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Abstract

Logistic regression with ¢1 regularization has been proposed as a promising method for feature
selection in classification problems. In this paper we describe an efficient interior-point method
for solving large-scale ¢1-regularized logistic regression problems. Small problems with up to a
thousand or so features and examples can be solved in seconds on a PC; medium sized problems,
with tens of thousands of features and examples, can be solved in tens of seconds (assuming some
sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient
method to compute the search step, can solve very large problems, with a million features and ex-
amples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warm-start techniques,
a good approximation of the entire regularization path can be computed much more efficiently than
by solving a family of problems independently.

Keywords: logistic regression, feature selection, ¢1 regularization, regularization path, interior-
point methods.

1. Introduction

In this section we describe the basic logistic regression problem, the ¢,- and ¢1-regularized versions,
and the regularization path. We set out our notation, and review existing methods and literature.
Finally, we give an outline of this paper.

1.1 Logistic Regression

Let x € R" denote a vector of explanatory or feature variables, and b € {—1,+1} denote the associ-
ated binary output or outcome. The logistic model has the form
1 exp (b(w'x+v))

PPN = T exp (bWTX 1v)) ~ 1+ exp (b(WTx 1 V)"

where Prob(b|x) is the conditional probability of b, given x € R". The logistic model has parameters
v € R (the intercept) and w € R" (the weight vector). When w # 0, w™x +v = 0 defines the neutral
hyperplane in feature space, on which the conditional probability of each outcome is 1/2. On the
shifted parallel hyperplane w'x +v = 1, which is a distance 1/|\w]||» from the neutral hyperplane,
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the conditional probability of outcome b =1is1/(1+1/e) ~ 0.73, and the conditional probability
of b= —11is1/(1+e)~0.27. On the hyperplane w'x +v = —1, these conditional probabilities
are reversed. As w'x -+ v increases above one, the conditional probability of outcome b = 1 rapidly
approaches one; as W' x + v decreases below —1, the conditional probability of outcome b = —1
rapidly approaches one. The slab in feature space defined by |w'x 4+ v| < 1 defines the ambiguity
region, in which there is substantial probability of each outcome; outside this slab, one outcome is
much more likely than the other.
Suppose we are given a set of (observed or training) examples,

(xi,bi) e R"x {-=1,+1}, i=1,....m,

assumed to be independent samples from a distribution. We use pjog(v,w) € R™ to denote the vector
of conditional probabilities, according to the logistic model,
exp(w'a; + vb;)

Plog(V,W); = Prob(bj|x;) = T+ exp(wTa £v0;)’ i=1,....m,

where a; = bjx;. The likelihood function associated with the samples is [ piog(V,W);, and the
log-likelihood function is given by

m m
log Prog(V,W)i = — S f(w'a;+vb;),
i; og i i; i i
where f is the logistic loss function
f(z) = log(L +exp(~2)). )

This loss function is convex, so the log-likelihood function is concave. The negative of the log-
likelihood function is called the (empirical) logistic loss, and dividing by m we obtain the average
logistic loss,

lavg (V, W) = (1/m)§l f(w'a; +vhy).

We can determine the model parameters w and v by maximum likelihood estimation from the
observed examples, by solving the convex optimization problem

minimize lag(V, W), (2)

with variables v € R and w € R", and problem data A = [a; --- am]" € R™" and the vector of binary
outcomesb =[by --- bm]T € R™. The problem (2) is called the logistic regression problem (LRP).
The average logistic loss is always nonnegative, that is, layg(v,w) > 0, since f(z) > 0 for any z.
For the choice w = 0, v =0, we have la,4(0,0) = log2 ~ 0.693, so the optimal value of the LRP
lies between 0 and log2. In particular, the optimal value can range (roughly) between 0 and 1. The
optimal value is 0 only when the original data are linearly separable, that is, there exist w and v such
that w'x; +v > 0 when b; = 1, and w' x; +v < 0 when b; = —1. In this case the optimal value of
the LRP (2) is not achieved (except in the limit with w and v growing arbitrarily large). The optimal
value is log2, that is, w = 0, v = 0 are optimal, only if S, bj =0and 3", a = 0. (This follows
from the expression for Clayg, given in Section 2.1.) This occurs only when the number of positive
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examples (i.e., those for which b; = 1) is equal to the number of negative examples, and the average
of x; over the positive examples is the negative of the average value of x; over the negative examples.

The LRP (2) is a smooth convex optimization problem, and can be solved by a wide variety of
methods, such as gradient descent, steepest descent, Newton, quasi-Newton, or conjugate-gradients
(CG) methods (see, for example Hastie et al., 2001, § 4.4).

Once we find maximum likelihood values of v and w, that is, a solution of (2), we can predict the
probability of the two possible outcomes, given a new feature vector x € R", using the associated
logistic model. For example, when w £ 0, we can form the logistic classifier

@(x) = sgn(w'x+v), (3)

where
+1 z>0

Sg”(z):{ ~1 z<0

which picks the more likely outcome, given x, according to the logistic model. This classifier is
linear, meaning that the boundary between the two decision outcomes is a hyperplane (defined by
w'x+v=0).

1.2 />-Regularized Logistic Regression

When m, the number of observations or training examples, is not large enough compared to n, the
number of feature variables, simple logistic regression leads to over-fit. That is, the classifier found
by solving the LRP (2) performs perfectly (or very well) on the training examples, but may perform
poorly on unseen examples. Over-fitting tends to occur when the fitted model has many feature
variables with (relatively) large weights in magnitude, that is, w is large.

A standard technique to prevent over-fitting is regularization, in which an extra term that pe-
nalizes large weights is added to the average logistic loss function. The #,-regularized logistic
regression problem is

minimize  layg (v, W) +A[|w||3 = (1/m) S, f(wa +vhi) +A S, w2, (4)

Here A > 0 is the regularization parameter, used to control the trade-off between the average logistic
loss and the size of the weight vector, as measured by the £,-norm. No penalty term is imposed
on the intercept, since it is a parameter for thresholding the weighted sum wTx in the linear classi-
fier (3). The solution of the ¢,-regularized regression problem (4) (which exists and is unique) can
be interpreted in a Bayesian framework, as the maximum a posteriori probability (MAP) estimate
of w and v, when w has a Gaussian prior distribution on R" with zero mean and covariance Al and
v has the (improper) uniform prior on R; see, for example, Chaloner and Larntz (1989) or Jaakkola
and Jordan (2000).

The objective function in the ¢,-regularized LRP is smooth and convex, and so (like the ordi-
nary, unregularized LRP) can be minimized by standard methods such as gradient descent, steepest
descent, Newton, quasi-Newton, truncated Newton, or CG methods; see, for example, Luenberger
(1984), Lin et al. (2007), Minka (2003), Nocedal and Wright (1999), and Nash (2000). Other meth-
ods that have been used include optimization transfer (Krishnapuram and Hartemink, 2005; Zhang
et al., 2004) and iteratively re-weighted least squares (Komarek, 2004). Newton’s method and vari-
ants are very effective for small and medium sized problems, while conjugate-gradients and limited
memory Newton (or truncated Newton) methods can handle very large problems. In Minka (2003)
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the author compares several methods for Z,-regularized LRPs with large data sets. The fastest meth-
ods turn out to be conjugate-gradients and limited memory Newton methods, outperforming IRLS,
gradient descent, and steepest descent methods. Truncated Newton methods have been applied to
large-scale problems in several other fields, for example, image restoration (Fu et al., 2006) and
support vector machines (Keerthi and DeCoste, 2005). For large-scale iterative methods such as
truncated Newton or CG, the convergence typically improves as the regularization parameter A is
increased, since (roughly speaking) this makes the objective more quadratic, and improves the con-
ditioning of the problem.

1.3 /1-Regularized Logistic Regression

More recently, ¢1-regularized logistic regression has received much attention. The ¢;-regularized
logistic regression problem is

minimize  layg (v, ) + Awlly = (L/m) 7y (T aj +vbi) + A5y [wil, )

where A > 0 is the regularization parameter. The only difference with ¢,-regularized logistic re-
gression is that we measure the size of w by its £1-norm, instead of its /,-norm. A solution of the
£1-regularized logistic regression must exist, but it need not be unique. Any solution of the ¢;-
regularized logistic regression problem (5) can be interpreted in a Bayesian framework as a MAP
estimate of w and v, when w has a Laplacian prior distribution and v has the (improper) uniform
prior. The objective function in the ¢1-regularized LRP (5) is convex, but not differentiable (specif-
ically, when any of the weights is zero), so solving it is more of a computational challenge than
solving the ¢»-regularized LRP (4).

