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Abstract

A large number of variants of the Perceptron algorithm have been proposed and partially evaluated
in recent work. One type of algorithm aims for noise tolerance by replacing the last hypothesis
of the perceptron with another hypothesis or a vote among hypotheses. Another type simply adds
a margin term to the perceptron in order to increase robustness and accuracy, as done in support
vector machines. A third type borrows further from support vector machines and constrains the
update function of the perceptron in ways that mimic soft-margin techniques. The performance
of these algorithms, and the potential for combining different techniques, has not been studied in
depth. This paper provides such an experimental study and reveals some interesting facts about the
algorithms. In particular the perceptron with margin is an effective method for tolerating noise and
stabilizing the algorithm. This is surprising since the margin in itself is not designed or used for
noise tolerance, and there are no known guarantees for such performance. In most cases, similar
performance is obtained by the voted-perceptron which has the advantage that it does not require
parameter selection. Techniques using soft margin ideas are run-time intensive and do not give
additional performance benefits. The results also highlight the difficulty with automatic parameter
selection which is required with some of these variants.

Keywords: perceptron algorithm, on-line learning, noise tolerance, kernel methods

1. Introduction

The success of support vector machines (SVM) (Boser et al., 1992; Cristianini and Shawe-Taylor,
2000) has led to increasing interest in the perceptron algorithm. Like SVM, the perceptron algorithm
has a linear threshold hypothesis and can be used with kernels, but unlike SVM, it is simple and
efficient. Interestingly, despite a large number of theoretical developments, there is no result that
explains why SVM performs better than perceptron, and similar convergence bounds exist for both
(Graepel et al., 2000; Cesa-Bianchi et al., 2004). In practice, SVM is often observed to perform
slightly better with significant cost in run time. Several on-line algorithms have been proposed
which iteratively construct large margin hypotheses in the feature space, and therefore combine
the advantages of large margin hypotheses with the efficiency of the perceptron algorithm. Other
variants adapt the on-line algorithms to work in a batch setting choosing a more robust hypothesis
to be used instead of the last hypothesis from the on-line session. There is no clear study in the
literature, however, that compares the performance of these variants or the possibility of combining
them to obtain further performance improvements. We believe that this is important since these
algorithms have already been used in applications with large data sets (e.g., Collins, 2002; Li et al.,
2002) and a better understanding of what works and when can have a direct implication for future
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use. This paper provides such an experimental study where we focus on noisy data and more
generally the “unrealizable case” where the data is simply not linearly separable. We chose some
of the basic variants and experimented with them to explore their performance both with hindsight
knowledge and in a statistically robust setting.

More concretely, we study two families of variants. The first explicitly uses the idea of hard and
soft margin from SVM. The basic perceptron algorithm is mistake driven, that is, it only updates
the hypothesis when it makes a mistake on the current example. The perceptron algorithm with
margin (Krauth and Mézard, 1987; Li et al., 2002) forces the hypothesis to have some margin by
making updates even when it does not make a mistake but where the margin is too small. Adding
to this idea, one can mimic soft-margin versions of support vector machines within the perceptron
algorithm that allow it to tolerate noisy data (e.g., Li et al., 2002; Kowalczyk et al., 2001). The
algorithms that arise from this idea constrain the update function of the perceptron and limit the
effect of any single example on the final hypothesis. A number of other variants in this family
exist in the literature. Each of these performs margin based updates and has other small differences
motivated by various considerations. We discuss these further in the concluding section of the paper.

The second family of variants tackles the use of on-line learning algorithms in a batch setting,
where one trains the algorithm on a data set and tests its performance on a separate test set. In
this case, since updates do not always improve the error rate of the hypothesis (e.g., in the noisy
setting), the final hypothesis from the on-line session may not be the best to use. In particular,
the longest survivor variant (Kearns et al., 1987; Gallant, 1990) picks the “best” hypothesis on the
sequential training set. The voted perceptron variant (Freund and Schapire, 1999) takes a vote
among hypotheses produced during training. Both of these have theoretical guarantees in the PAC
learning model (Valiant, 1984). Again, other variants exist in the literature which modify the notion
of “best” or the voting scheme among hypotheses and these are discussed in the concluding section
of the paper.

It is clear that each member of the first family can be combined with each member of the
second. In this paper we report on experiments with a large number of such variants that arise when
combining some of margin, soft margin, and on-line to batch conversions. In addition to real world
data, we used artificial data to check the performance in idealized situations across a spectrum of
data types.

The experiments lead to the following conclusions: First, the perceptron with margin is the most
successful variant. This is surprising since among the algorithms experimented with it is only one
not designed for noise tolerance. Second, the soft-margin variants on their own are weaker than
the perceptron with margin, and combining soft-margin with the regular margin variant does not
provide additional improvements.

The third conclusion is that in most cases the voted perceptron performs similarly to the per-
ceptron with margin. The voted perceptron has the advantage that it does not require parameter
selection (for the margin) that can be costly in terms of run time. Combining the two to get the
voted perceptron with margin has the potential for further improvements but this occasionally de-
grades performance. Finally, both the voted perceptron and the margin variant reduce the deviation
in accuracy in addition to improving the accuracy. This is an important property that adds to the
stability and robustness of the algorithms.

The rest of the paper is organized as follows. The next section reviews all the algorithms and our
basic settings for them. Section 3 describes the experimental evaluation. We performed two kinds of
experiments. In “parameter search” we report the best results obtained with any parameter setting.
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Input set of examples and their labels Z = ((x1,y1), . . . ,(xm,ym)) ∈ (Rn × {−1,1})m,
η, θInit, C

• Initialize w← 0n and θ← θInit

• for every training epoch:

• for every x j ∈ X :

– ŷ← sign(〈w,x j〉−θ)

– if (ŷ 6= y j)

∗ w← w+ηy jx j

∗ θ← θ+ηy jC

Figure 1: The Basic Perceptron Algorithm

This helps set the scope and evaluate the potential of different algorithms to improve performance
and provides insight about their performance, but it does not give statistically reliable results. In
“parameter optimization” the algorithms automatically select the parameters and the performance
can be interpreted statistically. The concluding section further discusses the results and puts related
work in their context leading to directions for future work.

2. Algorithms

This section provides details of all the algorithms used in the experiments and our basic settings for
them.

2.1 The Perceptron Algorithm

The perceptron algorithm (Rosenblatt, 1958) takes as input a set of training examples in R
n with

labels in {−1,1}. Using a weight vector, w ∈R
n, initialized to 0n, and a threshold, θ, it predicts the

label of each training example x to be y = sign(〈w,x〉−θ). The algorithm adjusts w and θ on each
misclassified example by an additive factor. The algorithm is summarized in Figure 1 following
the form by Cristianini and Shawe-Taylor (2000). Unlike Cristianini and Shawe-Taylor (2000), we
allow for a non-zero value of θInit and we allow C to be initialized to any value.

