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Abstract
This paper investigates the effect of Laplacian normalization in graph-based semi-supervised learn-
ing. To this end, we consider multi-class transductive learning on graphs with Laplacian regular-
ization. Generalization bounds are derived using geometric properties of the graph. Specifically,
by introducing a definition of graph cut from learning theory, we obtain generalization bounds that
depend on the Laplacian regularizer. We then use this analysis to better understand the role of graph
Laplacian matrix normalization. Under assumptions that the cut is small, we derive near-optimal
normalization factors by approximately minimizing the generalization bounds. The analysis reveals
the limitations of the standard degree-based normalization method in that the resulting normaliza-
tion factors can vary significantly within each connected component with the same class label,
which may cause inferior generalization performance. Our theory also suggests a remedy that does
not suffer from this problem. Experiments confirm the superiority of the normalization scheme
motivated by learning theory on artificial and real-world data sets.
Keywords: transductive learning, graph learning, Laplacian regularization, normalization of graph
Laplacian

1. Introduction

Graph-based methods, such as spectral embedding, spectral clustering, and semi-supervised learn-
ing, have drawn much attention in the machine learning community. While various ideas have been
proposed based on different intuitions, only recently have there been theoretical studies trying to
understand why these methods work.

In spectral clustering, a traditional starting point is to find a partition of a graph that minimizes
a certain definition of “graph cut” that quantifies the quality of the partition. The cut is the objective
one attempts to minimize. Spectral methods can then be derived as a certain continuous relaxation
that approximately solves the “graph cut” problem. Based on various intuitions and heuristics,
various definitions of cuts have been proposed in the literature (for example, Shi and Malik, 2000,
Ding et al., 2001, among others). In order to understand such methods, we need to ask the following
two questions. First what is the quality of the relaxation approach as an approximation method to
solve the original “graph cut” problem. Second, and more importantly, we need to understand why
one should optimize one definition of “cut” instead of other alternatives. In the literature, different
arguments and intuitions have been proposed to justify different choices. However, without a more
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universally acceptable criterion, it is difficult to argue that one cut definition is better than another
just based on heuristics. If a universally agreeable standard does exist, then one should focus on that
criterion instead of an artificially defined cut problem.

For example, in the context of spectral clustering, there are two well-known types of graph cut,
the ratio cut (Hagen and Kahng, 1992) and the normalized cut (Shi and Malik, 2000). Approximate
optimization of the ratio cut leads to eigenvector computation of the unnormalized graph Laplacian
matrix (which we will define later), and that of the normalized cut involves the normalized graph
Laplacian matrix (normalized using node degrees). Although a number of empirical studies indicate
that the normalized cut often leads to better clustering results, there isn’t any direct theoretical proof
except for some implicit evidence. As another example, the definition of graph Laplacian in the
spectral graph theory in Chung (1998) is normalized, but that is for graph theoretical reasons instead
of statistical reasons. Specifically, the normalized Laplacian allows easier translation of results from
differential geometry, and it also allows consistent relations with conductance on Markov chains.
The compatibility of continuous Laplacian on manifold and normalized graph Laplacian was also
noted by von Luxburg et al. (2005) from a different perspective. Similarly, some analysis of spectral
clustering employs normalized cut (Meilă et al., 2005, for example) as that makes derivation easier.
These can be regarded as implicit evidence for preferring the normalized Laplacian over the unnor-
malized Laplacian. However, it has not been directly proved that such degree-based normalization
(corresponding to normalized cut) should improve performance.

In order to understand this issue better, we take a different approach in this paper. Observe that
for spectral clustering applications, there are often pre-defined (but unknown) clusters (classes). In
this setting, the goal is to find such classes either using unsupervised or semi-supervised methods.
Therefore for such problems, a universally agreeable standard is to find clusters that overlap sig-
nificantly with the underlying class labels. That is, instead of using any artificially defined cut,
we should design an algorithm to minimize the classification error. This is the criterion we focus
on in this paper. We will see that normalization comes naturally into the generalization analysis
we develop. By optimizing the corresponding generalization bounds, we seek to obtain a better
understanding of the effect of Laplacian normalization.

In spectral clustering or graph based semi-supervised learning, one starts with similarity graphs
that link similar data points. For example, one may connect data points that are close in the feature
space to form a k-nearest neighbor graph. If the graph is fully connected within each class and
disconnected between the classes, then appropriate cut minimization leads to perfect classification.
It was proposed in Ng et al. (2002) that one may first project these data points into the eigenspace
corresponding to the largest eigenvalues of a normalized adjacency matrix of the graph and then
use the standard k-means method to perform clustering. The basic motivation is quite similar to
that of Shi and Malik (2000). It can be shown that in the ideal case (each class forms a connected
subgraph, and there is no inter-class edge), points in the same cluster will be mapped into a single
point in the reduced eigenspace, while points in different clusters will be mapped to different points.
This implies that for clustering the distance in the reduced space is better than the original distance.
A natural question in this setting is how to design a distance function that leads to better clustering.
While the argument in Ng et al. (2002) gives a satisfactory answer in the idealized case, it is far less
clear what happens in general. One approach to address this problem is to learn a distance metric
that can lead to more desirable clustering results from a set of labeled examples (for example, as in
Xing et al., 2003). The inner product associated with a distance metric can be viewed as a kernel,
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and the kernel fully determines the outcome of the k-means algorithm. Therefore this approach can
also be viewed as designing a kernel optimal for clustering.

Closely related to clustering, one may also consider kernel design methods in semi-supervised
learning using a discriminative method such as SVM (e.g., Lanckriet et al., 2004). In this setting, the
change of the distance metric becomes a change of the underlying kernel. If the kernel is induced
from a graph, then one may formulate semi-supervised learning directly on the graph; for example,
see Belkin and Niyogi (2004), Szummer and Jaakkola (2002), Zhou et al. (2004) and Zhu et al.
(2003). In these studies, the kernel is induced from the adjacency matrix W whose (i, j)-entry is the
weight of edge (i, j). W is often normalized by D−1/2WD−1/2 as in Chung (1998), Shi and Malik
(2000), Ng et al. (2002), Zhou et al. (2004), where D is a diagonal matrix whose ( j, j)-entry is the
degree of the j-th node, but sometimes not (Belkin and Niyogi, 2004, Zhu et al., 2003). Although
such normalization can significantly affect the performance, the issue has not been carefully studied
from the learning theory perspective. The relationship of kernel design and graph learning was
investigated in Zhang and Ando (2006), where it was argued that quadratic regularization-based
graph learning can be regarded as kernel design in the spectral domain. That is, one keeps the kernel
eigenvectors and modifies the corresponding eigenvalues. Moreover if input data are corrupted with
noise, then such spectral kernel design can help to improve classification performance. However,
the analysis does not explain why normalization of the adjacency matrix W is useful for practical
purposes.

Our goals here are twofold. First we present a model for transductive learning on graphs and
develop a margin analysis for multi-class graph learning. We then analyze graph learning using
graph properties such as graph-cut and a concept we call pure subgraph. The analysis naturally
employs quantities formalizing the standard graph-learning assumption that well connected nodes
are likely to have the same label. Second, we use this analysis to obtain a better understanding
of normalizing the Laplacian matrix (D−W) in graph semi-supervised learning. As mentioned
above, normalization has been commonly practiced and appears to be useful, but there hasn’t been
any solid theoretical justification on why it should be useful. Our analysis addresses this issue
from a learning theoretical point of view, and reveals a limitation of the standard degree-based
normalization scheme. We then propose a remedy based on the learning theory results and use
experiments to demonstrate that the remedy leads to improved classification performance.

This paper expands on our preliminary results reported in Ando and Zhang (2007).

2. Transductive Learning Model

We consider the following multi-category transductive learning model defined on a graph. Let
V = {v1, . . . ,vm} be a set of m nodes, and let Y be a set of K possible output values. Assume
that each node v j is associated with an output value y j ∈ Y , which we are interested in predicting.
In order to do so, we randomly draw a set of n indices Zn = { ji : 1 ≤ i ≤ n} from {1, . . . ,m}
uniformly and without replacement. We manually label the n nodes v ji with labels y ji ∈ Y , and then
automatically label the remaining m−n nodes. The goal is to estimate the labels on the remaining
m−n nodes as accurately as possible.

In this paper, we shall assume that the labels y = [y1, . . . ,ym] are deterministic. However, the
analysis can also be applied if we have random labels. In the transductive learning setting consid-
ered in this paper, we may assume that we are given a single random draw y = [y1, . . . ,ym], which
we fix. With this fixed y vector, we are interested in the performance of reconstructing it from a
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subset of labels. This formulation is more appropriate for problems such as classification on graphs
considered here.