Despite the additional computational challenge posed by ¢;-regularized logistic regression,
compared to ¢»-regularized logistic regression, interest in its use has been growing. The main moti-
vation is that /1-regularized LR typically yields a sparse vector w, that is, w typically has relatively
few nonzero coefficients. (In contrast, ¢,-regularized LR typically yields w with all coefficients
nonzero.) When w; = 0, the associated logistic model does not use the jth component of the feature
vector, so sparse w corresponds to a logistic model that uses only a few of the features, that is,
components of the feature vector. Indeed, we can think of a sparse w as a selection of the relevant
or important features (i.e., those associated with nonzero wj), as well as the choice of the intercept
value and weights (for the selected features). A logistic model with sparse w is, in a sense, sim-
pler or more parsimonious than one with nonsparse w. It is not surprising that £;-regularized LR
can outperform ¢,-regularized LR, especially when the number of observations is smaller than the
number of features (Ng, 2004; Wainwright et al., 2007).

We refer to the number of nonzero components in w as its cardinality, denoted card(w). Thus,
¢1-regularized LR tends to yield w with card(w) small; the regularization parameter A roughly con-
trols card(w), with larger A typically (but not always) yielding smaller card(w).

The general idea of ¢; regularization for the purposes of model or feature selection (or just
sparsity of solution) is quite old, and widely used in other contexts such as geophysics (Claerbout
and Muir, 1973; Taylor et al., 1979; Levy and Fullagar, 1981; Oldenburg et al., 1983). In statistics,
it is used in the well-known Lasso algorithm (Tibshirani, 1996) for ¢1-regularized linear regression,
and its extensions such as the fused Lasso (Tibshirani et al., 2005), the grouped Lasso (Kim et al.,
2006; Yuan and Lin, 2006; Zhao et al., 2007), and the monotone Lasso (Hastie et al., 2007). The
idea also comes up in signal processing in basis pursuit (Chen and Donoho, 1994; Chen et al.,
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2001), signal recovery from incomplete measurements (Candeés et al., 2006, 2005; Donoho, 2006),
and wavelet thresholding (Donoho et al., 1995), decoding of linear codes (Candés and Tao, 2005),
portfolio optimization (Lobo et al., 2005), controller design (Hassibi et al., 1999), computer-aided
design of integrated circuits (Boyd et al., 2001), computer vision (Bhusnurmath and Taylor, 2007),
sparse principal component analysis (d’ Aspremont et al., 2005; Zou et al., 2006), graphical model
selection (Wainwright et al., 2007), maximum likelihood estimation of graphical models (Banerjee
et al., 2006; Dahl et al., 2005), boosting (Rosset et al., 2004), and ¢1-norm support vector machines
(Zhu et al., 2004). A recent survey of the idea can be found in Tropp (2006). Donoho and Elad
(2003) and Tropp (2006) give some theoretical analysis of why ¢1 regularization leads to a sparse
model in linear regression. Recently, theoretical properties of £1-regularized linear regression have
been studied by several researchers; see, for example, Zou (2006), Zhao and Yu (2006), and Zou
et al. (2007).

To solve the ¢1-regularized LRP (5), generic methods for nondifferentiable convex problems can
be used, such as the ellipsoid method or subgradient methods (Shor, 1985; Polyak, 1987). These
methods are usually very slow in practice, however. (Because ¢1-regularized LR typically results in
a weight vector with (many) zero components, we cannot simply ignore the nondifferentiability of
the objective in the ¢;-regularized LRP (5), hoping to not encounter points of nondifferentiability.)

Another approach is to transform the problem to one with differentiable objective and constraint
functions. We can solve the ¢;1-regularized LRP (5), by solving an equivalent formulation, with
linear inequality constraints,

minimize  lag(v,w) +A1Tu
subjectto —u; <w; <u;, i=1,...,n,

(6)

where the variables are the original ones v € R, w € R", along with u € R". Here 1 denotes the
vector with all components one, so 1Tu is the sum of the components of u. (To see the equivalence
with the ¢;-regularized LRP (5), we note that at the optimal point for (6), we must have u; = |w;/,
in which case the objectives in (6) and (5) are the same.) The reformulated problem (6) is a convex
optimization problem, with a smooth objective, and linear constraint functions, so it can be solved
by standard convex optimization methods such as SQP, augmented Lagrangian, interior-point, and
other methods. High quality solvers that can directly handle the problem (6) (and therefore, carry out
£1-regularized LR) include for example LOQO (Vanderbei, 1997), LANCELOT (Conn et al., 1992),
MOSEK (MOSEK ApS, 2002), and NPSOL (Gill et al., 1986). These general purpose solvers can
solve small and medium scale ¢;-regularized LRPs quite effectively.

Other recently developed computational methods for ¢1-regularized logistic regression include
the IRLS method (Lee et al., 2006; Lokhorst, 1999), a generalized LASSO method (Roth, 2004)
that extends the LASSO method proposed in Osborne et al. (2000) to generalized linear models,
generalized iterative scaling (Goodman, 2004), bound optimization algorithms (Krishnapuram et al.,
2005), online algorithms (Balakrishnan and Madigan, 2006; Perkins and Theiler, 2003), coordinate
descent methods (Friedman et al., 2007; Genkin et al., 2006), and the Gauss-Seidel method (Shevade
and Keerthi, 2003). Some of these methods can handle very large problems (assuming some sparsity
in the data) with modest accuracy. But the additional computational cost required for these methods
to achieve higher accuracy can be very large.

The main goal of this paper is to describe a specialized interior-point method for solving the ¢4-
regularized logistic regression problem that is very efficient, for all size problems. In particular our
method handles very large problems, attains high accuracy, and is not much slower than the fastest
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large-scale methods (conjugate-gradients and limited memory Newton) applied to the ¢,-regularized
LRP.

Numerical experiments show that our method is as fast as, or faster than, other methods, and
reliably provides very accurate solutions. Compared with high-quality implementations of general
purpose primal-dual interior-point methods, our method is far faster, especially for large problems.
Compared with first-order methods such as coordinate descent methods, our method is comparable
in solving large problems with modest accuracy, but is able to solve them with high accuracy with
relatively small additional computational cost.

In this paper we focus on methods for solving the ¢;-regularized LRP; we do not discuss the
benefits or advantages of ¢1-regularized LR, compared to ¢,-regularized LR or other methods for
modeling or constructing classifiers for two-class data.

1.4 Regularization Path

Let (vy,w;) be a solution for the /1-regularized LRP with regularization parameter A. The family of
solutions, as A varies over (0,), is called the (¢1-) regularization path. In many applications, the
regularization path (or some portion) needs to be computed, in order to determine an appropriate
value of A. At the very least, the ¢;-regularized LRP must be solved for multiple, and often many;,
values of A.

In ¢1-regularized linear regression, which is the problem of minimizing

IFz—glZ +Allzllx

over the variable z, where A > 0 is the regularization parameter, F € RP*" is the covariate matrix,
and g € RP is the vector of responses, it can be shown that the regularization path is piecewise
linear, with kinks at each point where any component of the variable z transitions from zero to
nonzero, or vice versa. Using this fact, the entire regularization path in a (small or medium size) ¢1-
regularized linear regression problem can be computed efficiently (Hastie et al., 2004; Efron et al.,
2004; Rosset, 2005; Rosset and Zhu, 2007; Osborne et al., 2000). These methods are related to
numerical continuation techniques for following piecewise smooth curves, which have been well
studied in the optimization literature (Allgower and Georg, 1993).

Path following methods have been applied to several problems (Hastie et al., 2004; Park and
Hastie, 2006a,b; Rosset, 2005). Park and Hastie (2006a) describe an algorithm for (approximately)
computing the entire regularization path for general linear models (GLMs) including logistic re-
gression models. In Rosset (2005), a general path-following method based on a predictor-corrector
method is described for general regularized convex loss minimization problems. Path-following
methods can be slow for large-scale problems, where the number of kinks or events is very large (at
least n). When the number of kinks on the portion of the regularization path of interest is modest,
however, these path-following methods can be very fast, requiring just a small multiple of the effort
needed to solve one regularized problem to compute the whole path (or a portion).

In this paper we describe a fast method for computing a large number of points on the regu-
larization path, using a warm-start technique and our interior-point method. Unlike the methods
mentioned above, our method does not attempt to track the path exactly (i.e., jumping from kink
to kink on the path); it remains efficient even when successive values of A jump over many Kinks.
This is essential when computing the regularization path in a large-scale problem. Our method al-
lows us to compute a large number of points (but much fewer than n, when n is very large) on the
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regularization path, much more efficiently than by solving a family of the problems independently.
Our method is far more efficient than path following methods in computing a good approximation
of the regularization for a medium-sized or large data set.

1.5 Outline

In Section 2, we give (necessary and sufficient) optimality conditions, and a dual problem, for the
£1-regularized LRP. Using the dual problem, we show how to compute a lower bound on the subopti-
mality of any pair (v,w). We describe our basic interior-point method in Section 3, and demonstrate
its performance in Section 4 with small and medium scale synthetic and machine learning bench-
mark examples. We show that /1-regularized LR can be carried out within around 35 or so iterations,
where each iteration has the same complexity as solving an £,-regularized linear regression problem.