The “learning rate” η controls the extent to which w can change on a single update. Note that
if θ is initialized to 0 then η has no effect since sign(〈w,xi〉 − θ) = yi iff sign(η(〈w,xi〉 − θ)) =
yi. However, the initial choice of θ is important as it can be significant in early iterations of the
algorithm. Note also that there is only one “degree of freedom” between η and θInit since scaling
both by the same factor does not alter the result. So one could fix η = 1 and vary only θInit . But we
keep the general form for convenience.

When the data are linearly separable via some hyperplane (w,θ), the margin is defined as γ =
min1≤i≤m(yi(〈w,xi〉−θ)). When ‖w‖= 1, γ is the minimum Euclidean distance of any point in the
data set to (w,θ). If the data are linearly separable, and θ is initialized to 0, the perceptron algorithm
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is guaranteed to converge in≤ (R
γ )2 iterations (Novikoff, 1962; Cristianini and Shawe-Taylor, 2000),

where R = max1≤i≤m ‖xi‖.
In the case of non-separable data, the extent to which a data point fails to have margin γ via

the hyperplane w can be quantified by a slack variable ξi = max(0,γ− yi(〈w,xi〉+ θ)). Observe
that when ξi = 0, the example xi has margin at least γ via the hyperplane defined by (w,θ). The
perceptron is guaranteed to make no more than ( 2(R+D)

γ )2 mistakes on m examples, for any w,γ > 0

where D =
√

∑m
i=1 ξ2

i (Freund and Schapire, 1999; Shalev-Shwartz and Singer, 2005). Thus one can
expect some robustness to noise.

It is well known that the perceptron can be re-written in “dual form” whereby it can be used
with kernel functions (Cristianini and Shawe-Taylor, 2000). The dual form of the perceptron is
obtained by observing that the weight vector can be written as w = ∑m

i=1 ηαiyixi where αi is the
number of mistakes that have been made on example i. Subsequently, a new example x j is classified
according to sign(SUM− θ) where SUM = ∑i ηαiyi〈xi,x j〉. Replacing the inner product with a
kernel function yields the kernel perceptron. All the perceptron variants we discuss below have dual
form representations. However, the focus of this paper is on noise tolerance and this is independent
of the use of primal or dual forms and the use of kernels. We therefore present all the algorithms in
primal form.

2.2 The λ-trick

The λ-trick (Kowalczyk et al., 2001; Li et al., 2002) attempts to minimize the effect of noisy
examples during training similar to the L2 soft margin technique used with support vector ma-
chines (Cristianini and Shawe-Taylor, 2000). We classify example x j according to sign(SUM−θ)
where

SUM = 〈w,x j〉+ I jy jλ‖x j‖2 (1)

and where I j is an indicator variable such that

I j =

{

1 if x j was previously classified incorrectly
0 otherwise

.

Thus during training, if a mistake has been made on x j then in future iterations we increase SUM
artificially by a factor of λ‖x j‖2 when classifying x j but not when classifying other examples. A
high value of λ can make the term y jλ‖x j‖2 dominate the sum and make sure that x j does not lead
to an update, so it is effectively ignored. In this way λ can prevent large number of updates on noisy
(as well as other) examples limiting their effect.

We note that this technique is typically presented using an additive λ instead of λ‖x j‖2. While
there is no fundamental difference, adding λ‖x j‖2 is more convenient in the experiments since it
allows us to use the same values of λ for all data sets (since the added term is scaled relative to the
data).

2.3 The α-bound

This variant is motivated by the L1 soft margin technique used with support vector machines (Cris-
tianini and Shawe-Taylor, 2000). The α-bound places a bound α on the number of mistakes the
algorithm can make on a particular example, such that when the algorithm makes a mistake on
some xi, it does not update w if more than α mistakes have already been made on xi. As in the case
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of the λ-trick, the idea behind this procedure is to limit the influence of any particular noisy exam-
ple on the hypothesis. Intuitively, a good setting for α is some fraction of the number of training
iterations. To see that, assume that the algorithm has made α mistakes on a particular noisy example
xk. In all subsequent training iterations, xk never forces an update, whereas the algorithm may con-
tinue to increase the influence of other non-noisy examples. If the ratio of non-noisy examples to
noisy examples is high enough the algorithm should be able to bound the effect of noisy examples
in the early training iterations while leaving sufficient un-bounded non-noisy examples to form a
good hypothesis in subsequent iterations. While this is a natural variant, we are not aware of any
experimental results using it. Note that in order for the α-bound to work effectively, the algorithm
must perform a high enough number of training iterations.

2.4 Perceptron Using Margins

The classical perceptron attempts to separate the data but has no guarantees on the separation mar-
gin obtained. The Perceptron Algorithm using Margins (PAM) (Krauth and Mézard, 1987) attempts
to establish such a margin, τ, during the training process. Following work on support vector ma-
chines (Boser et al., 1992; Cristianini and Shawe-Taylor, 2000) one may expect that providing the
perceptron with higher margin will add to the stability and accuracy of the hypothesis produced.

To establish the margin, instead of only updating on examples for which the classifier makes a
mistake, PAM updates on x j if

y j(SUM−θ) < τ

where SUM is as in Equation (1). Notice that this includes the case of a mistake where y j(SUM−
θ) < 0 and the case of correct classification with low margin when 0≤ y j(SUM−θ) < τ. In this way,
the algorithm “establishes” some minimal separation of the data. Notice that the weight vector w is
not normalized during the learning process and its norm can increase with updates. Therefore, the
constraint imposed by τ becomes less restrictive as learning progresses, and the normalized margin
is not τ. When the data are linearly separable and τ < γopt , PAM finds a separating hyperplane
with a margin that is guaranteed to be at least γopt

τ√
8(ηR2+τ) , where γopt is the maximum possible

margin (Krauth and Mézard, 1987; Li et al., 2002).1

As above, it is convenient to make the margin parameter data set independent so we can use the
same values across data sets. To facilitate this we replace the above and update if

y j(SUM−θ) < τθInit

so that τ can be thought of as measured in units of θInit .
A variant of PAM exists in which a different value of τ is chosen for positive examples than

for negative examples (Li et al., 2002). This seems to be important when the class distribution is
skewed. We do not study that variant in this paper.

2.5 Longest Survivor and Voted Perceptron

The classical perceptron returns the last weight vector w, that is, the one obtained after all training
has been completed, but this may not always be useful especially if the data is noisy. This is a general
issue that has been studied in the context of using on-line algorithms that expect one example at a

1. Other variants (e.g., Gentile, 2001; Tsampouka and Shawe-Taylor, 2005; Shalev-Shwartz and Singer, 2005) do nor-
malize the weight vector and thus have better margin guarantees.
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time in a batch setting where a set of examples is given for training and one hypothesis is used at
the end to classify all future instances. Several variants exist that handle this issue. In particular
Kearns et al. (1987) show that longest survivor hypothesis, that is, the one who made the largest
number of correct predictions during training in the on-line setting, is a good choice in the sense
that one can provide guarantees on its performance in the PAC learning model (Valiant, 1984).
Several variations of this idea were independently proposed under the name of the pocket algorithm
and empirical evidence for their usefulness was provided (Gallant, 1990).