In modern machine learning, instead of estimating the labels y j directly, y j is often encoded
into a vector in RK , so that the problem becomes that of generating an estimation vector f j =
[ f j,1, . . . , f j,K ] ∈ RK , which can then be used to recover the label y j. In multi-category classifica-
tion with K classes Y = {1, . . . ,K}, we encode each y j = k ∈ Y as ek ∈ RK , where ek is a vector of
zero entries except for the k-th entry being one. Given a function f j = [ f j,1, . . . , f j,K ] ∈ RK (which is
intended to approximate ey j ), we decode the corresponding label estimation ŷ j as:

ŷ j = ŷ(f j) = argmax
k

{

f j,k : k = 1, . . . ,K
}

.

If the true label is y j, then the corresponding classification error is:

err(f j,y j) = I(ŷ(f j) 6= y j),

where we use I(·) to denote the set indicator function.
In order to estimate the concatenated vector f = [f j] = [ f j,k] ∈ RmK from only a subset of labeled

nodes, we have to impose restrictions on possible values of f. In this paper, we consider restrictions
defined through a quadratic regularizer of the following form:

fT QKf =
K

∑
k=1

fT
·,kK−1f·,k,

where K ∈ Rm×m is a positive definite kernel matrix and f·,k = [ f1,k, . . . , fm,k] ∈ Rm. That is, the
predictive vector for each class k is regularized separately. We assume that the kernel matrix K is
full-rank. We will consider the kernel matrix induced by the graph Laplacian, which we shall define
later in the paper. Note that we use the bold symbol K to denote the kernel matrix and the regular
capitalized K to denote the number of classes.

Given a vector f ∈ RmK , the accuracy of its component f j = [ f j,1, . . . , f j,K ] ∈ RK is measured by
a loss function φ(f j,y j). Our learning method attempts to minimize the empirical risk on the set Zn

of n labeled training nodes, subject to fT QKf being small:

f̂(Zn) = arg min
f∈RmK

[

1
n ∑

j∈Zn

φ(f j,y j)+λfT QKf

]

. (1)

where λ > 0 is an appropriately chosen regularization parameter.
In this paper, we focus on a special class of loss functions of the form φ(f j,y j) = ∑K

k=1 φ0( f j,k,δk,y j),
where δa,b is the delta function defined as: δa,b = 1 when a = b and δa,b = 0 otherwise. In addition,
we introduce the following assumption for convenience.

Assumption 1 Let φ(f j,y j) = ∑K
k=1 φ0( f j,k,δk,y j) in (1), where f j = [ f j,1, . . . , f j,K ] ∈ RK . Assume

that there exist positive constants a, b, and c such that

• φ0(x,y) is non-negative and convex in x.

• When y = 0,1, and φ0(x,y) ≤ a, |∇1φ0(x,y)| ≤ b, where ∇1φ0(x,y) denotes a sub-gradient of
φ0(x,y) with respect to x.
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• c = inf{x : φ0(x,1) ≤ a}− sup{x : φ0(x,0) ≤ a}.

The formulation presented here corresponds to the one-versus-all method for multi-category classi-
fication, and standard binary loss functions such as least squares, logistic regression, and SVMs can
be used. For the SVM loss function φ0(x,y) = max(0,1− (2x−1)(2y−1)), we may take a = 0.5,
b = 2, and c = 0.5. For the least squares function φ0(x,y) = (x− y)2, we may choose a = 1/16,
b = 0.5, c = 0.5.

We are interested in the generalization behavior of (1) compared to a properly defined optimal
regularized risk. This type of inequality is often referred to as “oracle inequality” in the learning the-
ory literature and is particularly useful for analyzing the quality of the underlying learning method.
The following theorem gives an oracle inequality, and its proof can be found in Appendix A.

Theorem 1 Consider (1) with loss function φ satisfying Assumption 1. Then ∀p > 0, the expected
generalization error of the learning method (1) over the training samples Zn, uniformly drawn
without replacement from graph nodes {1, . . . ,m}, can be bounded by:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j(Zn),y j) ≤
1
a

inf
f∈RmK

[

1
m

m

∑
j=1

φ(f j,y j)+λfT QKf

]

+

(

btrp(K)

λnc

)p

,

where Z̄n = {1, . . . ,m}−Zn,

trp(K) =

(

1
m

m

∑
j=1

Kp
j, j

)1/p

,

and K j, j denotes the j-th diagonal entry of matrix K.

If we take p = 1 in Theorem 1, then the bound depends on the trace of matrix K: tr(K) =
mtr1(K). The trace of a kernel matrix has been employed in a number of previous studies to char-
acterize generalization ability of kernel methods. The generalized quantity in Theorem 1 with p 6= 1
has non-trivial consequences which we will investigate in the paper.

Although we consider a specific form of loss function in this paper, one can obtain similar
bounds with other forms of loss functions such as φ(f j,y j) = supk 6=y j

φ0( f j,y j − f j,k). What is im-

portant in our analysis are the two quantities fT QKf and trp(K) that determine the generalization
performance. We will focus on the interpretation of these quantities.

3. Margin and Graph Cut

Consider an undirected graph G = (V,E) defined on the nodes V = {v j : j = 1, . . . ,m}, with edges
E ⊂ {1, . . . ,m}×{1, . . . ,m}, and weights w j, j′ ≥ 0 associated with edges ( j, j′)∈ E. For simplicity,
we assume that ( j, j) /∈ E and w j, j′ = 0 when ( j, j′) /∈ E. Let deg j(G) = ∑m

j′=1 w j, j′ be the degree of
node j of graph G. We consider the following definition of normalized Laplacian.

Definition 2 Consider a graph G = (V,E) of m nodes with weights w j, j′ ( j, j′ = 1, . . . ,m). The
unnormalized Laplacian matrix L(G) ∈ Rm×m is defined as: L j, j′(G) = −w j, j′ if j 6= j′; deg j(G)
otherwise. Given m scaling factors S j ( j = 1, . . . ,m), let S = diag({S j}). The S-normalized Lapla-
cian matrix is defined as: LS(G) = S−1/2L(G)S−1/2. The corresponding regularization is based
on:

fT
·,kLS(G)f·,k =

1
2

m

∑
j, j′=1

w j, j′

(

f j,k
√

S j
− f j′,k
√

S j′

)2

.
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A common choice of S is S = I, corresponding to regularizing with the unnormalized Laplacian
L . The idea is natural: we assume that the predictive values f j,k and f j′,k should be close when
( j, j′) ∈ E with a strong link. Another common choice is to normalize by S j = deg j(G), as in
Ng et al. (2002), Shi and Malik (2000), Zhou et al. (2004) and Chung (1998), which we refer
to as degree-based normalization. At first sight, the need for normalization is not immediately
clear. However, as we will show later, normalization using appropriate scaling factors can improve
performance.

3.1 Generalization Analysis Using Graph-Cut

We will adapt Theorem 1 in Section 2 to analyze graph learning using graph properties such as
graph-cut. We now introduce a learning theoretical definition of S-normalized graph cut as follows.

Definition 3 Given label y = {y j} j=1,...,m on V , we define the cut for the S-normalized Laplacian
LS in Definition 2 as:

cut(LS,y) = ∑
j, j′:y j 6=y j′

w j, j′

2

(

1
S j

+
1

S j′

)

+ ∑
j, j′:y j=y j′

w j, j′

2

(

1
√

S j
− 1
√

S j′

)2

.

Note that unlike typical graph-theoretical definitions of graph-cut in the literature, the learning
theoretical definition of cut not only penalizes a normalized version of between-class edge weights,
but also penalizes within-class edge weights when such an edge connects two nodes with different
scaling factors. This difference has important consequences, which we will investigate later in the
paper. For unnormalized Laplacian, the second term on the right hand side of Definition 3 vanishes,
which means that it only penalizes weights corresponding to edges connecting nodes with different
labels. In this case, the learning theoretical definition corresponds to the graph-theoretical definition:
cut(L ,y) = ∑ j, j′:y j 6=y j′

w j, j′ .
It is worth noting that in our framework, cut is used to indicate the absolute amount of pertur-

bation from the idealized case with zero-cut. In spectral clustering, the absolute cut is often scaled
and the resulting quantity is used as a quality measure for the clusters. In comparison, our quality
measure is always to minimize the classification error. In particular, the unnormalized Laplacian
is used in spectral clustering to approximately minimize the ratio cut = ∑ j∈A, j′∈B w j, j′/(|A| · |B|)
(Hagen and Kahng, 1992) instead of ∑ j∈A, j′∈B w j, j′ . The scaling in the ratio cut (when K = 2) corre-
sponds to the normalization of a specific encoding of the target vectors (f·,k ∈ Rm which encodes the
true output values in our setting); it is used in the computation of the second smallest eigenvalue of
the unnormalized Laplacian. Our analysis throughout this paper assumes unmodified target vectors
with components taking values in {0,1}, which differs from Hagen and Kahng (1992). As such,
the discrepancy of cut definition is merely due to a difference in representation of the target vectors,
and both lead to the same unnormalized Laplacian matrix algorithmically. Although our definition
is motivated by classification problems, it may also be useful for clustering problems because there
is a strong relationship between clustering and transductive classification (where class labels indi-
cate the underlying clusters). This means that the normalization method we propose in the paper
might be useful in spectral clustering as well.
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Using the learning theoretical graph-cut definition, we can obtain a generalization result for the
estimator in (1) with K defined as follows:

K−1 = αS−1 +LS(G) = S−1/2(αI+L(G))S−1/2 , (2)

where I is the identity matrix. Note that α > 0 is a tuning parameter to ensure that K is strictly
positive definite. As we will see later, this parameter is important. The corresponding regularization
condition is

fT QKf =
K

∑
k=1



α
m

∑
j=1

f 2
k, j

S j
+

1
2

m

∑
j, j′=1

(

f j,k
√

S j
− f j′,k
√

S j′

)2

w j, j′



 .