In Section 5, we describe a variation on our basic method that uses a preconditioned conjugate
gradient approach to compute the search direction. This variation on our method can solve very
large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in under
an hour, on a PC, provided the data matrix is sufficiently sparse.

In Section 6, we consider the problem of computing the regularization path efficiently, at a
variety of values of A (but potentially far fewer than the number of kinks on the path). Using warm-
start techniques, we show how this can done much more efficiently than by solving a family of
problems independently. In Section 7, we compare the interior-point method with several existing
methods for ¢1-regularized logistic regression. In Section 8, we describe generalizations of our
method to other ¢1-regularized convex loss minimization problems.

2. Optimality Conditionsand Dual
In this section we derive a necessary and sufficient optimality condition for the ¢;-regularized LRP,

as well as a Lagrange dual problem, from which we obtain a lower bound on the objective that we
will use in our algorithm.

2.1 Optimality Conditions
The objective function of the ¢1-regularized LRP, layg(v, W) +A|lw||1, is convex but not differentiable,

so we use a first-order optimality condition based on subdifferential calculus (see Bertsekas, 1999,
Prop. B.24 or Borwein and Lewis, 2000, §2). The average logistic loss is differentiable, with

Ovlavg (v, W) = (1/m)if’(wTai+vbi)bi

= —(1/m) il Plog (VW) )bi
= —(1/m)bT(1— piog(v,W)),
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and

Owlavg(V,W) = (1/m)§f’(wTai+vbi)ai

— —(1/m) 3 (A= Pl ))a

= —(1/m)AT(1— piog(v,W)).
The subdifferential of ||w/||; is given by

{1} w;i >0,
@fwl2); =4 {1} wi <O,
[—1, 1] w; =0.
The necessary and sufficient condition for (v,w) to be optimal for the ¢1-regularized LRP (5) is
Ovlavg(V,W) =0, 0 € Owlavg (v, W) +A0||w||1,

which can be expressed as

bT (1 piog(v,w)) =0, (7)
and
{+A} w; >0,
(1/m) (AT(17p|Og(V7W)))i € {_)\} Wi <07 I :1,"'7n' (8)
[-A,A] w;i =0,
Let us analyze when a pair of the form (v,0) is optimal. This occurs if and only if
bT(1— Piog(+,0)) =0, [|(1/m)AT (1~ piog(V,0))lee <A.

The first condition is equivalent to v = log(m_./m_), where m. is the number of training examples
with outcome 1 (called positive) and m_ is the number of training examples with outcome —1
(called negative). Using this value of v, the second condition becomes

A > Amax = ||(1/m)AT(1_ plog(IOQ(m+/m—)70))”°°‘

The number Amax gives us an upper bound on the useful range of the regularization parameter A:
For any larger value of A, the logistic model obtained from ¢;-regularized LR has weight zero (and
therefore has no ability to classify). Put another way, for A > Amax, We get a maximally sparse
weight vector, that is, one with card(w) = 0.

We can give a more explicit formula for )\max:

771 [ %)
where
~ fmo/m  bi=1 .
b,_{ “my/m b= -1, i=1,....m.

Thus, Amax is @ maximum correlation between the individual features and the (weighted) output
vector b. When the features have been standardized, we have $"; x; = 0, so we get the simplified

expression
2" > X
bi=—1

Amax = (1/m) = (1/m)

(o)
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2.2 Dual Problem

To derive a Lagrange dual of the ¢;-regularized LRP (5), we first introduce a new variable z € R™,
as well as new equality constraints z; =w"a; 4+ vb;, i = 1,...,m, to obtain the equivalent problem

minimize (1/m)S™, f(z) +Aljwl1
subjectto zy=w'aj+vb;, i=1,...,m.

(©)

Associating dual variables 6; € R with the equality constraints, the Lagrangian is

L(v,w,z,8) = (1/m)_§1 f(zi)+A|wl|1 48T (—z+Aw +bv).

i=
The dual function is
- . m . T - T
\iw‘zL(v,w,z,e) = (1/m)|r;fi;(f(zi)—meizi)+|\r,1vf()\\|w||1+9 Aw)+|r\1/fe bv
_ [ —(@/m)3m, £5(-m8i) [AT8]» <A, bTO=0,
- —o0 otherwise,

where f* is the conjugate of the logistic loss function f:

(=y)log(=y)+ (1 +y)log(1+y), —1<y<0
f*(y) =sup(yu— f(u)) =

uerR

0 y=—-lory=0
o, otherwise.

For general background on convex duality and conjugates, see, for example, Boyd and Vanden-
berghe (2004, Chap. 5) or Borwein and Lewis (2000).
Thus, we have the following Lagrange dual of the ¢;-regularized LRP (5):

maximize G(0)

subjectto  [|ATO||. <A, bTO=0, (10)

where .
G(®) = —(1/m) 3 f*(~m8)

is the dual objective. The dual problem (10) is a convex optimization problem with variable 6 € R™,
and has the form of an /..-norm constrained maximum generalized entropy problem. We say that
8 € RMis dual feasible if it satisfies |AT6]| <A, bT8=0.

From standard results in convex optimization we have the following.

e Weak duality. Any dual feasible point 8 gives a lower bound on the optimal value p* of the
(primal) ¢1-regularized LRP (5):
G(8) < p*. (11)

e Strong duality. The ¢1-regularized LRP (5) satisfies a variation on Slater’s constraint qualifi-
cation, so there is an optimal solution of the dual (10) 6*, which satisfies

G(6") =p*.

In other words, the optimal values of the primal (5) and dual (10) are equal.
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We can relate a primal optimal point (v*,w*) and a dual optimal point 6* to the optimality
conditions (7) and (8). They are related by

6" = (1/m)(1— Piog (V" W")).

We also note that the dual problem (10) can be derived starting from the equivalent problem (6),
by introducing new variables z; (as we did in (9)), and associating dual variables 8, > 0 for the
inequalities w < u, and 6_ > 0 for the inequalities —u < w. By identifying 8 = 6, —8_ we obtain
the dual problem (10).

2.3 Suboptimality Bound

We now derive an easily computed bound on the suboptimality of a pair (v,w), by constructing a
dual feasible point 8 from an arbitrary w. Define v as

vV =arg mvin lavg (V, W), (12)

that is, v is the optimal intercept for the weight vector w, characterized by b™ (1 — Plog(V,W)) = 0.
Now, we define 0 as _
6= (s/m)(1— Piog(V,W)), (13)
where the scaling constant s is
s =min {mA/|[AT (1~ Piog(V,W))]|eo, 1} .

Evidently 6 is dual feasible, so G(0) is a lower bound on p*, the optimal value of the ¢;-regularized
LRP (5). _

To compute the lower bound G(8), we first compute v. This is a one-dimensional smooth convex
optimization problem, which can be solved very efficiently, for example, by a bisection method on
the optimality condition

bT (1~ piog (v, w)) =0,
since the lefthand side is a monotone function of v. Newton’s method can be used to ensure ex-
tremely fast terminal convergence to v. From v, we compute 6 using (13), and then evaluate the
lower bound G(9).
_The difference between the primal objective value of (v,w), and the associated lower bound
G(0), is called the duality gap, and denoted n:

Nv,W) = layg(Vv,W) +Afjw[]s — G(6)
= (1/m) 3y (f(w'ai +vbi) + £*(~m8;)) + Al|wls.
We always have n > 0; and (by weak duality (11)) the point (v,w) is no more than n-suboptimal.
At the optimal point (v*,w*), we have n = 0.

(14)

3. An Interior-Point Method

In this section we describe an interior-point method for solving the ¢1-regularized LRP (5), in the
equivalent formulation

minimize  lag(v,w) +A1Tu
subjectto —u; <w; <u;, i=1,....n,

with variablesw,u € R"and v € R.
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3.1 Logarithmic Barrier and Central Path

The logarithmic barrier for the bound constraints —u; < w; < u; is

d(w,u) = — ilog(ui +w;) — ilog(ui —Wi) = ilog(u? —w?),

with domain
dom @ = {(w,u) e R"x R" | |wj| <uj, i=1,...,n}.

The logarithmic barrier function is smooth and convex. We augment the weighted objective function
by the logarithmic barrier, to obtain

@ (V, W, U) = thayg (v, W) +tAL U+ (W, u),

where t > 0 is a parameter. This function is smooth, strictly convex, and bounded below, and so
has a unique minimizer which we denote (v*(t),w*(t),u*(t)). This defines a curve in R x R" x R",
parametrized by t, called the central path. (See Boyd and Vandenberghe, 2004, Chap. 11 for more
on the central path and its properties.)

