot get
all concepts in taily(C) this way. Finally, for maximal classes, the equality of Lemma 13 becomes a
subset relationship, that is, Ic(c) C lc_x(c —X).

9. Conclusions and Combinatorial Open Problems

The main open problem of whether there always exist ompression schemes of size at most the
VC dimension still remains open. (For a general discussion of the allowable schemes see Section
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Figure 17: Density curves D (as a function of n) of the one-inclusion graphs of maximum classes
with VC dimensiond = 1,2, 3.

8.) In this paper we gave two algorithms for constructing an unlabeled compression scheme for
maximum classes. These schemes have many interesting combinatorial properties. We gave a
correctness proof for the recursive Tail Matching Algorithm, however the correctness of the simpler
Min-Peeling Algorithm still remains to be shown. We already gave a number of conjectures in
connection with the latter algorithm: Does sweeping a linear arrangement always correspond to
a run of the Min-Peeling Algorithm (Conjecture 4)? Does Lemma 17 hold for partially peeled
maximum classes (Conjecture 7)? Does any one-inclusion graph of VC dimension d that results
from peeling a maximum class always have a vertex of degree at most d? It is already known, that
general classes can have minimum degree larger than d (Rubinstein et al., 2007a).

In our empirical tests (not shown) we actually always found at least d + 1 vertices of degree at
most d in maximum and peeled classes (instead of just one vertex). We were able to prove (not
shown) that maximum classes of VC dimension d have at least one vertex of degree d. However we
have not been able to prove that maximum classes have at least d + 1 such vertices.

Notice that in connection with the last conjecture, the obvious counting arguments are off by a
factor of two: since the sum of vertex degrees is equal to twice the number of edges, the density
of any graph of minimum degree d has to be bigger than at least % and not d. Thus there must
be something particular about maximum classes and their peelings that forces them to have a low
degree vertex. This is likely related to the fact that maximum classes are unions of hypercubes of
dimension d.
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The density of a graph is the ratio of the number of edges to the number of vertices. It is already
known that one-inclusion graphs of VC dimension d can have density at most d (Haussler et al.,
1994). For a maximum class of domain size n and VC dimension d this density can be expressed
as:

op- ) MBI B0 9,

(<o) ) ()~ (&)

Figure 17 plots the density curves Dj as a function of the domain size n for various values of the
VC dimension d. These curves always start at d /2, which is the density of the complete hypercube
and limp_. Djj =d.

We previously conjectured that maximum classes are the densest. This was recently proven in
Rubinstein et al. (2007b). Specifically, they show that any one-inclusion graph of domain size n and
VC dimension d has density at most Dg. This is an improvement on the previously known density
bound.

Our constructions for unlabeled compression schemes only apply to finite maximum classes
whereas the original labeled compression scheme for maximum classes is applicable for infinite
maximum classes as well. The existence of unlabeled compression schemes for infinite maxi-
mum classes of size equal to the VC dimension does follow from the compactness property of
compression schemes as shown in Ben-David and Litman (1998). That theorem is, however, a
non-constructive existence result and is therefore not completely satisfactory.

One of the most important natural infinite classes is the class of positive halfspaces (halfspaces
containing (,0,...,0)). There are labeled compression schemes for this class that reconstruct
only with halfspaces (e.g., compressing to a set of essential support vectors, von Luxburg et al.,
2004). An unlabeled compression scheme is also known to exist (Ben-David and Litman, 1998)
(via a nonconstructive proof) but it would be interesting to find a simple constructive unlabeled
compression scheme for this class. Recall that the VC dimension of positive halfspaces in R" is n.
For the case of n = 1,2, it is easy to find unlabeled compression schemes (not shown). However for
n =2, it is necessary that the sets of size at most two represent hypotheses which are not halfspaces
(Neylon, 2006a).8

Open Problem 2. Find a constructive unlabeled compression scheme of size n for the class of
positive halfspaces in R".

One of the simplest ways to obtain compression schemes for arbitrary classes would be to embed
them into maximum classes and then use one of the existing algorithms.

Open Problem 3.  For any concept class C, does there always exist a maximum class of VC
dimension at most a constant times larger than VCdim(C) that contains C as a subset?

8. The construction in Neylon (2006a) requires a set of points not in general position, but this requirement can be
removed (Neylon, 2006b). Moreover, it is possible to restrict the class of positive halfspaces to an everywhere dense
subset of R" with the property that all finite subsets of this set are in general position (Neylon, 2006b). This restriction
is a natural infinite maximum class with no unlabeled compression scheme that reconstructs with halfspaces.
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