The voted perceptron (Freund and Schapire, 1999) assigns each vector a “vote” based on the
number of sequential correct classifications by that weight vector. Whenever an example is misclas-
sified, the voted perceptron records the number of correct classifications made since the previous
misclassification, assigns this number to the current weight vector’s vote, saves the current weight
vector, and then updates as normal. After training, all the saved vectors are used to classify future
examples and their classifications are combined using their votes. At first sight the voted-perceptron
seems to require expensive calculation for prediction. But as pointed out by Freund and Schapire
(1999), the output of the weight vector resulting from the first k mistakes can be calculated from the
output of the weight vector resulting from the first k−1 mistakes in constant time. So when using
the dual perceptron the prediction phase of the voted perceptron is not substantially more expensive
than the prediction phase of the classical perceptron, although it is more expensive in the primal
form.

When the data are linearly separable and given enough iterations, both these variants will con-
verge to a hypothesis that is very close to the simple perceptron algorithm. The last hypothesis will
predict correctly on all examples and indeed its vote will be the largest vote among all hypothe-
ses used. When the data are not linearly separable the quality of hypothesis may fluctuate during
training as noisy examples are encountered.

2.6 Algorithms Summary

Figure 2 summarizes the various algorithms and prediction strategies in primal form. The algorithms
have corresponding dual forms and kernelized versions that we address in the experimental sections.

2.7 Multi-Class Data

Some of the data sets we experiment with have more than two labels. For these we used a standard
solution as follows. For each label l, we train a classifier to separate examples labeled l (the positive
examples) from other examples (all of which become negative examples). This can be done on-line
where we train all the classifiers “in parallel”. During testing we calculate the weight given by each
classifier (before the sign function is applied) and choose the one maximizing the weight.

3. Experimental Evaluation

We ran two sets of experiments with the algorithms described above. In one set of experiments we
searched through a pre-determined set of values of τ, α, and λ by running each of the classical,
longest survivor, and voted perceptron using 10-fold cross-validation and parameterized by each
value of τ, α, and λ as well as each combination of τ×α and τ×λ. This first set of experiments is
called parameter search. The purpose of the parameter search experiments was to give us a com-
prehensive view of the effects of the various parameters. This can show whether a method has any
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TRAINING: Input set of examples and their labels
Z = ((x1,y1), . . . ,(xm,ym)) ∈ (Rn×{−1,1})m, θInit, η, C, α-bound, λ, τ

• Initialize α← 0m,k← 0,w0← 0n, tally← 0, best tally← 0, θ0← θInit ,θl.s.← θInit

• for every training iteration

• for every z j ∈ Z:

– SUM← 〈wk,x j〉+ I(α j 6=0) y jλ‖x j‖2

– Predict:

∗ if SUM < θk− τ then ŷ =−1

∗ else if SUM > θk + τ then ŷ = 1

∗ else ŷ = 0 // This forces an update

– if (ŷ 6= y j) AND (α j < α-bound)
∗ wk+1← wk +ηy jx j

∗ α j← α j +1

∗ Update ‘‘mistakes’’ data structure

∗ θk+1← θk +ηy jC

∗ votek+1← 0

∗ k← k +1

∗ tally← 0

– else if (ŷ = y j)

∗ votek← votek +1

∗ tally← tally+1

∗ if (tally > best tally)

· best tally← tally

· wl.s.← wk

· θl.s.← θk

PREDICTION: To predict on a new example xm+1:

• CLASSICAL:

– SUM← 〈wk,xm+1〉
– ŷ← sign(SUM−θk)

• LONGEST SURVIVOR:

– SUM← 〈wl.s.,xm+1〉
– ŷ← sign(SUM−θl.s.)

• VOTED:

– for i← 1 to k

∗ SUM← 〈wi,xm+1〉
∗ ŷ← sign(SUM−θi)

∗ VOTES ← VOTES +votei ŷ

– ŷ f inal ← sign(VOTES)

Figure 2: Illustration of All Algorithm Variants
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chance of improving performance since the experiments give us hindsight knowledge. The exper-
iments can also show general patterns and trends in the parameter landscape again giving insight
into the performance of the methods. Notice that parameter search cannot be used to indicate good
values of parameters as this would be hand-tuning the algorithm based on the test data. However, it
can guide in developing methods for automatic selection of parameters.

In the second set of experiments, we used the same set of values as in the first experiment,
but using a method for automatic selection of parameters. In particular we used a “double cross
validation” where in each fold of the cross validation (1) one uses parameter search on the training
data only using another level of cross validation, (2) picks values of parameters based on this search,
(3) trains on the complete training set for the fold using these values, and (4) evaluates on the
test set. We refer to this second set of experiments as parameter optimization. This method is
expensive to run as it requires running all combinations of parameter values in each internal fold of
the outer cross validation. So if both validations use 10 folds then we run the algorithm 100 times
per parameter setting. This sets a strong limitation on the number of parameter variations that can
be tried. Nonetheless this is a rigorous method of parameter selection.

Both sets of experiments were run on randomly-generated artificial data and real-world data
from the University of California at Irvine (UCI) repository and other sources. The purpose of
the artificial data was to simulate an ideal environment that would accentuate the strengths and
weaknesses of each algorithm variant. The other data sets explore the extent to which this behavior
is exhibited in real world problems.

For further comparison, we also ran SVM on the data sets using the L1-norm soft margin and
L2-norm soft margin. We used SVM Light (Joachims, 1999) and only ran parameter search.

3.1 Data Set Selection and Generation

We have experimented with 10 real world data sets of varying size and 150 artificial data sets
composed of 600 examples each.

We first motivate the nature of artificial data used by discussing the following four idealized
scenarios. The simplest, type 1, is linearly separable data with very small margin. Type 2 is linearly
separable data with a larger, user-defined margin. For type 3 we first generate data as in type 1,
and then add random class noise by randomly reversing the labels of a given fraction of examples.
For type 4, we generate data as in type 2, and then add random class noise. One might expect
that the basic perceptron algorithm will do fine on type 1 data, the perceptron with margin will
do particularly well on type 2 data, that noise tolerant variants without margin will do well on
type 3, and that some combination of noise tolerant variant with margin will be best for type 4
data. However, our experiments show that the picture is more complex; preliminary experiments
confirmed that the expected behavior is observed, except that the perceptron with margin performed
well on data of type 3 as well, that is, when the “natural margin” was small and the data was not
separable due to noise. In the following, we report on experiments with artificial data where the
margin and noise levels are varied so we effectively span all four different types.