Another possibility is to let K−1 = αI+LS(G). The conclusions, which we will not include in this
paper, are similar to that of (2).

For simplicity, we state the generalization bound based on Theorem 1 with optimal λ. Note
that in applications, λ is usually tuned through cross validation. Therefore assuming optimal λ
will simplify the bound so that we can focus on the more essential characteristics of generalization
performance. The following assumption is used to simplify the bound

Assumption 2 Consider (1) with regularization condition (2), loss function φ satisfying Assump-
tion 1, and assume that φ0(0,0) = φ0(1,1) = 0.

It is easy to check that the conditions on the loss function in Assumption 2 hold for the least squares
method (which we focus on in this paper) as well as other standard loss functions such as SVM.

Theorem 4 Consider (1) such that Assumption 2 is satisfied. Then ∀p > 0, there exists a sample in-
dependent regularization parameter λ in (1) such that the expected generalization error is bounded
by:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j(Zn),y j) ≤
Cp(a,b,c)

np/(p+1)
(αs+ cut(LS,y))

p/(p+1)trp(K)p/(p+1),

Cp(a,b,c) =(b/ac)p/(p+1)(p1/(p+1) + p−p/(p+1)), (3)

where s = ∑m
j=1 S−1

j .

Proof Let f j,k = δy j,k. It can be easily verified that

1
m

m

∑
j=1

φ(f j,y j)+λfT QKf = λ(αs+ cut(LS,y)).

Now, using this expression in Theorem 1, and then optimizing over λ, we obtain the desired in-
equality.

Note that with the least squares loss, we can take b/ac = 16 in Theorem 1. With a fixed p, the
generalization error decreases at the rate O(n−p/(p+1)) when the sample size n increases. This rate of
convergence is faster when p increases. However in general, trp(K) is an increasing function of p.
Therefore we have a trade-off between the two terms, and without appropriate normalization (which
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we will consider later in the paper), one may prefer a smaller p in order to optimize the bound. An
analysis will be provided in the next section. The bound also suggests that if we normalize K so
that its diagonal entries K j, j become a constant, then trp(K) is independent of p, and thus a larger
p can be used in the bound. This motivates the idea of normalizing the diagonals of K, which
we will further investigate later in the paper. The generalization bound in Theorem 4 is closely
related to the margin analysis for binary linear classification. Specifically, the right hand side can
be viewed as a margin-like-quantity associated with the target function f j,k = δy j,k that separates the
data. Here it is related to the concept of graph cut. Our goal is to better understand the quantity
(αs + cut(LS,y))p/(p+1)trp(K)p/(p+1) using graph properties, which gives better understanding of
graph based learning.

In the following, we will give example applications of Theorem 4. They illustrate that theoreti-
cally it is important to tune the parameter α to achieve good performance, which is also empirically
observed in our experiments.

3.2 Zero-cut and Geometric Margin Separation

We consider an application of Theorem 4 for the unnormalized Laplacian under the zero-cut as-
sumption that each connected component of the graph has a single label. With this assumption, the
task is simply to estimate what label each connected component has.

Theorem 5 Consider (1) such that Assumption 2 is satisfied and the regularization condition is
K−1 = αI + L . Assume that cut(L ,y) = 0, and the graph has q connected components of sizes
m1 ≤ ·· · ≤ mq (∑` m` = m). For all p > 0, let α → 0, and with optimal λ, we have the generalization
bound

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤
Cp(a,b,c)

np/(p+1)

(

q

∑̀
=1

(m/m`)
p−1

)1/(p+1)

+O(α),

where Cp is defined in (3). In particular, we have

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤ min

[

2

√

b
ac

· q
n
,

b
ac

· m
nm1

]

+O(α).

Proof Since the graph has q connected components, L has q eigenvectors v` (` = 1, . . . ,q) associ-
ated with zero-eigenvalues, where each eigenvector v` is the indicator function of the `-th connected
component in the graph, that is, the j-th entry of vector v` is 1 if j belongs to the `-th connected
component and 0 otherwise. It is not hard to check that as α → 0, αK → ∑q

`=1
1

m`
v`vT

` + O(α).

Therefore αtrp(K) → m−1/p(∑q
`=1 m1−p

` )1/p. Now, we can use Theorem 4 to obtain the first in-
equality. The second inequality is obtained by setting p = 1 and by letting p → ∞ on the right hand
side.

Under the zero-cut assumption, the generalization performance can be bounded as O(
√

q/n)
when α → 0. However, we can also achieve a faster convergence rate of O(1/n), although the
generalization performance depends on the inverse of the smallest component size through m/m1 ≥
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q. This implies that we will achieve better convergence at the O(1/n) level if the sizes of the
components are balanced. If the component sizes are significantly different, the convergence may
behave like O(

√

q/n).
We discuss a concrete example in which Theorem 5 is applicable. Assume that each node v j is

associated with a data point x j that belongs to the d-dimensional unit ball B = {x ∈ Rd : ‖x‖2 ≤ 1}.
We form a graph by connecting all nodes v j to their nearest neighbors. In particular, we may
consider an ε-ball centered at each v j: B j(ε) = {x : ‖x − x j‖2 ≤ ε}. We then form a graph by
connecting each j with all points within the ball B j(ε) and with unit weights.

We say that the data points are separable with geometric margin γ if for each node v j the ball
B j(γ) only contains points in class y j. Now assume we use a ball of size ε ≤ γ. In this case,
cut(L ,y) = 0, and there is a constant q ≤ ε−d such that the graph has at most q connected compo-
nents, and we have:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤ 2

√

b
ac

· q
n

+O(α).

This bound does not depend on margin γ but depends only on q, the number of connected compo-
nents. So even if the margin γ is small, the bound can still be good as long as q is small. This result
can be used to understand why graph based semi-supervised learning may work better than stan-
dard kernel learning. In fact, it is not possible to derive similar generalization bounds for supervised
learning because one needs unlabeled data (in addition to labeled data) to define such connected
components. This means that graph semi-supervised learning can take advantage of the new quan-
tity q to characterize its generalization performance, and this quantity cannot be used by standard
supervised learning.

Note that we have assumed a very specific generative model for the data. In particular, if the data
are generated in a way such that the number of connected components q is small, and each connected
component belongs to a single class, then graph based semi-supervised learning can work better
than supervised kernel learning. If this assumption does not hold (at least approximately), then
graph based learning methods may fail. However, for many practical applications, the geometric
margin separation assumption does appear quite reasonable. Therefore for such problems, graph
based semi-supervised learning, which can take advantage of the underlying data generation model,
may become helpful.

This section only considers a special case where the graph has q connected components. In
this particular situation, the learning method (1) and the analysis provided here may not be optimal.
The best method is just to identify each connected component to be a cluster and then determine
its label by looking at one point of the cluster. However, this idea won’t generalize to graphs with
components that are weakly connected. In comparison, our analysis can easily generalize to that
situation, as we shall investigate in the next section.

3.3 Non-Zero Cut and Pure Components

It is often too restrictive to assume that each connected component has only one label (that is, the
cut is zero). In this section, we show that similar bounds can be obtained when this data generation
assumption is relaxed. We are still interested in giving a characterization of the performance of (1)
in terms of properties of the graph and introduce the following definition.

Definition 6 A subgraph G0 = (V0,E0) of G = (V,E) is called a pure component if G0 is connected,
E0 is induced by restricting E on V0, and the labels y have identical values on V0. A pure subgraph
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G′ = ∪q
`=1G` of G divides V into q disjoint sets V = ∪q

`=1V` such that each subgraph G` = (V`,E`)
is a pure component. Denote by λi(G`) = λi(L(G`)) the i-th smallest eigenvalue of L(G`).

For instance, if we remove all edges of G that connect nodes with different labels, then the
resulting subgraph is a pure subgraph (though it may not be the only one). For each pure component
G`, its first eigenvalue λ1(G`) is always zero. The second eigenvalue λ2(G`) > 0 because G` is
connected. This λ2(G`) can be regarded as a measurement of how well G` is connected. We use it
together with graph cut to derive a generalization bound. The proof is given in Appendix B.