With the point (v*(t),w*(t),u*(t)) we associate

6%(t) = (1/m)(1— piog (V" (t),W"(t))),

which can be shown to be dual feasible. (Indeed, it coincides with the dual feasible point 0 con-
structed from w*(t) using the method of Section 2.3.) The associated duality gap satisfies

g (V (1), W (1)) + A (1)1 — G(B* (1)) < laug (v* (1), W* (1)) + ALTU* (1) — G(B¥(1)) = 2n/t.

In particular, (v*(t),w*(t)) is no more than 2n/t-suboptimal, so the central path leads to an optimal
solution.

In a primal interior-point method, we compute a sequence of points on the central path, for an
increasing sequence of values of t, using Newton’s method to minimize @ (v, w, u), starting from the
previously computed central point. A typical method uses the sequence t = to, tg, i%to, . . ., Where
U is between 2 and 50 (see Boyd and Vandenberghe, 2004, §11.3). The method can be terminated
when 2n/t < g, since then we can guarantee e-suboptimality of (v*(t),w*(t)). The reader is referred
to Nesterov and Nemirovsky (1994), Wright (1997), and Ye (1997) for more on (primal) interior-
point methods.

3.2 A Custom Interior-Point Method

Using our method for cheaply computing a dual feasible point and associated duality gap for any
(v,w) (and not just for (v,w) on the central path, as in the general case), we can construct a custom
interior-point method that updates the parameter t at each iteration.

CUSTOM INTERIOR-POINT METHOD FOR /1-REGULARIZED LR.

given tolerance € > 0, line search parameters a € (0,1/2), 8 € (0,1)

Set initial values. t :=1/A, v:=log(m,/m_),w:=0,u:=1

repeat
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1. Compute search direction.
Av
Solve the Newton system 02@ (v,w,u) | Aw | = —O@ (v, w,u).
Au
2. Backtracking line search. Find the smallest integer k > 0 that satisfies
Av
@ (V+ B*Av, w4 BRAw, u 4 BXAU) < @ (v, w,u) +opO@ (v, w,u)T | Aw
Au
. Update. (v,w,u) := (v,w,u) 4+ BX(Av, Aw, Au).
. Set v :=, the optimal value of the intercept, as in (12).
. Construct dual feasible point 8 from (13).
. Evaluate duality gap n from (14).
.quitifn <e.
. Update t.

0o ~NOoO Ol bW

This description is complete, except for the rule for updating the parameter t, which will be
described below. Our choice of initial values for v, w, u, and t can be explained as follows. The
choice w = 0 and u = 1 seems to work very well, especially when the original data are standardized.
The choice v =log(m. /m_) is the optimal value of v when w = 0 and u = 1, and the choicet =1/A
minimizes ||(1/t)0@(log(m;/m_),0,1)|2. (In any case, the choice of the initial values does not
greatly affect performance.) The construction of a dual feasible point and duality gap, in steps 4-6,
is explained in Section 2.3. Typical values for the line search parameters are a = 0.01, = 0.5,
but here too, these parameter values do not have a large effect on performance. The computational
effort per iteration is dominated by step 1, the search direction computation.

There are many possible update rules for the parameter t. In a classical primal barrier method, t
is held constant until @ is (approximately) minimized, that is, || ||2 is small; when this occurs, t
is increased by a factor typically between 2 and 50. More sophisticated update rules can be found
in, for example, Nesterov and Nemirovsky (1994), Wright (1997), and Ye (1997).

The update rule we propose is

max {umin{f,t},t}, s> sy
([ max{umin{E.t).t). s> s )
t, S < Smin

where £ = 2n/n, and s = BX is the step length chosen in the line search. Here > 1 and Sin € (0,1]
are algorithm parameters; we have found good performance with u = 2 and spjn = 0.5.

To explain the update rule (15), we first give an interpretation of f. If (v,w,u) is on the central
path, that is, @ is minimized, the duality gap is n = 2n/t. Thus { is the value of t for which the
associated central point has the same duality gap as the current point. Another interpretation is that
if t were held constant at t =, (v,w,u) would converge to (v*(f),w*(f),u*(f)), at which point the
duality gap would be exactly n.

We use the step length s as a crude measure of proximity to the central path. When the current
point is near the central path, that is, ¢ is nearly minimized, we have s = 1; far from the central
path, we typically have s <« 1. Now we can explain the update rule (15). When the current point
is near the central path, as judged by s > smin and £ ~ t, we increase t by a factor y; otherwise, we
keep't at its current value.
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We can give an informal justification of convergence of the custom interior-point algorithm. (A
formal proof of convergence would be quite long.) Assume that the algorithm does not terminate.
Since t never decreases, it either increases without bound, or converges to some value t. In the
first case, the duality gap n converges to zero, so the algorithm must exit. In the second case, the
algorithm reduces (roughly) to Newton’s method for minimizing @¢. This must converge, which

means that (v,w,u) converges to (v*(t),w*(t),u*(t)). Therefore the duality gap converges to n =
2n/t. A basic property of Newton’s method is that near the solution, the step length is one. At the
limit, we therefore have

t = max{umin{2n/n,t},t} = ut,

which is a contradiction since g > 1.

3.3 Gradient and Hessian
In this section we give explicit formulas for the gradient and Hessian of ¢x. The gradient g =
O (v, w,u) is given by
01
g=| g2 | R,
03

where

g1 = Ov@(v,w,u) = —(t/m)b"(1— piog(v,w)) € R,
2wy /(uf —wi)
g2 = Ow@(v,w,u) = —(t/m)AT (1— piog(v,w)) + : €R",
20/ (uf — w3)
2u1 /(uf —wg)
93 = Ou@(v,w,u) =tAl— ; eR".
2Un/(Uf — W3)

The Hessian H = 0@ (v, w, u) is given by

tbTDob  thTDoA 0
H=| tATDgb tATDpA+D; D, | e RG> (n+1)

)

0 D, D:
where
Do = (1/m)diag(f”(w ay+vhy),..., " (W am+Vvbpy)),
D1 = diag (2(uf+wj)/(uf —wi),...,2(ua+wp) /(U —wh)?) ,
D, = diag(—4uwy/(uf —w?)? ..., —4upwn/ (U3 —w3)?).

Here, we use diag(zs,...,zm) to denote the diagonal matrix with diagonal entries z1,...,zy,, where
zieR,i=1,...,m. The Hessian H is symmetric and positive definite.
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3.4 Computing the Search Direction

The search direction is defined by the linear equations (Newton system)

tbTDob  th"DoA 0 Av 01
tATDgb tATDoA+D; D3 Aw | =—1| 02
0 Dz Dl Au 03

We first eliminate Au to obtain the reduced Newton system

Av
Hred [ AW ] = —0red, (16)
where
th" Dgb tbT DA 01 1
Hl’ed — tAT D()b tATD0A+ D3 9 gred — gz _ DZDIlg3 3 D3 - Dl - DZDl DZ.

Once this reduced system is solved, Au can be recovered as
Au= —D;*(gs + DoAw).

Several methods can be used to solve the reduced Newton system (16), depending on the relative
sizes of n and m and the sparsity of the data A.

3.4.1 MORE EXAMPLES THAN FEATURES

We first consider the case when m > n, that is, there are more examples than features. We form
Hred, at a cost of O(mn?) flops (floating-point operations), then solve the reduced system (16) by
Cholesky factorization of Hygq, followed by back and forward substitution steps, at a cost of O(n3)
flops. The total cost using this method is O(mn2 + n®) flops, which is the same as O(mn?) when
there are more examples than features.

When A is sufficiently sparse, the matrix tAT DoA 4- D3 is sparse, so Hreq is sparse, with a dense
first row and column. By exploiting sparsity in forming tATDoA + D3, and using a sparse Cholesky
factorization to factor Hyeqg, the complexity can be much smaller than O(mn?) flops (see Boyd and
Vandenberghe, 2004, App. C or George and Liu, 1981).

3.4.2 FEWER EXAMPLES THAN FEATURES

When m < n, that is, there are fewer examples than features, the matrix Hgq is a diagonal matrix
plus a rank m+ 1 matrix, so we can use the Sherman-Morrison-Woodbury formula to solve the
reduced Newton system (16) at a cost of O(m?n) flops (see Boyd and Vandenberghe, 2004, §4.3).
We start by eliminating Aw from (16) to obtain

(tb"Dgb —t?b"DpAS *ATDgb)Av = —g; +tbT DeAS (g2 — D2D; g3),

where S = tATDoA + D3. By the Sherman-Morrison-Woodbury formula (Golub and Van Loan,
1996, p. 50), the inverse of S is given by

_ _ _ _ _ -1 _
S =D;'-D;'AT ((1/t)Dyt +AD;AT) " AD; ™.
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We can now calculate Av via Cholesky factorization of the matrix ((1/t)D51 +AD3‘1AT) and two
backsubstitutions (Boyd and Vandenberghe, 2004, App. C). Once we compute Av, we can compute
the other components of the search direction as

M = —SY(gy—D,D;lgs +tATDgbAV),
Au = —D;*(g3+DoAw).