Concretely the data was generated as follows. We first specify parameters for number of fea-
tures, noise rate and the required margin size. Given these, each example xi is generated inde-
pendently and each attribute in an example is generated independently using an integer value in
the range [−10,10]. We generated the weight vector, w, by flipping a coin for each example and
adding it to the weight vector on a head. We chose θ as the average of 1

2 |〈w,xi〉| over all xi. We
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Name # features* # examples Baseline
Adult 105 32561 75.9
Breast-cancer-wisconsin 9 699 65.5
Bupa 6 345 58
USPS 256 9298 N/A
Wdbc 30 569 62.7
Crx 46 690 55.5
Ionosphere 34 351 64.4
Wpbc 33 198 76.3
sonar.all-data 60 208 53.4
MNIST 784 70,000 N/A
*after preprocessing

Table 1: UCI and Other Natural Data Set Characteristics

measured the actual margin of the examples with respect to the weight vector and then discarded
any examples xi such that |〈w,xi〉 − θ| < M ∗ θ where M is the margin parameter specified. For
the noisy settings, for each example we randomly switched the label with probability equal to the
desired noise rate. In the tables of results presented below, f stands for number of features, M
stands for the margin size, and N stands for the noise rate. We generated data sets with parame-
ters ( f ,M,N)∈ {50,200,500}×{0.05,0.1,0.25,0.5,0.75}×{0,0.05,0.1,0.15,0.25}, and for each
parameter setting we generated two data sets, for a total 150 data sets.

For real world data we first selected two-class data sets from the UCI Machine Learning Repos-
itory (Newman et al., 1998) that have been used in recent comparative studies or in recent papers
on linear classifiers (Cohen, 1995; Dietterich et al., 1996; Dietterich, 2000; Garg and Roth, 2003).
Since we require numerical attributes, any nominal attribute in these data sets was translated to a
set of binary attributes each being an indicator function for one of the values. Since all these data
sets have a relatively small number of examples we added three larger data sets to strengthen sta-
tistically our conclusions: “Adult” from UCI (Newman et al., 1998), and “MNIST2” and “USPS3,”
the 10-class character recognition data sets. Due to their size, however, for the “USPS,” “MNIST,”
and “Adult” data sets, there is no outer cross-validation in parameter optimization. For ease of
comparison to other published results, we use the 7291/2007 training/test split for “USPS”, and a
60000/10000 split for “MNIST”.

The data sets used and their characteristics after the nominal-to-binary feature transformation
are summarized in Table 1. The column labeled “Baseline” indicates the percentage of the majority
class.

3.2 Exploratory Experiments and General Setup

The algorithms described above have several parameters that can affect their performance dramati-
cally. In this paper we are particularly interested in studying the effect of parameters related to noise
tolerance, and therefore we fix the value of θInit , η, C, and the number of training iterations. Prior to

2. http://yann.lecun.com/exdb/mnist/.
3. http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html.
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Figure 3: Example Learning Curve for UCI Data Set

fixing these values, we ran preliminary experiments in which we varied these parameters. In addi-
tion we ran experiments where we normalized the example vectors. The results showed that while
the performance of the algorithms overall was different in these settings, the relationship between
the performance of individual algorithms seems to be stable across these variations.

We set θInit = avg(〈xi,xi〉), initializing the threshold at the same scale of inner products. Com-
bined with a choice of η = 0.1, this makes sure that a few iterations should be able to guaran-
tee that an example is classified correctly given no other changes to the hypothesis. We also set
C = avg(〈xi,xi〉) = θInit . This is similar to the version analyzed by Cristianini and Shawe-Taylor
(2000) except that we use the average instead of maximum norm. Using this setting we essentially
maintain θ in units of θInit .

As explained above, the number of iterations must be sufficiently high to allow the α parameter
to be effective, as well as to allow the weight vector to achieve some measure of stability. Typically
a small number of iterations is sufficient, and preliminary experiments illustrated by the curve in
Figure 3 showed that 100 iterations are more than enough to allow all the algorithms to converge to
a stable error rate. Therefore, except where noted below, we report results for 100 iterations.

For the large data sets, we reduced the number of training iterations and increased η accordingly
in order to run the experiments in a reasonable amount of time; for “Adult” we set η = 0.4 with
5 training iterations and for “MNIST” we set η = 1 with 1 training iteration. For “USPS,” we
used η = 0.1 and 100 iterations for parameter search, and η = 0.1 and 10 iterations for parameter
optimization.

The parameters of interest in our experiments are τ,α,λ that control the margin and soft margin
variants. Notice that we presented these so that their values can be fixed in a way that is data
set independent. We used values for τ ∈ {0,0.125,0.25,0.5,1,2,4}, α ∈ {∞,80,60,40,20,10,5},
and λ ∈ {0,0.125,0.25,0.5,1,2,4}. Notice that the values as listed from left to right vary from no
effect to a strong effect for each parameter. We ran parameter search and parameter optimization
over all of these values, as well as all combinations τ×λ and τ×α. Since parameter optimization
over combined values is particularly expensive we have also experimented with a variant that first
searches for a good τ value and then searches for a value of α (denoted τ→ α) and a variant that
does likewise with τ and λ (denoted τ→ λ).

We did not perform any experiments involving α on “MNIST” or “Adult” as their size required
too few iterations to justify any reasonable α-bound.
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V > C V > LS LS > C LS > V C > LS C > V V = LS = C
Noise = 0 0 0 0 0 0 0 30
Noise = 0.05 12 10 11 3 0 2 16
Noise = 0.1 15 15 14 3 3 3 12
Noise = 0.15 16 14 13 5 6 3 10
Noise = 0.25 16 12 13 8 7 4 10

Table 2: Noise Percentage vs. Dominance: V = Voted, C = Classical, LS = Longest Survivor

Finally we performed a comparison of the classical perceptron, the longest survivor and the
voted perceptron algorithms without the additional variants. Table 2 shows a comparison of the ac-
curacies obtained by the algorithms over the artificial data. We ignore actual values but only report
whether one algorithm gives higher accuracy or whether they tie (the variance in actual results is
quite large). One can see that with higher noise rate the voted perceptron and longest survivor im-
prove the performance over the base algorithm. Over all 150 artificial data sets, the voted perceptron
strictly improves performance over the classical perceptron in 59 cases, and ties or improves in 138
cases. Using the distribution over our artificial data sets one can calculate a simple weak statistical
test that supports the hypothesis that using the voted algorithm does not hurt accuracy, and can often
improve it.

Except where noted, all the results reported below give average accuracy in 10-fold cross-
validation experiments. To avoid any ordering effects of the data, the training set is randomly
permuted before running the experiments.