Theorem 7 Consider (1) such that Assumption 2 is satisfied. Let G′ = ∪q
`=1G` (G` = (V`,E`)) be a

pure subgraph of G. For all p ≥ 1, there exist sample-independent regularization parameter λ and
a fixed tuning parameter α, such that

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j)

≤Cp(a,b,c)

np/(p+1)



s1/2

(

q

∑̀
=1

s`(p)/m

mp
`

)1/2p

+ cut(LS,y)
1/2

(

q

∑̀
=1

s`(p)/m
λ2(G`)p

)1/2p




2p/(p+1)

,

where Cp is defined in (3), m` = |V`|, s = ∑m
j=1 S−1

j , and s`(p) = ∑ j∈V`
Sp

j .

Theorem 7 is a natural generalization of Theorem 5 when p ≥ 1. It quantitatively illustrates the
importance of analyzing graph learning using a partition of the original graph into well-connected
pure components. The second eigenvalue λ2(Gi) measures how well-connected Gi is. A more
intuitive quantity that measures the connectedness of graph G = (V,E) is the isoperimetric number
hG defined as

hG = inf
S⊂V

∑
j∈S, j′∈V−S

w j, j′/min(|S|, |V −S|).

It is well-known that λ2(Gi) ≥ h2
Gi

/(2max j deg j(Gi)) (Chung, 1998). The isoperimetric number of
a graph is large when the nodes are well-connected everywhere. In particular, if deg j(G) is of the
order |V |, and wi, j = 1 when (i, j) ∈ E, then for a well-connected graph, ∑ j∈S, j′∈V−S w j, j′ is of the
order |S||V − S|, and hG = O(|V |). Let G′ be a well-behaved pure-subgraph of G, such that each
pure component G` of G′ is well-connected in the above sense. We thus have the condition

λ2(G`)/m` ≥ u(G′)

for some constant u(G′) that does not depend on the size of the pure components (but only how
well-connected each pure component is). Under this condition, we may replace ∑q

`=1 m`λ2(G`)
−p

by u(G′)−p ∑q
`=1 m1−p

` in Theorem 7 and obtain a simplified bound:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤
Cp(a,b,c)

np/(p+1)

(

q

∑̀
=1

s`(p)/m
(m`/m)p

)1/(p+1)(√
s
m

+

√

cut(LS,y)
u(G′)m

)2p/(p+1)

,
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where we define u(G′) = min`(λ2(G`)/m`). We consider two special cases: p = 1 and p → ∞:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤2

√

b
ac

· ∑q
`=1(s`(1)/m`)

n

(

√

s
m

+

√

cut(LS,y)
u(G′)m

)

, (4)

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤
b
ac

· max` max j∈V`(S j/m`)

n

(

√
s+

√

cut(LS,y)
u(G′)

)2

. (5)

These bounds are generalizations of those in Theorem 5. Suppose that we take S = I. Then the
number of pure components q affects the O(1/

√
n) convergence rate in (4) as ∑q

`=1 s`(1)/m` = q. If
the sizes of the components are balanced, we can achieve better convergence at the O(1/n) level as
in (5); otherwise, the convergence may behave like O(

√

q/n). This observation motivates a scaling
matrix S that compensates for the unbalanced pure component sizes, which we will investigate next.

3.4 Optimal Normalization for Near-zero-cut Partition

As discussed in the introduction, the common practice of the normalization of the adjacency matrix
(W) or the graph Laplacian (D−W) is based on degrees, which corresponds to setting S = D.
Although such normalization may significantly affect the performance, to our knowledge, there is
no learning theory analysis on the effect of normalization. The purpose of this section is to fill this
gap using the theoretical tools developed earlier. We shall focus on a near ideal situation to gain
intuition.

Consider a pure subgraph G′ = ∪q
`=1G` (G` = (V`,E`)) of G. If scaling factors S j are approx-

imately constant within each pure component, then using the Laplacian in Definition 2, we have
a small regularization penalty for the edges within a pure component and between the nodes that
have close output values (i.e., f j,k ≈ f j′,k). Therefore, in the following we focus on finding the op-
timal scaling matrix S such that S j is constant within each pure component V`, and assume that S is
quantified by q numbers [s̄`]`=1,...,q, such that S j = s̄` when j ∈V`.

Consider the following quantity:

cut(G′,y) = ∑
j, j′:y j 6=y j′

w j, j′ + ∑
`6=`′

∑
j∈V`, j′∈V`′

w j, j′

2
.

It is easy to check that
cut(LS,y) ≤ cut(G′,y)/min

`
s̄`.

Assume that weights are small between pure components, and therefore, cut(G′,y) is small.
With the O(1/n) convergence rate, we obtain from (5) that

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤
b
ac

· max`(s̄`/m`)

n

(√

q

∑̀
=1

m`/s̄` +

√

cut(G′,y)
u(G′)min` s̄`

)2

.

If cut(G′,y) is small, then the dominating term on the right hand side is

max`(s̄`/m`)

n

q

∑̀
=1

m`

s̄`
,
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which can be optimized with the choice s̄` = m`, and the resulting bound becomes:

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤
b
ac

· 1
n

(

√
q+

√

cut(G′,y)
u(G′)min` m`

)2

.

That is, if cut(G′,y) is small, then we can choose scaling factor s̄` ∝ m` for each pure component `
so that the generalization performance is approximately (ac)−1b ·q/n, which is of the order O(1/n).

The analysis provided here not only proves the importance of normalization under the learn-
ing theoretical framework, but also suggests that the good normalization factor for each node j is
approximately the size of the well-connected pure component that contains node j (assuming that
nodes belonging to different pure components are only weakly connected). Our analysis focused
on the case that the scaling factors are a constant within each pure component. This condition is
quite natural if we look at the normalized Laplacian regularization condition in Definition 2, where
f j,k/

√

S j should be similar to f j′,k/
√

S j′ when w j, j′ is large. If j and j′ belongs to the same class,
then f j,k should be similar to f j′,k. Therefore for such a pair ( j, j′), we want to have S j ≈ S j′ if
w j, j′ is large. Note that this requirement is not enforced by the standard degree-based normalization
method S j = deg j(G) because a well-connected pure component may contain nodes with quite dif-
ferent degrees. The assumption is satisfied under a simplified “box model”, which is related to the
models used by some previous researchers to derive the standard normalization method (e.g., Shi
and Malik, 2000). In this model, a pure component is completely connected, and each node connects
to all other nodes and itself with edge weight w j, j′ = 1. The degree is thus deg j(G`) = |V`| = m`,
which gives the optimal scaling in our analysis.

In general, the box model may not be a good approximation for practical problems. A more
realistic approximation, which we call core-satellite model, will be introduced in the experimental
section. For such a model, the degree-based normalization can fail because the deg j(G`) within
each pure component G` is not approximately constant, and it may not be proportional to m`. In
general, this approximation using degrees causes S j to potentially vary significantly within a pure
component because each S j is only determined by its immediate neighbors.

Our analysis suggests that it is necessary to modify the degree-based scaling method S j =
deg j(G) so that the scaling factor is approximately a constant within each pure component, which
should be proportional to m`. Our remedy is to look for connected components at a larger distance
scale. Although there could be various methods to achieve this effect, we shall focus on a specific
method motivated by the proofs of Theorem 5 and Theorem 7. Let K̄ = (αI + L)−1 be the ker-
nel matrix corresponding to the unnormalized Laplacian. Using the terminology in the proofs, we
observe that for small α:

αK̄ =
q

∑̀
=1

v`vT
` /m` +O(1),

and thus K̄ j, j ∝ m−1
` for each j ∈V`. Therefore with small α, the scaling factor S j = 1/K̄ j, j is near

optimal for all j. For α > 0, the effect of this scaling factor is essentially equivalent to looking
for connected components at a scale of at most O(1/α) number of nodes. We call this method of
normalization K-scaling in this paper. It is equivalent to a normalization of the kernel matrix K,
so that each K j, j = 1. Although this method coincides with a common practice in standard kernel
learning, it is important to notice that to show this method behaves well in the graph learning setting
is highly non-trivial and novel. To our best knowledge, no one has proposed this normalization
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method in the graph learning setting before. In fact, without learning theoretical results developed
in this paper, it is not obvious that this method should work better than the more standard degree-
based normalization method. In our framework, the main advantage of K-scaling (compared to the
standard degree-scaling, which we call L-scaling) is twofold:

• The resulting S j does not vary significantly within a well-connected pure component.

• The resulting scaling is approximately m` (at a scale of 1/α), which is predicted by our theory
to be desirable.1

The superiority of this method will be demonstrated in our experiments. The main drawback of
this method is the computational cost of directly inverting (αI + L). For large scale problems,
approximation methods are required.