The total cost of computing the search direction is O(m?n) flops. We can exploit sparsity in the
Cholesky factorization, whenever (1/t)D,* + AD3*AT is sufficiently sparse, to reduce the com-
plexity.

3.4.3 SUMMARY

In summary, the number of flops needed to compute the search direction is
O(min(n,m)?max(n,m)),

using dense matrix methods. If m > n and ATA is sparse, or m < n and AAT is sparse, we can use
(direct) sparse matrix methods to compute the search direction with less effort. In each of these
cases, the computational effort per iteration of the interior-point method is the same as the effort of
solving one ¢-regularized linear regression problem.

4. Numerical Examples

In this section we give some numerical examples to illustrate the performance of the interior-point
method described in Section 3, using algorithm parameters

a =0.01, B=0.5, Smin = 0.5, n=2, e=10"%.

(The algorithm performs well for much smaller values of €, but this accuracy is more than ade-
guate for any practical use.) The algorithm was implemented in both Matlab and C, and run on a
3.2GHz Pentium IV under Linux. The C implementation, which is more efficient than the Matlab
implementation (especially for sparse problems), is available online (www.stanford.edu/"boyd/
11_logreg).

4.1 Benchmark Problems

The data are four small or medium standard data sets taken from the UCI machine learning bench-
mark repository (Newman et al., 1998) and other sources. The first data set is leukemia cancer gene
expression data (Golub et al., 1999), the second is colon tumor gene expression data (Alon et al.,
1999), the third is ionosphere data (Newman et al., 1998), and the fourth is spambase data (Newman
etal., 1998).

For each data set, we considered four values of the regularization parameter: A = 0.5A max,
A = 0.1Amax, A = 0.05Amax, and A = 0.01Ana. We discarded examples with missing data, and
standardized each data set. The dimensions of each problem, along with the number of interior-
point method iterations (IP iterations) needed, and the execution time, are given in Table 1. In
reporting card(w), we consider a component w; to be zero when

|(1/m) (AT (1= piog (v, w)));| < TA,
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Data Featuresn | Examplesm | A/Amax | card(w) | IP iterations | Time (sec)
Leukemia 7129 38 0.5 6 37 0.60
(Golub et al., 1999) 0.1 14 38 0.62
0.05 14 39 0.63
0.01 18 37 0.60
Colon 2000 62 0.5 7 35 0.26
(Alon et al., 1999) 0.1 22 32 0.25
0.05 25 33 0.26
0.01 28 32 0.25
lonosphere 34 351 0.5 3 30 0.02
(Newman et al., 1998) 0.1 11 29 0.02
0.05 14 30 0.02
0.01 24 33 0.03
Spambase 57 4061 0.5 8 31 0.63
(Newman et al., 1998) 0.1 28 32 0.66
0.05 38 33 0.69
0.01 52 36 0.75

Table 1: Performance of the interior-point method on 4 data sets, each for 4 values of A.

where T = 0.9999. This rule is inspired by the optimality condition in (8).

In all sixteen examples, around 35 iterations were required. We have observed this behavior over
a large number of other examples as well. The execution times are well predicted by the complexity
order min(m,n)2max(m,n).

Figure 1 shows the progress of the interior-point method on the four data sets, for the same four
values of A. The vertical axis shows duality gap, and the horizontal axis shows iteration number,
which is the natural measure of computational effort when dense linear algebra methods are used.
The figures show that the algorithm has linear convergence, with duality gap decreasing by a factor
around 1.85 in each iteration.

4.2 Randomly Generated Problems

To examine the effect of problem size on the number of iterations required, we generate 100 random
problem instances for each of 20 values of n, ranging from n = 100 to n = 10000, with m = 0.1n,
that is, 10 times more features than examples. Each problem has an equal number of positive
and negative examples, that is, m; = m_ = m/2. Features of positive (negative) examples are
independent and identically distributed, drawn from a normal distribution A((v,1), where v is in
turn drawn from a uniform distribution on [0, 1] ([—1,0]).

For each of the 2000 data sets, we solve the ¢1-regularized LRP for A = 0.5Amax, A = 0.1Amax,
and A = 0.05Anax. The lefthand plot in Figure 2 shows the mean and standard deviation of the
number of iterations required to solve the 100 problem instances associated with each value of n
and A. It can be seen that the number of iterations required is very near 35, for all 6000 problem
instances.

In the same way, we generate a family of data sets with m = 10n, that is, 10 times more examples
than features, with 100 problem instances for each of 20 values of n ranging from n = 10 to n = 1000,
and for the same 3 values of A. The righthand plot in Figure 2 shows the mean and standard deviation
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Figure 1: Progress of the interior-point method on 4 data sets, showing duality gap versus iteration
number. Top left: Leukemia cancer gene data set. Top right: Colon tumor gene data set.
Bottom left: lonosphere data set. Bottom right: Spambase data set.

of the number of iterations required to solve the 100 problem instances associated with each value
of nand A. The results are quite similar to the case with m = 0.1n.

5. Truncated Newton Interior-Point M ethod

In this section we describe a variation on our interior-point method that can handle very large prob-
lems, provided the data matrix A is sparse, at the cost of having a run time that is less predictable.
The basic idea is to compute the search direction approximately, using a preconditioned conjugate
gradients (PCG) method. When the search direction in Newton’s method is computed approxi-
mately, using an iterative method such as PCG, the overall algorithm is called a conjugate gradient
Newton method, or a truncated Newton method (Ruszczynski, 2006; Dembo and Steihaug, 1983).
Truncated Newton methods have been applied to interior-point methods (see, for example, Vanden-

berghe and Boyd, 1995 and Portugal et al., 2000).

5.1 Preconditioned Conjugate Gradients

The PCG algorithm (Demmel, 1997, §86.6) computes an approximate solution of the linear equations
Hx = —g, where H € RN*N is symmetric positive definite. It uses a preconditioner P € RN*N  also

symmetric positive definite.
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Figure 2: Average number of iterations required to solve 100 randomly generated ¢;-regularized
LRPs with different problem size and regularization parameter. Left: n = 10m. Right:
n = 0.1m. Error bars show standard deviation.

PRECONDITIONED CONJUGATE GRADIENTS ALGORITHM
given relative tolerance €peq > 0, iteration limit Npg, and xo € R¥
k:=0,ro:=Hxo—0, p1:=—P 710,y :=P1ro.

repeat
ki=k+1
Z:=Hpx

Bk :=Y§_1Tk-1/PgZ
Xk = Xk—1 + Ok Pk
Mg :=rg—1 — B¢z
yk = P7'rg
M1 1= Yi /Y1 Tk-1
Pk+1 ‘= Yk + Hk+1 Pk
until [[r|l2/]|gll2 < €peg OF k = Npcg-

Each iteration of the PCG algorithm involves a handful of inner products, the matrix-vector
product H py and a solve step with P in computing P~1r,. With exact arithmetic, and ignoring the
stopping condition, the PCG algorithm is guaranteed to compute the exact solution x = —H ~1g in
N steps. When P~1/2HP~1/2 js well conditioned, or has just a few extreme eigenvalues, the PCG
algorithm can compute an approximate solution in a number of steps that can be far smaller than N.
Since P~1r is computed in each step, we need this computation to be efficient.

5.2 Truncated Newton Interior-Point Method

The truncated Newton interior-point method is the same as the interior-point algorithm described in
Section 3, with the search direction computed using the PCG algorithm.
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We can compute H pk in the PCG algorithm using

[ thT Dob th" DoA 0 Pk1
Hpxk = tAT Dob tAT DoA+D;1 Dy Pk2
| 0 D, D1 Pk3
bTu
= ATu+Dipe |,
| D2pk2+Dips

where u = tDo(bpks + Apke) € R™. The cost of computing Hpy is O(p) flops when A is sparse
with p nonzero elements. (We assume p > n, which holds if each example has at least one nonzero
feature.)

We now describe a simple choice for the preconditioner P. The Hessian can be written as
H = t02layg (v, W) + 02D (w,u).

To obtain the preconditioner, we replace the first term with its diagonal part, to get

d 0 0
P = diag (t0%lag(v,W)) + D?P(w,u)= | 0 D3 D, |, 17
0 D, D

where
do=tb"Dgb, D3 =diag(tATDgA) +D;.

(Here diag(S) is the diagonal matrix obtained by setting the off-diagonal entries of the matrix S
to zero.) This preconditioner approximates the Hessian of tlag with its diagonal entries, while
retaining the Hessian of the logarithmic barrier. For this preconditioner, P~1r, can be computed
cheaply as

i do 0 0 - k1

P‘lrk = 0 D3 Dy )

| 0 D, Dy 3

I M /do

= (D1D3 —D3) " }(Dire — Dars) |,
| (D1D3 —D3)"1(—Dariz + Dsrys)

which requires O(n) flops.