3.3 Parameter Search

The parameter search experiments reveal several interesting aspects. We observe that in general
the variants are indeed helpful on the artificial data since the performance increases substantially
from the basic version. The numerical results are shown in Tables 3 and 4 and discussed below.
Before showing these we discuss the effects of single parameters. Figure 4 plots the effect of
single parameters for several data sets. For the artificial data set shown, the accuracy is reasonably
well-behaved with respect to the parameters and good performance is obtained in a non negligible
region; this is typical of the results from the artificial data. Data obtained for the real world data
sets show somewhat different characteristics. In some data sets little improvement is obtained with
any variant or parameter setting. In others, improvement was obtained for some parameter values
but the regions were not as large implying that that automatic parameter selection may not be easy.
Nonetheless it appears that when improvement is possible, τ on it own was quite effective when
used with the classical perceptron. Notice that τ is consistently effective across all data sets; λ and
α do not help on all data sets and λ sometimes leads to a drop in performance. As one might expect,
our preliminary experiments also showed that very large values of τ harm performance significantly.
These are not shown in the graphs as we have limited the range of τ in the experiments.

Tables 3 and 4 summarize the results of parameter search experiments on the real world data
and some of the artificial data, respectively. For each data set and algorithm the tables give the best
accuracy that can be achieved with parameters in the range tested. This is useful as it can indicate
whether an algorithm has a potential for improvement, in that for some parameter setting it gives
good performance. In order to clarify the contribution of different parameters, each column with
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Figure 4: Parameter Search on Artificial and Real-world Data

parameters among τ,α,λ includes all values for the parameter except the non-active value. For
example, any accuracy obtained in the τ column is necessarily obtained with a value τ 6= 0. The
column labeled “Nothing” shows results when all parameters are inactive.

Several things can be observed in the tables. Consider first the margin parameters. We can see
that τ is useful even in data sets with noise; this is obvious both in the noisy artificial data sets and in
the real-world data sets, all of which are inseparable in the native feature space. We can also see that
α and λ do improve performance in a number of cases. However, they are less effective in general
than τ, and do not provide additional improvement when combined with τ.

Looking next at the on-line to batch conversions we see that the differences between the basic
algorithm, the longest survivor and the voted perceptron are noticeable without margin based vari-
ants. For the artificial data sets this only holds for one group of data sets ( f = 50), the one with
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Baseline Nothing τ λ α τ×λ τ×α
breast-cancer-wisconsin Last 65.5 90.6 96.8 97.2 96.9 97.3 97.2

Longest 96.9 97.0 97.2 97.0 97.3 97.2
Voted 96.9 96.8 97.2 96.9 97.3 97.2

bupa Last 58 57.5 71.8 64.1 69.2 71.5 67.8
Longest 64.1 58.2 64.8 68.4 60.9 61.2
Voted 68.9 65.9 67.7 70.7 67.4 66.0

wdbc Last 62.7 92.4 93.2 92.8 93.3 93.9 92.6
Longest 92.4 93.2 92.6 92.4 92.8 92.8
Voted 92.3 92.0 93.2 92.4 93.2 92.4

crx Last 55.5 62.5 68.6 65.5 66.7 69.0 66.7
Longest 55.1 63.6 65.5 63.5 65.5 65.2
Voted 64.9 65.4 65.5 66.7 65.5 66.4

promoters Last 50 78.8 92.8 82.1 78.8 94.4 93.8
Longest 78.8 92.8 82.1 78.8 94.4 94.4
Voted 78.8 93.4 82.1 78.8 94.4 93.8

ionosphere Last 64.4 86.6 87.5 86.9 87.7 88.6 87.2
Longest 87.2 87.5 87.8 88.0 88.3 87.7
Voted 88.0 87.7 87.5 88.6 88.9 87.5

wpbc Last 76.3 77.3 76.4 80.6 76.9 79.0 76.4
Longest 77.2 76.4 77.4 78.5 76.9 76.4
Voted 78.8 76.4 80.6 77.4 78.5 76.4

sonar.all-data Last 53.4 71.9 74.6 72.5 77.1 75.8 79.1
Longest 75.3 77.1 73.3 77.2 77.7 78.7
Voted 75.1 77.2 73.8 77.1 78.7 77.7

USPS Last N/A 91.5 94.1 90.4 92.8 94.3 94.1
Longest N/A 86.9 93.9 90.4 92 93.9 93.9
Voted N/A 93.5 94.2 93.4 93.6 94.3 94.3

MNIST Last N/A 85.2 89.2 85.2 89.2
Longest N/A 81.7 88.6 81.7 88.6
Voted N/A 90.2 90.6 90.2 90.6

Table 3: Parameter Search on UCI and Other Data Sets

highest ratio of number of examples to number of features (12 : 1).4 The longest survivor seems less
stable and degrades performance in some cases.

Finally compare the τ variant with voted perceptron and their combination. For the artificial
data sets using τ alone (with last hypothesis) gives higher accuracy than using the voted perceptron
alone. For the real-world data sets this trend is less pronounced. Concerning their combination we
see that while τ always helps the last hypothesis, it only occasionally helps voted, and sometimes
hurts it.

Table 5 gives detailed results for parameter search over τ on the adult data set, where we also
parameterize the results by the number of examples in the training set. We see that voted perceptron
and the τ variant give similar performance on this data set as well. We also see that that in contrast

4. The results for data with f = {200,500} are omitted from the table. In these cases these was no difference between
the basic, longest and voted versions except when combining with other variants.

239



KHARDON AND WACHMAN

Noise Pctg. (N) Nothing τ λ α τ×λ τ×α
Last, N = 0 95.4 97 95.6 96.1 96.8 97
Longest 95.4 96.6 95.6 95.9 97.3 96.8
Voted 95.4 96.6 95.4 96.1 96.8 97

Last, N = 0.05 81.7 89.4 87 89.5 89.7 89.9
Longest 86.6 89.7 87 89.3 89.9 89.9
Voted 87.5 89.4 87 89.5 89.7 90.2

Last, N = 0.1 77.8 84.6 81.9 85.1 84.9 85.8
Longest 77.2 84.9 81.9 85.1 84.6 85.5
Voted 81.6 84.9 81.9 85.1 84.9 85.6

Last, N = 0.15 71.2 81.6 79.9 80.6 81.6 81.7
Longest 72.9 80.7 79.9 79.2 80.7 81.7
Voted 75.6 81.6 79.9 80.6 82.1 81.6

Last, N = 0.25 59.9 70.7 68.2 70.7 71.1 71.1
Longest 65 70.7 68.2 70.1 70.4 70.6
Voted 68 70.4 69.4 70.7 70.6 71.1

Table 4: Parameter Search on Artificial Data Sets with f = 50 and M = 0.05

with the performance on the artificial data mentioned above, voted perceptron performs well even
with small training set size (and small ratio of examples to features).