3.5 Dimension Reduction

Normalization and dimension reduction have been commonly used in spectral clustering such as Ng
et al. (2002) and Shi and Malik (2000). For semi-supervised learning, dimension reduction (without
normalization) is known to improve performance (Belkin and Niyogi, 2004, Zhang and Ando, 2006)
while the degree-based normalization (without dimension reduction) has also been explored (Zhou
et al., 2004). In this section, we present a brief high-level argument that an appropriate combination
of normalization and dimension reduction (as commonly used in spectral clustering) can improve
classification performance. Detailed analysis can be found in Appendix C.

Let us first introduce dimension reduction with normalized Laplacian LS(G). Denote by Pr
S(G)

the projection operator onto the eigenspace of αS−1 +LS(G) corresponding to the r smallest eigen-
values. Now, we may define the following regularizer on the reduced subspace:

fT
·,kK−1f·,k =

{

fT
·,kK−1

0 f·,k if Pr
S(G)f·,k = f·,k,

+∞ otherwise.
(6)

The benefit of dimension reduction in graph learning has been investigated in Zhang and Ando
(2006), under the spectral kernel design framework. The idea is to modify the kernel eigenvalues so
that the target spectral coefficient matches the kernel coefficients. Note that the normalization issue,
which will change the eigenvectors and their ordering, wasn’t investigated there. However, with a
fixed scaling matrix S, the reasoning given in Zhang and Ando (2006) can also be applied here. It
was shown there that if noise is added into the kernel matrix, then in general kernel eigenvalues
will decay slower than the target spectral coefficients. Because of this, dimension reduction, which
makes kernel eigenvalues better match the decay of target spectral coefficients, will become helpful.
For Laplacian regularization investigated here, we may regard noise as edges connecting pure com-
ponents of different classes, which increase the cut in Definition 3. Such noise can be significantly
reduced if we project it into a low-dimensional space, and if the target functions approximately lie
in this low-dimensional space. In this context, the effect of modification of eigenspaces through ap-
propriate Laplacian normalization is to achieve faster decay of the target spectral coefficients in the

1. Although “the scaling factor S j = m`” might be reminiscent of the ratio cut in spectral clustering, note that, as
mentioned earlier, the ratio cut corresponds to the unnormalized Laplacian. K-scaling suggested here normalizes the
Laplacian matrix, which is in the same spirit of normalized cut (degree-scaling) but fixes some of its short-comings
based on learning theoretical insights developed here.
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classes #1, #2 classes #3–#10
graph1 (4,2) (2,1)
graph2 (6,3) (2,1)
graph3 (8,4) (2,1)

Figure 1: Generation of graph 1–5. (c,e) in the table indicates that for each node, we randomly
chose c nodes of the same class and connect it to them, and we randomly chose e nodes
of other classes (introducing errors) and connect it to them. Edge weights are fixed to 1.
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Figure 2: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
n = 40,m = 2000. With dimension reduction (dim ≤ 20; chosen by cross validation). Average
over 10 random splits with one standard deviation.

first few eigenvectors of the kernel. Therefore, under certain conditions, dimension reduction can
reduce noise (corresponding to a small cut), which essentially makes normalization more effective
as shown in Section 3.4.

We show our formal analysis of the combination of dimension reduction (as in (6) above) and
normalization of Laplacian, for completeness, in Appendix C and empirical results in the next sec-
tion.

4. Experiments

We experiment with the Laplacian regularization with the normalization methods discussed above,
on synthesized data sets generated by controlling graph properties as well as three real-world data
sets.

4.1 Experimental Framework

The Laplacian matrix L is generated from a graph G so that L j, j′ = −w j, j′ for j 6= j′ and L j, j =
deg j(G). Using L , we define matrix K as follows:

• Unnormalized: K = (αI+L)−1. That is, S = I. No scaling.

1502



ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

0

20

40

60

80

100

graph6 graph7 graph8 graph9 graph10

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 3: Classification accuracy on the core-satellite graphs. n = 40,m = 2000. With dimension reduc-
tion (dim ≤ 20; chosen by cross validation). Average over 10 random splits with one standard
deviation.

• K-scaling: K = (S−1/2(αI+L)S−1/2)−1 where S = diag j(K̄
−1
j, j ) with K̄ = (αI+L)−1. The

diagonal entries of K are all ones.

• L-scaling: K = (αI + S−1/2LS−1/2)−1 where S = diag j(deg j(G)). The diagonal entries of
K−1 are constant (α+1). This is the standard degree-based scaling.

Using these three types of matrix K, we test the following two types of regularization. One regu-
larizes by fT

·,kK−1f·,k using K without dimension reduction, as in Section 3. The other reduces the
dimension of K−1 to r by leaving out all but several eigenvectors corresponding to the smallest r
eigenvalues to obtain the eigenspace projector Pr

S(G) and regularizes by:
{

fT
·,kK−1f·,k if Pr

S(G)f·,k = f·,k
+∞ otherwise

as in Section 3.5. We use the one-versus-all strategy and use least squares as our loss function:
φk(a,b) = (a−δk,b)

2.
From m data points, n training labeled examples are randomly chosen while ensuring that at least

one training example is chosen from each class. The remaining m−n data points serve as test data.
The regularization parameter λ is chosen by cross validation on the n training labeled examples. We
will show performance when the rest of the parameters (α and dimensionality r) are also chosen
by cross validation on the training labeled examples and when they are set to the optimum. The
dimensionality r is chosen from K,K + 5,K + 10, · · · ,100 where K is the number of classes unless
otherwise specified. Our focus is on small n close to the number of classes. Throughout this section,
we conduct 10 runs with random training/test splits and report the average accuracy.

4.2 Controlled Data Experiments

The purpose of the controlled data experiments is to observe the correlation of the effectiveness of
the normalization methods with graph properties. The graphs we generate contain 2000 nodes, each
of which is assigned one of 10 classes.

First, we show the results when dimension reduction is applied to the three types of matrix K.
Figure 2 shows classification accuracy on three graphs that were generated so that the node degrees
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(of either correct edges or erroneous edges) are close to constant within each class but vary across
classes. Details of their generation are described in Figure 1. We observe that on these graphs,
both K-scaling and L-scaling significantly improve classification accuracy over the unnormalized
baseline. There is no prominent difference between K-scaling’s and L-scaling’s performance.

Observe that K-scaling and L-scaling perform differently on the graphs used in Figure 3. These
graphs have the following properties. Each class consists of core nodes and satellite nodes. Core
nodes of the same class are tightly connected with each other and do not have any erroneous edges.
Satellite nodes are relatively weakly connected to core nodes of the same class. The satellite nodes
are also connected to some other classes’ satellite nodes (i.e., introducing errors). This core-satellite
model is intended to simulate real-world data in which some data points are close to the class
boundaries (satellite nodes). More precisely, graphs 6–10 were generated as follows. Each graph
consists of 2000 nodes (m = 2000) uniformly distributed over 10 classes (K = 10). 10% of the
nodes are the core nodes. For every core node, we randomly choose 10 other core nodes of the
same class and connect it to them with edge weight 1 (that is, each core node is connected to at
least 10 core nodes of the same class). For every satellite node, we randomly choose one core
node of the same class and connect them with edge weight 0.01. Also, for each satellite node,
we randomly choose one satellite node of some other class (i.e., introducing error) and connect
them with edge weight we. We set the error edge weight we = 0.002,0.004, · · · ,0.01 for graphs
6,7, · · · ,10, respectively. Note that although classes are uniformly distributed, pure components
that optimize the generalization bound may be non-uniform in size. For graphs generated in this
manner, degrees vary within the same class since the satellite nodes have smaller degrees than the
core nodes. Our analysis suggests that L-scaling will do poorly. Figure 3 shows that on the five
core-satellite graphs, K-scaling indeed produces higher performance than L-scaling. In particular,
K-scaling does well even when L-scaling rather underperforms the unnormalized baseline.

Our analysis suggests that K-scaling should work well when the graph has relatively small error.
This trend is more clearly observed on these core-satellite graphs without dimension reduction. As
shown in Figure 4, the advantage of K-scaling over L-scaling is more prominent on the graphs
with smaller error edge weights. On the other hand, the theory suggests that when the graph has
large error (large cut), the benefit of normalization is less clear (since the derivation of K-scaling
assumes near-zero cut). This is especially so when dimension reduction is not applied because as
pointed out in Section 3.5, dimension reduction reduces error. This trend can be observed in Figure
5, which shows that on graphs 1–3 (having larger errors than the core-satellite graphs), neither L-
scaling nor K-scaling prominently improves performance over the unnormalized Laplacian without
dimension reduction though L-scaling seems to perform slightly better. Note that the performance
without dimension reduction (Figure 5) is significantly worse than the performance with dimension
reduction (Figure 2). This means that dimension reduction, which reduces error, is important when
we try to apply graph based methods.