We can now explain how implicit standardization can be carried out. When using standardized
data, we work with the matrix A% defined in (20), instead of A. As mentioned in Appendix A,
A% is in general dense, so we should not form the matrix. In the truncated Newton interior-point
method we do not need to form the matrix As®; we only need a method for multiplying a vector by
AsY and a method for multiplying a vector by AT, But this is easily done efficiently, using the
fact that AStY is a sparse matrix (i.e., A) times a diagonal matrix, plus a rank-one matrix; see (20) in
Appendix A.

There are several good choices for the initial point in the PCG algorithm (labeled xq in Sec-
tion 5.1), such as the negative gradient, or the previous search direction. We have found good
performance with both, with a small advantage in using the previous search direction.
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The PCG relative tolerance parameter €pcg has to be carefully chosen to obtain good efficiency
in a truncated Newton method. If the tolerance is too small, too many PCG steps are needed to
compute each search direction; if the tolerance is too high, then the computed search directions do
not give adequate reduction in duality gap per iteration. We experimented with several methods of
adjusting the PCG relative tolerance, and found good results with the adaptive rule

€pcg = Min{0.1,&n/([g][2}, (18)

where g is the gradient and n is the duality gap at the current iterate. Here, & is an algorithm
parameter. We have found that & = 0.3 works well for a wide range of problems. In other words, we
solve the Newton system with low accuracy (but never worse than 10%) at early iterations, and solve
it more accurately as the duality gap decreases. This adaptive rule is similar in spirit to standard
methods used in inexact and truncated Newton methods (see Nocedal and Wright, 1999).

The computational effort of the truncated Newton interior-point algorithm is the product of
s, the total number of PCG steps required over all iterations, and the cost of a PCG step, which
is O(p), where p is the number of nonzero entries in A, that is, the total number of (nonzero)
features appearing in all examples. In extensive testing, we found the truncated Newton interior-
point method to be very efficient, requiring a total number of PCG steps ranging between a few
hundred (for medium size problems) and several thousand (for large problems). For medium size
(and sparse) problems it was faster than the basic interior-point method; moreover the truncated
Newton interior-point method was able to solve very large problems, for which forming the Hessian
H (let alone computing the search direction) would be prohibitively expensive.

While the total number of iterations in the basic interior-point method is around 35, and nearly
independent of the problem size and problem data, the total number of PCG iterations required by
the truncated Newton interior-point method can vary significantly with problem data and the value
of the regularization parameter A. In particular, for small values of A (which lead to large values of
card(w)), the truncated Newton interior-point method requires a larger total number of PCG steps.
Algorithm performance that depends substantially on problem data, as well as problem dimension,
is typical of all iterative (i.e., non direct) methods, and is the price paid for the ability to solve very
large problems.

5.3 Numerical Examples

In this section we give some numerical examples to illustrate the performance of the truncated
Newton interior-point method. We use the same algorithm parameters for line search, update rule,
and stopping criterion as those used in Section 4, and the PCG tolerance given in (18) with & =
0.3. We chose the parameter Npcg to be large enough (5000) that the iteration limit was never
reached in our experiments; the typical number of PCG iterations was far smaller. The algorithm is
implemented in both Matlab and C, on a 3.2GHz Pentium IV running Linux, except for very large
problems. For very large problems whose data could not be handled on this computer, the method
was run on AMD Opteron 254 with 8GB main memory. The C implementation is available online
at ww . stanford.edu/"boyd/11_logreg.

5.3.1 A MEDIUM SPARSE PROBLEM

We consider the Internet advertisements data set (Newman et al., 1998) with 1430 features and 2359
examples (discarding examples with missing data). The total number of nonzero entries in the data
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Figure 3: Progress of the truncated Newton interior-point method on the Internet advertisements
data set with four regularization parameters: (&) A = 0.5Amax, (b) A = 0.1Amax, (C) A =

matrix A is p = 39011. We standardized the data set using implicit standardization, as explained
in Section 5.2, solving four ¢1-regularized LRPs, with A = 0.5Amax, A = 0.1Amax, A = 0.05Amax,
and A = 0.01Aqax. Figure 3 shows the convergence behavior. The lefthand plot shows the duality
gap versus outer iterations; the righthand plot shows duality gap versus cumulative PCG iterations,
which is the more accurate measure of computational effort.

The lefthand plot shows that the number of Newton iterations required to solve the problem is
not much more than in the basic interior-point method described in Section 3. The righthand plot
shows that the total number of PCG steps is several hundred, and depends substantially on the value
of A. Thus, the search directions are computed using on the order of ten PCG iterations.

To give a very rough comparison with the direct method applied to this sparse problem, the
truncated Newton interior-point method is much more efficient than the basic interior-point method
that does not exploit the sparsity of the data. It is comparable to or faster than the basic interior-point
method that uses sparse linear algebra methods, when the regularization parameter is not too small.

5.3.2 A LARGE SPARSE PROBLEM

Our next example uses the 20 Newsgroups data set (Lang, 1995). We processed the data set in a
way similar to Keerthi and DeCoste (2005). The positive class consists of the 10 groups with names
of form sci.*, comp.*, and misc.forsale, and the negative class consists of the other 10 groups. We
used McCallum’s Rainbow program (McCallum, 1996) with the command

rainbow -g 3 -h -s -0 2 -i

to tokenize the (text) data set. These options specify trigrams, skip message headers, no stoplist,
and drop terms occurring fewer than two times. The resulting data set has n = 777811 features
(trigrams) and m = 11314 examples (articles). Each example contains an average of 425 nonzero
features. The total number of nonzero entries in the data matrix A is p = 4802169. We standardized
the data set using implicit standardization, as explained in Section 5.2, solving three £;-regularized
LRPs, with A = 0.5Amax, A = 0.1Amax, and A = 0.05Aax. (For the value A = 0.01Amax, the runtime
is on the order of one hour. This case is not of practical interest, and so not reported here, since
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A/Amax | card(w) | Iterations | PCG iterations | Time (sec)
0.5 9 43 558 134
0.1 544 60 1036 256
0.05 2531 58 2090 501

Table 2: Performance of truncated Newton interior-point method on the 20 newsgroup data set
(n = 777811 features, m = 11314 examples) for 3 values of A.
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Figure 4: Progress of the truncated Newton interior-point method on the 20 Newsgroups data set
for (&) A = 0.5Amax, (0) A = 0.1Amax, and (¢) A = 0.05Anax. Left. Duality gap versus
iterations. Right. Duality gap versus cumulative PCG iterations.

the cardinality of the optimal solution is around 10000 and comparable to the number of examples.)
The performance of the algorithm, and the cardinality of the weight vectors, is given in Table 2.
Figure 4 shows the progress of the algorithm, with duality gap versus iteration (lefthand plot), and
duality gap versus cumulative PCG iteration (righthand plot).

The number of iterations required to solve the problems ranges between 43 and 60, depending on
A. The more relevant measure of computational effort is the total number of PCG iterations, which
ranges between around 500 and 2000, again, increasing with decreasing A, which corresponds to
increasing card(w). The average number of PCG iterations, per iteration of the truncated Newton
interior-point method, is around 13 for A = 0.5Amax, 17 for A = 0.1Amax, and 36 for A = 0.05A max.
(The variance in the number of PCG iterations required per iteration, however, is large.) The running
time is consistent with a cost of around 0.24 seconds per PCG iteration. The increase in running
time, for decreasing A, is due primarily to an increase in the average number of PCG iterations
required per iteration, but also from an increase in the overall number of iterations required.

5.3.3 RANDOMLY GENERATED PROBLEMS

We generated a family of 21 data sets, with the number of features n varying from one hundred
to ten million, and m = 0.1n examples. The data were generated using the same general method
described in Section 4.2, but with A sparse, with an average number of nonzero features per example
around 30. Thus, the total number of nonzero entries in A is p =~ 30m. We standardized the data
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Figure 5: Runtime of the truncated Newton interior-point method, for randomly generated sparse
problems, with three values of A.

set using implicit standardization, as explained in Section 5.2, solving each problem instance for
the three values A = 0.5Amax, A = 0.1Amax, and A = 0.05Amax. The total runtime, for the 63 /4-
regularized LRPs, is shown in Figure 5. The plot shows that runtime increases as A decreases, and
grows approximately linearly with problem size.

We compare the runtimes of the truncated Newton interior-point and the basic interior-point
method using dense linear algebra methods to compute the search direction. Figure 6 shows the re-
sults for A = 0.1A\max. The truncated Newton interior-point method is far more efficient for medium
problems. For large problems, the basic interior-point method fails due to memory limitations, or
extremely long computation times.

By fitting an exponent to the data over the range from n = 320 to the largest problem successfully
solved by each method, we find that the basic interior-point method scales as O(n?8) (which is
consistent with the basic flop count analysis, which predicts O(n®)). For the truncated Newton
interior-point method, the empirical complexity is O(n-3).