The table adds another important observation about stability of the algorithms. Note that since
we report results for concrete values of τ we can measure the standard deviation in accuracy ob-
served. One can see that both the τ variant and the voted perceptron significantly reduce the variance
in results. The longest survivor does so most of the time but not always. The fact that the variants
lead to more stable results is also consistently true across the artificial and UCI data sets discussed
above and is an important feature of these algorithms.

Finally, recall that the average algorithm (Servedio, 1999), which updates exactly once on each
example, is known to tolerate classification noise for data distributed uniformly on the sphere and
where the threshold is zero. For comparison, we ran this algorithm on all the data reflected in the
tables above and it was not competitive. Cursory experiments to investigate the differences show
that, when the data has a zero threshold separator and when perceptron is run for just one iteration,
then (as reported in Servedio, 1999) the average algorithm performs better than basic perceptron.
However, the margin based perceptron performs better and this becomes more pronounced with
non-zero threshold and multiple iterations. Thus in some sense the perceptron variants are doing
something non-trivial that is beyond the scope of the simple average algorithm.

3.4 Parameter Optimization

We have run the parameter optimization on the real-world data sets and the artificial data sets.
Selected results are given in Tables 6 and 7. For these experiments we report average accuracy
across the outer cross-validation as well as a 95% T -confidence interval around these, as suggested
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# examples: 10 100 1000 5000 10000 20000
Accuracy Std. Dev.

τ = 0
Last 75.6 3.5 70.2 9.2 77.8 3.1 78.3 4.1 80.3 2.8 76.5 11.1
Longest 75.7 3.5 76.5 3.6 79.9 3.5 81.8 1.8 82.9 0.7 82.3 1.3
Voted 75.8 3.4 79.4 1.8 82.5 0.5 84 0.7 84.2 0.6 84.5 0.5
τ = 0.125
Last 72.7 4.6 73.3 8.9 79.7 3.7 80.8 2.7 82.7 1.4 80.4 3.9
Longest 73.1 4.6 76.6 3.9 81 2.1 81.1 2.4 81.8 1.5 82.1 1.7
Voted 74.1 4.4 79.6 1.4 82.7 0.5 83.9 0.7 84.2 0.6 84.3 0.4
τ = 0.25
Last 74.5 1.8 75.1 7.4 79.3 5.1 80.5 2.8 81.5 2.2 80.6 3.7
Longest 73.9 3.9 77.2 2.1 80.3 2.6 81.8 1.8 81.7 1.7 82.3 2.4
Voted 74.1 4.7 79.5 1.5 82.7 0.5 83.8 0.7 84.1 0.7 84.3 0.5
τ = 0.5
Last 71.8 6.3 75.5 1.9 80.4 3.4 82.6 1 82.7 1 82.8 1.5
Longest 74 5.7 77.2 7.5 80.4 2.3 82.1 1.6 82.5 1.6 80.8 2.9
Voted 73.6 5.6 78.3 0.8 82.6 0.6 83.7 0.7 84 0.7 84.2 0.5
τ = 1
Last 72.9 6.6 78.4 2.5 81.9 1.2 83 1.1 82.7 1.5 83.5 0.8
Longest 75.9 0.3 75.9 0.9 78.3 2.8 82.5 1.1 83 1 81.9 2.7
Voted 74.8 3.4 76.4 0.9 82.4 0.6 83.5 0.7 83.7 0.7 84.1 0.5
τ = 2
Last 75.5 1.2 75.8 2.6 82.4 0.4 83.2 0.9 82.8 1.2 83.6 0.8
Longest 70.7 15.6 75.9 0.9 77.8 2.7 81.4 2.9 82.5 2 81.9 2.8
Voted 70.7 15.6 76.4 1.8 81.8 1 83.2 0.7 83.5 0.6 83.8 0.6
τ = 4
Last 75.9 0.3 75.7 1.4 81.8 1 83.1 2.1 83.3 0.6 83.6 0.6
Longest 70.7 15.6 75.9 0.9 75.9 0.5 81.8 0.7 79.4 3.4 80.8 3.1
Voted 70.7 15.6 75.9 0.9 78.4 2.1 83 0.7 83.2 0.6 83.5 0.6

Table 5: Performance on “Adult” Data Set as a Function of Margin and Training Set Size

in Mitchell (1997).5 No confidence interval is given for “USPS,” “MNIST,” or “Adult,” as the outer
cross-validation loop is not performed.

In contrast with the tables for parameter search, columns of parameter variants in Tables 6 and 7
do include the inactive option. Hence the search in the τ column includes the value of τ = 0 as well.
This makes sense in the context of parameter optimization since the algorithm can choose between
different active values and the inactive value. Notice that the standard deviation in accuracies is high
on these data sets. This highlights the difficulty of parameter selection and algorithm comparison
and suggests that results from single split into training and test sets that appear in the literature may
not be reliable.

5. In more detail, we use the maximum likelihood estimate of the standard deviation σ, s =
√

1
k ∑i(yi− ȳ)2 where k is

the number of folds (here k = 10), yi is the accuracy estimate in each fold and ȳ is the average accuracy. We then

use the T confidence interval y ∈ ŷ± t(k−1),0.975

√

1
k(k−1) ∑(yi− ȳ)2. Notice that since t9,0.975 = 2.262 and k = 10 the

confidence interval is 0.754 of the standard deviation.
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Nothing τ λ α τ×α τ×λ τ→ α τ→ λ SVM L1 SVM L2
Breast-cancer-wisconsin

Last 90.6 +/- 2.3 95.2 +/- 2.1 95.2 +/- 3.1 94.7 +/- 3.3 95.3 +/- 2.6 96.3 +/- 2.1 95.1 +/- 2.3 96.9 +/- 1.3
Longest 96.9 +/- 1.2 96.8 +/- 1.7 97.2 +/- 1.4 96.3 +/- 1.9 96.8 +/- 1.6 97 +/- 1.6 96.8 +/- 1.7 96.9 +/- 1.8 96.8 +/- 2.2 96.7 +/- 1.7
Voted 96.9 +/- 1.3 96.8 +/- 1.4 97 +/- 1.4 96.6 +/- 1.6 97 +/- 1.6 97.2 +/- 1.4 96.8 +/- 1.4 96.9 +/- 1.5

Bupa
Last 57.5 +/- 7.8 69.8 +/- 6.5 61.5 +/- 6.3 68.9 +/- 4.1 69.9 +/- 5.7 69.8 +/- 5.8 69.8 +/- 6.5 70.9 +/- 5.9

Longest 64.1 +/- 7.1 64.1 +/- 7.1 64.1 +/- 6.6 65.3 +/- 4.3 65.3 +/- 4.3 64.1 +/- 6.6 65.3 +/- 4.3 64.1 +/- 6.6 66.5 +/- 8.6 63.2 +/- 5.2
Voted 68.9 +/- 5.8 68.9 +/- 5.8 67.5 +/- 6.4 68.9 +/- 6.3 68.9 +/- 6.3 67.5 +/- 6.2 68.9 +/- 6.3 67.2 +/- 6.0