Additionally, we show illustrative toy examples based on the core-satellite model. Given the
original graph as in Figure 6 (a), Figure 6 (b)–(d) show the graphs corresponding to the scaled
adjacency matrices S−1/2WS−1/2 where S is derived from L-scaling, K-scaling with α = 0.01,
and K-scaling with α = 0.1, respectively. We observe that, compared with the unnormalized case,
K-scaling and L-scaling essentially balance the edge weights between the two classes (i.e., “nor-
malizing”) by relatively lowering the weights of class2 which is more “massive”. However, in this
example, L-scaling in a sense overdoes it and so is rather harmful as it amplifies the error edge
weights over the weights of the within-class edges. K-scaling does not suffer from this problem.
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Figure 4: Classification accuracy on the core-satellite graphs. x-axis: error edge weight we. n = 40,m =
2000. Without dimension reduction. Average over 10 random splits.
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Figure 5: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
Average over 10 random splits. n = 40,m = 2000. Without dimension reduction.

4.3 Real-world Data Experiments

Our real-world data experiments use two image data sets (MNIST and UMIST) and one text data
set (RCV1).

4.3.1 DATA AND BASELINE

The MNIST data set, downloadable from http://yann.lecun.com/exdb/mnist/, consists of hand-written
digit image data (representing 10 classes, from digit “0” to “9”). For our experiments, we randomly
choose 2000 images (i.e., m = 2000). The UMIST data set, downloadable from
http://images.ee.umist.ac.uk/danny/database.html, consists of 575 face images taken from several
angles of 20 people (representing 20 classes). The details of this data are described in Graham and
Allinson (1998). We use all the images (i.e., m = 575). Reuters Corpus Version 1 (RCV1) con-
sists of news articles labeled with topics. For our experiments, we chose 10 topics (representing
10 classes) that have relatively large populations and randomly chose 2000 articles that are labeled
with exactly one of those 10 topics. The class distribution over these 2000 articles is non-uniform
as shown in Figure 7.
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(a) Original graph                                            (b) L-scaling
class1 class2

(c) K-scaling with α=0.1                                  (d) K-scaling with α=0.01
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Figure 6: Illustrative toy examples of scaled adjacency matrices S−1/2WS−1/2 where S is derived from L-
scaling or K-scaling. For the two-class core-satellite graph in (a), L-scaling makes the weights of
error edges larger than the edge weights between the core nodes and satellite nodes of the same
class as in (b). K-scaling does not suffer from this problem ((c),(d)). (For an easy comparison, in
(b)–(d), edge weights are multiplied with constants so that the largest weight becomes one.)

To generate graphs from the image data, as is commonly done, we first generate the vectors of
the gray-scale values of the pixels, and produce the edge weight between the i-th and the j-th data
points Xi and X j by wi, j = exp(−||Xi −X j||2/t) where t > 0 is a parameter (radial basis function
(RBF) kernels). To generate graphs from the text data, we first create the bag-of-word vectors using
content words only2 and then set wi, j based on RBF as above or set wi, j to the inner product of
Xi and X j (linear kernels). Optionally, we zero out all wi, j but k nearest neighbors (i.e., i is j’s k
nearest neighbors or j is i’s k nearest neighbors) to reduce error in graphs and refer to it as the RBF
(or linear) kernel with kNN.

As our baseline, we also test the supervised configuration by letting W + βI (where W is a
weight matrix whose (i, j)-entry is wi, j) be the kernel matrix and using the same least squares loss
function. We set β to the optimum, which was 0.001 for the RBF kernel for RCV1 and 1 for the
other graphs.

2. To generate a bag-of-word vector from a document, as is commonly done, we remove function words (such as “a”,
“the”, and so on), set word frequencies of the document to the corresponding vector entries, and then scale the vector
into a unit vector.
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GPOL Domestic politics 486
GSPO Sports 407
GDIP International relations 299
GCRIM Crime, law enforcement 224
GJOB Labor issues 206
GVIO War, civil war 142
GDIS Disasters and accidents 89
GHEA Health 57
GENT Arts, culture, entertainment 47
GENV Environments 43

Total 2000

Figure 7: 10 RCV1 categories and their populations used in our experiments.
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Figure 8: Classification accuracy (%) in relation to the number of labeled examples (n) on MNIST. m =
2000. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and α
were set to the optimum. Average over 10 random splits.

4.3.2 RESULTS

Figure 8 shows performance in relation to the number of labeled examples (n) on the MNIST data
set. The comparison of the three bold lines (representing the methods with dimension reduction)
in Figure 8 (a) shows that when the dimensionality and α are determined (performing simple 2-
dimensional grid search) by cross validation, K-scaling outperforms L-scaling, and L-scaling out-
performs the unnormalized Laplacian. These performance differences are statistically significant
(p ≤ 0.01) based on the paired t test. The performance of the unnormalized Laplacian (with di-
mension reduction) is roughly consistent with the performance with similar (m,n) with heuristic
dimension selection in Belkin and Niyogi (2004). Although without dimension reduction, L-scaling
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(a) RCV1, RBF, dim and alpha 
determined by cross validation

(b) RCV1, RBF, w/ optimum dim 
and optimum alpha

Figure 9: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. RBF
kernel (with t = 0.25). m = 2000. (a) Dimensionality and α were determined by cross validation.
(b) Dimensionality and α were set to the optimum. Performance differences of the best performing
method ‘K-scaling (w/ dim reduction)’ from ‘L-scaling (w/ dim reduction)’ and ‘Unnormalized
(w/ dim redu.)’ are statistically significant (p ≤ 0.01) in both the settings (a) and (b).
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(a) RCV1, linear, dim and alpha 
determined by cross validation

(b) RCV1, linear, w/ optimum dim 
and optimum alpha

Figure 10: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. Linear
kernel. m = 2000. (a) Dimensionality and α were determined by cross validation. (b) Dimen-
sionality and α were set to the optimum. Performance differences of the best performing method
‘K-scaling (w/ dim reduction)’ from the second and third best ‘L-scaling (w/ dim reduction)’ and
‘Unnormalized (w/ dim redu.)’ are statistically significant (p ≤ 0.01) in both the settings (a) and
(b).
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(b) UMIST, w/ optimum dim 
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Figure 11: Classification accuracy (%) in relation to the number of labeled examples (n) on UMIST. m =
575. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and
α were set to the optimum. In (b), performance differences of the best performing method
‘K-scaling (w/ dim reduction)’ from the second and third best ‘K-scaling’ and ‘L-scaling’ are
statistically significant (p ≤ 0.01).

and K-scaling still improve performance over the unnormalized Laplacian, the best performance is
always obtained by K-scaling with dimension reduction (the bold line with circles).

In Figure 8 (a), the unnormalized Laplacian with dimension reduction underperforms the un-
normalized Laplacian without dimension reduction, indicating that dimension reduction rather de-
grades performance in this case. By comparing Figure 8 (a) and (b), we observe that this seemingly
counter-intuitive performance trend is caused by the difficulty in choosing the right dimensionality
by cross validation. Figure 8 (b) shows the performance at the optimum dimensionality and the
optimum α. As observed, if the optimum dimensionality is known (as in (b)), dimension reduc-
tion improves performance either with or without normalization by K-scaling and L-scaling, and
that all the transductive configurations outperform the supervised baseline. We also note that the
comparison of Figure 8 (a) and (b) shows that choosing good dimensionality by cross validation is
much harder than choosing α by cross validation especially when the number of labeled examples
is small. This trend was observed also on the other data sets on which we experimented.

On the RCV1 data set, the performance trend is essentially similar to that of MNIST. Figure 9
shows the performance on RCV1 using the RBF kernel (t = 0.25, 100NN). In the setting of Figure 9
(a) where the dimensionality and α were determined by cross validation, K-scaling with dimension
reduction generally performs the best. By setting the dimensionality and α to the optimum, the
benefit of K-scaling with dimension reduction is even clearer (Figure 9 (b)).

On text data like RCV1, linear kernels (instead of RBF) are often used. Figure 10 shows the
performance with linear kernels with 100NN. Again, K-scaling with dimension reduction performs
the best. Its performance differences from the second and third best ‘L-scaling (w/ dim reduction)’
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and ‘Unnormalized (w/ dim redu.)’ are statistically significant (p ≤ 0.01) in both Figure 10 (a) and
(b).

In Figure 11, we observe that dimension reduction seems less useful on the UMIST data set.
We conjecture that this may be because UMIST differs from our other data sets in that it is much
more ‘sparse’; UMIST has a smaller number of data points (m = 575 vs. m = 2000) while it
has more classes (K = 20 vs. K = 10). Nevertheless, when the dimensionality and α are set to
the optimum (Figure 11 (b)), again, K-scaling with dimension reduction performs the best. Its
differences from the second and the third best methods (K-scaling without dimension reduction and
L-scaling without dimension reduction) are statistically significant (p ≤ 0.01).

Overall, on these graphs generated from image and text data sets, K-scaling with dimension
reduction consistently outperformed the others. But without dimension reduction, K-scaling and
L-scaling were not always effective. Transductive learning (either with or without normalization)
generally improved performance.