When sparse matrix methods are used to compute the search direction in the basic interior-
point method, we get an empirical complexity of O(n??) for the Matlab implementation of the
basic interior-point method that uses sparse matrix methods, showing a good efficiency gain over
dense methods, for medium scale problems. The C implementation would have the same empirical
complexity as the Matlab one with a smaller constant hidden in the O(-) notation.

5.3.4 PRECONDITIONER PERFORMANCE

To examine the effect of the preconditioner (17) on the efficiency of the approximate search direction
computation, we compare the eigenvalue distributions of the Hessian H and the preconditioned
Hessian P~Y/2HP~1/2, for the colon gene tumor problem (n = 2000 features, m = 62 examples) at
the 15th iterate, in Figure 7. The eigenvalues of the preconditioned Hessian are tightly clustered,
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Figure 6: Runtime of (a) the basic interior-point method and (b) the truncated Newton interior-point
method, for a family of randomly generated sparse problems.
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Figure 7: Eigenvalue distributions of Hessian and preconditionned Hessian, at the 15th iterate, for
the colon gene tumor problem, for A = 0.5Amax (left) and A = 0.05Anax (right).

with just a few extreme eigenvalues, which explains the good performance with relatively few PCG
iterations per iteration (Demmel, 1997, 86.6).

6. Computing the Regularization Path

In this section we consider the problem of solving the ¢;-regularized LRP for M values of the
regularization parameter A,

This can be done by applying the methods described above, for each of the M problems. This
is called a cold-start approach, since each problem is solved independently of the others. This
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is efficient when multiple processors are used, since the LRPs can be solved simultaneously, on
different processors. But when one processor is used, we can solve these M problems much more
efficiently by solving them sequentially, using the previously computed solution as a starting point
for the next computation. This is called a warm-start approach.

We first note that the solution for A = A1 = Amax is (log(m;./m_),0,0). Since this point does not
satisfy |w;| < u;, it cannot be used to initialize the computation for A = A,. We modify it by adding
a small increment to u to get

(v w® u®y = (log(m, /m_),0, (€aps/(NA))1),

which is strictly feasible. In fact, it is on the central path with parameter t = 2n/g,ps, and so is
€aps-Suboptimal. Note that so far we have expended no computational effort.

Now for k = 2,...,M we compute the solution (v(K,wk u(®) of the problem with A\ = Ay, by
applying the interior-point method, with starting point modified to be

(Vinit, Winit, Uinit) = (V&1 wikD) y(k=1)y,

and initial value of t set to t = 2n/€zps.

In the warm-start technique described above, the number of grid points, M, is fixed in advance.
The grid points (and M) can be chosen adaptively on the fly, while taking into account the curvature
of the regularization path trajectories, as described in Park and Hastie (2006a).

6.1 Numerical Results

Our first example is the leukemia cancer gene expression data, for M = 100 values of A, uniformly
distributed on a logarithmic scale over the interval [0.001Amax,Amax]. (For this example, Amax =
0.37.) The left plot in Figure 8 shows the regularization path, that is, w*), versus regularization
parameter A. The right plot shows the number of iterations required to solve each problem from a
warm-start, and from a cold-start.

The number of cold-start iterations required is always near 36, while the number of warm-start
iterations varies, but is always smaller, and typically much smaller, with an average value of 3.1.
Thus the computational savings for this example is over 11 : 1.

Our second example is the 20 Newsgroups data set, with M = 100 values of A uniformly spaced
on a logarithmic scale over [0.05Amax, Amax|. For this problem we have Aynax = 0.12. The top plot
in Figure 9 shows the regularization path. The bottom left plot shows the total number of PCG
iterations required to solve each problem, with the warm-start and cold-start methods. The bottom
right plot shows the cardinality of w as a function of A.

Here too the warm-start method gives a substantial advantage over the cold-start method, at least
for A not too small, that is, as long as the optimal weight vector is relatively sparse. The total runtime
using the warm-start method is around 2.8 hours, and the total runtime using the cold-start method
is around 6.2 hours, so the warm-start methods gives a savings of around 2 : 1. If we consider only
the range from 0.1Amax t0 Amax, the savings increasesto 5 : 1.

We note that for this example, the number of events (i.e., a weight transitioning between zero
and nonzero) along the regularization path is very large, so methods that attempt to track every event
will be very slow.

1543



KoH, KIM AND BOYD

40r e T o s o =

= cold start
@ 307
'S

2 o

= L

=2 o 20t

(5] [

= S
=
o warm start
£ 10

—0.3- : : : 0 ‘ s
1073}\max 1072)\max A 1071)\max Amax 1073)\max 1072}\max A 1071)\max Amax

Figure 8: Left. Regularization path for leukemia cancer gene expression data. Right. Iterations
required for cold-start and warm-start methods.

7. Comparison

In this section we compare the performance of our basic and truncated Newton interior-point meth-
ods, implemented in C (called 11_logreg), with several existing methods for ¢1-regularized logistic
regression, We make comparisons with MOSEK (MOSEK ApS, 2002), IRLS-LARS (Lee et al., 2006),
BBR (Genkin et al., 2006), and glmpath (Park and Hastie, 2006a).

MOSEK is a general purpose primal-dual interior-point solver, which is known to be quite effi-
cient compared to other standard solvers. MOSEK can solve ¢1-regularized LRPs using the separable
convex formulation (9), or by treating the problem as a geometric program (GP) (see Boyd et al.,
2006). We used both formulations and report the better results here in each case. MOSEK uses a
stopping criterion based on the duality gap, like our method.

IRLS-LARS alternates between approximating the average logistic loss by a quadratic approx-
imation at the current iterate, and solving the resulting ¢1-regularized least squares problem using
the LARS method (Efron et al., 2004) to update the iterate. IRLS-LARS outperforms many existing
methods for ¢1-regularized logistic regression including GenLASSO (Roth, 2004), SCGIS (Goodman,
2004), Gl1ce (Lokhorst, 1999), and Grafting (Perkins and Theiler, 2003). IRLS-LARS used in
our comparison is implemented in Matlab and C, with the LARS portion implemented in C. The
hybrid implementation is called IRLS-LARS-MC and available from http://ai.stanford.edu/
“silee/softwares/irlslars.htm. We ran it until the primal objective is within tolerance from
the optimal objective value, which is computed using 11_logreg, with small (10~*?) duality gap.

BBR, implemented in C, uses the cyclic coordinate descent method for Bayesian logistic regres-
sion. The C implementation is available from http://www.stat.rutgers.edu/ madigan/BBR/.
The stopping criterion is based on lack of progress, and not on a suboptimality bound or duality gap.
Tightening the tolerance for BBR greatly increased its running time, and only had a minor effect on
the final accuracy.

glmpath uses a path-following method for generalized linear models, including logistic models,
and computes a portion of the regularization path. It is implemented in the R environment and avail-
able fromhttp://cran.r-project.org/src/contrib/Descriptions/glmpath.html. We com-
pared glmpath to our warm-start method, described in Section 6.
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Figure 9: Top. Regularization path for 20 newsgroup data. Bottom left. Total PCG iterations re-
quired by cold-start and warm-start methods. Bottom right. card(w) versus A.
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We report the run times of the methods, using the different stopping criteria described above. We
also report the actual accuracy achieved, that is, the difference between the achieved primal objective
and the optimal objective value (as computed by 11_logreg with duality gap 10~12). However, it
is important to point out that it is very difficult, if not impossible, to carry out a fair comparison
of solution methods, due to the issue of implementation (which can have a great influence on the
algorithm performance), the choice of algorithm parameters, and the different stopping criteria.
Therefore, the comparison results reported below should be interpreted with caution.

We report comparison results using four data sets: the leukemia cancer gene expression and
spambase data sets, two dense benchmark data sets used in Section 4.1, the Internet advertisements
data set, the medium sparse data set used in Section 5.3, and the 20 Newsgroups data set, the large
sparse data set used in Section 5.3. When the large 20 Newsgroups data set was standardized, the
three existing solvers could not handle a data set of this size, so it was not standardized. The solvers
could handle the standardized Internet advertisements data set but do not exploit the sparse plus
rank-one structure of the standardized data matrix. Therefore, the Internet advertisements data set
was not standardized as well. For small problems (leukemia and spambase), the solvers were all run
on a 3.2GHz Pentium IV under Linux; for medium and large problem (Internet advertisements and
20 Newsgroups), the solvers were run on an AMD Opteron 254 (with 8GB RAM) under Linux.