Wdbc
Last 92.4 +/- 2.9 93 +/- 2.7 93.2 +/- 2.5 91.6 +/- 2.7 92.8 +/- 2.8 93.2 +/- 2.8 93 +/- 2.7 93.5 +/- 2.2

Longest 92.4 +/- 2.0 91.7 +/- 2.5 92.1 +/- 2.5 92.3 +/- 2.3 93.2 +/- 1.7 92.5 +/- 2.1 92.6 +/- 2.1 91.4 +/- 2.9 92.8 +/- 4.4 94.7 +/- 2.1
Voted 92.3 +/- 2.3 92.3 +/- 2.6 92.8 +/- 2.7 91.7 +/- 1.9 91.6 +/- 2.2 92.4 +/- 2.4 91.6 +/- 2.6 92.8 +/- 2.3

Crx
Last 62.5 +/- 5.1 68.7 +/- 2.9 64.5 +/- 4.1 65.8 +/- 4.1 68.1 +/- 3.5 68.7 +/- 2.2 68.7 +/- 2.9 67.8 +/- 2.8

Longest 55.1 +/- 7.3 60.4 +/- 6.5 62.6 +/- 4.8 62.6 +/- 4.4 64.5 +/- 4.9 60.9 +/- 5.7 62.9 +/- 4.6 59.4 +/- 6.7 76.6 +/- 13.7 65.9 +/- 22.8
Voted 64.9 +/- 4.0 64.2 +/- 2.7 65.4 +/- 3.2 66.2 +/- 3.8 66.4 +/- 3.7 64.9 +/- 2.6 65.7 +/- 3.3 64.3 +/- 3.1

Ionosphere
Last 86.6 +/- 3.8 87.2 +/- 3.4 86.3 +/- 3.5 85.7 +/- 4.8 86.9 +/- 3.4 86.9 +/- 2.6 86.6 +/- 3.0 86.6 +/- 2.6

Longest 87.2 +/- 3.8 86.9 +/- 2.6 87.8 +/- 3.6 87.5 +/- 3.5 86.9 +/- 4.0 87.2 +/- 3.2 86.9 +/- 3.4 87.7 +/- 2.9 87.1 +/- 7.1 86.9 +/- 4.2
Voted 88 +/- 3.7 86.3 +/- 4.3 86.6 +/- 3.5 87.7 +/- 3.2 87.5 +/- 3.2 87.7 +/- 3.1 86 +/- 4.9 86 +/- 3.9

Wpbc
Last 77.3 +/- 4.7 76.7 +/- 4.4 76.4 +/- 4.4 75.1 +/- 6.1 75.1 +/- 6.1 77 +/- 5.2 75.7 +/- 6.2 78.3 +/- 5.1

Longest 77.2 +/- 3.8 76.7 +/- 5.3 75.8 +/- 3.6 75.8 +/- 6.0 76.9 +/- 4.4 74.8 +/- 4.3 75.8 +/- 4.4 74.6 +/- 5.4 78.6 +/- 7.8 78.6 +/- 8.4
Voted 78.8 +/- 4.7 78.5 +/- 4.8 79 +/- 5.0 76.4 +/- 4.8 76.9 +/- 4.8 79 +/- 5.0 76.9 +/- 4.8 78.5 +/- 5.1

Sonar
Last 71.9 +/- 6.3 73.1 +/- 5.4 72.4 +/- 6.0 75.5 +/- 6.4 72.1 +/- 7.4 71.1 +/- 6.5 74.1 +/- 6.4 73.6 +/- 5.1

Longest 75.3 +/- 5.1 77.6 +/- 6.2 73.3 +/- 6.0 74.3 +/- 6.9 73.5 +/- 5.9 74.1 +/- 7.5 74 +/- 5.5 78.1 +/- 6.6 57.2 +/- 11.9 55 +/- 11.8
Voted 75.1 +/- 6.0 75.6 +/- 6.9 74.3 +/- 5.6 77.5 +/- 7.0 78.1 +/- 7.0 77.1 +/- 7.2 76.1 +/- 7.9 75.6 +/- 6.9

f=50,N=0.05,M=0.05
Last 81.7 +/- 6.5 87.7 +/- 6.1 84.6 +/- 6.6 87.2 +/- 5.2 88 +/- 5.2 89.4 +/- 4 89 +/- 4.6 89.5 +/- 4.2

Longest 86.6 +/- 4.3 88.2 +/- 4.2 85.6 +/- 4.7 87.3 +/- 6.1 89.4 +/- 4.5 88.2 +/- 3.9 89 +/- 5.4 88.8 +/- 3.6
Voted 87.5 +/- 3.3 88.8 +/- 4.8 86.3 +/- 3.9 88.3 +/- 4.2 88.2 +/- 4.9 88.8 +/- 4.8 88.7 +/- 4.9 88.8 +/- 4.8
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Nothing τ λ τ×λ τ→ λ
USPS

Last 87.4 90.7 87.4 90.3 90.2
Longest 87.5 89.9 87.4 90.3 89.9
Voted 89.7 90.9 89.6 90.9 90.9

Adult
Last 81.9 83.9 83 83.8 83.8

Longest 83.4 83.4 83.4 83.6 83.4
Voted 84.4 84.2 84.4 84.3 84.3

MNIST
Last 85.6 87.1 85.5 87.1 87.1

Longest 79.8 86.8 79.8 86.8 86.8
Voted 88 88.4 88 88.4 88.4

USPS,degree 4 poly kernel
Last 92.9 93.6

Longest 91.6 92.9
Voted 92.7 93.2

MNIST,degree 4 poly kernel
Last 95.2 95.4

Longest 93.2 94.9
Voted 94.8 95

Table 7: Parameter Optimization Results for Large Data Sets

Table 6 shows improvement over the basic algorithm in all data sets where parameter search
suggested a potential for improvement, and no decrease in performance in the other cases, so the
parameter selection indeed picks good values. Both τ and the voted perceptron provide consis-
tent improvement over the classical perceptron; the longest survivor provides improvement over the
classical perceptron on its own, but a smaller one than voted or τ in most cases. Except for im-
provements over the classical perceptron, none of the differences between algorithms is significant
according to the T -intervals calculated. As observed above in parameter search, the variants with α
and λ offer improvements in some cases, but when they do, τ and voted almost always offer a better
improvement. Ignoring the intervals we also see that neither the τ variant nor the voted perceptron
dominates the other. Combining the two is sometimes better but may decrease performance in the
high variance cases.

For further comparison we also ran experiments with kernel based versions of the algorithms.
Typical results in the literature use higher degree polynomial kernel on the “MNIST” and “USPS”
data sets. Table 7 includes results using τ with a degree 4 polynomial kernel for these data sets. We
can see that for “MNIST” the variants make little difference in performance but that for “USPS” we
get small improvements and the usual pattern relating the variants is observed.