4.4 Approximation of K-scaling

Although K-scaling consistently improves performance as shown above, its drawback is the rela-
tively large runtime as it involves the computation of the inverse of an m-by-m matrix. We propose a
less computationally-intensive approximation method using a known fact that (I−A)−1 = ∑∞

k=0 Ak

if ||A||2 < 1. As in the introduction, let D = diagi(degi(G)), and let W be a weight matrix such that
Wi, j = wi, j so that we can write L = D−W. Let D̂ = D+αI. We define K̂(h) to be the h-th order
approximation of K̄ = (L +αI)−1 as follows:

K̂(h) = D̂−1/2

(

h

∑
k=0

(

D̂−1/2WD̂−1/2
)k
)

D̂−1/2 .

We then set the i-th scaling factor Si so that:

Si = K̂(h)−1
i,i .

Since limh→∞ K̂(h) = K̄, the scaling factors produced with a sufficiently large h closely approximate
K-scaling. On the other hand, since K̂(0) = D̂−1 = (D+αI)−1, the scaling factors produced by K̂(0)
with α = 0 are exactly the same as L-scaling (or the standard degree-scaling).

Figure 12 shows the performance of this approximation method with h = 0,2,5,10 with dimen-
sion reduction in comparison with corresponding K-scaling and L-scaling on MNIST. In Figure 12
(b), we observe that at the optimum dimensionality and α, the performance of the approximation
method lies exactly between that of L-scaling and K-scaling, and it approaches to K-scaling as
the order h increases. Intuitively, with a larger h, this approximation method takes more and more
global connections into account and improves performance.

5. Conclusion

We derived generalization bounds for multi-category classification on graphs with Laplacian regu-
larization, using geometric properties of the graph. In particular, we used this analysis to obtain a
better understanding of the role of normalization of the graph Laplacian matrix. We argued that the
standard L-scaling normalization method has the undesirable property that the normalization factors
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(a) MNIST, dim and alpha 
determined by cross validation

(b) MNIST, w/ optimum dim 
and optimum alpha
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Figure 12: Classification accuracy (%) of the approximation method using K̂(h). MNIST. (a) Dimension-
ality and α were determined by cross validation. (b) Dimensionality and α were set to the
optimum.

can vary significantly within a pure component. An alternate normalization method, which we call
K-scaling, is proposed to remedy the problem. Experiments confirm the superiority of K-scaling
combined with dimension reduction. Finally, there are possible extensions of this work that require
further investigation, for example, how to use the K-scaling for other types of graphs such as direct
graphs, and how to apply this idea to spectral clustering.

Appendix A. Proof of Theorem 1

The proof employs the stability analysis of Zhang (2003), and is similar to the proof of a related
bound for binary-classification in Zhang and Ando (2006). We shall introduce the following nota-
tion. let in+1 6= i1, . . . , in be an integer randomly drawn from Z̄n, and let Zn+1 = Zn ∪{in+1}. Let
f̂(Zn+1) be the semi-supervised learning method (1) using training data in Zn+1:

f̂(Zn+1) = arg min
f∈RmK

[

1
n ∑

j∈Zn+1

φ(f j,y j)+λfT QKf

]

.

We have the following stability lemma (a related result can be found in Zhang, 2003);

Lemma 8 The following inequality holds for each k = 1, . . . ,K:

| f̂in+1,k(Zn+1)− f̂in+1,k(Zn)| ≤ |∇1,kφ( f̂in+1(Zn+1),yin+1)|Kin+1,in+1/(2λn),

where ∇1,kφ( fi,y) denotes a sub-gradient of φ( fi,y) with respect to fi,k, where fi = [ fi,1, . . . , fi,K ].

Proof From Rockafellar (1970), we know that there exist sub-gradients ∇1,kφ such that the follow-
ing first-order condition for the optimization problem (1) holds:

−2λnK−1f̂·,k(Zn) = ∑
j∈Zn

∇1,kφ(f̂ j(Zn),y j)e j,
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where e j is the m-dimensional vector with all zeros except for the j-component with value one.
Similarly, we have

−2λnK−1f̂·,k(Zn+1) = ∑
j∈Zn+1

∇1,kφ(f̂ j(Zn+1),y j)e j.

Now, for simplicity, let g = f̂(Zn) and h = f̂ (Zn+1). By subtracting the above two equations, and
then taking the inner product with h·,k −g·,k, we obtain

−2λn(h·,k −g·,k)T K−1(h·,k −g·,k) =∇1,kφ(hin+1 ,yin+1)(hin+1,k −gin+1,k)

+ ∑
j∈Zn

(∇1,kφ(h j,y j)−∇1,kφ(g j,y j))(h j,k −g j,k).

Note that if c(s) is a convex function of s, then it is easy to verify that (∇c(s1)−∇c(s2))(s1−s2)≥ 0.
Therefore we have ∑ j∈Zn

(∇1,kφ(h j,y j)−∇1,kφ(g j,y j))(h j,k −g j,k) ≥ 0. This implies that

2λn(h·,k −g·,k)T K−1(h·,k −g·,k) ≤−∇1,kφ(hin+1 ,yin+1)(hin+1,k −gin+1,k).

Using Cauchy-Schwartz inequality, we have

2λn(hin+1,k −gin+1,k)
2 =2λn((h·,k −g·,k)T ein+1)

2

≤2λn(h·,k −g·,k)T K−1(h·,k −g·,k)eT
in+1

Kein+1

≤|∇1,kφ(hin+1 ,yin+1)| · |hin+1,k −gin+1,k|Kin+1,in+1 .

Therefore we have |hin+1,k −gin+1,k| ≤ |∇1,kφ(hin+1 ,yin+1)|Kin+1,in+1/(2λn).

Lemma 9 The following inequality holds

err(f̂in+1(Zn),yin+1) ≤ sup
k=k0,in+1

[

1
a

φ0( f̂in+1,k(Zn+1),δin+1,k)+

(

b
cλn

Kin+1,in+1

)p]

.

Proof If f̂(Zn) does not make an error on the in+1-th example. That is, if err(f̂in+1(Zn),yin+1) = 0,
then the inequality automatically holds.

Now, assume that f̂(Zn) makes an error on the in+1-th example: err(f̂in+1(Zn),yin+1) = 1. Then
there exists k0 6= yin+1 such that f̂in+1,yin+1

(Zn) ≤ f̂in+1,k0(Zn). This means that for any d, either

f̂in+1,yin+1
(Zn) ≤ d or f̂in+1,k0(Zn) ≥ d. We simple let d = (inf{x : φ0(x,1) ≤ a}+ sup{x : φ0(x,0) ≤

a})/2. By the definition of c, either we have inf{x : φ0(x,1) ≤ a}− f̂in+1,yin+1
(Zn) ≥ c/2 or we have

f̂in+1,k0(Zn)− sup{x : φ0(x,0) ≤ a} ≥ c/2. It follows that there exists k = k0 or k = yin+1 such that
either φ0( f̂in+1,k(Zn+1),δyin+1 ,k) ≥ a or

∣

∣ f̂in+1,k(Zn+1)− f̂in+1,k(Zn)
∣

∣≥ c/2.

Using Lemma 8, we have either φ0( f̂in+1,k(Zn+1),δyin+1 ,k)≥ a or bKin+1,in+1/(2λn)≥ c/2, imply-
ing that

1
a

φ0( f̂in+1,k(Zn+1),δyin+1 ,k)+

(

bKin+1,in+1

cλn

)p

≥ 1 = err(f̂in+1(Zn),yin+1).
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We are now ready to prove Theorem 1. For every j ∈ Zn+1, denote by Z( j)
n+1 the subset of n

samples in Zn+1 with the j-th data point left out. From Lemma 9, we have

err(f̂ j(Z
( j)
n+1),y j) ≤

1
a

φ(f̂ j(Zn+1),y j)+

(

b
cλn

K j, j

)p

.

We thus obtain for all f ∈ RmK :

∑
j∈Zn+1

err(f̂ j(Z
( j)
n+1),y j) ≤

1
a ∑

j∈Zn+1

φ(f̂ j(Zn+1),y j)+ ∑
j∈Zn+1

(

b
cλn

K j, j

)p

≤1
a

[

∑
j∈Zn+1

φ(f j,y j)+λfT QKf

]

+ ∑
j∈Zn+1

(

b
cλn

K j, j

)p

.

Therefore

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j(Zn),y j)

=EZn+1err(f̂n+1(Z
(n+1)
n+1 ),yn+1) =

1
n+1

EZn+1 ∑
j∈Zn+1

err(f̂ j(Z
( j)
n+1),y j)

≤ n
a(n+1)

EZn+1

[

1
n ∑

j∈Zn+1

φ(f j,y j)+λfT QKf

]

+
1

n+1
EZn+1 ∑

j∈Zn+1

(

b
cλn

K j, j

)p

=
1
a

[

1
m

m

∑
j=1

φ(f j,y j)+
λn

n+1
fT QKf

]

+
1
m

m

∑
j=1

(

bK j, j

cλn

)p

.