The regularization parameter A can strongly affect the runtime of the methods, including ours.
For each data set, we considered many values of the regularization parameter A over the interval
[0.0001Amax, Amax] (Which appears to cover the range of interest for many standardized problems).
We report here the results with A = 0.001A 2« for the two small benchmark data. The cardinality
of the optimal solution is 21 for the leukemia data and 54 for the spambase data, larger than half of
the minimum of the number of features and the number of examples. For the two unstandardized
problems, ¢1-regularized LR with a regularization parameter in the interval [0.0001A ynax, Amax] Yields
a very sparse solution. We used A = 0.0001A o« for the Internet advertisements and A = 0.001A max
for the 20 Newsgroups data. The cardinalities of optimal solutions are relatively very small (19
for the Internet advertisements and 247 for the 20 Newsgroups) compared with the sizes of the
problems.

Table 3 summarizes the comparison results for the four problems. Here, the tolerance has a dif-
ferent meaning depending on the method, as described above. As shown in this table, our method
is as fast as, or faster than, existing methods for the small two data sets, but the discrepancy in
performance is not significant, since the problems are small. For the unstandardized Internet adver-
tisements data set, our method is most efficient. MOSEK could not handle the unstandardized large
20 Newsgroups data set, so we compared 11_logreg with BBR and IRLS-LARS-MC on the unstan-
dardized 20 Newsgroups data set, for the regularization parameter A = 0.001Aax. The truncated
Newton interior-point method solves the problem to the accuracy 2 x 10~° in around 100 seconds
and to a higher accuracy with relatively small additional run time; BBR solves them to this ultimate
accuracy in a comparable time, but slows down when attempting to compute a solution with higher
accuracy.

Finally, we compare the runtimes of the warm-start method and glmpath. We consider the
leukemia cancer gene expression data set and the Internet advertisements data set as benchmark
examples of small dense and medium sparse problems, respectively. For each data set, the warm-
start method finds M points (W), k =1, ..., M) on the regularization path, with A uniformly spaced
on a logarithmic scale over the interval [0.001Amax, Amax]. glmpath finds an approximation of the
regularization path by choosing the kink points adaptively over the same interval. The results are
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Program Tol. Leukemia Spambase Internet adv. Newsgroups
time | accuracy | time | accuracy | time | accuracy | time | accuracy
[11ogreg 107 [037 | 2x10° | 034 |2x10° | 0.14 | 4x10° 90 | 2x10°°

107% [ 057 [1x10719 1074 | 1x107° | 0.27 | 5x107° 140 | 2x 10710

IRLS-LARS-MC | 1074 [ 0.75 | 6x10°°% [ 029 | 9x10°® 12 [ 1x107° 450 | 8x10~°

108 [ 081 |6x10 M |037|[3x10M] 25]1x1071°] 1200 | 7x10°°

MOSEK 1074 9]8x10°° 10 [ 8x10°8 1.3 [3x107° - -
1078 10 [ 3x107° 11 [5x10° 8| 14| 4x107 8 - -
BBR 10~4 15[ 1x10°7 39 [3x10°% | 044 | 1x10°7 140 | 2x10°°

1071 73 [ 4x10% | 300 | 1x10 | 11]1x10 1] 850 | 1x10°°

Table 3: Comparison results with two standardized data sets (leukemia and spambase) and two
unstandardized data sets (Internet advertisements and 20 Newsgroups). The regularization
parameter is taken as A = 0.001Anax for leukemia and spambase, A = 0.0001A . for
Internet advertisements and A = 0.001A yax for 20 Newsgroups.

Data warm-start (M = 25) | warm-start (M = 100) | gl npat h
Leukemia 2.8 6.4 1.9
Internet 5.2 13 940

Table 4: Regularization path computation time (in seconds) of the warm-start method and glmpath
for standardized leukemia cancer gene expression data and Internet advertisements data.

shown in Table 4. For the small leukemia data set, glmpath is faster than the warm-start method.
The warm-start method is more efficient than glImpath for the Internet advertisements data set, a
medium-sized sparse problem. The performance discrepancy is partially explained by the fact that
our warm-start method exploits the sparse plus rank-one structure of the standardized data matrix,
whereas glmpath does not.

8. Extensions and Variations

The basic interior-point method and the truncated Newton variation can be extended to general ¢1-
regularized convex loss minimization problems, with twice differentiable loss functions, that have
the form
minimize (1/m) S, @(zi) +A||wl|1
subjectto zy=wTaj+vbj+¢c, i=1,...,m,
with variables are ve R, w € R", and z € R™, and problem data ¢; € R, aj € R", and b; € R
determined by a set of given (observed or training) examples

(19)

(xi,yi) ER"xR, i=1,....m.

Here ¢: R — R is a loss function which is convex and twice differentiable. Prior work related to
the extension includes Park and Hastie (2006a), Rosset (2005), and Tibshirani (1997).

In ¢1-regularized (binary) classification, we have y; € {—1,41} (binary labels), and z; has the
form z; = y;(W'x +V), so we have the form (19) with a; = yix;, by = y;, and ¢; = 0. The associ-
ated classifier is given by y = sgn(w"x+ V). The loss function @ is small for positive arguments,
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and grows for negative arguments. When @ is the logistic loss function f in (1), this general /-
regularized classification problem reduces to the ¢;-regularized LRP. When ¢ is the convex loss
function @(u) = —log ®(u), where @ is the cumulative distribution function of the standard normal
distribution, this ¢;-regularized classification problem reduces to the ¢1-regularized probit regres-
sion problem. More generally, ¢1-regularized estimation problems that arise in generalized linear
models (McCullagh and Nelder, 1989; Hastie et al., 2001) for binary response variables (which in-
clude logistic and probit models) can be formulated problems of the form (19); see Park and Hastie
(20064a) for the precise formulation.

In ¢1-regularized linear regression, we have y; € R, and zj has the form z; = w™x 4+ v —y;,
which is the difference between y; and its predicted value, w' x; +Vv. Thus ¢;-regularized regression
problems have the form (19) with a; = x;, by = 1, and ¢; = —y;. Typically @is symmetric, with ¢(0) =
0. When the loss function is quadratic, that is, @(u) = u?, the convex loss minimization problem (19)
is the ¢1-regularized least squares regression problem studied extensively in the literature.

The dual of the ¢1-regularized convex loss minimization problem (19) is

maximize —(1/m)S™, @ (-m6;)+06'c
subjectto  ||ATO]j. <A, bT8=0,

where A= [a; --- am|’ € R™", the variable is 6 € R™, and ¢" is the conjugate of the loss function
@,
@' (y) = sup (yu—q(u)).
uer
As with ¢1-regularized logistic regression, we can derive a bound on the suboptimality of (v,w), by
constructing a dual feasible point 8, from an arbitrary w,

B (p((wTal +\7b1 —I—Cl)
0= (s/m)p(\7,w), p(\7,W) = )
@ (W' am + Vbm 4 Cm)

where v is the optimal intercept for the offset w,
m
v=argmin(1/m) Z(p(wTai +Vvbj +¢i),
i=

and the scaling constant s is given by s = min {mA/||AT p(V,w))|e, 1}

Using this method for cheaply computing a dual feasible point and associated duality gap for
any (v,w), we can extend the custom interior-point method for ¢;-regularized LRPs to general ¢1-
regularized convex (twice differentiable) loss problems.

Other possible extensions include ¢1-regularized Cox proportional hazards models (Cox, 1972).
The associated ¢1-regularized problem does not have the form (19), but the idea behind the custom
interior-point method for ¢1-regularized LRPs can be readily extended. The reader is referred to
Park and Hastie (2006a) and Tibshirani (1997) for related work on computational methods for /-
regularized Cox proportional hazards models.
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Appendix A. Standardization

Standardization is a widely used pre-processing step applied to the feature vector, so that each
(transformed) feature has zero mean and unit variance (over the examples) (Ryan, 1997). The mean
feature vector is p = (1/m) 3 x;, and the vector of feature standard deviations o is defined by

1/2
o) = <(1/m) i(Xij —uj)2> . j=1,...,n
is
where x;j is the jth component of x;. The standardized feature vector is defined as
3¢ — diag(0) " (x — p).

When the examples are standardized, we obtain the standardized data matrix

A% — diag(b)(X — 1u" ) diag(o) ! = Adiag(o)~* — bp" diag(c) ?, (20)
where X = [x1 ---Xm|". We carry out logistic regression (possibly regularized) using the data matrix

A% in place of A, to obtain (standardized) logistic model parameters w9, v$9. In terms of the
original feature vector, our logistic model is

1 1
1+ exp (—b(wsd Txstd - ystd)) ~ 14 exp (—b(WT x +Vv))

Prob(b|x) =

where
w=diag(o)"tw?,  v=v"_w"T diag(c) " *p.

We point out one subtlety here related to sparsity of the data matrix. For small or medium sized
problems, or when the original data matrix A is dense, forming the standardized data matrix Astd
does no harm. But when the original data matrix A is sparse, which is the key to efficient solution
of large-scale ¢1-regularized LRPs, forming A% is disastrous, since A% is in general dense, even
when A is sparse.

But we can get around this problem, when working with very large problems, by never actually
forming the matrix A%9, as explained in Section 5.
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