Finally, Table 6 also gives results for SVM. We have used SVMlight (Joachims, 1999) and ran
with several values for the constants controlling the soft margin. For L1 optimization the values
used for the “-c” switch in SVMLight are {10−5, 10−4, 10−3, . . .,104}. For the L2 optimization, we

243



KHARDON AND WACHMAN

used the following values for λ: {10−4,10−3, . . . ,103}. The results for SVM are given for the best
parameters in a range of parameters tried. Thus these are parameter search values and essentially
give upper bounds on the performance of SVM on these data sets. As can be seen the perceptron
variants give similar accuracies and smaller variance and they are therefore an excellent alternative
for SVM.

4. Discussion and Conclusions

The paper provides an experimental evaluation of several noise tolerant variants of the perceptron
algorithm. The results are surprising since they suggest that the perceptron with margin is the most
successful variant although it is the only one not designed for noise tolerance. The voted percep-
tron has similar performance in most cases, and it has the advantage that no parameter selection
is required for it. The difference between voted and perceptron with margin are most noticeable
in the artificial data sets, and the two are indistinguishable in their performance on the UCI data.
The experiments also show that the soft-margin variants are generally weaker than voted or margin
based algorithm and they do not provide additional improvement in performance when combined
with these. Both the voted perceptron and the margin variant reduced the deviation in accuracy in
addition to improving the accuracy. This is an important property that adds to the stability of the al-
gorithms. Combining voted and perceptron with margin has the potential for further improvements
but can harm performance in high variance cases. In terms of run time, the voted perceptron does
not require parameter selection and can therefore be faster to train. On the other hand its test time
is slower especially if one runs the primal version of the algorithm.

Overall, the results suggest that a good tradeoff is obtained by fixing a small value of τ; this
gives significant improvements in performance without the training time penalty for parameter op-
timization or the penalty in test time for voting. In addition, since we have ruled out the use of the
soft margin α variant we no longer need to run the algorithms for a large number of iterations; on
the other hand, although on-line to batch conversion guarantees only hold for one iteration, experi-
mental evidence suggests that a small number of iterations is typically helpful and sufficient.

Our results also highlight the problems involved with parameter selection. The method of double
cross-validation is time intensive and our experiments for the large data sets were performed using
the primal form of the algorithms since the dual form is too slow. In practice, with a large data
set one can use a hold-out set for parameter selection so that run time is more manageable. In
any case, such results must be accompanied by estimates of the deviation to provide a meaningful
interpretation.

As mentioned in the introduction a number of variants that perform margin based updates exist
in the literature (Friess et al., 1998; Gentile, 2001; Li and Long, 2002; Crammer et al., 2005; Kivi-
nen et al., 2004; Shalev-Shwartz and Singer, 2005; Tsampouka and Shawe-Taylor, 2005). The algo-
rithms vary in some other details. Aggressive ROMMA (Li and Long, 2002) explicitly maximizes
the margin on the new example, relative to an approximation of the constraints from previous exam-
ples. NORMA (Kivinen et al., 2004) performs gradient descent on the soft margin risk resulting in
an algorithm that rescales the old weight vector before the additive update. The Passive-Aggressive
Algorithm (Crammer et al., 2005) adapts η on each example to guarantee it is immediately separa-
ble with margin (although update size is limited per noisy data). The Ballseptron (Shalev-Shwartz
and Singer, 2005) establishes a normalized margin and replaces margin updates with updates on
hypothetical examples on which a mistake would be made. ALMA (Gentile, 2001) renormalizes
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the weight vector so as to establish a normalized margin. ALMA is distinguished by tuning its pa-
rameters automatically during the on-line session, as well as having “p-norm variants” that can lead
to other tradeoffs improving performance, for example, when the target is sparse. The algorithms
of Tsampouka and Shawe-Taylor (2005) establish normalized margin by different normalization
schemes. Following Freund and Schapire (1999) most of these algorithms come with mistake bound
guarantees (or relative loss bounds) for the unrealizable case, that is, relative to the best hypothesis
in a comparison class. Curiously, identical or similar bounds hold for the basic perceptron algorithm
so that these results do not establish an advantage of the variants over the basic perceptron.

Another interesting algorithm, the Second Order Perceptron (Cesa-Bianchi et al., 2005), does
not perform margin updates but uses spectral properties of the data in the updates in a way that can
reduce mistakes in some cases.

Additional variants also exist for the on-line to batch conversions. Littlestone (1989) picks
the best hypothesis using cross validation on a separate validation set. The Pocket algorithm with
ratchet (Gallant, 1990) evaluates the hypotheses on the entire training set and picks the best, and
the scheme of Cesa-Bianchi et al. (2004) evaluates each hypothesis on the remainder of the training
set (after it made a mistake and is replaced) and adjusts for the different validation set sizes. The
results in Cesa-Bianchi et al. (2004) show that loss bounds for the on line setting can be translated to
error bounds in the batch setting even in the unrealizable case. Finally, experiments with aggressive
ROMMA (Li and Long, 2002; Li, 2000) have shown that adding a voted perceptron scheme can
harm performance, just as we observed for the margin perceptron. To avoid this, Li (2000) develops
a scheme that appears to work well where the voting is done on a tail of the sequence of hypotheses
which is chosen adaptively (see also Dekel and Singer, 2005, for more recent work).

Consider the noise tolerance guarantees for the unrealizable case. Ideally, one would want to
find a hypothesis whose error rate is only a small additive factor away from the error rate of the
best hypothesis in the class of hypotheses under consideration. This is captured by the agnostic
PAC learning model (Kearns et al., 1994). It may be worth pointing out here that, although we have
relative loss bounds for several variants and these can be translated to some error bounds in the
batch setting, the bounds are not sufficiently strong to provide significant guarantees in the agnostic
PAC model. So this remains a major open problem to be solved.

Seeing our experimental results in light of the discussion above there are several interesting
questions. The first is whether the more sophisticated versions of margin perceptron add significant
performance improvements. In particular it would be useful to know what normalization scheme
is useful in what contexts so they can be clearly applied. We have raised parameter tuning as an
important issue in terms of run time and the self tuning capacity of ALMA and related algorithms
seems promising as an effective solution. Given the failure of the simple longest survivor it would be
useful to evaluate the more robust versions of Gallant (1990) and Cesa-Bianchi et al. (2004). Notice,
however that these methods have a cost in training time. Alternatively, one could further investigate
the tail variants of the voting scheme (Li, 2000) or the “averaging” version of voting (Freund and
Schapire, 1999; Gentile, 2001), explaining when they work with different variants and why. Finally,
as mentioned above, to our knowledge there is no theoretical explanation to the fact that perceptron
with margin performs better than the basic perceptron in the presence of noise. Resolving this is an
important problem.
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