Appendix B. Proof of Theorem 7

The idea is similar to that of Theorem 5. We use the same notation, and let v` be the indicator
function of V` in V . Let I` be the diagonal matrix with value ones for nodes corresponding to V`

and zeros elsewhere. We have ∀u = [u1, . . . ,um] ∈ Rm, (u−uT v`v`/m`)
T v` = 0. Therefore by the

definition of λ2(G`), we have

1
2 ∑

j, j′∈V`

w j, j′(u j −uk)
2 =(I`u−uT v`v`/m`)

T L(G′)(I`u−uT v`v`/m`)

≥λ2(G`)‖I`u−uT v`v`/m`‖2
2 = λ2(G`)uT [I`−v`v`/m`]u.

We thus obtain

uT Lu =
1
2

m

∑
j, j′=1

w j, j′(u j −uk)
2 ≥

q

∑̀
=1

1
2 ∑

j, j′∈V`

w j, j′(u j −uk)
2

≥uT

[

q

∑̀
=1

λ2(G`)(I`−v`vT
` /m`)

]

u.
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Therefore L −∑q
`=1 λ2(G`)(I`−v`vT

` /m`) is positive semi-definite, and thus

(

αI+
q

∑̀
=1

λ2(G`)(I`−v`vT
` /m`)

)−1

− (αI+L)−1

is positive-semi-definite. Also, from (2) we have S−1/2KS−1/2 = (αI + L(G))−1, so we know that
the diagonal entries of S−1/2KS−1/2 can be upper-bounded by those of

(

αI+
q

∑̀
=1

λ2(G`)(I`−v`vT
` /m`)

)−1

=
q

∑̀
=1

(α+λ2(G`))
−1 (I` +α−1λ2(G`)v`vT

` /m`

)

.

For the latter, its m` diagonal entries for each pure component ` can be upper bounded by λ2(G`)
−1 +

(αm`)
−1. Therefore:

m1/ptrp(K) ≤
(

q

∑̀
=1

s`(p)(α−1m−1
` +λ2(G`)

−1)p

)1/p

≤



α−1

(

q

∑̀
=1

s`(p)m−p
`

)1/p

+

(

q

∑̀
=1

s`(p)λ2(G`)
−p

)1/p


 .

Substitute this estimate into Theorem 4, and we have

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j(Zn),y j) ≤
Cp(a,b,c)

np/(p+1)

[

m−1/p(αs+C)(α−1A+B)
]p/(p+1)

,

where A = (∑q
`=1 s`(p)m−p

` )1/p, B = (∑q
`=1 s`(p)λ2(G`)

−p)1/p, and C = cut(LS,y). Now optimize
over α (let α =

√

AC/(sB)), and simplify to obtain the desired inequality.

Appendix C. Dimension Reduction

As in Section 3.5, denote by Pr
S(G) the projection operator onto the eigenspace of αS−1 + LS(G)

corresponding to the r smallest eigenvalues, and define the following regularizer on the reduced
subspace:

fT
·,kK−1f·,k =

{

fT
·,kK−1

0 f·,k if Pr
S(G)f·,k = f·,k,

+∞ otherwise.

Note that in the following, we will focus on bounding the generalization complexity using the
reduced dimensionality r. In such context, the choice of K0 is not important as far as our analysis is
concerned. We may simply choose K0 = I (or we may let K−1

0 = αS−1 +LS(G)).
The following theorem shows that the target vectors can be well approximated by their projec-

tion via Pq
S(G).

Theorem 10 Let G′ = ∪q
`=1G` (G` = (V`,E`)) be a pure subgraph of G. Consider r ≥ q. Then we

have:
λr+1(LS(G)) ≥ λr+1(LS(G

′)) ≥ min
`

λ2(LS(G`)).
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For each k, let f̄ j,k = δy j,k be the target (encoding of the true labels) for class k ( j = 1, . . . ,m). Then
‖Pr

S(G)f̄·,k − f̄·,k‖2
2 ≤ δr(S)‖f̄·,k‖2

2, where

δr(S) =
‖LS(G)−LS(G′)‖2 +d(S)

λr+1(LS(G))
, d(S) = max

`

1
2|V`| ∑

j, j′∈V`

w j, j′(S
−1/2
j −S−1/2

j′ )2.

Proof Let E = LS(G)−LS(G′), then E is a positive semi-definite matrix. Therefore, we know that
the eigenvalues of LS(G) are no less than the corresponding eigenvalues of LS(G′). This follows
easily from the minimax variational formulation for the q + 1-th smallest eigenvalue of a matrix
L ∈ Rm×m, which can be written as

max
Vq∈Rm×q:V T

q Vq=Iq×q

min
v∈Rm:‖v‖2=1,V T

q v=0
vT Lv,

together with the fact that vT LS(G)v ≥ vT LS(G′)v.
Since the (q + 1)-th smallest eigenvalue of LS(G′) is min` λ2(L(G`)), we obtain the first dis-

played inequalities. Moreover,

f̄T
·,kLS(G)f̄·,k = f̄T

·,kEf̄·,k + f̄T
·,kLS(G

′)f̄·,k ≤ (‖E‖2 +d(S))f̄T
·,k f̄·,k.

Since Pr
S(G)f̄·,k belongs to the subspace spanned by the smallest r eigenvectors of LS(G), and (I−

Pr
S(G))f̄·,k belongs to the subspace spanned by the remaining eigenvectors, we obtain

λr+1(LS(G))f̄T
·,k(I−Pr

S(G))f̄·,k ≤f̄T
·,k(I−Pr

S(G))LS(G)(I−Pr
S(G))f̄·,k

=f̄T
·,kLS(G)f̄·,k − (Pr

S(G)f̄·,k)T LS(G)(Pr
S(G)f̄·,k)

≤f̄T
·,kLS(G)f̄·,k

≤[‖LS(G)−LS(G
′))‖2 +d(S)]‖f̄·,k‖2

2.

The result follows from the observation that f̄T
·,k(I−Pr

S(G))f̄·,k = ‖f̄·,k −Pr
S(G)f̄·,k‖2

2.

In Theorem 10, normalization plays a direct role because S affects δr(S). Note that the eigen-
value inequality implies that δr(S) can be bounded by 1/min` λ2(LS(G`)). If LS(G)≈ LS(G′), then
d(S) ≈ 0, which means that S j ≈ S j′ if j and j′ belongs to the same V`. Moreover, λ2(LS(G`)) is
approximately a constant; otherwise, we may reduce the largest eigenvalue λ2(G`) by increasing
the corresponding scaling factor, which reduces ‖LS(G)−LS(G′))‖2, thus reduces δr(S). Using
reasoning that is analogous to Section 3.4, we can obtain similar conclusion under the condition
LS(G) ≈ LS(G′). That is, δr(S) is approximately minimized when S j = s̄` = m` for each j ∈V`.

Similar to Theorem 5, we can prove the following generalization bound using Theorem 10. For
simplicity, we only consider a simple kernel K0 = I, and take p = 1.

Theorem 11 Let the assumptions of Theorem 10 hold. Consider the least squares loss φ(f j,y j) =

∑K
k=1( f j,k−δk,y j)

2 in (1) using the regularization condition (6) and K0 = I. The generalization error
with optimal λ can be bounded as:

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤ 16δr(S)+8
√

r/n.
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Proof Using Theorem 10, it can be easily verified that

1
m

m

∑
j=1

φ(Pr
S(G)f̄ j,y j)+λ

K

∑
k=1

(Pr
S(G)f̄·,k)T K−1(Pr

S(G)f̄·,k) ≤ δr(S)+λm.

Since regularizing with K0 = I is equivalent with regularizing with K0 = Pr
S(G), we can use tr(K) =

r. Now using this estimate in Theorem 1, we have

EZn

1
m−n ∑

j∈Z̄n

err(f̂ j,y j) ≤ 16(δr(S)+λm)+
r

λnm
.

Optimizing over λ gives the desired bound.

Similar to Theorem 7, it is possible to prove a bound for general p in Theorem 11, but the
estimation of trp(K) is more complicated than that of tr(K). We skip the derivation because
the extra complication is not important for the purpose of this paper. Compared to Theorem 7,
the advantage of dimension reduction in Theorem 11 is that the quantity cut(LS,y) is replaced by
‖LS(G)−LS(G′)‖2, which is typically much smaller. Instead of a rigorous analysis, we shall just
give a brief intuition. For simplicity we take S = I so that we can ignore the variations caused by
S. The 2-norm of the symmetric error matrix LS(G)−LS(G′) is its largest eigenvalue, which is no
more than the largest 1-norm of one of its row vectors. In contrast, cut(LS,y) behaves similar to the
absolute sum of entries of the error matrix, which is m times more than the averaged 1-norm of its
row vectors. Therefore if error is relatively uniform across rows, then cut(LS,y) can be at an order
of m times more than ‖LS(G)−LS(G′)‖2.
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